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Abstract: H-tensors play a key role in identifying the positive definiteness of even-order real
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is an H-tensor, and their range of judgment has been limited. In this paper, some new criteria, from
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positive definiteness of even-order real symmetric tensors are proposed. In addition, some numerical
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1. Introduction

Let n and m be integer numbers, N = {1, 2, . . . , n} and C(R) be the set of all complex (real) numbers.
A tensor A = (ai1i2···im) is called a complex (real) order m dimension n tensor, if ai1i2···im ∈ C(R), where
i j = 1, 2, . . . , n for j = 1, 2, . . . ,m. Let C[m,n] (R[m,n]) be the set of all complex (real) order m dimension
n tensors. A tensor I = (δi1i2···im) ∈ C[m,n] (m, n ≥ 2) is called the unit tensor [1], if its elements satisfy

δi1i2···im =

1, i1 = i2 = · · · = im,

0, otherwise.

A tensorA = (ai1i2···im) ∈ C[m,n] (m, n ≥ 2) is called symmetric if

ai1i2···im = aiπ(1)iπ(2)···iπ(m) , ∀π ∈ Πm,

where Πm is the permutation group of m indices.
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At present, positive definite homogeneous polynomials play a critical role in the field of dynamics,
and its positive definiteness can be transformed to identify the positive definiteness of the symmetric
tensor associated with it [2]. However, for a given symmetric tensor, it is difficult to determine whether
it is positive definite or not because the problem is NP-hard [3]. Thus, finding effective criteria to
identify the positive definitiveness of a tensor is interesting.
H-tensor was showed, Li et al. [3], that is a special kind of tensors in 2014 and an even-order

symmetric H-tensors with positive diagonal entries is positive definite. After that, some methods
that judge the positive definiteness of a given tensor have been established [4–16]. Nevertheless, as
presented by their range of judgment was fixed for the given tensor whether it was positive definite or
not [14–16].

In this paper, some new criteria which only depend on elements of the given tensors are proposed
to judge H-tensors; they expand the range of judgment by an increasing constant k which scales the
elements of a given tensor. In addition, these criteria are used to judge the positive definiteness for
even-order real symmetric tensors.

For the convenience of discussion, we start with the following notations, definitions and lemmas.
The calligraphy lettersA, B, · · · represent the tensors; the capital letters A, B, · · · denote the matrices;
the lowercase letters x, y, · · · refer to the vectors.

For a tensorA = (ai1i2···im) ∈ C[m,n](m, n ≥ 2), we denote
ri(A) =

∑
i2···im∈Nm−1

δii2 ···im=0

|aii2···im | =
∑

i2···im∈Nm−1
|aii2···im | − |aii···i|,

N1 = {i ∈ N : |aii···i| > ri(A)}, N2 = {i ∈ N : |aii···i| ≤ ri(A)},
Nm−1

1 = {i2i3 · · · im : i j ∈ N1, j = 2, 3, . . . ,m},
Nm−1\Nm−1

1 = {i2i3 · · · im : i2i3 · · · im ∈ Nm−1 and i2i3 · · · im < Nm−1
1 },

r0 = 1, r1 = max
i∈N1

{
ri(A)
|aii···i |

}
, · · · ,

rk+1 = max
i∈N1


∑

i2···im∈Nm−1\Nm−1
1

|aii2 ···im |+rk
∑

i2···im∈Nm−1
1

δii2 ···im=0

|aii2 ···im |

|aii···i |

, k = 0, 1, 2, . . . ,

σk+1,i =

∑
i2···im∈Nm−1\Nm−1

1

|aii2 ···im |+rk
∑

i2···im∈Nm−1
1

δii2 ···im=0

|aii2 ···im |

|aii···i |
, i ∈ N1, k = 0, 1, 2, . . . .

It is obvious that we obtain σk+1,i ≤ rk+1 ≤ rk ≤ · · · ≤ r1 < r0, i ∈ N1, k = 0, 1, 2, . . . .
Definition 1. [17] Let A = (ai1i2···im) ∈ C[m,n](m, n ≥ 2). If there is a positive vector
x = (x1, x2, · · · , xn)T ∈ Rn such that

|aii···i|xm−1
i >

∑
i2...im∈Nm−1

δii2 ···im=0

|aii2···im |xi2 · · · xim ,

where |a| for the modulus of a ∈ C [17], thenA is called anH-tensor.
Definition 2. [18] LetA = (ai1i2···im) ∈ C[m,n](m, n ≥ 2). If

|aii···i| > ri(A), i ∈ N,
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thenA is called a strictly diagonally dominant tensor.
Definition 3. [8] LetA = (ai1i2···im) ∈ C[m,n](m, n ≥ 2) and X = diag(x1, x2, · · · , xn). If

B = (bi1i2···im) = AXm−1,

where
bi1i2···im = ai1i2···im xi2 . . . xim , i j ∈ N, j = 2, 3, . . . ,m,

then we call B as the product of the tensorA and the matrix X.
Definition 4. [5] The product of A = (ai1i2···im) ∈ C[m,n](m, n ≥ 2) and an n-by-n matrrix X = (xi j) on
mode-k is defined by

(A×kX)i1··· jk ···im =

n∑
ik=1

ai1···ik ···im xik jk .

Definition 5. [5] LetA = (ai1i2···im) ∈ C[m,n] (m, n ≥ 2). If there exists a∅ , S ⊂ N such that ai1i2···im = 0,
∀i1 ∈ S and i2, . . . , im < S , thenA is called reducible. Otherwise,A is called irreducible.
Definition 6. [19] Let A = (ai1i2···im) ∈ C[m,n] (m, n ≥ 2), for i, j ∈ N and i , j, if there exists indices
k1, k2, . . . , kl with ∑

i2...im∈Nm−1

δksi2 ···im=0
ks+1∈{i2,...,im}

|aksi2···im | , 0, s = 0, 1, . . . , l,

where k0 = i, kl+1 = j, we say that there is a nonzero element chain from i to j.
Definition 7. [8] Let A = (ai1i2···im) ∈ C[m,n] (m, n ≥ 2); if the homogeneous polynomical equations
satisfy:

Axm−1 = λx[m−1], λ ∈ C and x = (x1, x2, · · · , xn)T , (0, 0, · · · , 0)T ,

then λ is called an eigenvalue of A and x is its corresponding eigenvector, where Axm−1 and λx[m−1]

are vectors, and whose i th components are

(Axm−1)i =
∑

i2...im∈Nm−1

aii2···im xi2 · · · xim

and
(x[m−1])i = xm−1

i .

Definition 8. [20] For an mth degree homogeneous polynomial of n variables, f (x) can usually be
denoted as

f (x) =
∑

i1i2...im∈Nm

ai1i2···im xi1 xi2 · · · xim ,

where x = (x1, x2, · · · , xn)T ∈ Rn. The homogeneous polynomial f (x) can be represented as the tensor
product of a symmetric tensorA = (ai1i2···im) ∈ C[m,n] and xm denoted by

f (x) ≡ Axm =
∑

i1i2...im∈Nm

ai1i2···im xi1 xi2 · · · xim ,

where x = (x1, x2, · · · , xn)T ∈ Rn [18]. If m is even and

f (x) > 0 f or any x ∈ Rn, x , 0,
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then we say that f (x) is positive definite.
Lemma 1. [17] Let A = (ai1i2···im) ∈ C[m,n] (m, n ≥ 2). A is an H-tensor if A is a strictly diagonally
dominant tensor.
Lemma 2. [3] LetA = (ai1i2···im) ∈ C[m,n] (m, n ≥ 2). A is anH-tensor if
• (i)A is irreducible;
• (ii) |aii···i| ≥ ri(A) for each i ∈ N;
• (iii) For the inequality of (ii), strict inequality holds for at least one i.

Lemma 3. [8] LetA = (ai1i2···im) ∈ C[m,n] (m, n ≥ 2). A is anH-tensor, if
• (i) |aii···i| ≥ ri(A), i ∈ N;
• (ii) N1 = {i ∈ N : |aii···i| > ri(A)} , ∅;
• (iii) For any i ∈ N2, there exists a nonzero element chain from i to j such that j ∈ N1.

Lemma 4. [8, 10] Let A = (ai1i2···im) ∈ C[m,n] (m, n ≥ 2). If there exists a positive diagonal matrix X
such thatAXm−1 is anH-tensor, thenA is anH-tensor.

2. Some criteria for judging nonsingularH-tensors

In this section, some new criteria for judging H-tensors are proposed, and those new criteria only
depend on the elements of the given tensors.
Theorem 1. Let A = (ai1i2···im) ∈ C[m,n] (m, n ≥ 2). A is an H-tensor, if there exists a number
k = 0, 1, 2, . . . such that

|aii···i| >
∑

i2···im∈Nm−1\Nm−1
1

δii2 ···im=0

|aii2···im | +
∑

i2···im∈Nm−1
1

rk+1|aii2···im |, ∀i ∈ N2. (2.1)

Proof. First, let

ξi =
1∑

i2···im∈Nm−1
1

|aii2···im |

|aii···i| −
∑

i2···im∈Nm−1\Nm−1
1

δii2 ···im=0

|aii2···im | −
∑

i2···im∈Nm−1
1

rk+1|aii2···im |

 , i ∈ N2. (2.2)

If
∑

i2···im∈Nm−1
1

|aii2···im | = 0, we define ξi = +∞. Obviously, it follows from Eq (2.2) that ξi > 0, i ∈ N2, and

we have rk+1 < r0 = 1 by definition of rk+1, that is, 1 − rk+1 > 0. Hence, there exists a positive number
ε > 0, such that

0 < ε < min
{
min
i∈N2
ξi, 1 − rk+1

}
. (2.3)

Construct a diagonal matrix X = diag{x1, x2, . . . , xn} and denote B = (bi1i2···im) = AXm−1, where

xi =

(ε + σk+1,i)
1

m−1 , i ∈ N1,

1 , i ∈ N2.

By the inequality of (2.3), we obtain X as a positive diagonal matrix.
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Next, we prove the
∑

i2···im∈Nm−1
1

|aii2···im | , 0 for any i ∈ N2. Suppose on the contrary that∑
i2···im∈Nm−1

1

|aii2···im | = 0 for any i ∈ N2; thus, by the inequality of (2.1), we have

|aii···i| >
∑

i2···im∈Nm−1\Nm−1
1

δii2 ···im=0

|aii2···im | +
∑

i2···im∈Nm−1
1

rk+1|aii2···im |

=
∑

i2···im∈Nm−1\Nm−1
1

δii2 ···im=0

|aii2···im |

=ri(A),

which contradicts with |aii···i| ≤ ri(A), i ∈ N2; hence,
∑

i2···im∈Nm−1
1

|aii2···im | , 0 for any i ∈ N2.

Finally, we prove that B is a strictly diagonally dominant tensor, and we divide it into two cases
as follows:

Case 1: For any i ∈ N2, from
∑

i2···im∈Nm−1
1

|aii2···im | , 0 and the inequality of (2.1), we have

ri(B) =
∑

i2···im∈Nm−1\Nm−1
1

δii2 ···im=0

|bii2···im | +
∑

i2···im∈Nm−1
1

|bii2···im |

=
∑

i2···im∈Nm−1\Nm−1
1

δii2 ···im=0

|aii2···im |xi2 · · · xim +
∑

i2···im∈Nm−1
1

|aii2···im |xi2 · · · xim

≤
∑

i2···im∈Nm−1\Nm−1
1

δii2 ···im=0

|aii2···im | +
∑

i2···im∈Nm−1
1

|aii2···im |(ε + σk+1,i2)
1

m−1 · · · (ε + σk+1,im)
1

m−1

≤
∑

i2···im∈Nm−1\Nm−1
1

δii2 ···im=0

|aii2···im | +
∑

i2···im∈Nm−1
1

|aii2···im |(ε + rk+1)

<|aii...i| = |bii...i|.

Case 2: For any i ∈ N1, we obtain that |aii···i| > ri(A); then, |aii···i| −
∑

i2···im∈Nm−1
1

δii2 ···im=0

|aii2···im | > 0, and it

follows from rk+1 ≤ rk that

rk+1

∑
i2···im∈Nm−1

1
δii2 ···im=0

|aii2···im | − rk

∑
i2···im∈Nm−1

1
δii2 ···im=0

|aii2···im | ≤ 0;

thus, we get

ε > 0 ≥
1

|aii···i| −
∑

i2···im∈Nm−1
1

δii2 ···im=0

|aii2···im |

rk+1

∑
i2···im∈Nm−1

1
δii2 ···im=0

|aii2···im | − rk

∑
i2···im∈Nm−1

1
δii2 ···im=0

|aii2···im |

 ;
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so, we have

|bii···i| − ri(B) =|aii···i|(ε + σk+1,i) −
∑

i2···im∈Nm−1\Nm−1
1

|aii2···im |xi2 · · · xim −
∑

i2···im∈Nm−1
1

δii2 ···im=0

|aii2···im |xi2 · · · xim

≥|aii···i|(ε + σk+1,i) −
∑

i2···im∈Nm−1
1

δii2 ···im=0

|aii2···im |(ε + σk+1,i2)
1

m−1 · · · (ε + σk+1,im)
1

m−1

−
∑

i2···im∈Nm−1\Nm−1
1

|aii2···im |

≥|aii···i|(ε + σk+1,i) −
∑

i2···im∈Nm−1\Nm−1
1

|aii2···im | −
∑

i2···im∈Nm−1
1

δii2 ···im=0

|aii2···im |(ε + rk+1)

=ε(|aii···i| −
∑

i2···im∈Nm−1
1

δii2 ···im=0

|aii2···im |) + |aii···i|σk+1,i −
∑

i2···im∈Nm−1\Nm−1
1

|aii2···im |

− rk+1

∑
i2···im∈Nm−1

1
δii2 ···im=0

|aii2···im |

>rk+1

∑
i2···im∈Nm−1

1
δii2 ···im=0

|aii2···im | − rk

∑
i2···im∈Nm−1

1
δii2 ···im=0

|aii2···im | +
∑

i2···im∈Nm−1\Nm−1
1

|aii2···im |

+ rk

∑
i2···im∈Nm−1

1
δii2 ···im=0

|aii2···im | −
∑

i2···im∈Nm−1\Nm−1
1

|aii2···im | − rk+1

∑
i2···im∈Nm−1

1
δii2 ···im=0

|aii2···im |

=0.

From Cases 1 and 2, we obtain that |bii···i| > ri(B) for all i ∈ N, that is, B is a strictly diagonally
dominant tensor; thus, from Lemmas 1 and 4,A is anH-tensor.
Theorem 2. LetA = (ai1i2···im) ∈ C[m,n] (m, n ≥ 2). A is anH-tensor if the following are true:
• (i)A is irreducible.
• (ii) There exists k = 0, 1, 2, . . . such that

|aii···i| ≥
∑

i2···im∈Nm−1\Nm−1
1

δii2 ···im=0

|aii2···im | +
∑

i2···im∈Nm−1
1

rk+1|aii2···im |, ∀i ∈ N2.

• (iii) For the inequality of (ii), strict inequality holds for at least one i ∈ N2.
Proof. First, let the diagonal matrix X = diag{x1, x2, . . . , xn} and B = (bi1i2···im) = AXm−1, where

xi =

(σk+1,i)
1

m−1 , i ∈ N1,

1 , j ∈ N2.

Obviously, X is the positive diagonal matrix.
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Next, we prove that |bii...i| ≥ ri(B) for all i ∈ N, and strict inequality holds for at least one i ∈ N; we
have divided it into three cases as follows:

Case 1: For any i ∈ N2, we obtain

ri(B) =
∑

i2···im∈Nm−1\Nm−1
1

δii2 ···im=0

|bii2···im | +
∑

i2···im∈Nm−1
1

|bii2···im |

=
∑

i2···im∈Nm−1\Nm−1
1

δii2 ···im=0

|aii2···im |xi2 · · · xim +
∑

i2···im∈Nm−1
1

|aii2···im |xi2 · · · xim

≤
∑

i2···im∈Nm−1\Nm−1
1

δii2 ···im=0

|aii2···im | +
∑

i2···im∈Nm−1
1

|aii2···im |(σk+1,i2)
1

m−1 · · · (σk+1,im)
1

m−1

≤
∑

i2···im∈Nm−1\Nm−1
1

δii2 ···im=0

|aii2···im | +
∑

i2···im∈Nm−1
1

|aii2···im |rk+1

≤|aii...i| = |bii...i|.

Case 2: For any i ∈ N1, we obtain

|bii···i| − ri(B) =|aii···i|σk+1,i −
∑

i2···im∈Nm−1\Nm−1
1

|aii2···im |xi2 · · · xim −
∑

i2···im∈Nm−1
1

δii2 ···im=0

|aii2···im |xi2 · · · xim

≥
∑

i2···im∈Nm−1\Nm−1
1

|aii2···im | + rk

∑
i2···im∈Nm−1

1
δii2 ···im=0

|aii2···im | −
∑

i2···im∈Nm−1\Nm−1
1

|aii2···im |

− rk+1

∑
i2···im∈Nm−1

1
δii2 ···im=0

|aii2···im |

≥0.

Case 3: From the condition (iii), without loss of generality, we suppose that

|att···t| >
∑

i2···im∈Nm−1\Nm−1
1

δti2 ···im=0

|ati2···im | +
∑

i2···im∈Nm−1
1

rk+1|ati2···im |;

similar to the proof for Case 1 of Theorem 2, we obtain that rt(B) < |btt···t|, t ∈ N2.
Finally, since X is a positive diagonal matrix and A is irreducible, B is also irreducible; thus, by

Lemmas 2 and 4,A is anH-tensor.
Theorem 3. LetA = (ai1i2···im) ∈ C[m,n] (m, n ≥ 2). A is anH-tensor, if the following are true:
• (i) There exists k = 0, 1, 2, . . . such that

|aii···i| ≥
∑

i2···im∈Nm−1\Nm−1
1

δii2 ···im=0

|aii2···im | +
∑

i2···im∈Nm−1
1

rk+1|aii2···im |, ∀i ∈ N2.

AIMS Mathematics Volume 8, Issue 4, 7606–7617.



7613

• (ii) J , ∅, where J =

 j : |a j j··· j| >
∑

i2···im∈Nm−1\Nm−1
1

δ ji2 ···im=0

|a ji2···im | +
∑

i2···im∈Nm−1
1

rk+1|a ji2···im |, j ∈ N2

 .
• (iii) For any i ∈ (N\J), there exists a nonzero element chain from i to j such that j ∈ J.

Proof. First, construct a diagonal matrix X = diag{x1, x2, . . . , xn} and denote B = (bi1i2···im) = AXm−1,
where

xi =

(σk+1,i)
1

m−1 , i ∈ N1,

1 , j ∈ N2.

Obviously, X is a positive diagonal matrix.
Second, similar to the proof of Theorem 2, we conclude that |bii···i| ≥ ri(B) for all i ∈ N. From the

condition J , ∅, we obtain that there exists at least a t ∈ N such that |btt···t| > rt(B). On the other
hand, if |bii···i| = ri(B), then i ∈ N\J, and from the condition that for any i ∈ N\J, A has a nonzero
element chain from i to j such that j ∈ J, we obtain that B has a nonzero elements chain from i to j
with |b j j··· j| > r j(B).

Finally, based on the above analysis, we draw a conclusion that B satisfies the conditions of
Lemma 3; hence, by Lemmas 3 and 4,A is anH-tensor.

3. Some numerical examples

In this section, based on the new criteria for judging H-tensors in section 2, some numerical
examples are presented to illustrate those new criteria.
Example 1. Let us consider the tensorA = (ai1i2i3) = [A(1, :, :), A(2, :, :), A(3, :, :)] ∈ C[3,3], where

A(1, :, :) =


20 2 0
2 5 0
2 0 5

 , A(2, :, :) =


2 0 0
0 8 0
0 0 2

 , A(3, :, :) =


2 0 0
0 1 1
0 2 5.2

 .
Obviously,

|a111| = 20, r1(A) = 16, |a222| = 8, r2(A) = 4, |a333| = 5.2 and r3(A) = 6,

so N1 = {1, 2} and N2 = {3}. By simple calculation, we obtain

r1(A)
|a111|

= 0.8,
r2(A)
|a222|

= 0.5, σ2,1 = 0.71, σ2,2 = 0.45 and r2 = 0.71;

when k=1, we get

|a333| = 5.2 > 5.13 =
∑

i2i3∈N2\N2
1

δ3i2i3=0

|a3i2i3 | + r2

∑
i2i3∈N2

1

|a3i2i3 |;

hence, A satisfies the conditions of Theorem 1 and k = 1; it follows from Theorem 1 that A is an
H-tensor.

AIMS Mathematics Volume 8, Issue 4, 7606–7617.
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Example 2. Let us consider the irreducible tensor A = (ai1i2i3) = [A(1, :, :), A(2, :, :), A(3, :, :)] ∈ C[3,3],
where

A(1, :, :) =


13 1 0
0 1 1
1 1 1

 , A(2, :, :) =


13 0 0
0 10 0
1 0 1

 , A(3, :, :) =


0 0 0
0 16 0
0 0 16

 .
Obviously,

|a111| = 13, r1(A) = 6, |a222| = 10, r2(A) = 15, |a333| = 16 and r3(A) = 16,

so N1 = {1} and N2 = {2, 3}. By simple calculation, we obtain

r1(A)
|a111|

= r1 = 0.46;

when k=0, we get

|a222| = 10 > 8 =
∑

i2i3∈N2\N2
1

δ2i2i3=0

|a2i2i3 | + r1
∑

i2i3∈N2
1

|a2i2i3 |

and

|a333| = 16 > 7.38 =
∑

i2i3∈N2\N2
1

δ3i2i3=0

|a3i2i3 | + r1
∑

i2i3∈N2
1

|a3i2i3 |;

hence, A satisfies the conditions of Theorem 2 and k = 0; it follows from Theorem 2 that A is an
H-tensor.

4. Application

In this section, based on the new criteria for judging H-tensors in section 2, some new criteria for
identifying the positive definiteness of an even-order real symmetric tensor are presented.

From Theorems 1–3, we get the following result.
Theorem 4. LetA = (ai1i2···im) be an even-order real symmetric tensor of order m and n dimensions. If
akk···k > 0 for all k ∈ N,A is symmetric and satisfies one of the following conditions andA is positive
definite:
• (i) All conditions of Theorem 1;
• (ii) All conditions of Theorem 2;
• (iii) All conditions of Theorem 3.
The following example is given to show this result.

Example 3. Consider the following 4th-degree homogeneous polynomial

f (x) = 20x4
1 + 15x4

2 + 10x4
3 + 8x3

1x2 + 4x3
1x3 + 12x2

2x2
3,
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where x = (x1, x2, x3)T . Then we can obtain a symmetric tensorA = (ai1i2i3i4) ∈ R
[4,3], where

A(1, 1, :, :) =


20 2 2
2 0 0
2 0 0

 , A(1, 2, :, :) =


2 0 0
0 0 1
0 1 0

 , A(1, 3, :, :) =


2 0 0
0 1 0
0 0 0

 ,
A(2, 1, :, :) =


2 0 0
0 0 1
0 1 0

 , A(2, 2, :, :) =


0 0 1
0 15 0
1 0 2

 , A(2, 3, :, :) =


0 1 0
1 0 2
0 2 0

 ,
A(3, 1, :, :) =


2 0 0
0 1 0
0 0 0

 , A(3, 2, :, :) =


0 1 0
1 0 2
0 2 0

 , A(3, 3, :, :) =


0 0 0
0 2 0
0 0 10

 .
Obviously,

|a1111| = 20, r1(A) = 15, |a222| = 15, r2(A) = 14, |a333| = 10 and r3(A) = 11,

so N1 = {1, 2} and N2 = {3}. By simple calculation, we obtain

r1 = 0.93.

Thus, we get

|a3333| = 10 > 7.38 =
∑

i2i3i4∈N3\N3
1

δ3i2i3i4=0

|a3i2i3i4 | + r1

∑
i2i3i4∈N3

1

|a3i2i3i4 |;

hence, A satisfies the conditions of Theorem 1 and k = 0; thus, it also satisfies the conditions of
Theorem 4. Hence, f (x) is positive definite.

5. Conclusions

In this paper, some new criteria have been proposed for the judgment ofH-tensors, which they via
an increasing constant k to scale the elements of a given tensor and only depend on elements of the
given tensors. As an application, some sufficient conditions of the positive definiteness for even-order
real symmetric tensors have been obtained. In addition, some numerical examples have been presented
to illustrate those new results.
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