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1. Introduction

In this paper, we will focus on the reducibility of an almost-periodic linear Hamiltonian system

dX
dt
= J [A + εQ(t)] X, X ∈ R2d, (1.1)

where A is a symmetric 2d×2d constant matrix with possible multiple proper-values, Q(t) is an almost-

periodic analytic symmetric matrix with respect to t, J =
(

0 Id

−Id 0

)
, where Id is an identity matrix of

order d, and ε is a sufficiently small parameter.
Let A(t) be a quasi-periodic matrix of order d, and the differential equation

dX
dt
= A(t)X, X ∈ Rd, (1.2)

is known as reducible if there exists a nonsingular quasi-periodic (q-p) Lyapunov-Perron (L-P) change
of variables X = ϕ(t)Y , where ϕ(t) and ϕ−1(t) are quasi-periodic and bounded, which transforms (1.2)
into

dY
dt
= BY, (1.3)

where B is a constant matrix.
Over recent years, the reducibility of differential systems has been studied widely by a lot of

researchers [1–12]. The earliest result in this field is the well known Floquet Theory, which states that
every periodic differential equation (1.2) can be reduced to a constant coefficient differential
equation (1.3) by means of a periodic change of variables with the same period as A(t). However, the
result is no longer always true for quasi-periodic systems. A counterexample was provided by
Palmer [2].

For example, the quasi-periodic linear systems which come from the quasi-periodic Schrödinger
operators, which are defined on L2(R) as

(LY)(t) = −
d2Y
dt2 + q(θ + ωt)Y(t), (1.4)

where θ ∈ T n is known as phase, and q : T n → R is known as the potential. It is notable that the
spectrum of L does not depend on the phase when ω is rationally independent, yet it is closely related
to the dynamics of Schrödinger equation

(LY)(t) = −
d2Y
dt2 + q(θ + ωt)Y(t) = EY(t), (1.5)

or, on the other hand, the dynamics of the linear differential systems

dX
dt
= VE,q(θ)X,

dθ
dt
= ω, (1.6)

where

VE,q(θ) =
(

0 1
q(t) − E 0

)
∈ sl(2,R). (1.7)
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Dinaburg and Sinai [10] showed that linear system (1.6) is reducible for most E > E∗(q, α, τ), which
are sufficiently large, if ω is fixed and fulfills the non-resonance condition

|⟨k, ω⟩| ≥
α

|k|τ
, k ∈ Zr\{0},

where α > 0, τ > 0. The result of [10] was generalized by Rüssmann [7], in which ω satisfied the
Brjuno condition.

Eliasson [11] showed the full measure reducibility result for quasi-periodic linear Schrödinger
equations. Specifically, he showed that (1.6) is reducible for almost all E > E∗(q, ω) in the Lebesgue
measure sense, where ω is the Diophantine vector which is fixed.

Jorba and Simó [1] considered the differential equations

dX
dt
= [A + εQ(t)] X, X ∈ Rd, (1.8)

where A is a constant matrix of order d with d distinct proper-values. They showed that under the non-
resonant conditions and non-degeneracy conditions, there exists a non-empty Cantor subset E, such
that for ε ∈ E, the system (1.8) is reducible.

Xu [3] considered the case that A has multiple eigenvalues and showed the system (1.8) is reducible
for ε ∈ E.

Recently, Xue and Zhao [9] considered the linear q-p Hamiltonian system

dX
dt
= [A + εQ(t)] X, (1.9)

where A is a constant matrix with possible multiple proper-values, and Q(t) is an analytic matrix
with respect to t and with frequencies ω = (ω1, ω2, . . . , ωr). Under some nonresonant conditions,
using KAM iterations and for most sufficiently small parameters ε they proved that the system (1.9) is
reducible by means of a quasi-periodic symplectic change of variables with the same basic frequencies
as Q(t).

Rather than the reducibility of a q-p system to a constant coefficient system, Xu and You [5]
investigated the reducibility of the following almost-periodic linear differential equations:

dX
dt
= [A + εQ(t)] X, X ∈ Rd, (1.10)

where A is a constant matrix with distinct proper-values, and Q(t) is an almost periodic analytic matrix
of order d with frequencies ω = (ω1, ω2, . . .). Under some small divisor conditions, using KAM
iterations and the “spatial structure” of almost periodic functions, they proved that for most sufficiently
small ε, Eq (1.10) is reducible.

Inspired by [5,8], in this paper, we extend the results of [9] to almost-periodic Hamiltonian systems
instead of quasi-periodic Hamiltonian systems. Here the related LP change of variables should not
only be almost-periodic but also be symplectic.

To state our problem, we should present some notations and definitions.
A function f (t) is said to be a quasi-periodic function with essential frequencies

ω = (ω1, ω2, . . . , ωd), if f (t) = F(θ1, θ2, . . . , θd), where F is 2π periodic in all its arguments, and
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θi = ωit for i = 1, 2, . . . , d. f (t) will be known as an analytic q-p in a strip of width ϱ if F is analytical
on Dϱ = {θ||ℑθl| ≤ ϱ, l = 1, 2, . . . , n}. For the present case, we denote the norm of f (t) as
∥ f ∥ϱ =

∑
k∈Zn |Fk|eϱ|k|. f (t) is almost-periodic, if f (t) =

∑∞
m=1 fm(t) where fm(t) (m = 1, 2, 3, . . .) are all

quasi-periodic.

Definition 1.1. Let A(t) = (al j(t)) be a quasi-periodic d × d matrix. If every al j(t) is analytic in Dϱ,
then we call A(t) analytic on Dϱ. The norm of A(t) is defined as

∥A(t)∥ϱ = d × max
1≤l, j≤d

∥al j(t)∥ϱ.

If A is a constant matrix, the norm of A is defined as:

∥A∥ = d × max
1≤l, j≤d

|al j|.

In [5], we have noticed that “spatial structure” and “approximation function” are valuable tools to
study the almost-periodic systems. To overcome the difficulties from infinite frequency which generate
the small divisors problems, we require much stronger norms. So, let’s introduce these notations
from [6, 7].

Definition 1.2. [6] Suppose that N is the natural number set, τ is the set of a few subsets of N. Then,
(τ, [·]) is known as a finite spatial structure in N if τ fulfills

(1) ∅ ∈ τ,

(2) if Λ1,Λ2 ∈ τ, then Λ1 ∪ Λ2 ∈ τ,

(3) ∪Λ∈τΛ = N,
and a weight function [·] is defined on τ, such that [∅] = 0, [Λ1 ∪ Λ2] ≤ [Λ1] + [Λ2].

Consider k ∈ ZN. Indicate k as the support set, and, is defined as

supp k = {(l1, l2, . . . , ln)|ki , 0, i = l1, l2, . . . , ln; otherwise ki = 0}.

The weight value is denoted by [k], and [k] = infsuppk⊂Λ,Λ∈τ[Λ]. Write

|k| =
∞∑

l=1

|kl|.

Definition 1.3. [7] In the following, the non-resonance conditions are provided for the supposed
approximation functions. ∆ is called an approximation function, if

• ∆ : [0,∞)→ [1,∞), is an increasing function, and fulfills ∆(0) = 1;
• log∆(t)

t is decreasing on [0,∞);
•

∫ ∞
0

log∆(t)
t2 dt < ∞.

It is clear that if ∆(t) is an approximation function, then so is ∆3(t).

Definition 1.4. If Q(t) =
∑
Λ∈τ QΛ(t), where QΛ(t) are quasi-periodic matrices having frequencies

ωΛ = {ωl|l ∈ Λ}, then Q(t) is called an almost-periodic matrix having the spatial structure (τ, [·]) and
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frequency ω of Q(t), which is the maximum subset of ∪ωΛ in the sense of integer modular. Denote
Q = (ql j) as the average of Q(t) = (ql j(t)), and

ql j = lim
T→∞

1
2T

∫ T

−T
ql j(t)dt.

For ϱ > 0, m > 0, the weighted norm of Q(t) with spatial structure (τ, [.]) is defined as:

|∥Q(t)∥|m,ϱ =
∑
Λ∈τ

em[Λ]∥QΛ(t)∥ϱ.

In our paper, the non-resonant condition is

|λl − λ j −
√
−1⟨k, ω⟩| ≥

α0

∆3(|k|)∆3([k])
, l , j,

∀ 1 ≤ l, j ≤ 2d, and k ∈ ZN\{0}, where α0 > 0 is the small constant λ1, λ2, . . . , λ2d are the proper-values
of JA, ω = (ω1, ω2, . . .) is the frequency of Q(t), and ∆(t) is an approximation function which fulfills∑

k∈ZN
1

∆(|k|)∆([k]) < +∞. From [6], it is assumed that

[Λ] = 1 +
∑
l∈Λ

logr(1 + |l|), r > 2.

So, we are in a position to state our main result.

Theorem 1.1. Consider the Hamiltonian system (1.1) in which JA is the Hamiltonian matrix with
possible multiple proper-values λ1, λ2, . . . , λ2d, and JQ(t) =

∑
JQΛ(t) is analytic almost-periodic on

Dϱ with frequencies ω = (ω1, ω2, . . .) and has spatial structure (τ, [·]), which depends continuously
upon the small parameter ε. Suppose that

A1. ∃ m > 0, s.t. |∥Q(t)∥|m,ϱ < +∞.

A2. (Non-resonant Conditions) Suppose that λ = (λ1, . . . , λ2d) and ω = (ω1, ω2, . . .) fulfill

|λl − λ j −
√
−1⟨k, ω⟩| ≥

α0

∆(|k|)3∆([k])3 ,∀1 ≤ l, j ≤ 2d, l , j,

∀ k ∈ ZN\{0}, where α0 > 0, and ∆(t) is an approximation function.

A3. (Non-degeneracy Conditions) Let λ1
l (ε) (1 ≤ l ≤ 2d) be 2d distinct proper-values of J(A+εQ) with

|λ1
l | ≥ 2ηε, |λ1

l − λ
1
j | ≥ 2ηε, l , j 0 ≤ l, j ≤ 2d, a constant η > 0 independent from ε, and Q is the

average of Q(t) which is given in definition 1.4.

Then, there exists some sufficiently small ε∗ > 0 and a positive measure non-empty Cantor subset
E∗ ⊂ (0, ε∗), s.t. for ε ∈ E∗, there is an analytic almost-periodic symplectic change X = ψ(t)Y with
the same frequencies and finite spatial structure like Q(t), which changes (1.1) into the Hamiltonian
system Ẏ = BY, where B is a constant matrix. Additionally, means ( (0,ε∗)

E∗
) approaches 1 as ε∗ goes to 0.

Remark 1.1. Here, as we are dealing with the Hamiltonian system, we need to find the symplectic
change, which is not the same as that in [1].
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Remark 1.2. We allow matrix JA to have multiple eigen-values. Obviously, if the eigen-values of JA
are distinct, the non-degeneracy condition holds naturally.

As an example, we apply the Theorem 1.1 to the following Schrödinger equation:

d2X
dt2 + εJa(t)X = 0, (1.11)

where Ja(t) =
∑

JaΛ(t) is an almost-periodic function which is analytic on Dϱ with frequencies ω and
has spatial structure (τ, [·]), which is persistently dependent on small parameter ε. a is the average of
a(t). If a > 0 and the frequency ω of Ja(t) =

∑
JaΛ(t) fulfills the non-resonance condition

|⟨k, ω⟩| ≥
α0

∆(|k|)3∆([k])3 , k ∈ ZN\{0}, (1.12)

where α0 > 0 is a small constant and ∆(t) is an approximation function, then there exists some
sufficiently small ε∗ > 0, the system (1.11) is reducible, and the equilibrium of (1.11) is stable in the
sense of Lyapunov for generally sufficiently small ε ∈ (0, ε∗). In addition, all solutions of Eq (1.11)
are quasi-periodic with the frequency Ω = (

√
b, ω1, ω2, . . .) for generally sufficiently small ε ∈ (0, ε∗),

where b = aε +O(ε2) as ε approaches 0. Here, we can see that if we rewrite the system (1.11) into the
system (1.1), we have

JA =
(
0 0
1 0

)
,

which has various proper-values λ1 = λ2 = 0. One can see Section 5 for much more details about this
example.

This paper is organized as follows:

• In Section 2, some Lemmas are given.
• In Section 3, we will prove the first KAM step.
• In Section 4, we will prove the main Theorem 1.1.
• Finally, in Section 5, we will analyze the Eq (1.11).

2. The Lemmas

Lemma 2.1. [5]. Assume that T and R are almost-periodic matrices with similar frequencies and
similar spatial structures. If |∥T∥|m,ϱ < +∞, |∥R∥|m,ϱ < +∞, then TR is an almost-periodic matrix with
similar frequencies and similar spatial structure like T and R,

|∥TR∥|m,ϱ ≤ |∥T∥|m,ϱ|∥R∥|m,ϱ,

and for the average of T , we have ||T || ≤ |∥T∥|m,ϱ.

Lemma 2.2. [1]. Assume that C0 is a 2d × 2d matrix with distinct non-zero proper-values µ0
1, . . . , µ

0
2d

satisfying |µ0
l | > γ, |µ0

l − µ
0
j | > γ, l , j, 0 ≤ l, j ≤ 2d and a regular matrix B0 s.t. B−1

0 C0B0 =

diag(µ0
1, . . . , µ

0
2d). Choose β0 = max{||B0||, ||B−1

0 ||}, and pick b s.t. 0 < b < γ

(6d−1)β2
0
. If C1 confirms

||C1 −C0|| ≤ b, then, at that point, the accompanying conclusions hold:

(1) C1 has 2d distinct non-zero proper-values µ1
1, . . . , µ

1
2d;
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(2) ∃ the regular matrix B1 such that B−1
1 C1B1 = diag(µ1

1, . . . , µ
1
2d), which confirms ||B1||, ||B−1

1 || ≤ β1,
where β1 = 2β0.

The next lemma is the inductive lemma which is used for the inductive procedure in the proof of
Theorem 1.1.

Lemma 2.3. Consider the differential equation of the matrix

Ṡ = (JA)S − S (JA) + Q, (2.1)

where (JA)2d×2d is a Hamiltonian matrix, the proper-values of JA are λ1, λ2, . . . , λ2d with |λ j| > ζ and
|λ j−λl| > ζ for j , l, and ζ > 0 is constant. Also, Q(t) =

∑
Λ∈τ QΛ(t) is an almost-periodic Hamiltonian

matrix in t, is analytic on Dϱ with frequencies ω = (ω1, ω2, . . .) and has finite spatial structure (τ, [·]).
Q = 0, where Q is the average of Q(t). Let

|λ j − λl −
√
−1⟨k, ω⟩| ≥

α0

∆3(|k|)∆3([k])
, ∀ k ∈ ZN\{0}, (2.2)

with α0 > 0 a constant and with the approximation function ∆(t). Consider 0 < ϱ < ϱ, 0 < m < m.
Then, ∃ a unique analytic almost-periodic Hamiltonian matrix S (t) with similar finite spatial structure
and with similar frequency as Q(t), which gives the solution of Eq (2.1) and fulfills

|∥S ∥|m−m,ϱ−ϱ ≤ c
Γ(m)Γ(ϱ)

α0
|∥Q∥|m,ϱ,

where Γ(ϱ) = supt≥0[∆3(t)e−ϱt], and c > 0 is the constant.
Proof: Setting S such that S −1JAS = D = dia(λ1, λ2, . . . , λ2d),making transformation S (t) = BV(t)B−1

and R(t) = B−1QB(t), Eq (2.1) becomes

V̇ = DV − VD + R.

Consider V =
∑
Λ∈τ VΛ, R =

∑
Λ∈τ RΛ, and

RΛ = (r jl
Λ

), (r jl
Λk) =

∑
suppk⊂Λ

r jl
Λke

√
−1⟨k,θ⟩,

VΛ = (v jl
Λ

), (v jl
Λk) =

∑
suppk⊂Λ

v jl
Λke

√
−1⟨k,θ⟩,

with θ = ωt.
Substituting above into V̇Λ = DVΛ −VΛD+RΛ and by comparing the coefficients on both sides, we

obtain v jl
Λ0 = 0; or for k , 0,

v jl
Λk =

r jl
Λk

λ j − λl −
√
−1⟨k, ω⟩

.
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Since Q is analytic on Dϱ, R = B−1QB is also analytic on Dϱ. So, using Eq (2.2), we have

∥v jl
Λ
∥ϱ−ϱ ≤

∑
suppk⊂Λ

∆3(|k|)e−ϱ|k|

α0
∆3([k])|r jl

Λk|e
ϱ|k|,

≤
Γ(ϱ)∆3([Λ])

α0
∥r jl
Λk∥ϱ.

Thus,

∥VΛ∥ϱ−ϱ ≤
Γ(ϱ)∆3([Λ])

α0
∥RΛ∥ϱ.

Let V =
∑
Λ∈τ VΛ. From Definition 1.2, we have

|∥V∥|m−m,ϱ−ϱ =
∑
Λ∈τ

∥VΛ∥ϱ−ϱe(m−m)[Λ],

≤
∑
Λ∈τ

Γ(ϱ)∆3([Λ])
α0

∥RΛ∥ϱem[Λ]−m[Λ],

≤
Γ(ϱ)Γ(m)

α0
|∥R∥|m,ϱ.

Then, by utilizing Lemmas 2.1 and 2.2, we can write

|∥S ∥|m−m,ϱ−ϱ ≤ ||B|||∥V∥|m−m,ϱ−ϱ||B−1||,

and

|∥R∥|m,ϱ ≤ ||B−1|||∥Q∥|m,ϱ||B||.

So,

|∥S ∥|m−m,ϱ−ϱ ≤ c
Γ(m)Γ(ϱ)

α0
|∥Q∥|m,ϱ.

To show that S =
∑
Λ∈τ S Λ is Hamiltonian, we simply need to make sure that S l = J−1S is

symmetric. Since we have that JA is Hamiltonian and Q =
∑
Λ∈τ QΛ is Hamiltonian, using the

definition, A is symmetric, and we can denote Q = JQl, where Ql is symmetric. Putting S = JS l and
Q = JQl into Eq (2.1), we get

Ṡ l = AJS l − S lJA + Ql. (2.3)

Taking the transpose on the two sides of Eq (2.3), we have

Ṡ t
l = AJS t

l − S t
lAJ + Ql. (2.4)

Multiplying both sides of Eqs (2.3) and (2.4) by J, we get JṠ l = (JA)JS l − JS l(JA) + Q, and
JṠ t

l = (JA)JS t
l − JS t

l(AJ) + Q. This shows that JS l and JS t
l are solutions of Eq (2.1). As vl j

Λ0 =,
1 ≤ l, j ≤ 2d, we have V̄ = 0, and so S = 0. Thus, JS̄ l = JS̄ t

l = 0. As Eq (2.1) has unique solution with
S̄ = 0, we get JS l = JS t

l; and this implies that S l = S t
l, which shows that S is the Hamiltonian.

□
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3. The first KAM step

Choose A0 = JA, Q0(t) = JQ(t). By condition A3 of Theorem 1.1, (A0 + εQ0) is the Hamiltonian
matrix with 2d distinct proper-values λ1

l , (1 ≤ l ≤ 2d) with |λ1
l | ≥ 2ηε, and (0 ≤ l, j ≤ 2d) with

|λ1
l − λ

1
j | ≥ 2ηε, where η > 0 is the constant independent from ε. Thus, Hamiltonian system (1.1) can

be rewritten in the form:

dX
dt
=

[
A1 + εQ̃(t)

]
X, X ∈ R2d, (3.1)

where A1 = J(A + εQ), Q̃(t) = J(Q(t) − Q), Q̃ = 0, and A1 and Q̃(t) are the Hamiltonian matrices.
Let regular matrix B1 be such that B−1

1 A1B1 = diag(λ1
1, . . . , λ

1
2d), which fulfills β1 = max{||B1||, ||B−1

1 ||}.

Using symplectic change of variables X = eεS (t)X1, where S (t) will be found later, the system (3.1) is
converted into

dX1

dt
=

[
e−εS (t)(A1 + εQ̃(t) − εṠ )eεS (t) + e−εS (t)(εṠ eεS (t) −

d
dt

eεS (t))
]

X1. (3.2)

By series expansion, we can indicate

eεS = I + εS +W,

and

e−εS = I − εS + W̃,

where

W =
(εS )2

2!
+

(εS )3

3!
+ . . . , W̃ =

(εS )2

2!
−

(εS )3

3!
+ . . . .

Then, the Hamiltonian system (3.2) can be rewritten as

dX1

dt
= [(I − ϵS + W̃)(A1 + εQ̃(t) − εṠ )(I + ϵS +W) + e−εS (t)(εṠ eεS (t) −

d
dt

eεS (t))]X1,

= [A1 + εQ̃ − εṠ + εA1S − εS A1 + ε
2Q1]X1, (3.3)

where

Q1 = − S (Q̃ − Ṡ ) + (Q̃ − Ṡ )S − S (A1 + εQ̃ − εṠ )S

+ (I − ϵS )(A1 + εQ̃ − εṠ )
W
ε2 +

W̃
ε2 (A1 + εQ̃ − εṠ )eεS

+
1
ε2 e−εS (t)(εṠ eεS (t) −

d
dt

eεS (t)).

We would like to have

Q̃ − Ṡ + A1S − S A1 = 0,
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or, we have
Ṡ = A1S − S A1 + Q̃. (3.4)

By the condition A3 of Theorem 1.1, it is not difficult to see that the inequalities

|λ1
l | ≥ ηε, |λ1

l − λ
1
j | ≥ ηε, l , j, 0 ≤ l, j ≤ 2d,

hold. By using Lemma 2.3, if

|λ1
l − λ

1
j −
√
−1⟨k, ω⟩| ≥

α1

∆3(|k|)∆3([k])
, l , j, k ∈ ZN\{0}, (3.5)

also holds, where α1 =
α0
4 , then Eq (3.4) can be solved for a unique almost-periodic Hamiltonian

matrix S =
∑

S Λ on Dϱ−ϱ with similar frequencies and similar spatial structure(τ, [·]) as Q̃ , which
fulfills S = 0 and

|∥S ∥|m−m,ϱ−ϱ ≤ c
Γ(m)Γ(ϱ)

α0
|∥Q(t)∥|m,ϱ. (3.6)

Therefore, by using (3.4), the system (3.3) can be written as

dX1

dt
=

[
A1 + ε

2Q1

]
X1, (3.7)

where,

Q1 =S (A1S − S A1) + (S A1 − A1S )S − S (A1 + ε(S A1 − A1S ))S

+ (I − ϵS )(A1 + ε(S A1 − A1S ))
W
ε2 +

W̃
ε2 (A1 + ε(S A1 − A1S ))eεS

+
1
ε2 e−εS (t)(εṠ eεS (t) −

d
dt

eεS (t)).

Consequently, under the symplectic transformation X = eεS (t)X1, system (3.1) is converted into
system (3.7).

For sufficiently small ε, we have |∥εS ∥|m−m,ϱ−ϱ < 1; thus, from

W =
(εS )2

2!
+

(εS )3

3!
+ . . . , W̃ =

(εS )2

2!
−

(εS )3

3!
+ . . . ,

we have

|∥W∥|m−m,ϱ−ϱ ≤
|∥εS ∥|2m−m,ϱ−ϱ

2!
+
|∥εS ∥|3m−m,ϱ−ϱ

3!
+ . . . ,

= |∥εS ∥|2m−m,ϱ−ϱ(
1
2!
+
∥εS ∥|m−m,ϱ−ϱ

3!
+ . . .),

≤ L|∥εS ∥|2m−m,ϱ−ϱ,
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where L = 1
2! +

∥εS ∥|m−m,ϱ−ϱ

3! + . . . .

In the same way, we can get |∥W∥|m−m,ϱ−ϱ ≤ L|∥εS ∥|2m−m,ϱ−ϱ.

Thus, for sufficiently small ε

|∥Q1∥|m−m,ϱ−ϱ ≤ C0|∥εS ∥|2m−m,ϱ−ϱ ≤ C∗0
Γ(m)2Γ(ϱ)2

α2
0

|∥Q(t)∥|2m,ϱ,

where C0 > 0,C∗0 > 0 are constants. That is the end of the first KAM step.

4. Proof of Theorem 1.1

Now, we consider the iteration step. At the nth step, suppose the Hamiltonian system

dXn

dt
=

[
An + ε

2n
Qn(t)

]
Xn, n ≥ 1, (4.1)

where An is the Hamiltonian matrix, and Qn(t) is an analytic almost-periodic Hamiltonian matrix on
Dϱn with basic frequencies ω = (ω1, ω2, . . .) and has spatial structure (τ, [·]). λn

l are eigenvalues of An

with |λn
l | ≥ ηε, |λn+1

l − λn+1
j | ≥ ηε, l , j, 0 ≤ l, j ≤ 2d, where η > 0 is independent from ε. By

defining the average of Qn(t) as Qn, the system (4.1) is rewritten as

dXn

dt
=

[
An+1 + ε

2n
Q̃n(t)

]
Xn, n ≥ 1, (4.2)

where An+1 = (An + ε
2n

Qn) Q̃n(t) = Qn(t) − Qn.
Presently, by making the symplectic change Xn = eε

2n
S n(t)Xn+1, where S n(t) will be found later, the

system (4.2) becomes

dXn+1

dt
=[e−ε

2n
S n(An+1 + ε

2n
Q̃n − ε

2n
Ṡ n)eε

2n
S n

+ e−ε
2n

S n(ε2n
Ṡ neε

2n
S n −

d
dt

eε
2n

S n(t))]Xn+1. (4.3)

By series expansion, we can indicate

eϵ
2n

S n = I + ϵ2n
S n +Wm,

e−ϵ
2n

S n = I − ϵ2n
S m + W̃n

where

Wm =
(ϵ2n

S n)2

2!
+

(ϵ2n
S n)3

3!
+ . . . ,

W̃n =
(ϵ2n

S n)2

2!
−

(ϵ2n
S n)3

3!
+ . . . .

Then, the system (4.3) can be rewritten as

dXn+1

dt
=

[
An+1 + ε

2n
Q̃n − ε

2n
Ṡ n + ε

2n
An+1S n − ε

2n
S nAn+1 + ε

2n+1
Qn+1(t)

]
Xn+1, (4.4)
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where

Qn+1(t) = − S n(Q̃n − Ṡ n) + (Q̃n − Ṡ n)S n − S n(An+1 + ε
2n

(Q̃n − Ṡ n))S m

+ (I − ϵ2n
S n)(An+1 + ε

2n
(Q̃n − Ṗn))

Wn

ε2n+1 +
W̃n

ε2n+1 (An+1 + ε
2n

(Q̃m − Ṡ n))eε
2n

S n

+
1
ε2n+1 e−ε

2n
S n(ε2n

Ṡ meε
2n

S n −
d
dt

eε
2n

S n(t)).

We would like to have

Q̃n − Ṡ n + An+1S n − S nAn+1 = 0,

or we have

Ṡ n = An+1S n − S nAn+1 + Q̃n. (4.5)

Since An + ε
2n

Qn and Qn(t) − Qn are Hamiltonian, An+1 and Q̃n(t) are Hamiltonian. If

|λn+1
l − λn+1

j −
√
−1⟨k, ω⟩| ≥

αn

∆3(|k|)∆3([k])
, l , j, k ∈ ZN\{0},

and An+1 has 2d distinct proper-values λn+1
1 , . . . , λn+1

2d with |λn+1
l | ≥ ηε, |λn+1

l −λ
n+1
j | ≥ ηε, l , j 0 ≤ l, j ≤

2d, by Lemma 2.3, there is a unique almost-periodic matrix S n(t) on Dϱn−ϱn+1
having frequencies ω and

with finite spatial structure (τ, [·]), which fulfills S n = 0 and

|∥S n∥|mn−mn+1,ϱn−ϱn+1
≤ c
Γ(mn)Γ(ϱn)

αn
|∥Qn∥|mn,ϱn . (4.6)

Then, the Hamiltonian system (4.4) becomes

dXn+1

dt
=

[
An+1 + ε

2n+1
Qn+1(t)

]
Xn+1. (4.7)

where,

Qn+1(t) =S n(An+1S n − S nAn+1) + (S nAn+1 − An+1S n)S n

− S n(An+1 + ε
2n

(S nAn+1 − An+1S n))S n

+ (I − ϵ2n
S n)(An+1 + ε

2n
(S nAn+1 − An+1S n))

Wn

ε2n+1

+
W̃n

ε2n+1 (An+1 + ε
2n

(S nAn+1 − An+1S n))eε
2n

S n

+
1
ε2n+1 e−ε

2n
S n(ε2n

Ṡ neε
2n

S m −
d
dt

eε
2n

S n(t)). (4.8)

Thus, under the symplectic change Xn = eε
2n

S n(t)Xn+1, system (4.1) is transformed into system (4.7).
Let regular matrix Bn+1 be such that B−1

n+1An+1Bn+1 = diag(λn+1
1 , . . . , λn+1

2d ) and
βn+1 = max{||Bn+1||, ||B−1

n+1||}. Then, from Lemma 2.2, we can suppose βn+1 = 2βn, and so βn = 2n−1β1.
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Iteration:
Now, by the KAM iteration, we prove that the iteration is convergent as n→ ∞.
From Lemma 2.3, m and ϱ are taken to be arbitrary, so we can set mn and ϱn as follows: Let

mn = m −
n∑
ν=1

mν and ϱn = ϱ −

n∑
ν=1

ϱν.

where mν → 0 and ϱν → 0 fulfill
∑∞
ν=0 mν =

1
2m0 and

∑∞
ν=0 ϱν =

1
2ϱ0.

Consider that

φ(ϱ) = inf
ϱ1+ϱ2+...<ϱ

∞∏
ν=1

[Γ(ϱν)]2−ν−1
.

Then, from [6], we see

φ(
1
2

m0) =
∞∏
ν=1

[Γ(mν)]2−ν−1
,

and

φ(
1
2
ϱ0) =

∞∏
ν=1

[Γ(ϱν)]
2−ν−1

.

In system (4.2), as An+1 has 2d distinct proper-values which fulfills the states of the hypothesis,
then by using Lemma 2.3, ∃ a symplectic change Xn = eε

2n
S n Xn+1, so that S n(t) =

∑
Λ∈τ S Λn(t) is the

unique almost-periodic matrix having similar frequencies and similar finite spatial structure like Qn(t),
which fulfills (4.5) and so that the system (4.2) is converted into the system (4.7). Before estimating
|∥Qn+1∥|mn−mn+1,ϱn−ϱn+1

, we should see that if |∥ε2n
S n∥|mn−mn+1,ϱn−ϱn+1

≤ 1
2 , it follows that

|∥e±ε
2n

S n∥|mn−mn+1,ϱn−ϱn+1
≤ 1 + |∥ε2n

S n∥|mn−mn+1,ϱn−ϱn+1
+
|∥ε2n

S n∥|
2
mn−mn+1,ϱn−ϱn+1

2!
+ . . . ≤ 2.

From the representation of Wn and W̃n, we get

|∥Wn∥|mn−mn+1,ϱn−ϱn+1
, |∥W̃n∥|mn−mn+1,ϱn−ϱn+1

≤ Cn|∥ε
2n

S n∥|
2
mn−mn+1,ϱn−ϱn+1

, (4.9)

where 0 < Cn < 1. By Eqs (4.7) and (4.8), if ε > 0 is small enough, we get

|∥Qn+1∥|mn−mn+1,ϱn−ϱn+1
≤ C|∥S n∥|

2
mn−mn+1,ϱn−ϱn+1

.

So, by Eq (4.6), we get

|∥Qn+1∥|mn−mn+1,ϱn−ϱn+1
≤ Cε2n+1

(
Γ(ϱn+1)Γ(mn+1)

αn
)2|∥Qn∥|

2
mn,ϱn

, (4.10)

where C is a constant. Pick

C1 = max
{

1,
C
α2

0

}
, Cn =

[
(n + 1)2−(n+1)

n2−n
. . . 22−2

· 12−1]2
,

Φn(m) =
n+1∏
ν=1

[
Γ(mν)

]2−ν , Φn(ϱ) =
n+1∏
ν=1

[
Γ(ϱν)

]2−ν .
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From [7], Cn,Φn(m),Φn(ϱ) are all convergent when n→ +∞.
Consider

N = max
{

1, sup
n

(C1CnΦn(m)Φn(ϱ))
}
|∥Q∥|m0,ρ0 .

Then, we have |∥Qn+1∥|mn−mn+1,ϱn−ϱn+1
≤ N2n+2

. From Equation (4.6), it follows that

|∥ϵ2n
S n∥|mn−mn,ϱn−ϱn

≤ (εN2)2n
. (4.11)

Thus, if εN2 < 1
2 , then

|∥e±ϵ
2n

S n∥|mn , ϱn ≤ 2.

Since

||An+1 − An|| = ||ϵ
2n

Qn|| ≤ |∥ϵ
2n

Qn∥|mn , ϱn < (εN2)2n
, (4.12)

if
(εN2)2n

≤
ηε

(6d − 1)β2
n
=

ηε

22n(6d − 1)β2
1

, (4.13)

it follows from Eq (4.13) that

||An+1 − An|| ≤
ηε

22n(6d − 1)β2
1

,

for all n ≥ 1. From Lemma 2.2, we notice that An+1 has 2d distinct proper values λn+1
1 , . . . , λn+1

2d .
So, we get

|λn+1
l − λn+1

j | ≥ ηε, l , j, 1 ≤ l, j ≤ 2d,

and

|λn+1
l | ≥ ηε, l = 1, . . . , 2d.

Actually, we have

|λn+1
l − λn+1

j ≥ |λ1
l − λ

1
j | −

n∑
s=1

(|λs+1
l − λs

l | + |λ
s+1
j − λ

s
j|),

≥ |λl − λ
1
j | − 2

n∑
s=1

||As+1 − As||,

≥ 2ηϵ − 2(εN2)2n
,

≥ 2ηϵ − 4(εN2)2.

So, if ε ≤ η

4N4 , then we obtain 2ηϵ − 4(εN2)2 ≥ ηε, and thus, we get

|λn+1
l − λn+1

j | ≥ ηε, l , j, 1 ≤ l, j ≤ 2d.
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Similarly, we can prove

|λn+1
l | ≥ ηε, 1 ≤ l ≤ 2d.

Let D 1
2 m, 1

2 ϱ
= ∩∞n=0Dmn,ϱn . Using the condition A1 of Theorem 1.1, Eqs (4.6) and (4.11), the composition

of all the transformations eε
2n

S n is convergent to ψ(t) as n→ ∞.
In this way, we get

|∥ε2n
Qn∥| 1

2 m0,
1
2 ϱ0
≤ (εN2)2n

. (4.14)

If 0 < εN2 < 1, we have that

lim
n→∞

(εN2)2n
= 0.

Moreover, it follows from (4.12) that An converges always as n→ ∞. Define B = limn→∞ An. Then,
at that point, using symplectic change X = ψ(t)Y , the Hamiltonian system (1.1) is transformed into
Ẏ = BY with constant coefficient matrix B.
Measure Estimate:

Using the iteration above, we currently demonstrate that when ε0 is sufficiently small, non-resonant
conditions

|λn+1
l − λn+1

j −
√
−1⟨k, ω⟩| ≥

αn

∆3(|k|)∆3([k])
, (4.15)

∀ k ∈ ZN\{0} and 1 ≤ l, j ≤ 2d, where n = 0, 1, 2, . . . and ∆ is an approximation function, hold for
some sufficiently small ε ∈ (0, ε∗).

In [5], using Theorem B, Eq (4.15) holds for n = 0, and see that ∃ ε∗ and a non empty set E∗ ∈ (0, ε∗)
s.t. for each ε ∈ E∗, we get

|λn+1
l − λn+1

j −
√
−1⟨k, ω⟩| ≥

αn

2∆3(|k|)∆3([k])
,

and limε0→0
meas(E∗)

ε0
= 1. Clearly, (4.15) holds.

Thus, E∗ is a non-empty subset of (0, ε∗). Hence, for ε ∈ E∗, ∃ an almost-periodic symplectic change
X = ψ(t)Y , s.t. system (1.1) is transformed into system Ẏ = BY . Thus, the proof of Theorem 1.1 is
finished. □

5. Application (Schrödinger equation)

For instance, we apply Theorem 1.1 to the following almost-periodic Schrödinger equation:

d2X
dt2 + εJa(t)X = 0, (5.1)

in which Ja(t) =
∑

JaΛ(t) is an almost-periodic function which is analytic on Dϱ with frequencies ω =
(ω1, ω2, . . .) and has finite spatial structure (τ, [·]), which depends continuously upon small parameter
ε. a denotes average of a(t), and suppose a > 0. Consider dx

dt = y, and then at that point (5.1) can be
rewritten in the same structure as

dX
dt
= Y,

dY
dt
= −εJa(t). (5.2)
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To apply Theorem 1.1, (5.2) can be revised in the form as

dv
dt
= J[A + εQ(t)]v, (5.3)

where

v =
(

X
Y

)
, JA =

(
0 0
1 0

)
, JQ(t) =

(
0 −a(t)
0 0

)
. (5.4)

It is not difficult to see that JA has multiple proper-values λ1 = λ2 = 0, and J(A + εQ) has two distinct
proper values µ1 = ι

√
aε, µ2 = −ι

√
aε, where Q denotes the average of Q(t) and ι =

√
−1. Obviously,

we have
|µi| =

√
aε ≥ ηε, i = 1, 2, (5.5)

|µ1 − µ2| = 2
√

aε ≥ ηε. (5.6)

We choose η =
√

a > 0 as a constant which is independent from ε. Applying Theorem 1.1, the
following result holds.

Theorem 5.1. Suppose Ja(t) =
∑

JaΛ(t) is an almost-periodic function which is an analytic on Dϱ

with frequencies ω = (ω1, ω2, . . .) and has finite spatial structure (τ, [·]), which relies upon the small
parameter ε and Ja > 0.

Suppose the frequencies ω = (ω1, ω2, . . .) of Ja(t) =
∑

JaΛ(t) fulfill non-resonance conditions

|⟨k, ω⟩| ≥
α0

∆(|k|)3∆([k])3 , k ∈ ZN\{0}, (5.7)

where α0 > 0 is the small constant, τ > N − 1, and ∆(t) is the approximation function.
Then, ∃ some sufficiently small ε∗ > 0, and E∗ , ϕ is the positive measure Cantor subset of (0, ε∗)

s.t. for ε ∈ E∗, Eq (5.1) is always reducible. Also, if ε∗ is sufficiently small, meas( (0,ε∗)
E∗

) is nearly 1.

Note: From Theorem 5.1, it is clear that Eq (5.1) is transformed into the constant coefficient system
for generally sufficiently small ε > 0.
Stability criterion: Presently we need to study the Lyapunov stability of the equilibrium of (5.1),
using the results obtained in previous Section. If a(t) is periodic in time, one well known stability
criterion was discussed by Magnus and Winkler in [13] for Hills equation

d2X
dt2 + a(t)X = 0, (5.8)

i.e., Eq (5.8) is stable if

a(t) > 0,
∫ T

0
a(t)dt ≤

4
T
, (5.9)

which can be proven using a Poincare’ inequality. In [14], Zhang and Li generalized and improved the
stability criteria which are known as Lp criteria. In [15] Zhang discussed the Lp criteria to the linear
planar Hamiltonian system

dX
dt
= f (t)Y,

dY
dt
= −g(t)X, (5.10)

where f (t), g(t) are continuous and T -periodic functions.
For quasi-periodic systems, Xue and Zhao in [9] proved the stability of the equilibrium of Eq (5.1).

However, for almost-periodic Eq (5.1), the above results can not be applied straightforwardly. Then,
we get an outcome about the stability of the equilibrium of (5.1).
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Theorem 5.2. Using the conditions of Theorem 5.1, in the sense of Lyapunov, the equilibrium of
Eq (5.1) is stable for generally sufficiently small ε > 0.

Proof: We know that from Theorem 5.1, for generally sufficiently small ε > 0, ε ∈ (0, ε∗), ∃ an
analytic symplectic change v = ψ(t)v1, in which ψ(t) =

∑
ψΛ(t) has similar frequencies and finite

spatial structure (τ, [·]) like Q(t), which converts Eq (5.3) into the equation

dv1

dt
= Bv1, (5.11)

where B is the constant matrix. In addition, from proof of Theorem 1.1, it follows that B has two
distinct proper values λ1

1, λ
1
2 fulfilling

|λ1
i | ≥ ηε i = 1, 2, |λ1

1 − λ
1
2| ≥ ηε. (5.12)

Moreover, from the proof of Theorem 1.1, we get

||B − J(A + εQ)|| ≤ (εN2)2 = O(ε2). (5.13)

Subsequently, the matrix B has two distinct pure imaginary proper values and can be written as:

λ1
i = ±ι

√
b, i = 1, 2, (5.14)

where b can be written in the following form:

b = aε + O(ε2), (5.15)

which relies upon a and ε only. Hence, ∃ a particular symplectic matrix S such that

S −1BS = diag(ι
√

b,−ι
√

b). (5.16)

Let v∞ = S v∞, and using the symplectic change v∞ = S v∞, system (5.11) is changed as

dv∞
dt
= S −1BS v∞ =

(
ι
√

b 0
0 −ι

√
b

)
v∞. (5.17)

Subsequently, by an analytic almost-periodic symplectic change, Eq (5.1) is transformed into

d2X∞
dt2 + bX∞ = 0. (5.18)

It is not difficult to see that (5.18) is elliptic. Accordingly, equilibrium of (5.1) is stable in the sense of
Lyapunov for generally sufficiently small ε > 0. □

See the quasi-periodic solution of equation of (5.1) in [9]. Lastly, for the presence of almost-periodic
solution of Eq (5.1), we have the following result:

Theorem 5.3. Using the conditions of Theorem 5.1, all solutions of equation (5.1) are almost-periodic
with frequencies Ω = (

√
b, ω1, ω2, . . .) for generally sufficiently small ε > 0, where b can be seen

in (5.15).
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Proof: Using Theorem 5.1, we know that, for generally sufficiently small ε ∈ (0, ε∗), ∃ an analytic
almost-periodic symplectic change having similar frequencies and finite spatial structure like Ja(t), by
this change, Eq (5.1) is converted into (5.18). Then again, it is not difficult to see that all solutions of
Eq (5.18) are periodic, and the frequency of these solutions is

√
b.

Now, we just have to show that, for generally sufficiently small ε ∈ (0, ε∗), the accompanying
non-resonant condition

|k1ω1 + k2ω2 + . . . + kNωN + kN+1

√
b| ≥

α1

∆3(|k|)∆3([k])
(5.19)

holds for all k ∈ ZN+1\{0} and for generally sufficiently small ε ∈ (0, ε∗), where α1 =
α0
4 , ∆(t) is an

approximation function, and (
√

b, ω1, ω2, . . .) are basic frequencies of Ja(t). If kN+1 = 0, then from the
non-resonance condition (5.7), it follows that (5.19) holds.

If kN+1 , 0, from Theorem B in [5], Eq (5.19) holds; and it can be seen that ∃ ε∗ and a non empty
set E∗ ∈ (0, ε∗) s.t. for each ε ∈ E∗, we get

|k1ω1 + k2ω2 + . . . + kNωN + kN+1

√
b| ≥

α0

4∆3(|k|)∆3([k])
,

and limε∗→0
meas(E∗)

ε∗
= 1. Clearly, (5.19) holds.

Hence, all solutions of Equation (5.1) are almost-periodic with frequencies Ω = (
√

b, ω1, ω2, . . .)
for generally sufficiently small ε > 0.

6. Conclusions

In this research work, we discussed the reducibility of almost-periodic Hamiltonian systems and
proved that the almost-periodic linear Hamiltonian system (1.1) is reduced to a constant coefficients
Hamiltonian system by means of an almost-periodic symplectic transformation. The result was
proved for sufficiently small parameter ε by using some non-resonant conditions, non-degeneracy
conditions and the rapidly convergent method that is KAM iterations. The result was also verified for
Schrödinger equation.
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