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Abstract: A new approach is used to investigate the analytical solutions of the mathematical fractional
Casson fluid model that is described by the Constant Proportional Caputo fractional operator having
non-local and singular kernel near an infinitely vertical plate. The phenomenon has been expressed
in terms of partial differential equations, and the governing equations were then transformed in non-
dimensional form. For the sake of generalized memory effects, a new mathematical fractional model is
formulated based on the newly introduced Constant Proportional Caputo fractional derivative operator.
This fractional model has been solved analytically, and exact solutions for dimensionless velocity,
concentration and energy equations are calculated in terms of Mittag-Leffler functions by employing
the Laplace transformation method. For the physical significance of various system parameters such
as α, β, Pr, Gr, Gm, S c on velocity, temperature and concentration profiles, different graphs are
demonstrated by Mathcad software. The Constant Proportional Caputo fractional parameter exhibited
a retardation effect on momentum and energy profile, but it is visualized that for small values of Casson
fluid parameter, the velocity profile is higher. Furthermore, to validated the acquired solutions, some
limiting models such as the ordinary Newtonian model are recovered from the fractionalized model.
Moreover, the graphical representations of the analytical solutions illustrated the main results of the
present work. Also, from the literature, it is observed that to deriving analytical results from fractional
fluid models developed by the various fractional operators is difficult, and this article contributes to
answering the open problem of obtaining analytical solutions for the fractionalized fluid models.
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Abbreviations

Symbol Quantity Units
u Fluid velocity

(
ms−1

)
µ Dynamic viscosity

(
Kgm−1s−1

)
T Fluid temperature (K)
C Fluid concentration

(
Kgs−3

)
υ Kinematic coefficient of viscosity

(
m2s−1

)
Gr Thermal Grashof number (−)
Gm Mass Grashof number (−)
Dm Mass diffusivity

(
m2s−1

)
g Acceleration due to gravity

(
m.s−2

)
Tw Temperature of the plate (K)
βT Volumetric coefficient of thermal expansion

(
K−1

)
T∞ Temperature of fluid far away from the plate (K)
Cw Concentration of the plate

(
Kgm−3

)
βC Volumetric coefficient of mass expansion

(
m3Kg−1

)
C∞ Concentration of fluid far away from the plate

(
Kgm−3

)
ρ Fluid density

(
Kgm−3

)
β Casson fluid parameter (−)
σ Electrical conductivity

(
sm−1

)
Qr Radiative heat flux

(
Wm−2

)
Cp Specific heat at constant pressure

(
Jkg−1K−1

)
Pr Prandtl number (−)
Nr Radiation parameter

(
Wm−1K

)
Pr0 Effective Prandtl number (−)
s Laplace transform parameter

(
s−1

)
B0 Imposed Magnetic field

(
Wm−2

)
Q Heat generation/absorption

(
JK−1m−3s−1

)
M Total Magnetic field (−)
t Time (s)
k Thermal conductivity of the fluid

(
Wm−2K−1

)
P Pressure

(
Nm−2

)
k1 Coefficient of Rosseland absorption (−)
σ1 Stefan-Boltzmann constant

(
Wm−2K−4

)
α Fractional parameter (−)

AIMS Mathematics Volume 8, Issue 4, 8185–8209.



8187

1. Introduction

The process of heat and mass transfer has a great importance from the industrial point of view.
Many researchers and scientists concentrate on this area. In modern technologies and various
industrial fields, the non-Newtonian fluid theory has extensive impact because the Newtonian fluid
model cannot express many flow characteristics. A non-Newtonian fluid obeys non-linear
relationships between the rate of shear strain and the shear stress. The non-Newtonian fluid theory has
significant utilization in modern engineering, especially in the petroleum industry for extracting crude
oil from different petroleum productions. The properties of a Newtonian fluid in most cases are not
valid, but scientists desire to model the complex behaviour of non-Newtonian fluid. The importance
of non-Newtonian fluid has increased in the last few decades, specifically in the research field. The
non-Newtonian fluids have numerous ever-increasing applications in industrial sectors, but some
specific ones are mentioned here, such as: at large-scales reducing and enhancing heating/cooling
systems, biochemical and process engineering, extrusion of molten plastic in industry, reducing oil
pipeline friction, polymer processing, reducing fluid friction, well drilling, flow tracers, biological
materials, biomedical flow analysis, plastic foam processing, lubrication processes, food processing
industries, chemical processing, all emulsions, handling of muds, slurries and complex mixtures.
Many researchers and scientists have focused on non-Newtonian fluid while considering different
fluid geometries. Therefore, simulating and modelling the flow phenomena of non-Newtonian fluid
has an important role in human life. Researchers investigated different non-Newtonian fluid models
regarding physical and computational characteristics, such as the second grade model, viscoelastic
model, power law model, Bingham plastic model, Jeffery model, Oldroyd-B fluid model, Brinkman
type model, Casson model, Walters-B fluid model and Maxwell model [1–6]. Different fluid models
in the literature have various characteristics or certain limitations. For instance, the second grade fluid
model efficiently explains the elasticity but does not discuss the viscosity, and the power-law model
describes the features of viscosity but fails to explain the impacts of elasticity. This motivates/attracts
researchers and mathematicians towards the study of such complex fluids. Systematic analysis of such
fluid flow models is important for theoretical studies and practical implementations in modern
mechanization. Among such fluids, the Casson fluid has attracted special attention. It is also known
as a shear-thinning liquid, which is the most common non-Newtonian fluid due to its extensive
applications and substantial role in different fields, serving mechanical and chemical applications, bio
engineering operations, metallurgy and especially in food processing industries. The Casson fluid
model was initially proposed by Casson in 1959 with an aim to predict the flow regime of pigment-oil
suspensions [7]. This structural model is based on the interaction of liquid and solid phases, which
reveals yield stress. If the yield stress is larger than that of the applied shear force, then the liquid
behaves like a solid. In contrast, if the yield stress is weaker than the shear stress, the liquid starts
moving. Various materials of industrial applications, particularly those with multi-phase nature,
including emulsions, slurries, foams and melting polymers, do not follow a linear shear stress and
strain relationship. Honey, soup, jelly, china clay, tomato sauce, artificial fibers, synthetic lubricants,
concentrated fruit juices, pharmaceutical chemicals, paints and coal some applications of such fluid.
The Casson fluid model has numerous applications in cancer therapy. Blood also can be considered as
a Casson fluid [8, 9] since it contains different materials like protein, globulin, fibrinogen in aqueous
base plasma and red blood cells. The study of Casson fluid movement in the context of fluid
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mechanics, was explored by several mathematicians, scientists, researchers and engineers, and it
depends upon various situations. Khalid et al. [10] described unsteady, MHD natural convectional
Casson fluid flow in a porous media. Bhatta charyya et al. [11] examined the magnetohydrodynamic
flow of Casson fluid passing through and over a stretching/shrinking surface. Oka [12] studied for the
first time Casson fluid movement through tubes. The two-dimensional peristaltic Casson fluid flow in
a channel was investigated by Mernone et al. [13]. The induced magnetic field and chemical reaction
on the movement of Casson fluid passing through porous media was discussed by Arthur et al. [14].
Khalil et al. [15] developed a flow field which was mathematically formulated and solved by using the
Finite Element Method (FEM) in the presence of hybrid meshing; and modelling the non-Newtonian
fluid in a cavity yields Rayleigh number, Casson fluid parameter and Darcy number. Lou et al. [16]
investigated the momentum and thermal transportation of rotating dusty micro polar fluid flux with
suspension of conducting dust particles across a stretched sheet. Ashraf et al. [17] established a
unique computing exploration for steady magnetohydrodynamic convective streams of tangent
hyperbolic nano-fluid travelling across a non-linearly elongating elastic surface with a variable
thickness. Madhukesh [18] analysed the heat transference for two different boundary conditions,
namely, Newtonian heating (NH) and constant wall temperature (CWT). The governing partial
differential equations (PDEs) are reduced into ordinary differential equations (ODEs) by using
appropriate similarity transformations. Then, they are numerically solved by using
Runge-Kutta-Fehlberg’s fourth fifth order (RKF-45) technique by adopting the shooting method.
Bagh et al. [19] explored the significance of suction/injection for gravity modulation mixed
convection in micro polar fluid flow due to an inclined sheet in the presence of magnetic field and
thermal radiation. The mathematical modelling of the activation energy and binary chemical reaction
system with six distinct types of nanoparticles, along with the magnetohydrodynamic effect, was
studied by Raza et al. [20]. Mustafa et al. [21] analysed the heat transportation over a moving flat
plate by using the method of homotopy analysis for unsteady flow of the boundary layer of the Casson
model. The finite element analysis of the transient magnetohydrodynamic three-dimensional rotating
flow of Maxwell and tangent hyperbolic nano-fluid flow past a bidirectional stretching sheet with the
Cattaneo Christov heat flux model has been explored numerically by Bagh et al. [22]. Qureshi
et al. [23] explored the heat transfer properties and flow features of an MHD hybrid nano-fluid due to
the dispersion of polymer/CNT matrix nanocomposite material through orthogonal permeable disks
with the impact of morphological nano-layer. Bagh et al. [24] studied the roles of volume fraction,
Coriolis, and Lorentz forces on the dynamics of rotating water based silver tiny particles flow toward
a continuously stretching sheet. Pramanik [25] performed a systematic study to analysed the effects of
radiative thermal flux and porosity on mass and energy transfer.

Fractional calculus is an eminent mathematical field that is growing immensely due to enormous
significance. It investigates the non integer order behaviour of integrals and derivatives as well as their
applications and properties. The concept of differential calculus is old like classical calculus, In 1695,
a new idea about fractional calculus was introduced when a letter from Leibniz to L′Hospital was
written. This field attracted the attention of well known mathematicians, researchers and scientists
that proposed and built different fractional integrals and fractional derivatives. The researchers faced
too much difficulties to developed a real physical phenomenon by employing the traditional calculus
techniques, and the fractional differential equations have great importance for mathematicians and
researchers. It has been used in investigating numerous physical models in different scientific fields,
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such as biology, physics, chemistry, acoustic waves, finance, control theory, fractal dynamics, signal
processing, hydromagnetic waves, diffusion reaction process, anomalous transport, fluid flow
problems, engineering processes, oscillation, dynamical processes and many other disciplines. The
main reason for exploring the numerical or exact solutions is due to their significance in daily life. To
gain the numerical or exact solutions, researchers and mathematicians have implemented numerous
techniques. These include the unified method [26], multi step approach [27, 28], Riccati-Bernoulli
sub-ordinary differential equation Sub-ODE technique (RBSODET) [29], reproducing the kernel
Hilbert space method [30, 31], simple equation modification method [32], residual power series
method [33] and several others [34–36]. Due to the advancement in the field of fractional calculus,
scientists have suggested a couple of new techniques to interpret and establish real world problem
solutions using the theory of fractional calculus. To interpret and model phenomena in different fields
of science, such as electric circuit models, fractal rheological models and fractal growth of
populations models, several fractional operators have singular kernels. However, several with
non-singular kernels have been developed, which is an important tool to analyse the rheological
behaviour of the physical models in fractional calculus. In the literature, many researchers work a lot
in this shining field of mathematics to analysed the fractional fluid models and derived various
interesting results that are very helpful for engineers and scientists to compare their experimental
results get from the govern partial differential equations with the analytical results obtained using
different mathematical techniques and tools from fractional form of the non-Newtonian fluid models.
Marchaud Caputo and Riemann-Liouville developed fractional integrals and described a new concept
of fractional derivatives operators, that are based on singular kernels, but these fractional models have
some drawbacks due to the singular kernels and face many difficulties during the modelling process.
To overcome this hurdle that occurs with singular kernel fractional models , a new set of fractional
operators have been presented that are based on non-singular kernels, such as the Prabhakar fractional
derivative; Caputo-Fabrizio, Yang Abdel Cattani fractional, Atangana-Baleanu fractional operators;
and a few others, for reference [37–43]. These fractional operators have different types of
non-singular kernels, including Rabotnov exponential function, Exponential kernels and
Mittag-Leffler functions.

In a previous investigation, Ndolane Sene et al. [44] discussed the flow of Casson fluid with a
Caputo fractional model without considering the effect of mass diffusion, and they computed
analytically the presented model by using integral Laplace transformation, because it has efficient
applications for non-uniform boundary conditions. However a fractional Casson fluid model
developed by the CPC fractional operator, along with the set of symmetric conditions for mass,
energy and velocity, saturated in porous media, has not yet been investigated or published in the
literature. To fill this gap, a new fractional Casson model is developed under effectively applied
conditions for concentration, velocity field and temperature distribution. Further, in the presented
model, a new fractional operator is employed to fractionalized the diffusion, velocity and energy
equations together with the set of same conditions, applying the definition of a new fractional
derivative operator, the Constant Proportional Caputo operator, having non-local and singular kernel.
Owning to such interest, for better rheology of Casson fluid, developed a fractional model by
employing the new definition of the Constant Proportional Caputo fractional derivative operator that
describes the generalized memory effects. For seeking exact solution expressions in terms of
Mittag-Leffler functions, for velocity and temperature, the Laplace integral transformation method is
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used to solve the fractional model. For physical analysis, the influences of parameters like CPC
fractional order α, thermal Grashof number Gr, Casson fluid parameter β, Prandtl number Pr,
Schmidt number S c and mass Grashof number Gm are portrayed graphically by using Mathcad
software. Furthermore, for validation of the current result, limiting models such as the fractional
Newtonian model are obtained from the CPC fractional Casson model.

2. Mathematical model

Consider the Casson fluid flow over an infinite erected plate, having infinite length, that is embedded
in a porous medium. The plate is considered to be at φ = 0, and the fluid flow is restrained to φ > 0,
in the direction that is along the plate (as exhibited in Figure 1). We consider the following key
assumptions that are supposed to govern the Casson fluid flow model:

• The flow is unidirectional and one-dimensional.
• To omit the impact of an induction magnetic field, Reynolds number is considered small enough.
• A uniform magnetic force of lines with magnitude B0 is imposed in the direction which is

perpendicular to the plate.
• It is considered that no electric force is applied to avoid the polarization influence of fluid.
• Suppose the Qr (radiative heat flux) is negligible which is in the direction that is too the plate

corresponding to the radiative thermal flux that is in the normal direction of the plate.
• The energy equation without viscous dissipation term is considered.

Figure 1. Geometry of the flow model.

The set of Maxwell equations that is used to represent the magnetic field relations is written as
follows:

divM = 0, CurlE = −
∂M
∂t

, CurlM = Jµm, (2.1)

where J represents the current density, µm represents the magnetic permeability, and E represents the
electric field. Furthermore, M is the sum of B0(imposed magnetic field) and M0 (induced magnetic
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field), which is neglected in this case. From Ohm’s law,

J = (U × M + E)σ, (2.2)

where U denotes the fluid velocity, and σ denotes the electrical conductivity. Also, suppose that the
small Reynolds number gives the following expression:

(J × M)
1
ρ

= ((U × B0) × B0)
σ

ρ
= −

σuB0
2

ρ
. (2.3)

The rheological model is expressed as the following Cauchy stress tensor [45, 46]:

txy =

2(µt + Pλ√
2π

)exy, π > πz

2(µt + Pλ√
2πz

)exy, π < πz
, (2.4)

where µt denotes the plastic dynamic viscosity, Pλ represents the yield stress, π denotes the self product
of the component deformation rate, exy represents the deformation rate at (x, y)th component, and πz

is the critical value of the earlier mentioned product that depends upon the non-Newtonian model.
Initially, for time t = 0, the fluid and plate both are in the static mode, having ambient temperature
T∞ and concentration C∞. Later, when time t = 0+, the wall temperature is T (0, t) = Tw, and the
concentration C(0, t) = Cw, u(φ, t) is taken as the velocity component along the x-axis with u0 as the
characteristic velocity. Further, the velocity field satisfies the equation of continuity in the presence of
these factors. By considering all of the above mentioned assumptions, the following principal equations
for Casson fluid velocity under Boussinesq’s approximation, for concentration and energy transfer are
obtained as in [47, 48].

The momentum, energy and concentration equations, along with Fourier’s thermal flux Law and
Fick’s Law,are given below:

The momentum equation:

∂u(φ, t)
∂t

= υ

(
1 +

1
β

)
∂2u(φ, t)
∂φ2 + gβT (T (φ, t) − T∞) + gβC (C(φ, t) −C∞) . (2.5)

The energy equation:

∂T (φ, t)
∂t

= −
1
ρCp

∂q(φ, t)
∂φ

−
∂Qr

∂φ
,[

Qr = −
4σ1

3k1

∂T 4

∂φ
; T 4 ≈ 4T 3

∞T − 3T 4
∞

]
. (2.6)

Fourier’s Law:

q(φ, t) = −k
∂T (φ, t)
∂φ

. (2.7)

The diffusion equation:

∂C(φ, t)
∂t

= −
∂χ(φ, t)
∂φ

. (2.8)
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Fick’s Law:

χ(φ, t) = −Dm
∂C(φ, t)
∂φ

, (2.9)

with initial and boundary conditions are

u(φ, 0) = 0, T (φ, 0) = T∞, C(φ, 0) = C∞, φ > 0,
u(0, t) = u0, T (0, t) = Tw, C(0, t) = Cw, t > 0,
u(φ, t)→ 0, T (φ, t)→ T∞, C(φ, t)→ C∞ as φ→ ∞. (2.10)

To reduce the number of involved parameters, we have introduced the following new set of unit-free
quantities:

t∗ =
u2

0t
υ
, φ∗ =

u0φ

υ
, u∗ =

u
u0
, υ =

µ

ρ
, T ∗ =

T − T∞
Tw − T∞

, C∗ =
C −C∞
Cw −C∞

,

q∗ =
q
q0
, χ∗ =

χ

χ0
, q0 =

k(Tw − T∞)u0

υ
, χ0 =

Dm(Cw −C∞)u0

υ
, S c =

υ

Dm
,

Gr =
gυβT (Tw − T∞)

u3
0

, Gm =
gυβC(Cw −C∞)

u3
0

, Pr =
µCp

k
,

Nr =
16σ1T 3

∞

3kk1
, Pr0 =

Pr

1 + Nr
,

1
λ

=

(
1 +

1
β

)
. (2.11)

When substituting Eq (2.11) into Eqs (2.5), (2.6) and (2.8), and dropping the asterisk ∗ from newly
obtained equations, we have the dimensionless governing system of partial differential equations of the
considered model as follows:

∂u(φ, t)
∂t

=
1
λ

∂2u(φ, t)
∂φ2 + GrT (φ, t) + GmC(φ, t), (2.12)

∂T (φ, t)
∂t

= −
1

Pr0

∂q(φ, t)
∂φ

, (2.13)

q(φ, t) = −
∂T (φ, t)
∂φ

, (2.14)

∂C(φ, t)
∂t

= −
1

S c
∂χ(φ, t)
∂φ

, (2.15)

χ(φ, t) = −
∂C(φ, t)
∂φ

. (2.16)

The analogous initial and boundary conditions when applying the new quantities mentioned in Eq
(2.11) for non-dimensionalization are

u(φ, 0) = 0, T (φ, 0) = 0, C(φ, 0) = 0, f or φ > 0, (2.17)

u(0, t) = 1, T (0, t) = 1, C(0, t) = 1, f or t > 0, (2.18)

u(φ, t)→ 0, T (φ, t)→ 0, C(φ, t)→ 0 as φ→ ∞. (2.19)
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3. Preliminaries

The Constant Proportional Caputo (CPC) hybrid fractional operator used in this work was developed
recently by Dumitru et al. [49]. This newly developed fractional operator is a linear combination of
two fractional operators, namely, the Constant proportional and Caputo fractional derivative operators,
so it is also called a hybrid fractional operator. The CPC-fractional derivative operator of order α is
described as

CPCDα
t f (ψ, t) =

1
Γ(1 − α)

∫ t

0
(k1(α) f (ψ, τ) + k0(α)

∂ f (ψ, τ)
∂τ

)(t − τ)−αdτ, 0 < α < 1. (3.1)

The Laplace transformation of the Constant proportional-Caputo hybrid time fractional operator is
written as:

L
(

CPCDα
t f (ψ, t)

)
=

[
k1(α)

s
+ k0(α)

]
sαL ( f (ψ, t)) − k0(α)sα−1 f (ψ, 0), (3.2)

where α is used to represent the fractional parameter, and Laplace transform parameter is denoted by
s. Here, the functions k0 and k1 depend only on parameter α.

4. Solution of the problem

In the present article, introducing a novel mathematical model named as Constant Proportional
Caputo fractional operator which generalized the thermal memory effects. The time-fractional Casson
fluid equations for velocity, energy and concentration based on Constant Proportional Caputo derivative
operator are given as:

CPCDα
t u(φ, t) =

1
λ

∂2u(φ, t)
∂φ2 + GrT (φ, t) + GmC(φ, t), (4.1)

CPCDα
t T (φ, t) =

1
Pr0

∂2T (φ, t)
∂φ2 , (4.2)

CPCDα
t C(φ, t) =

1
S c

∂2C(φ, t)
∂φ2 , (4.3)

where, CPCDα
t (., .) represents the Constant Proportional-Caputo hybrid fractional operator, with detailed

discussion of properties in [49].

4.1. Temperature equation solution by using CPC derivative operator

To derive the solution for energy, Eq (4.2), with appropriate non-dimensional conditions Eqs (2.17)–
(2.19), we employ the technique of Laplace transformation in view of Eq (3.2) as follows:

Pr0

([
k1(α)

s
+ k0(α)

]
sαT̄ (φ, s) − k0(α)sα−1T̄ (φ, 0)

)
=

d2T̄ (φ, s)
dφ2 , (4.4)
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with

T̄ (φ, 0) = 0, T̄ (0, s) =
1
s

and T̄ (φ, s)→ 0 as φ→ ∞. (4.5)

The definition of Laplace integral transformation of any function X(φ, t), denoted by X̄(φ, s), is
expressed mathematically as:

X̄(φ, s) =

∫ ∞

0
X(φ, t)e−stdt.

The energy solution for Eq (4.4) is written in the form:

T̄ (φ, s) = e1e
−φ

√
Pr0

[
k1(α)

s +k0(α)
]
sα

+ e2e
φ

√
Pr0

[
k1(α)

s +k0(α)
]
sα
. (4.6)

The temperature solution of Eq (4.6) which satisfies the boundary conditions Eq (4.5) is given by

T̄ (φ, s) =
1
s

e
−φ

√
Pr0

[
k1(α)

s +k0(α)
]
sα
. (4.7)

We write Eq (4.7) in series equivalent form, because from the above form of the equation, it is difficult
to compute the Laplace inverse more precisely. By using the Taylor series expansion for the exponential
function, it becomes:

T̄ (φ, s) =

∞∑
n=0

(−φ)n(Pr0k0(α))
n
2

n!
.

1

s1− nα
2

(
1 +

k1(α)
k0(α) s−1

)− n
2
. (4.8)

The required temperature field solution is given by the inverse Laplace transform of Eq (4.8):

T (φ, t) =

∞∑
n=0

(−φ)n(Pr0k0(α))
n
2

n!
t−

nα
2 E

−n
2

1,1− nα
2

(
−

k1(α)
k0(α)

t
)
. (4.9)

Moreover, the rate of heat transfer can be determined from the Nusselt number (Nu), defined as

Nu = −
∂T (φ, t)
∂φ

∣∣∣
φ=0

= −
∂

∂φ
L−1

{
T̄ (φ, s)

} ∣∣∣
φ=0

= −L−1
{
∂T̄ (φ, s)
∂φ

∣∣∣
φ=0

}

= L−1

(Pr0k0(α))
1
2

1

s1− α2
(
1 +

k1(α)
k0(α) s−1

)− 1
2


= (Pr0k0(α))

1
2 t−

α
2 E

−1
2

1,1− α2

(
−

k1(α)
k0(α)

t
)
, (4.10)

by using

L−1
{

s−β

(1 − ℘s−α)γ

}
= tβ−1Eγ

α,β(℘tα).
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4.2. Diffusion equation solution by using CPC derivative operator

To derive the solution for mass, Eq (4.3), with appropriate non-dimensional conditions Eqs (2.17)–
(2.19), we employ the technique of Laplace transformation in view of Eq (3.2) as follows:

S c
[
k1(α)

s
+ k0(α)

]
sαC̄(φ, s) − k0(α)sα−1C̄(φ, 0) =

∂2C̄(φ, s)
∂φ2 , (4.11)

with

C̄(φ, 0) = 0, C̄(0, s) =
1
s

and C̄(φ, s)→ 0 as φ→ ∞. (4.12)

The solution for the concentration fractional differential equation Eq (4.11) is obtained as:

C̄(φ, s) = e3e
−φ

√
S c

[
k1(α)

s +k0(α)
]
sα

+ e4e
φ

√
S c

[
k1(α)

s +k0(α)
]
sα
. (4.13)

The concentration solution of Eq (4.13) which satisfies the boundary conditions Eq (4.5) is given by

C̄(φ, s) =
1
s

e
−φ

√
S c

[
k1(α)

s +k0(α)
]
sα
. (4.14)

We write Eq (4.14) in series equivalent form, because from the above form of the equation, it is difficult
to compute the Laplace inverse more precisely. By using the Taylor series expansion for the exponential
function, it becomes:

C̄(φ, s) =

∞∑
n=0

(−φ)n(S ck0(α))
n
2

n!
.

1

s1− nα
2

(
1 +

k1(α)
k0(α) s−1

)− n
2
. (4.15)

The required concentration solution is given by the inverse Laplace transform of the above Eq (4.15):

C(φ, t) =

∞∑
n=0

(−φ)n(S ck0(α))
n
2

n!
t−

nα
2 E

−n
2

1,1− nα
2

(
−

k1(α)
k0(α)

t
)
. (4.16)

The mass transfer rate, known as Sherwood number (S h), is defined as

S h = −
∂C(φ, t)
∂φ

∣∣∣
φ=0

= −
∂

∂φ
L−1

{
C̄(φ, s)

} ∣∣∣
φ=0

= −L−1
{
∂C̄(φ, s)
∂φ

∣∣∣
φ=0

}

= L−1

(S ck0(α))
1
2

1

s1− α2
(
1 +

k1(α)
k0(α) s−1

)− 1
2


= (S ck0(α))

1
2 t−

α
2 E

−1
2

1,1− α2

(
−

k1(α)
k0(α)

t
)
. (4.17)
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4.3. Velocity field solution by using CPC derivative operator

To derive the solution for velocity field, Eq (4.1), with appropriate non-dimensional conditions
Eqs (2.17)–(2.19), we employ the Laplace transformation method in view of Eq (3.2) as follows:

λ

[
k1(α)

s
+ k0(α)

]
sαū(φ, s) − k0(α)sα−1ū(φ, 0) =

d2ū(φ, s)
dφ2 + λGrT̄ (φ, s) + λGmC̄(φ, s), (4.18)

with transformed conditions are:

ū(φ, 0) = 0, ū(0, s) =
1
s

and ū(φ, s)→ 0 as φ→ ∞. (4.19)

The solution for the velocity fractional differential equation Eq (4.18), together with T̄ (φ, s) and C̄(φ, s)
are taken from Eqs (4.8) and (4.15), is written as:

ū(φ, s) = e5e
−φ

√
λ
[

k1(α)
s +k0(α)

]
sα

+ e6e
φ

√
λ
[

k1(α)
s +k0(α)

]
sα

+

(
λGr

λ − Pr0

)  1

sλ
[

k1(α)
s + k0(α)

]
sα

 e
−φ

√
Pr0

[
k1(α)

s +k0(α)
]
sα

+

(
λGm
λ − S c

)  1

sλ
[

k1(α)
s + k0(α)

]
sα

 e
−φ

√
S c

[
k1(α)

s +k0(α)
]
.sα
. (4.20)

The velocity solution of Eq (4.20) which satisfies the boundary conditions Eq (4.19) is given by

ū(φ, s) =
1
s

e
−φ

√
λ
[

k1(α)
s +k0(α)

]
sα

+

(
λGr

λ − Pr0

)  1

sλ
[

k1(α)
s + k0(α)

]
sα


e−φ

√
Pr0

[
k1(α)

s +k0(α)
]
sα
− e

−φ

√
λ
[

k1(α)
s +k0(α)

]
sα


+

(
λGm
λ − S c

)  1

sλ
[

k1(α)
s + k0(α)

]
sα


e−φ

√
S c

[
k1(α)

s +k0(α)
]
.sα
− e

−φ

√
λ
[

k1(α)
s +k0(α)

]
sα
 . (4.21)

Equation (4.21) is written in a new way to compute its inverse easily, which implies that

ū(φ, s) = ū1(φ, s) +

(
λGr

λ − Pr0

)
ū2(φ, s)

[
T̄ (φ, s) − ū1(φ, s)

]
+

(
λGm
λ − S c

)
ū2(φ, s)

[
C̄(φ, s) − ū1(φ, s)

]
. (4.22)

Computing the velocity solution using the Laplace inverse transformation, the required velocity
solution is given by

u(φ, t) = u1(φ, t) +

(
λGr

λ − Pr0

)
u2(φ, t) ∗

[
T (φ, t) − u1(φ, t)

]
+

(
λGm
λ − S c

)
u2(φ, t) ∗

[
C(φ, t) − u1(φ, t)

]
, (4.23)
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where

u1(φ, t) = L−1 {ū1(φ, s)} = L−1

1
s

e
−φ

√
λ
[

k1(α)
s +k0(α)

]
sα


= L−1


∞∑

n=0

(−φ)n(λk0(α))
n
2

n!
.

1

s1− nα
2

(
1 +

k1(α)
k0(α) s−1

)− n
2


=

∞∑
n=0

(−φ)n(λk0(α))
n
2

n!
t

nα
2 E

−n
2

1,1− nα
2

(
−

k1(α)
k0(α)

t
)

u2(φ, t) = L−1 {ū2(φ, s)} = L−1

 1

sα
[

k1(α)
s + k0(α)

]


=
1

k0(α)
tα−1E1,α

(
−

k1(α)
k0(α)

t
)
.

The relation for skin friction (C f ) (wall shear stress) is presented as

C f =

(
1 +

1
β

)
∂u(φ, t)
∂φ

∣∣∣
φ=0

=

(
1 +

1
β

)
∂

∂φ
L−1 {ū(φ, s)}

∣∣∣
φ=0

=

(
1 +

1
β

)
L−1

{
∂ū(φ, s)
∂φ

∣∣∣
φ=0

}
, (4.24)

with

∂ū(φ, s)
∂φ

∣∣∣
φ=0

= −
1
s

√
λ

[
k1(α)

s
+ k0(α)

]
sα

+

(
λGr

λ − Pr0

)  1

sλ
[

k1(α)
s + k0(α)

]
sα


−

√
Pr0

[
k1(α)

s
+ k0(α)

]
sα +

√
λ

[
k1(α)

s
+ k0(α)

]
sα


+

(
λGm
λ − S c

)  1

sλ
[

k1(α)
s + k0(α)

]
sα


−

√
S c

[
k1(α)

s
+ k0(α)

]
.sα +

√
λ

[
k1(α)

s
+ k0(α)

]
sα

 . (4.25)

After applying the Laplace inverse transformation of Eq (4.25), the result is obtained as

L−1
{
∂ū(φ, s)
∂φ

∣∣∣
φ=0

}
= −(λk0(α))

1
2 t−

α
2 E

−1
2

1,1− α2

(
−

k1(α)
k0(α)

t
)

+

(
Gr

λ − Pr0

) [
√
λ(k0(α))−

1
2 t

α
2 E

1
2
1,1+ α

2

(
−

k1(α)
k0(α)

t
)
−

√
Pr0(k0(α))−

1
2 t

α
2 E

1
2
1,1+ α

2

(
−

k1(α)
k0(α)

t
)]
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+

( Gm
λ − S c

) [√
λ(k0(α))−

1
2 t

α
2 E

1
2
1,1+ α

2

(
−

k1(α)
k0(α)

t
)
−
√

S c(k0(α))−
1
2 t

α
2 E

1
2
1,1+ α

2

(
−

k1(α)
k0(α)

t
)]
. (4.26)

It can also be written in more precise form as

L−1
{
∂ū(φ, s)
∂φ

∣∣∣
φ=0

}
= − (λk0(α))

1
2 t−

α
2 E

−1
2

1,1− α2

(
−

k1(α)
k0(α)

t
)

+ (k0(α))−
1
2 t

α
2 E

1
2
1,1+ α

2

(
−

k1(α)
k0(α)

t
) [(

Gr
√
λ +
√

Pr0

)
+

(
Gm

√
λ +
√

S c

)]
. (4.27)

5. Limiting models

When the Casson fluid parameter β is very large, i.e, 1
β
→ 0, then the behaviour of the

non-Newtonian fluid reduces to that of Newtonian fluid, and the velocity of Eq (4.21) turns out as

ū(φ, s) =
1
s

e
−φ

√[
k1(α)

s +k0(α)
]
sα

+

(
Gr

1 − Pr0

)  1

s
[

k1(α)
s + k0(α)

]
sα


e−φ

√
Pr0

[
k1(α)

s +k0(α)
]
sα
− e

−φ

√[
k1(α)

s +k0(α)
]
sα


+

( Gm
1 − S c

)  1

s
[

k1(α)
s + k0(α)

]
sα


e−φ

√
S c

[
k1(α)

s +k0(α)
]
.sα
− e

−φ

√[
k1(α)

s +k0(α)
]
sα
 . (5.1)

Equation (5.1) is written in a new way to compute its inverse easily, which implies that

ū(φ, s) = ū3(φ, s) +

(
Gr

1 − Pr0

)
ū4(φ, s)

[
T̄ (φ, s) − ū3(φ, s)

]
+

( Gm
1 − S c

)
ū4(φ, s)

[
C̄(φ, s) − ū3(φ, s)

]
. (5.2)

Computing the velocity solution using the Laplace inverse transformation, the required velocity
solution is given by

u(φ, t) = u3(φ, t) +

(
Gr

1 − Pr0

)
u4(φ, t) ∗

[
T (φ, t) − u3(φ, t)

]
+

( Gm
1 − S c

)
u4(φ, t) ∗

[
C(φ, t) − u3(φ, t)

]
, (5.3)

where

u3(φ, t) = L−1 {ū3(φ, s)} = L−1

1
s

e
−φ

√[
k1(α)

s +k0(α)
]
sα


= L−1


∞∑

n=0

(−φ)n(k0(α))
n
2

n!
.

1

s1− nα
2

(
1 +

k1(α)
k0(α) s−1

)− n
2


AIMS Mathematics Volume 8, Issue 4, 8185–8209.



8199

=

∞∑
n=0

(−φ)n(k0(α))
n
2

n!
t

nα
2 E

−n
2

1,1− nα
2

(
−

k1(α)
k0(α)

t
)
,

u4(φ, t) = L−1 {ū4(φ, s)}

= L−1

 1

sα
[

k1(α)
s + k0(α)

]


=
1

k0(α)
tα−1E1,α

(
−

k1(α)
k0(α)

t
)
.

In the case of Gm = 0, the solution for the velocity field becomes

u(φ, t) =

∞∑
n=0

(−φ)n(λk0(α))
n
2

n!
t

nα
2 E

−n
2

1,1− nα
2

(
−

k1(α)
k0(α)

t
)

+

(
λGr

λ − Pr0

) [
1

k0(α)
tα−1E1,α

(
−

k1(α)
k0(α)

t
)]
∗

 ∞∑
n=0

(−φ)n(Pr0k0(α))
n
2

n!
t

nα
2 E

−n
2

1,1− nα
2

(
−

k1(α)
k0(α)

t
)

−

(
λGr

λ − Pr0

) [
1

k0(α)
tα−1E1,α

(
−

k1(α)
k0(α)

t
)]
∗

 ∞∑
n=0

(−φ)n(λk0(α))
n
2

n!
t

nα
2 E

−n
2

1,1− nα
2

(
−

k1(α)
k0(α)

t
)

+

(
λGm
λ − S c

) [ 1
k0(α)

tα−1E1,α

(
−

k1(α)
k0(α)

t
)]
∗

 ∞∑
n=0

(−φ)n(S ck0(α))
n
2

n!
t

nα
2 E

−n
2

1,1− nα
2

(
−

k1(α)
k0(α)

t
)

−

(
λGm
λ − S c

) [ 1
k0(α)

tα−1E1,α

(
−

k1(α)
k0(α)

t
)]
∗

 ∞∑
n=0

(−φ)n(λk0(α))
n
2

n!
t

nα
2 E

−n
2

1,1− nα
2

(
−

k1(α)
k0(α)

t
) . (5.4)

6. Results and discussion

The present work examines the analytical solutions of the mathematical fractional Casson fluid
model for flow through porous plate near an infinitely vertical plate, saturated in porous medium. The
phenomenon has been expressed in terms of partial differential equations, and the governing
equations have been transformed in non-dimensional form with suitable new non-dimensional
variables. For the sake of better rheology of Casson fluid, we developed a fractional model by
employing the new definition of the Constant Proportional Caputo fractional derivative operator
having non-local and singularized kernel that describes the generalized memory effects. For seeking
exact solution expressions in terms of Mittag-Leffler functions, for Casson fluid velocity,
concentration and Casson fluid temperature, the Laplace integral transformation method is used to
solve the fractional model. The physical significance of various system parameters involved in the
problem, such as fractional parameter α, thermal Grashof number Gr, Casson fluid parameter β,
Prandtl number Pr, Schmidt number S c and mass Grashof number Gm, on the Casson fluid velocity,
concentration and Casson fluid temperature are evaluated graphically in Figures 2–11 by using
graphical Mathcad Software. A new aspect of this presented work is the use of the Constant
Proportional Caputo fractional operator for Casson fluid with symmetry boundary conditions.

Figure 2 portrays the impact of fractional parameter α on fluid temperature and concentration
against φ, and a significant effect on fluid temperature within the boundary layer is investigated. For
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distinct values of fractional parameter, increasing values of α, and consequently, temperature and
concentration profiles are decreased.

Figure 2. Simulation to illustrate the temperature and concentration profiles for distinct
values of the fractional parameter α.

Figure 3 displays the Prandtl number Pr effect on Casson fluid temperature distribution against φ, for
different values of Pr, at four different values of fractional parameter α. It is noticed that a decreasing
effect on temperature in the boundary layer occurred when the values of the Prandtl number enlarged.
Physically, increasing the values of Prandtl number increases the fluid viscosity, so the fluid becomes
thicker, and as a result, fluid temperature decreased.

Figure 3. Simulation to illustrate the temperature profile for varying the values of Pr at
distinct values of the fractional parameter α.
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Figure 4 illustrates the effect of S c on concentration profile of Casson fluid by changing its value.
From the curves, it is analysed that concentration profile reduced for large values of S c, where the
values of fractional parameters have been considered between 0 and 1. Physically, boundary layer of
concentration is declined due to change of Schmidt number from small to large. Figure 5 depicts the
graphical behaviour of fractional parameter α, and a significant effect is noticed on Casson fluid
velocity curve together with system parameters. It is noteworthy that the curves of the fluid velocity
for small values of fractional parameter is lower, and the curves of fluid velocity increased
continuously corresponding to increasing values of fractional parameter. Figure 6 represents the
behaviour of Casson fluid parameter β to analyse its effect on velocity contours, and variation of
velocity field against φ under the influence of Casson parameter β is noticed in this graph together
with the involved parameters. It is observed that they share an inverse relation, as an increase in β

results in flow retardation. The physical phenomenon causing this retardation is the plasticity of fluid.
When parameter β reduces, momentum boundary layer thickness increases due to an increase in the
plasticity of the fluid. With increasing values of Casson fluid parameter, the velocity graphs are
reduced as a result. Also, it is analysed from the graph of fluid velocity that the momentum boundary
layer thickness reduced corresponding to increasing the values of Casson fluid parameter.
Furthermore, the non-Newtonian fluid behaviour fully vanishes, when the value of Casson parameter
is very very large ( 1

β
) → 0, then in this case fluid totally changed in viscous fluid. From these results,

it is concluded that the thickness of velocity boundary layer is larger for Newtonian fluid as compared
to the Casson fluid.

Figure 4. Representation of concentration profile against φ for distinct values of S c for
distinct values of the fractional parameter α.
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Figure 5. Representation of Casson fluid velocity against φ for distinct values of α.

Figure 6. Representation of Casson fluid velocity against φ for distinct values of β.

Figure 7. Representation of Casson fluid velocity against φ for distinct values of Pr.
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Figure 8. Representation of Casson fluid velocity against φ for distinct values of Gr.

Figure 9. Representation of Casson fluid velocity against φ for distinct values of Gm.

AIMS Mathematics Volume 8, Issue 4, 8185–8209.



8204

Figure 10. Representation of Casson fluid velocity against φ for distinct values of S c.

Figure 11. Comparison of CPC fractional operator and Caputo fractional operator against φ.

Figure 7 exhibits the effect of Prandtl number Pr on Casson fluid velocity corresponding to φ,
for different values of Pr, at four different values of fractional parameter α. There was a decreasing
effect on velocity in the boundary layer when the values of the Prandtl number enlarged. Physically,
an increased Prandtl number causes an increased fluid viscosity. Because of this, the fluid becomes
thicker, and as a result, fluid velocity decreased. Figures 8 and 9 portrays the influence of thermal
Grashof numbers Gr and mass Grashof number Gm on Casson fluid flow against φ. Gr describes the
fraction of thermal buoyancy force to viscous force and Gm describes the fraction of species buoyancy
force to viscous force acting on the fluid transportation. As a result, increasing Gr or Gm causes a
remarkable increasing impact on the Casson fluid velocity. Physically, increasing values of thermal
or mass Grashof numbers leads to decreases in viscous hydrodynamic forces, and as a result, the
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momentum of the Casson fluid is higher.
Figure 10 the effect of S c on Casson fluid velocity curve is depicted, against φ, for different values of

S c, at four different values of fractional parameter α. There was a decreasing effect on velocity contour
when the values of the Schmidt number enlarged. Physically, the relative influence of momentum
diffusivity to species diffusivity is the definition of Schmidt number S c. It is noticed that, momentum
diffusivity is quicker than species diffusivity when Sc is greater than one (S c > 1), but it is the reverse
when Sc is less than one (S c < 1). In the case of (S c = 1), both species and momentum boundary
layers have magnitude of the same order. Figure 11 gives a comparative illustration of velocity field
for Constant Proportional Caputo and Caputo fractional operators. It also shows the velocity profile
at two different levels of time, and it is witnessed that the CPC time fractional operator produces the
higher velocity profile as compared to the Caputo fractional model.

7. Conclusions

In this article, the analytical solutions of the mathematical fractional Casson fluid that flows through
vertical porous plate under symmetry boundary conditions is investigated. The phenomenon has been
expressed in terms of partial differential equations, and then the governing equations were transformed
in non-dimensional form. For the sake of better rheology of Casson fluid, we developed a fractional
model by employing the new definition of Constant Proportional Caputo hybrid fractional operator
that describes the generalized memory effects. For seeking exact solution expressions in terms of
Mittag-Leffler functions, for Casson fluid velocity, concentration and Casson fluid temperature, the
Laplace integral transformation method is used to solve the fractional model. For physical significance
of several involved parameters, the graphical representations of the analytical solutions illustrated the
main results of the present work. Also, from the literature, it is observed that deriving analytical results
from fractional fluid models developed by the various fractional operators is difficult, and this article
contributes to answering the open problem of obtaining analytical solutions of the fractionalized fluid
models. Some noteworthy observations and concluding remarks are given below:

• It is detected that the fluid temperature is reduced when increasing the values of Pr. Also,
reduction is observed in concentration profile for elevating the values of S c for varying the
values of fractional parameter (α).
• An increase in the values of Pr and S c causes a decline in the velocity profile.
• The growing values of Gr and Gm increase the velocity field.
• Fluid temperature and concentration are decreasing functions of the fractional parameter α.
• Increasing values of α increase the momentum profile.
• It is observed that when elevating the Casson parameter β, the velocity graphs decreased.
• It can be noticed that the Casson fluid velocity displays the same behaviour for small and large

values of α.

Future researchers can investigate the same problem by employing various fractional derivative
operators having singular and non-singular kernels.
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