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1. Introduction and preliminary results

Soliton theory has become a topic of great interest for mathematicians since its emergence with the
discovery of solitary waves by Russel in 1834. Afterward, Kruskal and Zabusky introduced the
concept of solitons triggering the worldwide study of solitons along with the development in
mathematics and other fields of science and engineering. Solitons have many applications in different
mathematical-oriented disciplines of science due to their shape-preserving properties and other useful
aspects. Solitary waves are more stable over long distances because they preserve their shape and
velocity after the interaction. This special characteristic of solitons stimulates mathematicians and
physicists to work on them, which is why soliton theory is still progressing.
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Various nonlinear PDEs have been investigated during recent years for getting their solitary wave
solutions of various types. For instance, soliton solutions of mKdV equation [1] and [39], nonlinear
Schrödinger equation [2], KE equation [40], Date-Jimbo-Kashiwara-Miwa equation [3], Boussinesq
equation [4], Lakshmanan-Porsezian-Daniel equation [5], Kwahara equation [6], ZK-Burgers
equation [7], Lakshmanan-Porsezian-Daniel equation [8] and the Błaszak-Marciniak lattice
equations [41] have been extracted by different researchers. Discrete nonlinear Schrödinger equations
have also been extensively studied in various physical contexts, for instance, in studying the
diode-like transmission properties of waves [9–13]. Soliton theory has become the popular topic of
research and has attracted the attention of researchers in recent years. Soliton resolution and the
asymptotic stability of N-soliton solution for the Wadati-Konno-Ichikawa equation are discussed
in [26]. Soliton resolution for the Wadati-Konno-Ichikawa equation with weighted Sobolev initial
data is discussed in [27]. Soliton resolution for the complex short pulse equation with weighted
Sobolev initial data in space-time solitonic regions is presented in [28]. Riemann-Hilbert problem and
dynamics of soliton solutions of the fifth-order nonlinear Schrödinger equation are discussed in [29].
Integrable discretizations and soliton solutions of an Eckhaus-Kundu equation are presented in [30].
Traveling wave, lump Wave, rogue wave, multi-kink solitary wave and interaction solutions in a
(3+1)-dimensional Kadomtsev-Petviashvili equation using Bäcklund transformation are presented
in [31]. The interpretation and understanding of natural processes require the extraction of analytical
and numerical solutions of nonlinear evolution equations (NLEEs). In the quest of finding solutions
of NLEEs, a number of novel and effective techniques have been reported including Riemann-Hilbert
method [32, 33], Hirota method [34], Darboux transformation method [35] and Lie symmetry analysis
approach [36], etc.

This paper addresses Gardner’s equation [14–16] in the form

ηt + 2αηηx + 3βη2ηx + γηxxx = 0. (1.1)

In the above model, α, β and (γ > 0) are nonzero constants. The proposed model was first
introduced by Gardner in 1968 during his research on KdV equation [17]. This equation has great
importance in various branches of science, especially in the quantum field and plasma physics [18].
The derivation of higher-order Gardner’s equation is considered very imperative for analyzing
nonlinear properties of solitary waves [19]. In recent years, Gardner’s equation has been studied by
many researchers [42–44] for extracting soliton solutions. Moreover, there are also Jacobi elliptic
solutions in the Gardner’s equation [37].

The purpose of writing this article is to construct new soliton solutions of the proposed model
Eq (1.1) via three effective schemes, namely, Kudryashov’s R function method, generalized projective
Riccati equations method and G′

G2−expansion approach.
In 2020, Kudryashov was the first who developed Kudryashov’s R function approach [20]. This

method is effective and applicable to a variety of nonlinear problems. The generalized Riccati equations
method (GPRE) originated from the research work of Conte and Musette [21] in which they proposed
the idea of writing an NLPDE as a polynomial of two functions. The third method utilized in this
paper is G′

G2−expansion method that was introduced in 2009 [22]. Application of these methods to the
considered Gardner’s equation has resulted in novel soliton solutions.

The paper contains seven sections. In Section 2, the governing equation is converted into an ODE
via traveling wave transformation. Sections 3–5 deal with solution of Gardner’s equation using the

AIMS Mathematics Volume 8, Issue 4, 8171–8184.



8173

suggested methods. Few of the obtained solutions are graphically illustrated in Section 6, whereas the
concluding points are given in Section 7.

2. Governing equation

The proposed model is considered, as

ηt + 2αηηx + 3βη2ηx + γηxxx = 0. (2.1)

If the β > 0, Eq (2.1) admits two families of solitons and oscillating wave packets (called breathers),
whereas if β < 0, only one category of solitons exists. Eq (2.1) is also called the combined KdV-mKdV
equation.

The following wave transformation is used for extracting solitary wave solutions of (2.1), as

η(x, t) = P(a), a = µx − θt, (2.2)

where P is real-valued function and µ, θ are nonzero constants.
Applying transformation (2.2) on Eq (2.1), an ordinary differential equation (ODE) is yielded, as

−θP
′

+ 2αµPP
′

+ 3βµP2P
′

+ γµ3P
′′′

= 0. (2.3)

Now upon integrating Eq (2.3), we have

−θP + αµP2 + βµP3 + γµ3P
′′

= 0. (2.4)

Further, Eq (2.4) is solved using three proposed efficient analytical methods in the following
subsections to derive solitary wave solutions of the proposed model Eq (2.1).

3. Solitary wave solutions using Method 1: Kudryashov’s R function method

In this section, Method 1 and its implementation of the proposed model have been illustrated.

3.1. Description of Method 1

According to Method 1 [24], the predicted solution of Eq (2.4) takes the following form

P(a) =

N∑
i=0

Ai (R(a))i . (3.1)

Where N is a balancing number, determined by applying homogenous balancing principle (balancing
the highest order derivative and nonlinear term) on Eq (2.4). R(a) has the the following form

R(a) =
1

εeδa + εe−δa
, (3.2)

where ε, ε and δ are parameters. R(a) obeys the following ODE

R2
a = δR2

(
1 − 4εεR2

)
.

Application of homogeneous balance rule on Eq (2.4) gives N = 1. The solution takes the form

P(a) = A0 + A1

(
1

εeδa + εe−δa

)
. (3.3)
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3.2. Mathematical analysis

Inserting Eq (3.3) into the ODE (2.4). A set of equations in A0 and A1 is yielded by plugging
coefficients of different powers of R(a) to zero. The values of A0 and A1 are extracted upon solving the
obtained system. The extracted values have been summarized as below

A0 = −
α

3β
, A1 = ±

2
√

2εε
3β

,

γ =
α2

9βµ2 , θ = −
2α2µ

9β
.

Bright solitons have been obtained using the values of A0 and A1 in Eq (3.3) as

η(x, t) = −
α

3β
±

2
√

2εε
3β

 1

εeδ(µx+
2α2µ

9β t) + εe−δ(µx+
2α2µ

9β t)

 . (3.4)

Upon choosing the values of constants, as β = ε = 1, ε = 1, α = 1, µ = δ = 1, the above solution
becomes

η(x, t) =
1
3

[
−1 ±

√
2sech

(
x +

2
9

t
)]
. (3.5)

4. Solitary wave solutions using Method 2: Generalized projective Ricatti equations (GPRE)
method

This section deals with the general algorithm of the GPRE method and its application to the
proposed equation.

4.1. Description of Method 2

According to GPRE method [25], the predicted solution of Eq (2.4) has the following form

P(a) = A0 + A1 f (a) + B1g(a), (4.1)

where A0, A1 and B1 are unknowns to be evaluated. The ODEs satisfied by f (a) and g(a) have solutions
of the following types.
Type 1.

When e = −1, r = −1, R > 0,

f1(a) =
Rsech(

√
Ra)

m sech(
√

Ra) + 1
, g1(a) =

√
R tanh(

√
Ra)

m sech(
√

Ra) + 1
.

Type 2.
When e = −1, r = 1, R > 0,

f2(a) =
Rcsch(

√
Ra)

m csch(
√

Ra) + 1
, g2(a) =

√
R coth(

√
Ra)

m csch(
√

Ra) + 1
.
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4.2. Mathematical analysis

Inserting Eq (4.1) into Eq (2.4), then plugging the coefficients of gp(a), p = 0, 1, . . . to zero, a
system of equations is extracted.

Upon solving the extracted system of equations, the constants A0, A1, B1, m and R, are determined.
The obtained results are given as SET1 below:

A0 = −

√
θ√

2µ
√
−β

, A1 =

√
(m2 + r)µ5γ
√

2θ
√
−β

, B1 = ∓

√
γµ

√
2
√
−β

,

α = −
3
√
−β
√
θ√

2µ
, R =

θ

γµ3 ,

provided β < 0, θ > 0 and µ > 0.
The obtained results are given as SET2 below:

A0 = 0, A1 = −

√
2θ(m2 + r)

R
√
−β
√
µ
, B1 = 0,

α = −
3m
√
−β
√
θ√

2µ(m2 + r)
, R =

θ

γµ3 ,

provided θ > 0, µ > 0 and β < 0.
According to Type 1, the following solutions have been extracted for SET 1, as

η(x, t) = −

√
θ√

2µ
√
−β

+

√
(m2 − 1)µ5γ
√

2θ
√
−β

 Rsech(
√

Ra)

m sech(
√

Ra) + 1

 ∓ √
γµ

√
2
√
−β

 √R tanh(
√

Ra)

m sech(
√

Ra) + 1

 ,
(4.2)

where a = µx − θt.
According to Type 2, solutions relating to SET 1 is given, as

η(x, t) = −

√
θ√

2µ
√
−β

+

√
(m2 + 1)µ5γ
√

2θ
√
−β

 Rcsch(
√

Ra)

m csch(
√

Ra) + 1

 ∓ √
γµ

√
2
√
−β

 √R coth(
√

Ra)

m csch(
√

Ra) + 1

 ,
(4.3)

provided that
(
m csch(

√
Ra) + 1

)
, 0 and a = µx − θt.

According to Type 1, the following solutions have been extracted for SET 2 as

η(x, t) = −

√
2θ(m2 + r)

R
√
−β
√
µ

 Rsech(
√

Ra)

m sech(
√

Ra) + 1

 , (4.4)

where a = µx − θt.
According to Type 2, solutions relating to SET 2 is given, as

η(x, t) = −

√
2θ(m2 + r)

R
√
−β
√
µ

 Rcsch(
√

Ra)

m csch(
√

Ra) + 1

 , (4.5)

provided that
(
m csch(

√
Ra) + 1

)
, 0 and a = µx − θt.
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5. Soliton solutions using Method 3: G′
G2 -expansion method

In this section, solitons for the proposed model have been retrieved with the help of Method 3.

5.1. Description of G′
G2 -expansion method

According to G′
G2 -expansion method [23], the solution of (2.4) has the form

P(a) = A0 + A1

(
G
′

G2

)
+ B1

(
G
′

G2

)−1

, (5.1)

where A0, A1 and B1 are constants to be determined. The differential equation satisfied by G′
G2 has three

types of solutions [25].
Type 1.

If $π > 0,

G′

G2 =

√
$

π

[
C cos

√
$πa + D sin

√
$πa

C cos
√
$πa − D sin

√
$πa

]
, (5.2)

provided that
(
C cos

√
$πa − D sin

√
$πa

)
, 0.

Type 2.
If $π < 0,

G′

G2 = −

√
|$π|

π

[
C sinh(2

√
|$π|a) + C cosh(2

√
|$π|a) + D

C sinh(2
√
|$π|a) + C cosh(2

√
|$π|a) − D

]
. (5.3)

Type 3.
If $ = 0, π , 0,

G′

G2 = −
C

π [Ca + D]
, (5.4)

where C and D are nonzero constants.

5.2. Mathematical analysis

Inserting Eq (5.1) into Eq (2.4), and equating the coefficients of each power of G′
G2 to zero. A system

of equations is obtained. Upon solving the system following solution sets are obtained as
Set 1.

A0 =
3θ

2µα
, A1 = −

3
√
µγθπ

α
, B1 = −

3
√
θ3

16
√
µ5α
√
γπ
,

β = −
2µα2

9θ
, $π = −

θ

16µ3γ
,

provided θ > 0 and µ > 0.
Set 2.

A0 =
3θ

2µα
, A1 = 0, B1 = ±

3
√
µγθ$

α
,
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β = −
2µα2

9θ
, $π = −

θ

4µ3γ
,

provided θ > 0 and µ > 0.
Set 3.

A0 =
3θ

2µα
, A1 = ±

3
√
µγθπ

α
, B1 = 0,

β = −
2µα2

9θ
, $π = −

θ

4µ3γ
,

provided θ > 0 and µ > 0. According to Type 2, the solution for SET 1 is given, as

η(x, t) =
3θ

2µα
−

3
√
µγθπ

α

[
−

√
|$π|

π

[
C sinh(2

√
|$π|a) + C cosh(2

√
|$π|a) + D

C sinh(2
√
|$π|a) + C cosh(2

√
|$π|a) − D

]]
−

3
√
θ3

16
√
µ5α
√
γπ

[
−

√
|$π|

π

[
C sinh(2

√
|$π|a) + C cosh(2

√
|$π|a) + D

C sinh(2
√
|$π|a) + C cosh(2

√
|$π|a) − D

]]−1

,

where a = µx − θt.
Choosing C = D, the above solution becomes

η(x, t) =

3θ
[
2 + coth

(
√
θa

4
√
µ3γ

)
+ tanh

(
√
θa

4
√
µ3γ

)]
4µα

, (5.5)

where a = µx − θt.
According to Type 2, the solution for SET 2 is obtained by choosing C = D, as

η(x, t) =

3θ
[
1 ∓ tanh

(
√
θa

2
√
µ3γ

)]
2µα

, (5.6)

where a = µx − θt.
According to Type 2, the solution for SET 3 is obtained by choosing C = D, as

η(x, t) =

3θ
[
1 ∓ coth

(
√
θa

2
√
µ3γ

)]
2µα

. (5.7)

6. Graphical illustration

In this section, the graphical descriptions of a few extracted solutions have been discussed. The
graphical description is the fundamental tool used for visualizing the properties of solutions physically.
The numerical simulations of the extracted solutions have been carried out using 3D-surface graphs and
2D-contour graphs.
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Figure 1 shows the graphical illustration for the solution expressed by Eq (3.5) which is determined
by Kudryashov’s R function method. The graphs show that the solution represents a bright soliton. The
corresponding contour plot is added to show the structure of the bright soliton.

The graphical simulations for three solutions retrieved by GPRE method are shown in Figures 2–4.
The integral surface of the solution expressed by Eq (4.2) is presented in Figure 2 which shows that
the wave profile sharply changes from one asymptotic state to another. This kind of traveling wave is
termed as a kink soliton. Figure 3 presents the surface graph and contour plot for the solution given
by Eq (4.4). The graphs represent a dark soliton as a localized decrease in the wave amplitude can be
observed. Figure 4 shows that the solution expressed by Eq (4.5) represents a dark-bright soliton.

Figures 5–7 provide the graphical representations for three solutions retrieved by G′
G2 -expansion

method. The graphs depict that a variety of solitonic behavior is evident corresponding to the obtained
results.

Figure 1. The 3D graph for Set 1 in Eq (3.5).

Figure 2. The 3D plot graph of Eq (4.2).
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Figure 3. The 3D graph of Eq (4.4).

Figure 4. The 3D graph of Eq (4.5).

Figure 5. The 3D graph of Eq (5.5).
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Figure 6. The 3D graph of Eq (5.6).

Figure 7. The 3D graph of Eq (5.7).

7. Conclusions

In this research, we have investigated the most important model termed as “Gardner’s equation”
of quantum field theory and plasma physics. This research aims to extract different forms of soliton
solutions, which are classified as singular soliton, bright soliton, dark soliton, and dark singular combo
soliton solutions. Three powerful and reliable analytical techniques have made this retrieval of soliton
solutions possible. The existence criteria have been discussed for all the obtained solutions. The
derived results may help describe the related physical phenomena. On comparing our derived results
with the results reported in [18, 42–44], it has been observed that our obtained soliton solutions are
novel and have been firstly reported in this article. In future, we can apply the same technique as
explained in [38] on “Gardner’s equation” for retrieving intersecting results.
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