http://www.aimspress.com/journal/Math

Research article

Some new criteria for judging \mathcal{H}-tensors and their applications

Wenbin Gong and Yaqiang Wang*

School of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, China

* Correspondence: Email: yaqiangwang1004@163.com.

Abstract

H}\)-tensors play a key role in identifying the positive definiteness of even-order real symmetric tensors. Some criteria have been given since it is difficult to judge whether a given tensor is an \mathcal{H}-tensor, and their range of judgment has been limited. In this paper, some new criteria, from an increasing constant k to scale the elements of a given tensor can expand the range of judgment, are obtained. Moreover, as an application of those new criteria, some sufficient conditions for judging positive definiteness of even-order real symmetric tensors are proposed. In addition, some numerical examples are presented to illustrate those new results.

Keywords: \mathcal{H}-tensor, judging range; positive diagonal matrix; symmetric tensor; positive definiteness
Mathematics Subject Classification: 15A15, 15A48, 65F05, 65F40

1. Introduction

Let n and m be integer numbers, $N=\{1,2, \ldots, n\}$ and $\mathbb{C}(\mathbb{R})$ be the set of all complex (real) numbers. A tensor $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right)$ is called a complex (real) order m dimension n tensor, if $a_{i_{1} i_{2} \cdots i_{m}} \in \mathbb{C}(\mathbb{R})$, where $i_{j}=1,2, \ldots, n$ for $j=1,2, \ldots, m$. Let $\mathbb{C}^{[m, n]}\left(\mathbb{R}^{[m, n]}\right)$ be the set of all complex (real) order m dimension n tensors. A tensor $I=\left(\delta_{i_{1} i_{2} \cdots i_{m}}\right) \in \mathbb{C}^{[m, n]}(m, n \geq 2)$ is called the unit tensor [1], if its elements satisfy

$$
\delta_{i_{1} i_{2} \cdots i_{m}}= \begin{cases}1, & i_{1}=i_{2}=\cdots=i_{m}, \\ 0, & \text { otherwise }\end{cases}
$$

A tensor $\mathcal{A}=\left(a_{i 12} i_{\cdots} i_{m}\right) \in \mathbb{C}^{[m, n]}(m, n \geq 2)$ is called symmetric if

$$
a_{i_{1} i_{2} \cdots i_{m}}=a_{i_{\pi(1)} i_{\pi(2)} \cdots i_{\left.i_{(n)}\right)}}, \forall \pi \in \Pi_{m},
$$

where Π_{m} is the permutation group of m indices.

At present, positive definite homogeneous polynomials play a critical role in the field of dynamics, and its positive definiteness can be transformed to identify the positive definiteness of the symmetric tensor associated with it [2]. However, for a given symmetric tensor, it is difficult to determine whether it is positive definite or not because the problem is NP-hard [3]. Thus, finding effective criteria to identify the positive definitiveness of a tensor is interesting.
\mathcal{H}-tensor was showed, Li et al. [3], that is a special kind of tensors in 2014 and an even-order symmetric \mathcal{H}-tensors with positive diagonal entries is positive definite. After that, some methods that judge the positive definiteness of a given tensor have been established [4-16]. Nevertheless, as presented by their range of judgment was fixed for the given tensor whether it was positive definite or not [14-16].

In this paper, some new criteria which only depend on elements of the given tensors are proposed to judge \mathcal{H}-tensors; they expand the range of judgment by an increasing constant k which scales the elements of a given tensor. In addition, these criteria are used to judge the positive definiteness for even-order real symmetric tensors.

For the convenience of discussion, we start with the following notations, definitions and lemmas. The calligraphy letters $\mathcal{A}, \mathcal{B}, \cdots$ represent the tensors; the capital letters A, B, \cdots denote the matrices; the lowercase letters x, y, \cdots refer to the vectors.

For a tensor $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{n}}\right) \in \mathbb{C}^{[m, n]}(m, n \geq 2)$, we denote

$$
\begin{aligned}
& r_{i}(\mathcal{A})=\sum_{\substack{i_{2} \cdots i_{i} \in N^{m-1} \\
\delta_{i_{2}} \cdots i_{m}=0}}\left|a_{i i_{2} \cdots \cdots i_{m}}\right|=\sum_{i_{2} \cdots i_{m} \in N^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right|-\left|a_{i \cdots \cdots i}\right| \text {, } \\
& N_{1}=\left\{i \in N:\left|a_{i \cdots \cdots i}\right|>r_{i}(\mathcal{A})\right\}, N_{2}=\left\{i \in N:\left|a_{i i \cdots \cdots i}\right| \leq r_{i}(\mathcal{A})\right\} \text {, } \\
& N_{1}^{m-1}=\left\{i_{2} i_{3} \cdots i_{m}: i_{j} \in N_{1}, j=2,3, \ldots, m\right\} \text {, } \\
& N^{m-1} \backslash N_{1}^{m-1}=\left\{i_{2} i_{3} \cdots i_{m}: i_{2} i_{3} \cdots i_{m} \in N^{m-1} \text { and } i_{2} i_{3} \cdots i_{m} \notin N_{1}^{m-1}\right\} \text {, } \\
& r_{0}=1, r_{1}=\max _{i \in N_{1}}\left\{\frac{r_{i}(\mathcal{H})}{\left|a_{i \overline{i v i}}\right|}\right\}, \cdots \text {, }
\end{aligned}
$$

It is obvious that we obtain $\sigma_{k+1, i} \leq r_{k+1} \leq r_{k} \leq \cdots \leq r_{1}<r_{0}, i \in N_{1}, k=0,1,2, \ldots$.
Definition 1. [17] Let $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{n}}\right) \in \mathbb{C}^{[m, n]}(m, n \geq 2)$. If there is a positive vector $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T} \in \mathbb{R}^{n}$ such that

$$
\left|a_{i \cdots \cdots i}\right| x_{i}^{m-1}>\sum_{\substack{i_{2 \ldots}, i_{i} \in N^{m-1} \\ \bar{\delta}_{i_{2}}=i_{m}=0}}\left|a_{i_{2} \cdots \cdots i_{m}}\right| x_{i_{2}} \cdots x_{i_{m}},
$$

where $|a|$ for the modulus of $a \in \mathbb{C}$ [17], then \mathcal{A} is called an \mathcal{H}-tensor.
Definition 2. [18] Let $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right) \in \mathbb{C}^{[m, n]}(m, n \geq 2)$. If

$$
\left|a_{i \cdots i \cdots i}\right|>r_{i}(\mathcal{A}), i \in N,
$$

then \mathcal{A} is called a strictly diagonally dominant tensor.
Definition 3. [8] Let $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right) \in \mathbb{C}^{[m, n]}(m, n \geq 2)$ and $X=\operatorname{diag}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$. If

$$
\mathcal{B}=\left(b_{i_{1} i_{2} \cdots i_{m}}\right)=\mathcal{A} X^{m-1},
$$

where

$$
b_{i_{1} i_{2} \cdots i_{m}}=a_{i_{1} i_{2} \cdots i_{m}} x_{i_{2}} \ldots x_{i_{m}}, i_{j} \in N, j=2,3, \ldots, m,
$$

then we call \mathcal{B} as the product of the tensor \mathcal{A} and the matrix X.
Definition 4. [5] The product of $\mathcal{A}=\left(a_{i 1 i_{2} \ldots i_{m}}\right) \in \mathbb{C}^{[m, n]}(m, n \geq 2)$ and an n-by- n matrrix $X=\left(x_{i j}\right)$ on mode- k is defined by

$$
\left(\mathcal{A}_{\times k} X\right)_{i_{1} \cdots j_{k} \cdots i_{m}}=\sum_{i_{k}=1}^{n} a_{i_{1} \cdots i_{k} \cdots i_{m}} x_{i_{k} j_{k}} .
$$

Definition 5. [5] Let $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right) \in \mathbb{C}^{[m, n]}(m, n \geq 2)$. If there exists a $\varnothing \neq S \subset N$ such that $a_{i_{1} i_{2} \cdots i_{m}}=0$, $\forall i_{1} \in S$ and $i_{2}, \ldots, i_{m} \notin S$, then \mathcal{A} is called reducible. Otherwise, \mathcal{A} is called irreducible.
Definition 6. [19] Let $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right) \in \mathbb{C}^{[m, n]}(m, n \geq 2)$, for $i, j \in N$ and $i \neq j$, if there exists indices $k_{1}, k_{2}, \ldots, k_{l}$ with

$$
\sum_{\substack{i_{2}, \ldots i_{m} \in N^{m-1} \\ \delta_{s s_{1} \ldots}=i_{2}=0 \\ k_{s+1} \in\left\{i_{2}, \ldots, i_{m}\right\}}}\left|a_{k_{s} i_{2} \cdots i_{m}}\right| \neq 0, s=0,1, \ldots, l
$$

where $k_{0}=i, k_{l+1}=j$, we say that there is a nonzero element chain from i to j.
Definition 7. [8] Let $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right) \in \mathbb{C}^{[m, n]}(m, n \geq 2)$; if the homogeneous polynomical equations satisfy:

$$
\mathcal{A} x^{m-1}=\lambda x^{[m-1]}, \lambda \in \mathbb{C} \text { and } x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T} \neq(0,0, \cdots, 0)^{T},
$$

then λ is called an eigenvalue of \mathcal{A} and x is its corresponding eigenvector, where $\mathcal{A} x^{m-1}$ and $\lambda x^{[m-1]}$ are vectors, and whose i th components are

$$
\left(\mathcal{A} x^{m-1}\right)_{i}=\sum_{i_{2} . . i_{m} \in N^{m-1}} a_{i i_{2} \cdots i_{m}} x_{i_{2}} \cdots x_{i_{m}}
$$

and

$$
\left(x^{[m-1]}\right)_{i}=x_{i}^{m-1} .
$$

Definition 8. [20] For an m th degree homogeneous polynomial of n variables, $f(x)$ can usually be denoted as

$$
f(x)=\sum_{i_{1} i_{2} \ldots i_{m} \in N^{m}} a_{i_{1} i_{2} \cdots i_{m}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}},
$$

where $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T} \in \mathbb{R}^{n}$. The homogeneous polynomial $f(x)$ can be represented as the tensor product of a symmetric tensor $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right) \in \mathbb{C}^{[m, n]}$ and x^{m} denoted by

$$
f(x) \equiv \mathcal{A} x^{m}=\sum_{i_{1} i_{2} \ldots i_{m} \in N^{m}} a_{i_{1} i_{2} \cdots i_{m}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}},
$$

where $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T} \in \mathbb{R}^{n}[18]$. If m is even and

$$
f(x)>0 \text { for any } x \in \mathbb{R}^{n}, x \neq 0
$$

then we say that $f(x)$ is positive definite.
Lemma 1. [17] Let $\mathcal{A}=\left(a_{i_{1} i_{2} \ldots i_{m}}\right) \in \mathbb{C}^{[m, n]}(m, n \geq 2)$. \mathcal{A} is an \mathcal{H}-tensor if \mathcal{A} is a strictly diagonally dominant tensor.
Lemma 2. [3] Let $\mathcal{A}=\left(a_{i 1 i_{2} \cdots i_{m}}\right) \in \mathbb{C}^{[m, n]}(m, n \geq 2)$. \mathcal{A} is an \mathcal{H}-tensor if

- (i) \mathcal{A} is irreducible;
- (ii) $\left|a_{i i \cdots i}\right| \geq r_{i}(\mathcal{A})$ for each $i \in N$;
- (iii) For the inequality of (ii), strict inequality holds for at least one i.

Lemma 3. [8] Let $\mathcal{A}=\left(a_{i_{1} 2 \cdots i_{m}}\right) \in \mathbb{C}^{[m, n]}(m, n \geq 2)$. \mathcal{A} is an \mathcal{H}-tensor, if
$\bullet(i)\left|a_{i \cdots i \cdots}\right| \geq r_{i}(\mathcal{A}), i \in N$;

- (ii) $N_{1}=\left\{i \in N:\left|a_{i \cdots \cdots i}\right|>r_{i}(\mathcal{A})\right\} \neq \varnothing$;
- (iii) For any $i \in N_{2}$, there exists a nonzero element chain from i to j such that $j \in N_{1}$.

Lemma 4. [8, 10] Let $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right) \in \mathbb{C}^{[m, n]}(m, n \geq 2)$. If there exists a positive diagonal matrix X such that $\mathcal{A} X^{m-1}$ is an \mathcal{H}-tensor, then \mathcal{A} is an \mathcal{H}-tensor.

2. Some criteria for judging nonsingular \mathcal{H}-tensors

In this section, some new criteria for judging \mathcal{H}-tensors are proposed, and those new criteria only depend on the elements of the given tensors.
Theorem 1. Let $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right) \in \mathbb{C}^{[m, n]}(m, n \geq 2)$. \mathcal{A} is an \mathcal{H}-tensor, if there exists a number $k=0,1,2, \ldots$ such that

$$
\begin{equation*}
\left|a_{i i \cdots \cdots}\right|>\sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \mid \backslash N_{m}^{m-1} \\ \delta_{i_{2}-\cdots i_{m}}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|+\sum_{i_{2} \cdots i_{m} \in N_{1}^{N-1}} r_{k+1}\left|a_{i_{2} \cdots i_{m}}\right|, \forall i \in N_{2} . \tag{2.1}
\end{equation*}
$$

Proof. First, let

$$
\begin{equation*}
\xi_{i}=\frac{1}{\sum_{\substack{i_{2} \cdots i_{m} \in N_{1}^{m-1}}}\left|a_{i i_{2} \cdots i_{m}}\right|}\left\{\left|a_{i \cdots \cdots i}\right|-\sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{1}^{m-1} \\ \delta_{i_{2}} \cdots i_{n}=0}}\left|a_{i_{2} \cdots i_{m}}\right|-\sum_{i_{2} \cdots i_{m} \in N_{1}^{m-1}} r_{k+1}\left|a_{i i_{2} \cdots i_{m}}\right|\right\}, i \in N_{2} . \tag{2.2}
\end{equation*}
$$

If $\sum_{i_{2} \cdots i_{m} \in N_{1}^{m-1}}\left|a_{i i_{2} \cdots \cdots i_{m}}\right|=0$, we define $\xi_{i}=+\infty$. Obviously, it follows from Eq (2.2) that $\xi_{i}>0, i \in N_{2}$, and we have $r_{k+1}<r_{0}=1$ by definition of r_{k+1}, that is, $1-r_{k+1}>0$. Hence, there exists a positive number $\varepsilon>0$, such that

$$
\begin{equation*}
0<\varepsilon<\min \left\{\min _{i \in N_{2}} \xi_{i}, 1-r_{k+1}\right\} . \tag{2.3}
\end{equation*}
$$

Construct a diagonal matrix $X=\operatorname{diag}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and denote $\mathcal{B}=\left(b_{i_{1} i_{2} \cdots i_{m}}\right)=\mathcal{A} X^{m-1}$, where

$$
x_{i}=\left\{\begin{array}{cl}
\left(\varepsilon+\sigma_{k+1, i}\right)^{\frac{1}{m-1}} & , i \in N_{1}, \\
1 & , i \in N_{2} .
\end{array}\right.
$$

By the inequality of (2.3), we obtain X as a positive diagonal matrix.

Next, we prove the $\sum_{i_{2} \cdots i_{m} \in N_{1}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right| \neq 0$ for any $i \in N_{2}$. Suppose on the contrary that $\sum_{i_{m} \in N_{1}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right|=0$ for any $i \in N_{2}$; thus, by the inequality of (2.1), we have

$$
\begin{aligned}
\left|a_{i i \cdots i}\right| & >\sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \mid N_{1}^{m-1} \\
\delta_{i_{2} \cdots \cdots i_{m}}^{m-0}}}\left|a_{i i_{2} \cdots i_{m}}\right|+\sum_{i_{2} \cdots i_{m} \in N_{1}^{m-1}} r_{k+1}\left|a_{i i_{2} \cdots i_{m}}\right| \\
& =\sum_{\substack{i_{2} \cdots i_{m} \in N_{n}^{m-1} \mid N_{1}^{m-1} \\
\delta_{i_{2} \cdots \cdots i_{m}}^{m}=0}}\left|a_{i i_{2} \cdots i_{m}}\right| \\
& =r_{i}(\mathcal{A}),
\end{aligned}
$$

which contradicts with $\left|a_{i \cdots \cdots i}\right| \leq r_{i}(\mathcal{A}), i \in N_{2}$; hence, $\sum_{i_{2} \cdots i_{m} \in N_{1}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right| \neq 0$ for any $i \in N_{2}$.
Finally, we prove that \mathcal{B} is a strictly diagonally dominant tensor, and we divide it into two cases as follows:

Case 1: For any $i \in N_{2}$, from $\sum_{i_{2} \cdots i_{m} \in N_{1}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right| \neq 0$ and the inequality of (2.1), we have

$$
\begin{aligned}
& r_{i}(\mathcal{B})=\sum_{\substack{i_{2} \cdots \cdots i_{m} \in N \in \cdots-1 \\
\delta_{i_{2}-i_{m}}=0}}\left|b_{i i_{1} \cdots i_{1}^{m-1}}\right|+\sum_{\substack{m 2 \cdots i_{m} \in N_{1}^{m-1}}}\left|b_{i i_{2} \cdots i_{m}}\right| \\
& =\sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{1}^{m-1} \\
\delta_{i_{2}-\cdots i_{m}}=0}}\left|a_{i_{2} \cdots i_{m}}\right| x_{i_{2}} \cdots x_{i_{m}}+\sum_{i_{2} \cdots i_{m} \in N_{1}^{m-1}}\left|a_{i_{i} \cdots \cdots i_{m}}\right| x_{i_{2}} \cdots x_{i_{m}} \\
& \leq \sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{1}^{m-1} \\
\delta_{i_{2}} \cdots i_{m}=0}}\left|a_{i_{1} \cdots i_{m}}\right|+\sum_{i_{2} \cdots i_{m} \in N_{1}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right|\left(\varepsilon+\sigma_{k+1, i_{2}}\right)^{\frac{1}{m-1}} \cdots\left(\varepsilon+\sigma_{k+1, i_{m}}\right)^{\frac{1}{m-1}} \\
& \leq \sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \mid N_{1}^{m-1} \\
\delta_{i_{i} \cdots \cdots i_{m}}=0}}\left|a_{i i_{2} \cdots \cdots i_{m}}\right|+\sum_{\substack{i_{2} \cdots i_{m} \in N_{1}^{m-1}}}\left|a_{i i_{2} \cdots i_{m}}\right|\left(\varepsilon+r_{k+1}\right) \\
& <\left|a_{i \cdots . . . i}\right|=\left|b_{i i \ldots . . i}\right| .
\end{aligned}
$$

Case 2: For any $i \in N_{1}$, we obtain that $\left|a_{i \cdots \cdots i}\right|>r_{i}(\mathcal{A})$; then, $\left|a_{i i \cdots i}\right|-\sum_{\substack{i_{2} \cdots i_{m} \in N_{1}^{m-1} \\ \delta_{i_{2}} \cdots i_{m}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|>0$, and it follows from $r_{k+1} \leq r_{k}$ that

$$
r_{k+1} \sum_{\substack{i_{2}-\cdots i_{m} \in N N_{1}^{m-1} \\ \delta_{i_{2}} \cdots i_{m}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|-r_{k} \sum_{\substack{i_{1} \cdots \cdots i_{m} \in N_{1}^{m-1} \\ \delta_{i_{2}} \cdots i_{m}=0}}\left|a_{i i_{2} \cdots i_{m}}\right| \leq 0 ;
$$

thus, we get

$$
\varepsilon>0 \geq \frac{1}{\left|a_{i \cdots \cdots i}\right|-\sum_{\substack{i_{2} \cdots \cdots i_{m} \in N_{1}^{m-1} \\ \delta_{i_{2}}+i_{m}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|}\left\{r_{k+1} \sum_{\substack{i_{2} \cdots i_{m} \in N_{1}^{m-1} \\ \delta_{i_{2}} \cdots i_{m}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|-r_{k} \sum_{\substack{i_{2}-\cdots i_{m} \in N_{1}^{m-1} \\ \delta_{i_{2}}=i_{m}=0}}\left|a_{i_{2} \cdots \cdots i_{m}}\right|\right\} ;
$$

so, we have

$$
\begin{aligned}
& \left|b_{i \cdots \cdots i}\right|-r_{i}(\mathcal{B})=\left|a_{i \cdots \cdots i}\right|\left(\varepsilon+\sigma_{k+1, i}\right)-\sum_{i_{2} \cdots i_{m} \in N^{m-1} \mid N_{1}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right| x_{i_{2}} \cdots x_{i_{m}}-\sum_{\substack{i_{2} \cdots \cdots i_{m} \in N_{1}^{m-1} \\
\delta_{i_{2}} \cdots i_{m}=0}}\left|a_{i_{2} \cdots i_{m}}\right| x_{i_{2}} \cdots x_{i_{m}} \\
& \geq\left|a_{i \cdots \cdots i}\right|\left(\varepsilon+\sigma_{k+1, i}\right)-\sum_{\substack{i_{2} \cdots \cdots i_{m} \in N_{1}^{m-1} \\
\delta_{i_{2}} \cdots i_{m}=0}}\left|a_{i i_{2} \cdots \cdots i_{m}}\right|\left(\varepsilon+\sigma_{k+1, i_{2}}\right)^{\frac{1}{m-1}} \cdots\left(\varepsilon+\sigma_{k+1, i_{m}}\right)^{\frac{1}{m-1}} \\
& -\sum_{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{1}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right| \\
& \geq\left|a_{i \cdots \cdots i}\right|\left(\varepsilon+\sigma_{k+1, i}\right)-\sum_{i_{2} \cdots i_{m} \in N^{m-1} \mid N_{1}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right|-\sum_{\substack{i_{2} \cdots i_{n} \in N_{1}^{m-1} \\
\delta_{i_{2}-\cdots i m}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|\left(\varepsilon+r_{k+1}\right) \\
& =\varepsilon\left(\left|a_{i \cdots \cdots i}\right|-\sum_{\substack{i_{2} \cdots i_{m} \in N_{1}^{m-1} \\
\delta_{i_{2}} \cdots i_{m}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|\right)+\left|a_{i i \cdots \cdots}\right| \sigma_{k+1, i}-\sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{1}^{m-1}}}\left|a_{i i_{2} \cdots i_{m}}\right| \\
& -r_{k+1} \sum_{\substack{i_{2}-\cdots i_{n}=N_{1}^{m-1} \\
\delta_{i_{2}} \cdots i_{n}=0}}\left|a_{i i_{2} \cdots \cdots i_{m}}\right| \\
& >r_{k+1} \sum_{\substack{i_{2} \cdots i_{m} \in N_{1}^{m-1} \\
\delta_{i_{2}} \cdots i_{m}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|-r_{k} \sum_{\substack{i_{2}-\cdots i_{m} \in N_{1}^{m-1} \\
\delta_{i_{2}}=i_{m}=0}}\left|a_{i_{2} \cdots \cdots i_{m}}\right|+\sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1}}}\left|N_{N_{1}}^{m-1}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =0 \text {. }
\end{aligned}
$$

From Cases 1 and 2, we obtain that $\left|b_{i i \cdots i \cdot i}\right|>r_{i}(\mathcal{B})$ for all $i \in N$, that is, \mathcal{B} is a strictly diagonally dominant tensor; thus, from Lemmas 1 and $4, \mathcal{A}$ is an \mathcal{H}-tensor.
Theorem 2. Let $\mathcal{A}=\left(a_{i 1 i_{2} \ldots i_{m}}\right) \in \mathbb{C}^{[m, n]}(m, n \geq 2) . \mathcal{A}$ is an \mathcal{H}-tensor if the following are true:

- (i) \mathcal{A} is irreducible.
- (ii) There exists $k=0,1,2, \ldots$ such that

$$
\left|a_{i \cdots \cdots i}\right| \geq \sum_{\substack{i_{2} \cdots i_{m} \in \in N^{m-1} \backslash N_{1}^{m-1} \\ \delta_{i_{2}} \cdots i_{m}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|+\sum_{\substack{i_{2} \cdots i_{m} \in N_{1}^{m-1}}} r_{k+1}\left|a_{i i_{2} \cdots i_{m}}\right|, \forall i \in N_{2} .
$$

- (iii) For the inequality of (ii), strict inequality holds for at least one $i \in N_{2}$.

Proof. First, let the diagonal matrix $X=\operatorname{diag}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $\mathcal{B}=\left(b_{i_{1} i_{2} \cdots i_{n}}\right)=\mathcal{A} X^{m-1}$, where

$$
x_{i}= \begin{cases}\left(\sigma_{k+1, i}\right)^{\frac{1}{m-1}} & , i \in N_{1}, \\ 1 & , j \in N_{2} .\end{cases}
$$

Obviously, X is the positive diagonal matrix.

Next, we prove that $\left|b_{i i . . i}\right| \geq r_{i}(\mathcal{B})$ for all $i \in N$, and strict inequality holds for at least one $i \in N$, we have divided it into three cases as follows:

Case 1: For any $i \in N_{2}$, we obtain

$$
\begin{aligned}
& r_{i}(\mathcal{B})=\sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \backslash \backslash \backslash 1 \\
\delta_{i_{2}} \cdots \cdots i_{m}=0}}\left|b_{i i_{1} \cdots i_{m}}\right|+\sum_{\substack{i_{2} \cdots i_{m} \in N_{1}^{m-1}}}\left|b_{i i_{2} \cdots i_{m}}\right| \\
& =\sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \mid N_{1}^{m-1} \\
\delta_{i_{2} \cdots i_{m}}=0}}\left|a_{i i_{2} \cdots i_{m}}\right| x_{i_{2}} \cdots x_{i_{m}}+\sum_{i_{2} \cdots i_{m} \in N_{1}^{N_{1}^{m-1}}}\left|a_{i i_{2} \cdots i_{m}}\right| x_{i_{2}} \cdots x_{i_{m}}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \\
\delta_{i_{2}} \cdots i_{m}=0}}\left|a_{1}^{m-1}, a_{i i_{2} \cdots i_{m}}\right|+\sum_{i_{2} \cdots i_{m} \in N_{1}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right| r_{k+1} \\
& \leq\left|a_{i \ldots \ldots i}\right|=\left|b_{i i \ldots . . i}\right| .
\end{aligned}
$$

Case 2: For any $i \in N_{1}$, we obtain

$$
\begin{aligned}
& \left|b_{i \cdots \cdots i}\right|-r_{i}(\mathcal{B})=\left|a_{i \cdots \cdots i}\right| \sigma_{k+1, i}-\sum_{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{1}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right| x_{i_{2}} \cdots x_{i_{m}}-\sum_{\substack{i_{2} \cdots \cdots i_{m} \in N_{1}^{m-1} \\
\delta_{i_{2}} \cdots i_{m}=0}}\left|a_{i i_{2} \cdots i_{m}}\right| x_{i_{2}} \cdots x_{i_{m}} \\
& \geq \sum_{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{1}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right|+r_{k} \sum_{\substack{i_{2}-\cdots i_{m} \in N_{1}^{m-1} \\
\delta_{i_{2}} \cdots \cdots i_{m}=0}}\left|a_{i i_{2} \cdots i_{m}}\right|-\sum_{i_{2} \cdots i_{m} \in N^{m-1} \mid N_{1}^{m-1}}\left|a_{i i_{2} \cdots i_{m}}\right| \\
& -r_{k+1} \sum_{\substack{i_{2} \cdots i_{m}=N N_{1}^{m-1} \\
\delta_{i_{2}} \cdots i_{m}=0}}\left|a_{i i_{2} \cdots \cdots i_{m}}\right|
\end{aligned}
$$

≥ 0.
Case 3: From the condition (iii), without loss of generality, we suppose that

$$
\left|a_{t t \cdots t \mid}\right|>\sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{1}^{m-1} \\ \delta_{t_{2} \cdots \cdots} \cdots i_{m}=0}}\left|a_{t i_{2} \cdots i_{m}}\right|+\sum_{i_{2} \cdots i_{m} \in N_{1}^{m-1}} r_{k+1}\left|a_{t i_{2} \cdots i_{m}}\right|
$$

similar to the proof for Case 1 of Theorem 2, we obtain that $r_{t}(\mathcal{B})<\left|b_{t t \cdots-t}\right|, t \in N_{2}$.
Finally, since X is a positive diagonal matrix and \mathcal{A} is irreducible, \mathcal{B} is also irreducible; thus, by Lemmas 2 and $4, \mathcal{A}$ is an \mathcal{H}-tensor.
Theorem 3. Let $\mathcal{A}=\left(a_{i_{11} i_{2} \ldots i_{m}}\right) \in \mathbb{C}^{[m, n]}(m, n \geq 2) . \mathcal{A}$ is an \mathcal{H}-tensor, if the following are true:

- (i) There exists $k=0,1,2, \ldots$ such that

$$
\left|a_{i \cdots \cdots i}\right| \geq \sum_{\substack{i_{2} \cdots i_{m} \in N^{m-1} \backslash N_{1}^{m-1} \\ \delta_{i_{2}} \cdots i_{m}=0}}\left|a_{i_{2} \cdots i_{m}}\right|+\sum_{i_{2} \cdots i_{m} \in N_{1}^{m-1}} r_{k+1}\left|a_{i i_{2} \cdots i_{m}}\right|, \forall i \in N_{2} .
$$

\bullet (ii) $J \neq \varnothing$, where $J=\left\{j:\left|a_{j j \cdots j}\right|>\sum_{\substack{i_{2} \cdots i_{m} \in \in \in \sum_{j}^{m-1} \backslash N_{1}^{m-1} \\ \delta_{i_{2}} \cdots i_{m}=0}}\left|a_{j i_{2} \cdots i_{m}}\right|+\sum_{i_{2} \cdots i_{m} \in N_{1}^{m-1}} r_{k+1}\left|a_{j i_{2} \cdots i_{m}}\right|, j \in N_{2}\right\}$.

- (iii) For any $i \in(N \backslash J)$, there exists a nonzero element chain from i to j such that $j \in J$.

Proof. First, construct a diagonal matrix $X=\operatorname{diag}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and denote $\mathcal{B}=\left(b_{i_{1} i_{2} \cdots i_{m}}\right)=\mathcal{A} X^{m-1}$, where

$$
x_{i}= \begin{cases}\left(\sigma_{k+1, i}\right)^{\frac{1}{m-1}} & , i \in N_{1}, \\ 1 & , j \in N_{2} .\end{cases}
$$

Obviously, X is a positive diagonal matrix.
Second, similar to the proof of Theorem 2, we conclude that $\left|b_{i \cdots \cdots i}\right| \geq r_{i}(\mathcal{B})$ for all $i \in N$. From the condition $J \neq \varnothing$, we obtain that there exists at least a $t \in N$ such that $\left|b_{t t \cdots, t}\right|>r_{t}(\mathcal{B})$. On the other hand, if $\left|b_{i i \cdots i}\right|=r_{i}(\mathcal{B})$, then $i \in N \backslash J$, and from the condition that for any $i \in N \backslash J, \mathcal{A}$ has a nonzero element chain from i to j such that $j \in J$, we obtain that \mathcal{B} has a nonzero elements chain from i to j with $\left|b_{j j \ldots j}\right|>r_{j}(\mathcal{B})$.

Finally, based on the above analysis, we draw a conclusion that \mathcal{B} satisfies the conditions of Lemma 3; hence, by Lemmas 3 and $4, \mathcal{A}$ is an \mathcal{H}-tensor.

3. Some numerical examples

In this section, based on the new criteria for judging \mathcal{H}-tensors in section 2, some numerical examples are presented to illustrate those new criteria.
Example 1. Let us consider the tensor $\mathcal{A}=\left(a_{i_{1} i_{2} i_{3}}\right)=[A(1,:,:), A(2,:,:), A(3,:,:)] \in \mathbb{C}^{[3,3]}$, where

$$
A(1,:,:)=\left(\begin{array}{ccc}
20 & 2 & 0 \\
2 & 5 & 0 \\
2 & 0 & 5
\end{array}\right), A(2,:,:)=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 2
\end{array}\right), A(3,:,:)=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 & 1 \\
0 & 2 & 5.2
\end{array}\right)
$$

Obviously,

$$
\left|a_{111}\right|=20, r_{1}(\mathcal{A})=16,\left|a_{222}\right|=8, r_{2}(\mathcal{A})=4,\left|a_{333}\right|=5.2 \text { and } r_{3}(\mathcal{A})=6 \text {, }
$$

so $N_{1}=\{1,2\}$ and $N_{2}=\{3\}$. By simple calculation, we obtain

$$
\frac{r_{1}(\mathcal{A})}{\left|a_{111}\right|}=0.8, \frac{r_{2}(\mathcal{A})}{\left|a_{222}\right|}=0.5, \sigma_{2,1}=0.71, \sigma_{2,2}=0.45 \text { and } r_{2}=0.71 ;
$$

when $k=1$, we get

$$
\left|a_{333}\right|=5.2>5.13=\sum_{\substack{i_{2} i_{3} \in N^{2} \backslash N_{1}^{2} \\ \delta_{3 i_{2} i_{3}}=0}}\left|a_{3 i_{2} i_{3}}\right|+r_{2} \sum_{i_{2} i_{3} \in N_{1}^{2}}\left|a_{3 i_{2} i_{3}}\right| ;
$$

hence, \mathcal{A} satisfies the conditions of Theorem 1 and $k=1$; it follows from Theorem 1 that \mathcal{A} is an \mathcal{H}-tensor.

Example 2. Let us consider the irreducible tensor $\mathcal{A}=\left(a_{i_{1} i_{2} i_{3}}\right)=[A(1,:,:), A(2,:,:), A(3,:,:)] \in \mathbb{C}^{[3,3]}$, where

$$
A(1,:,:)=\left(\begin{array}{ccc}
13 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right), A(2,:,:)=\left(\begin{array}{ccc}
13 & 0 & 0 \\
0 & 10 & 0 \\
1 & 0 & 1
\end{array}\right), A(3,:,:)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 16 & 0 \\
0 & 0 & 16
\end{array}\right) .
$$

Obviously,

$$
\left|a_{111}\right|=13, r_{1}(\mathcal{A})=6,\left|a_{222}\right|=10, r_{2}(\mathcal{A})=15,\left|a_{333}\right|=16 \text { and } r_{3}(\mathcal{A})=16 \text {, }
$$

so $N_{1}=\{1\}$ and $N_{2}=\{2,3\}$. By simple calculation, we obtain

$$
\frac{r_{1}(\mathcal{A})}{\left|a_{111}\right|}=r_{1}=0.46
$$

when $k=0$, we get

$$
\left|a_{222}\right|=10>8=\sum_{\substack{i_{2} i_{3} \in N^{2} \backslash N_{1}^{2} \\ \delta_{i_{i} i 3}=0}}\left|a_{2 i_{2} i_{3}}\right|+r_{1} \sum_{i_{2} i_{3} \in N_{1}^{2}}\left|a_{2 i_{2} i_{3}}\right|
$$

and

$$
\left|a_{333}\right|=16>7.38=\sum_{\substack{i_{2} i_{3} \in N^{2} \backslash N_{1}^{2} \\ \delta_{3 i_{2} i_{3}}=0}}\left|a_{3 i_{2} i_{3}}\right|+r_{1} \sum_{i_{2} i_{3} \in N_{1}^{2}}\left|a_{3 i_{2} i_{3}}\right| ;
$$

hence, \mathcal{A} satisfies the conditions of Theorem 2 and $k=0$; it follows from Theorem 2 that \mathcal{A} is an \mathcal{H}-tensor.

4. Application

In this section, based on the new criteria for judging \mathcal{H}-tensors in section 2, some new criteria for identifying the positive definiteness of an even-order real symmetric tensor are presented.

From Theorems $1-3$, we get the following result.
Theorem 4. Let $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right)$ be an even-order real symmetric tensor of order m and n dimensions. If $a_{k k \cdots k}>0$ for all $k \in N, \mathcal{A}$ is symmetric and satisfies one of the following conditions and \mathcal{A} is positive definite:

- (i) All conditions of Theorem 1;
- (ii) All conditions of Theorem 2;
- (iii) All conditions of Theorem 3.

The following example is given to show this result.
Example 3. Consider the following 4th-degree homogeneous polynomial

$$
f(x)=20 x_{1}^{4}+15 x_{2}^{4}+10 x_{3}^{4}+8 x_{1}^{3} x_{2}+4 x_{1}^{3} x_{3}+12 x_{2}^{2} x_{3}^{2},
$$

where $x=\left(x_{1}, x_{2}, x_{3}\right)^{T}$. Then we can obtain a symmetric tensor $\mathcal{A}=\left(a_{i_{1} i_{2} i_{i 4}}\right) \in \mathbb{R}^{[4,3]}$, where

$$
\begin{aligned}
& A(1,1,:,:)=\left(\begin{array}{ccc}
20 & 2 & 2 \\
2 & 0 & 0 \\
2 & 0 & 0
\end{array}\right), A(1,2,:,:)=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), A(1,3,:,:)=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \\
& A(2,1,:,:)=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), A(2,2,:,:)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 15 & 0 \\
1 & 0 & 2
\end{array}\right), A(2,3,:,:)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 2 \\
0 & 2 & 0
\end{array}\right), \\
& A(3,1,:,:)=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), A(3,2,:,:)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 2 \\
0 & 2 & 0
\end{array}\right), A(3,3,:,:)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 10
\end{array}\right) .
\end{aligned}
$$

Obviously,

$$
\left|a_{1111}\right|=20, r_{1}(\mathcal{A})=15,\left|a_{222}\right|=15, r_{2}(\mathcal{A})=14,\left|a_{333}\right|=10 \text { and } r_{3}(\mathcal{A})=11 \text {, }
$$

so $N_{1}=\{1,2\}$ and $N_{2}=\{3\}$. By simple calculation, we obtain

$$
r_{1}=0.93 .
$$

Thus, we get

$$
\left|a_{3333}\right|=10>7.38=\sum_{\substack{i_{2} i_{3} \in N_{4}^{3} \backslash N_{1}^{3} \\ \delta_{3 i 2} i_{3} i_{4}=0}}\left|a_{3 i_{i} i_{i} i_{4} \mid}\right|+r_{1} \sum_{\substack{i_{2} i_{i} \in N_{1}^{3}}}\left|a_{3 i_{2} i_{i} i_{i}}\right| ;
$$

hence, \mathcal{A} satisfies the conditions of Theorem 1 and $k=0$; thus, it also satisfies the conditions of Theorem 4. Hence, $f(x)$ is positive definite.

5. Conclusions

In this paper, some new criteria have been proposed for the judgment of \mathcal{H}-tensors, which they via an increasing constant k to scale the elements of a given tensor and only depend on elements of the given tensors. As an application, some sufficient conditions of the positive definiteness for even-order real symmetric tensors have been obtained. In addition, some numerical examples have been presented to illustrate those new results.

Acknowledgments

The authors are grateful to the referee for their careful reading of the paper and valuable suggestions and comments. This work is partly supported by the National Natural Science Foundations of China (31600299), Natural Science Basic Research Program of Shaanxi, China (2020JM-622).

Conflict of interest

The authors declare that they have no competing interests.

References

1. Y. Yang, Q. Yang, Further results for Perron Frobenius theorem for nonnegative tensors, SIAM. J. Matrix Anal. Appl., 31 (2010), 2517-2530. https://doi.org/10.1137/090778766
2. C. Lv, C. Ma, An iterative scheme for identifying the positive semi-definiteness of even-order real symmetric H-tensor, J. Comput. Appl. Math., 392 (2021), 113498. https://doi.org/10.1016/j.cam.2021.113498
3. C. Li, F. Wang, J. Zhao, Y. Zhu, Y. Li, Criterions for the positive definiteness of real supersymmetric tensors, J. Comput. Appl. Math., 255 (2014), 1-14. https://doi.org/10.1016/j.cam.2013.04.022
4. G. Wang, F. Tan, Some Criteria for H-Tensors, in Chinese, Com. Appl. Math. Comput., 2 (2020), 1-11.
5. K. Chang, K. Pearson, T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci., 6 (2008), 507-520.
6. R. Zhao, L. Gao, Q. Liu, Y. Li, Criterions for identifying H-tensors, Front. Math. China, $\mathbf{3}$ (2016), 661-678. https://doi.org/10.1007/s11464-016-0519-x
7. C. Li, Y. Li, K. Xu, New eigenvalue inclusion sets for tensor, Numer. Algebra App., 21 (2014), 39-50. https://doi.org/10.1002/nla. 1858
8. F. Wang, D. Sun, New criteria for H-tensors and an application, J. Inequal. Appl., 20 (2016), 96-106. https://doi.org/10.1515/math-2015-0058
9. Y. Li, Q. Liu, L. Qi, Programmable criteria for strong H-tensors, Numer. Algor., 74 (2017), 199221. https://doi.org/10.1007/s11075-016-0145-4
10. F. Wang, D. Sun, J. Zhao, C. Li, New practical criteria for H-tensors and its application, Linear Multilinear A., 65 (2017), 269-283. https://doi.org/10.1080/03081087.2016.1183558
11. M. Kannan, N. Shaked, A. Berman, Some properties of strong H-tensors and general H-tensors, Linear Algebra Appl., 476 (2015), 42-55. https://doi.org/10.1016/j.laa.2015.02.034
12. J. Cui, G. Peng, Q. Lu, Z. Huang, New iterative criteria for strong H-tensors and an application, J. Inequal Appl., 2017 (2017), 49. https://doi.org/10.1186/s13660-017-1323-1
13. Y. Wang, G. Zhou, L. Caccetta, Nonsingular H-tensor and its criteria, J. Ind. Manag. Optim., 4 (2016), 1173-1186. https://doi.org/10.3934/jimo.2016.12.1173
14. G. Li, Y. Zhang, Y. Feng, Criteria for nonsingular H-tensors, Adv. Appl. Math., 2 (2018), 66-72.
15. Y. Xu, R. Zhao, B. Zheng, Some criteria for identifying strong H-tensors, Numer Algor., 80 (2019), 1121-1141. https://doi.org/10.1007/s11075-018-0519-x
16. F. Wang, D. Sun, Y. Xu, Some criteria for identifying H-tensors and its applications, Calcolo, 56 (2019), 2-17.
17. W. Ding, L. Qi, Y. Wei, M-tensors and nonsingular M-tensors, Linear Algebra Appl., 439 (2013), 3264-3278. https://doi.org/10.1016/j.laa.2013.08.038
18. L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302-1324. https://doi.org/10.1016/j.jsc.2005.05.007
19. L. Qi, Y. Song, An even order symmetric B-tensor is positive definite, Linear Algebra Appl., 457 (2014), 303-312. https://doi.org/10.1016/j.laa.2014.05.026
20. L. Qi, G. Yu, Y. Xu, Nonnegative diffusion orientation distribution function, J. Math. Imaging Vis., 45 (2013), 103-113. https://doi.org/10.1007/s10851-012-0346-y
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
