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Abstract: The fractional orthotriple fuzzy sets (FOFSs) are a generalized fuzzy set model that is more
accurate, practical, and realistic. It is a more advanced version of the present fuzzy set models that can
be used to identify false data in real-world scenarios. Compared to the picture fuzzy set and Spherical
fuzzy set, the fractional orthotriple fuzzy set (FOFS) is a powerful tool. Additionally, aggregation
operators are effective mathematical tools for condensing a set of finite values into one value that
assist us in decision making (DM) challenges. Due to the generality of FOFS and the benefits of
aggregation operators, we established two new aggregation operators in this article using the Frank
t-norm and conorm operation, which we have renamed the fractional orthotriple fuzzy Choquet-Frank
averaging (FOFCFA) and fractional orthotriple fuzzy Choquet-Frank geometric (FOFCFG) operators.
A few of these aggregation operators’ characteristics are also discussed. To demonstrate the efficacy
of the introduced work, the multi-attribute decision making (MADM) algorithm is discussed along
with applications. To demonstrate the validity and value of the suggested work, a comparison of the
proposed work has also been provided.
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1. Introduction

We apply several sentences with attributes that are not considered to be propositioned in our lifestyle
problems because it is difficult to say whether or not these sentences are absolutely correct or incorrect.
We encounter various forms of these sentences in our day-to-day issues. In order to deal with these
kinds of situations, researchers in the fields of engineering, business, and social sciences need to use
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various modelling techniques. Zadeh [40] developed the notion of fuzzy set (FS) theory in 1965 as
a solution to this problem by taking into account the membership degree (MD) that belongs to the
range [0, 1]. Therefore, using the fuzzy set allows for the incorporation of incomplete and partial
information into the decision version [10]. Numerous theories have been created in the context of
fuzzy sets, and [6] presents a hybrid MCDM technique built on fuzzy DEMATEL, fuzzy TOPSIS,
and fuzzy ANP to calculate green suppliers. One cannot dispute the fact that FS is the foundation
of fuzzy set theory. Lin et al. [18] determine OWA operator weights using kernel density estimation.
Researchers in this field have noted some short comings with fuzzy set. The intuitionistic fuzzy set
(IFS), which takes into account the hesitation of experts, is how Atanassov [1] generalizes the concept
of fuzzy set. Entropy is defined in [31] for intuitionistic fuzzy sets. For a moment, consider how IFS
can only describe situations when the MD and non-membership degree (NMD) sum does not exceed 1,
rendering it essentially useless in those situations. Hani et al. [16] developed linear Diophantine fuzzy
graphs with new decision-making approach. Riaz et al. [28] defined an innovative bipolar fuzzy sine
trigonometric aggregation operators and SIR method for medical tourism supply chain.

Yager [37] developed the notion of the Pythagorean fuzzy set (PyFS) to handle this complexity,
which can also be used to solve the problem mentioned above. Since many researchers attempt
to use this recently developed idea in their research, Akram et al. [2] established a group decision
making (GDM) approach based on the Pythagorean fuzzy TOPSIS process. Additionally, based on
the Pythagorean fuzzy TOPSIS method, a novel correlation measure and its application are provided
in [17]. A Pythagorean fuzzy VIKOR technique was presented by Zhou and Chen [42] who also
established a generalized distance measurement. The TODIM technique for MADM with linguistic
2-tuple PyF data was presented by Deng and Gao [13]. Yager [38] introduced a novel concept known
in the literature as q-ROFS, which is the generalization of IFS and PyFS, as a result of the ongoing
complexity of real-life issues and the development of FS theory. The concept of q-ROFS is also more
broad. Because the sum of the qth powers of MD and NMD must fall within the range [0, 1], it has
a void range. Be aware that q-ROFS gives decision-makers access to a wider range of options. Garg
et al. [14] presented some power aggregation operator (AO) and VIKOR method for complex q-ROFS
keeping in mind that AOs are the fundamental tools to transform the total data into a unique value. The
q-ROFS pointed weighted aggregation operators for MCDM were developed by Xing et al. [35]. Lin
et al. [19] proposed linguistic q-rung orthopair fuzzy sets and their interaction partitioned Heronian
mean aggregation operators.

But in many decision-making (DM) issues, like voting, human opinions consist of the following
categories: Yes, no, abstinence, and refusal, which are not characterized in IFSs. It should be noted
that all of the aforementioned existing literature only uses either MD or both MD and NMD. Therefore,
neither the FSs nor the IFSs can treat this issue. Cuong [11] defined the notion of a picture fuzzy set
(PFS) and added the neutral membership degree (NuMD) to deal with those types of situation when
someone’s opinions include more choice types, such as yes, abstention, no, and rejection, it is observed
that PFS approaches are more applicable in these situations. Some methods and techniques have been
introduced based on PFS, and it is a more general apparatus that is attracting more attention from
researchers working in FS theory. In order to use the linguistic picture fuzzy TOPSIS method in
enterprise resource systems, Zang et al. [41] provide an expanded version of it. Additionally, [22]
describes an expanded picture fuzzy VIKOR technique and its applications in the beef industry. Lin
et al. [21] defined picture fuzzy interactional partitioned Heronian mean aggregation operators: An
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application of MADM process. After that, Mahmood et al. [23] extended the idea of the picture fuzzy
set to spherical fuzzy set. Due to the fact that SFS gives decision-makers more room, many researchers
have focused on this idea and some new techniques have been created using SFS. Given that the
TOPSIS method is well known for handling fuzzy information (FI), Barukab et al. [7] presented a novel
technique for the TOPSIS method that is focused on entropy measurement and uses the Spherical fuzzy
set. Additionally, Ashraf et al. [4] invented some novel aggregation operator, such as the Spherical
fuzzy Dombi aggregation operator. Alaoui et al. [5] defined a novel analysis of fuzzy physical models
by generalized fractional fuzzy operators.

The Frank t-norm and t-conorm are important generalizations of the probabilistic and Lukasiewicz
t-norm and t-conorm. They are a large and adjustable family of continuous triangular norms. The
Frank t-norm and t-conorm are more adaptable in the information fusion process and are better suited
to modelling DMs problems because they both have a parameter. The functional equations of Frank
and Alsina [8] were examined in two groups of commutative, associative, and increasing binary
operators. Yager [36] defined Frank t-norms’ additive generating function and used it to create a
model of approximation reasoning. Frank t-norm scalar cardinality was the subject of an axiomatic
method proposed by Casasnovas and Torrens [9], who also showed that the properties hold for other
t-common and t-norms. In order to build a full algebraic lattice structure, Deschrijver [12] presented
Frank t-norms-based extending operations to the lattice of closed interval-valued fuzzy sets (IVFS).
Yahya et al. [39] developed Frank aggregation operators and their application to probabilistic hesitant
fuzzy MADM. Tang et al. [32] proposed a MADM approaches based on dual hesitant fuzzy Frank
aggregation operators. Mahnaz et al. [24] defined the idea of T-spherical fuzzy Frank aggregation
operators and their application to decision making with unknown weight information. Riaz et al. [29]
defines an interval-valued linear Diophantine fuzzy Frank aggregation operators with MCDM.

The picture fuzzy set and spherical fuzzy set frameworks have many applications in a variety of
real-world contexts. We developed a novel expanded idea of a fractional orthotriple fuzzy set (FOFS)
to get free of these restrictions. The proposed framework of FOFS has three membership degree
µΩ(}), ηΩ(}), χΩ(}) ∈ [0, 1] in the universal set M with the condition µ f

Ω
(}) + η

f
Ω

(}) +χ
f
Ω

(}) ≤ 1, f ∈ Q+

(positive rational numbers) with f ≥ 1, i.e., f = p/q, f , 0, p, q ∈ N, for each } ∈ M. We observe
that as rung f rises, the fractional orthotriple fuzzy space expands, giving observers more latitude to
express their support for membership. Be aware that in order to deal with uncertainty and inaccurate
information, we were able to obtain a fractional orthotriple fuzzy set that produced more precise and
accurate rung fuzzy numbers. It is obvious that FOFSs are the general forms of picture fuzzy set and
spherical fuzzy set, and if we put p = q (for PFSs) and p = 2n; q = n for all n ∈ N (for SFSs),
the corresponding set becomes too PFSs and SFSs, respectively. Due to their greater flexibility and
suitability for dealing with uncertain information, FOFSs express more extensive fuzzy information.

There are two main advantages to the Frank t-conorm and t-norm. They begin by sharing some
advantages with the Algebraic, Hamacher, and Einstein t-norm and t-conorm. Second, they have an
additional boundary that results in a flexible and robust total cycle, making them stand out from other
general t-norm and t-conorm. Hence, inspired by the previously mentioned investigation, the objective
of this study as:

(1) To initiate the principle of some frank operational laws by using Frank t-norm and Frank t-conorm.

(2) To proposed fractional orthotriple fuzzy Choquet-Frank averaging operator, fractional orthotriple
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fuzzy Choquet-Frank geometric operator, and their important properties are also elaborated.

(3) A multi-attribute decision making (MADM) approach is defined utilizing proposed operator to
investigate the supremacy and consistency of the explored work.

(4) Finally, we discuss the benefits, sensitive analysis, and geometric exposes of the explored works
with the aid of numerous examples in order to demonstrate the efficacy and the dominance of the
initiated works.

Additionally, this article is structured as: In Section 2, we have overviews the concept of Frank
t-norm and conorm, Choquet integral (CI), and fractional orthotriple fuzzy set. Several operational
laws for fractional orthotriple fuzzy numbers are covered in Section 3 by Frank t-norm and t-
conorm. The development of new aggregation operators for FOFSs, including the fractional orthotriple
fuzzy Choquet-Frank averaging (FOFCFA) and fractional orthopair fuzzy Choquet-Frank geometric
(FOFCFG) operators are discussed in detail in Section 4. Utilizing the aforementioned operators, we
created the MADM approach for the fractional orthotriple fuzzy environment in Section 5. To verify
the effectiveness of our method, numerical examples are discussed in Section 6. Comparative analysis
of the proposed work with other techniques is covered in Section 7 to show the validity and impact of
the suggested work. The conclusion was discussed in Section 8.

2. Preliminaries

In this section, we recall basic concept of fuzzy sets (FSs), Frank t-norm and co-norm, and the
concept of Choquet integral.
Definition 2.1. [40] Suppose that M is an arbitrary nonempty set. A fuzzy set L is defined as

L = {(}, µL(}))|} ∈ M}, (2.1)

where the function µL is a mapping from M → [0, 1], and for every } ∈ M, 0 ≤ µL(}) ≤ 1, and function
µL(}) is called the membership degree of } in M.
Definition 2.2. [1] Suppose that M is an arbitrary nonempty set. An IFS Ω in M is defined as

Ω = {(}, µΩ(}), ηΩ(}))|} ∈ M}, (2.2)

where µΩ :→ [0, 1] and ηΩ → [0, 1] are called respectively MD and NMD, such as ∀} ∈ M : 0 ≤
µΩ + ηΩ ≤ 1. Hesitancy degree is defined as

πΩ = 1 − µΩ − ηΩ.

Definition 2.3. [23] Suppose that M is an arbitrary non-empty set. A SFS is denoted by Ω and defined
as

Ω = {(}, µΩ(}), ηΩ(}), χΩ(}))|} ∈ M}, (2.3)

where µΩ, ηΩ and χΩ are MD, NuMD and NMD functions M → [0, 1] with respect to (µΩ)2 + (ηΩ)2 +

(χΩ)2
≤ 1. The hesitancy degree is defined as

πΩ =

√
1 − (µΩ)2 − (ηΩ)2 − (χΩ)2.
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Definition 2.4. [27] Suppose that M is an arbitrary non-empty set. A FOFS is denoted by Ω and defined
as

Ω = {(}, µΩ(}), ηΩ(}), χΩ(}))|} ∈ M}, (2.4)

where µΩ, ηΩ and χΩ are MD, NuMD and NMD functions M → [0, 1] with respect to (µΩ) f + (ηΩ) f +

(χΩ) f
≤ 1. The hesitancy degree is defined as

πΩ =
f
√

1 − (µΩ) f − (ηΩ) f − (χΩ) f .

Definition 2.5. [26] Let Ω1 = (µ1, η1, χ1) be any FOFNs. Then, the score and accuracy function is
defined as

S (Ω1) = (µΩ) f − (ηΩ) f − (χΩ) f , (2.5)

and accuracy as
E(Ω1) = (µΩ) f + (ηΩ) f + (χΩ) f . (2.6)

2.1. Frank operations

Frank t-norm and t-conormare initiated by Frank [33] and are defined as

Ti(φ, ϕ) = logθ

(
1 +

(
θφ − 1

)
(θϕ − 1)

θ − 1

)
, for all φ, ϕ ∈ [0, 1], θ ∈ (0,+∞) , (2.7)

S i(φ, ϕ) = 1 − logθ

(
1 +

(
θφ − 1

)
(θϕ − 1)

θ − 1

)
, for all φ, ϕ ∈ [0, 1], θ ∈ (0,+∞) . (2.8)

Where Ti(φ, ϕ) satisfying;

(1) Ti(1, 1) = 1,Ti(φ, 0) = Ti(0, φ) = φ. (Boundary)

(2) If φ1 ≤ φ2, ϕ1 ≤ ϕ2 then Ti(φ1, ϕ2) ≤ Ti(φ2, ϕ2). (Monotonicity)

(3) Ti(φ1, φ2) ≤ Ti(φ2, φ1). (Commutativity)

(4) Ti(φ1,Ti (φ2, φ3)) = Ti(Ti (φ2, φ2) , φ3). (Associativity)

Also, S i(φ, ϕ) satisfying

(1) S i(0, 0) = 0, S i(φ, 1) = φ. (Boundary)

(2) If φ1 ≤ φ2, ϕ1 ≤ ϕ2 then S i(φ1, ϕ2) ≤ S i(φ2, ϕ2). (Monotonicity)

(3) S i(φ1, φ2) ≤ S i(φ2, φ1). (Commutativity)

(4) S i(φ1, S i (φ2, φ3)) = S i(S i (φ2, φ2) , φ3). (Associativity)

Two special cases of Frank t-norm and t-conorm [30] are the following:

(1) If θ → 0, then Ti(φ, ϕ)→ φ.ϕ, S i(φ, ϕ)→ φ+ϕ−φϕ become to the algebraic t-norm and t-conorm.

(2) If θ → ∞, then Ti(φ, ϕ)→ max(0, φ + ϕ − 1), S i(φ, ϕ)→ min(0, φ + ϕ − 1) become to Lukasiewicz
product and sum.
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2.2. Choquet integral (CI) operator

Sugeno [30] introduced the idea of a fuzzy measure (FM), which is used to discuss how much
weight should be given to each set of criteria in the Choquet integral model. We then talk about fuzzy
measure and Choquet integral.
Definition 2.6. A fuzzy measure on universal set M is a mapping Ξ : Ω(})→ [0, 1], with the following
condition:

(1) Ξ(0) = 0,Ξ(M) = 1,

(2) uv ∈ M and u ⊆ v then Ξ(u) ≤ Ξ(v).

However, it is typically exceedingly difficult because we have to choose 2n−2 values for n criterion.
Therefore, it is difficult to provide such a fuzzy measure by Definition 2.6. Thus, the following ℘ fuzzy
measure is defined by Sugeno [30].

Ξ(u ∪ v) = Ξ(u) + Ξ(v) + ℘Ξ(u)Ξ(v), (2.9)

where (u ∪ v) = φ and ℘ ∈ [−1,+∞].

(1) If ℘ = 0, then the ℘ fuzzy measure reduces to the Ξ(u∪ v) = Ξ(u) + Ξ(v), u∪ v = φ, specified as an
additive measure.

If all } ∈ M are independent, then
Ξ(u) =

∑
}i∈u

Ξ(}i). (2.10)

If all } ∈ M is finite, then

Ξ(µ) = Ξ

 n⋃
i=1

}i

 =

 1
℘

(
n∏

i=1
(1 + λΞ(u)) − 1

)
, ℘ , 0∑

}i∈u Ξ(}i), ℘ = 0.
(2.11)

Where }i ∩ } j = φ, for all i, j = 1, ..., n and i , j.

(2) If ℘ > 0, then ℘ fuzzy measure reduces to Ξ(u∪v) > Ξ(u)+Ξ(v), is called a super-additive measure.

(3) If −1 ≤ ℘ < 0, so ℘ fuzzy measure reduces to u∪v < Ξ(u)+Ξ(v), known as a sub-additive measure.

Definition 2.7. [34] Let ℘ is a positive real (PR)-valued mapping on M and Ξ is a fuzzy measure on
M. Then, discrete CI of ℘ with respect to Ξ is defined as∫

℘dΞ =

n∑
i=1

(
Ξ(uξ(i)) − Ξ(uξ(i−1))

)
℘ξ(i), (2.12)

where ξ(i) is a permutation of (1, ..., n) such as ℘ξ(1) ≥ ℘ξ(2) ≥ ..., ℘ξ(n), and uξ(0) = φ, uξ(i) =(
Gξ(1), ...,Gξ(i)

)
.
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3. Frank operational laws for fractional orthotriple fuzzy numbers

In this section of the article, we defined operational laws using the concept of Frank t-norm, t-
conorm and fractional orthotriple fuzzy numbers.

Definition 3.1. Let Ω1 = (µ1, η1, χ1) and Ω2 = (µ2, η2, χ2) be any two FOFNs. Then, the following
addition and multiplication laws are proposed using Frank t-norm and Frank t-conorm as

(1) Ω1 ⊕Ω2 =



f

√√√
1 − logθ

1 +

(
θ

1−µ f
1−1

)(
θ

1−µ f
2−1

)
θ−1

,
f

√√√
logθ

1 +

(
θ
η

f
1−1

)(
θ
η

f
2−1

)
θ−1

, f

√√√
logθ

1 +

(
θ
χ

f
1−1

)(
θ
χ

f
2−1

)
θ−1




;

(2) Ω1 ⊗Ω2 =



f

√√√
logθ

1 +

(
θ
µ

f
1−1

)(
θ
µ

f
2−1

)
θ−1

, f

√√√
1 − logθ

1 +

(
θ

1−η f
1−1

)(
θ

1−η f
2−1

)
θ−1

,
f

√√√
1 − logθ

1 +

(
θ

1−χ f
1−1

)(
θ

1−χ f
2−1

)
θ−1




;

(3) λΩ1 =



f

√√√√
1 − logθ

1 +

(
θ

1−µ f
1−1

)λ
(θ−1)λ−1

, f

√√√√
logθ

1 +

(
θ
η

f
1−1

)λ
(θ−1)λ−1

,
f

√√√√
logθ

1 +

(
θ
χ

f
1−1

)λ
(θ−1)λ−1




;

(4) Ωλ
1 =



f

√√√√
logθ

1 +

(
θ
µ

f
1−1

)λ
(θ−1)λ

, f

√√√√
1 − logθ

1 +

(
θ

1−η f
1−1

)λ
(θ−1)λ−1

,
f

√√√√
1 − logθ

1 +

(
θ

1−χ f
1−1

)λ
(θ−1)λ−1




.

4. Fractional orthotriple fuzzy Choquet-Frank aggregation operators

Using Frank operational laws of FOFNs and by Choquet integral, defined in the previous section,
we will introduce the fractional orthotriple fuzzy Choquet-Frank aggregation operators, the first one is
fractional orthotriple fuzzy Choquet-Frank average (FOFCFA) operator and the second one is fractional
orthotriple fuzzy Choquet-Frank geometric (FOFCFG) operator.
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4.1. Fractional orthotriple fuzzy Choquet-Frank average operator

Definition 4.1. Let Ωi = (µi, ηi, χi) (i = 1, ..., n) is a family of FOFNs, and ξ(i) is a permutation of
(i = 1, ..., n) such as Ωξ(i) ≥ Ωξ(2) ≥ ...,≥ Ωξ(n). Then, a FOFCFA operator is defined as;

FOFCFA(Ω1, ...,Ωn) =

n∑
i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
Ωξ(i). (4.1)

Where uξ(i) =
(
Gξ(1), ...,Gξ(i)

)
, uξ(i) = φ, also Gξ(i) is the attribute related to Ωξ(i).

Theorem 4.1. Let Ωi = (µi, ηi, χi) (i = 1, ..., n) is a family of FOFNs, and ξ(i) is a permutation of
(i = 1, ..., n) such that Ωξ(i) ≥ Ωξ(2) ≥ ...,≥ Ωξ(n). Gξ(i) is the attribute related to Ωξ(i), uξ(i) = φ,

uξ(i) =
(
Gξ(1), ...,Gξ(i)

)
. Then, using FOFCFA operator the aggregated value is also a FOFN and,

FOFCFA(Ω1, ...,Ωn) (4.2)

=



f

√
1 − logθ

(
1 +

n∏
i=1

(
θ1−µ f

ξ(i) − 1
)Ξ(uξ(i))−Ξ(uξ(i−1)))

,

f

√
logθ

(
1 +

n∏
i=1

(
θη

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))
,

f

√
logθ

(
1 +

n∏
i=1

(
θχ

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))


.

Proof. It is very easy to show FOFCFA is a FOFN, so we ignore here. Next, we prove Eq (4.2) by MI
on n. If n = 2, then by operational law (3).(

Ξ
(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
.Ωξ(i)

=



f

√√√√√√√
1 − logθ

1 +

θ1−µ f
ξ(i)−1

Ξ(uξ(i))−Ξ(uξ(i−1))

(θ−1)Ξ(uξ(i))−Ξ(uξ(i−1))−1

,
f

√√√√√√√√√√
logθ

1 +

θη f
ξ(i)−1


Ξ(uξ(i))−Ξ(uξ(i−1))

(θ−1)Ξ(uξ(i))−Ξ(uξ(i−1))−1

,
f

√√√√√√√√
logθ

1 +

θχ f
Ωi−1

Ξ(uξ(i))−Ξ(uξ(i−1))

(θ−1)Ξ(uξ(i))−Ξ(uξ(i−1))−1





.

Then,

FOFCFA(Ω1,Ω2)
=

(
Ξ

(
uξ(1)

)
− Ξ

(
uξ(0)

))
.Ωξ(1) ⊕

(
Ξ

(
uξ(2)

)
− Ξ

(
uξ(1)

))
.Ωξ(2)
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=



f

√√√√√√√
1 − logθ

1 +

2∏
i=1

θ1−µ f
ξ(i)−1

Ξ(uξ(i))−Ξ(uξ(i−1))

(θ−1)

2∑
i=1

Ξ(uξ(i))−Ξ(uξ(i−1))−1

,
f

√√√√√√√
logθ

1 +

2∏
i=1

θη f
ξ(i)−1

Ξ(uξ(i))−Ξ(uξ(i−1))

(θ−1)

2∑
i=1

Ξ(uξ(i))−Ξ(uξ(i−1))−1

,
f

√√√√√√√
logθ

1 +

2∏
i=1

θχ f
ξ(i)−1

Ξ(uξ(i))−Ξ(uξ(i−1))

(θ−1)

2∑
i=1

Ξ(uξ(i))−Ξ(uξ(i−1))−1





.

Since,
∑2

i=1 Ξ
(
uξ(i)

)
− Ξ

(
uξ(i−1)

)
= 1. So, we get

FOFCFA(Ω1,Ω2) =



f

√
1 − logθ

(
1 +

2∏
i=1

(
θ1−µ f

ξ(i) − 1
)Ξ(uξ(i))−Ξ(uξ(i−1)))

,

f

√
logθ

(
1 +

2∏
i=1

(
θη

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))
,

f

√
logθ

(
1 +

2∏
i=1

(
θχ

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))


.

So Eq (4.2) is true for n = 2.
Now, if Eq (4.2) is true for n = k,

FOFCFA(Ω1, ...,Ωk)

=



f

√
1 − logθ

(
1 +

k∏
i=1

(
θ1−µ f

ξ(i) − 1
)Ξ(uξ(i))−Ξ(uξ(i−1)))

,

f

√
logθ

(
1 +

k∏
i=1

(
θη

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))
,

f

√
logθ

(
1 +

k∏
i=1

(
θχ

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))


.

For n = k + 1

FOFCFA(Ω1, ...,Ωk,Ωk+1)
= FOFCFA(Ω1, ...,Ωk) ⊕

(
Ξ

(
uξ(k)

)
− Ξ

(
uξ(k−1)

))
.Ωξ(k+1)

=



f

√
1 − logθ

(
1 +

k∏
i=1

(
θ1−µ f

ξ(i) − 1
)Ξ(uξ(i))−Ξ(uξ(i−1)))

,

f

√
logθ

(
1 +

k∏
i=1

(
θη

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))
,

f

√
logθ

(
1 +

k∏
i=1

(
θχ

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))
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⊕



f

√√√√√√√
1 − logθ

1 +

θ1−µ f
ξ(i)−1

Ξ(uξ(i))−Ξ(uξ(i−1))

(θ−1)Ξ(uξ(i))−Ξ(uξ(i−1))−1

,
f

√√√√√√√
logθ

1 +

θη f
ξ(i)−1

Ξ(uξ(i))−Ξ(uξ(i−1))

(θ−1)Ξ(uξ(i))−Ξ(uξ(i−1))−1

,
f

√√√√√√√
logθ

1 +

θχ f
ξ(i)−1

Ξ(uξ(i))−Ξ(uξ(i−1))

(θ−1)Ξ(uξ(i))−Ξ(uξ(i−1))−1





=



f

√√√√√√√
1 − logθ

1 +

k+1∏
i=1

θ1−µ f
ξ(i)−1

Ξ(uξ(i))−Ξ(uξ(i−1))

(θ−1)

k+1∑
i=1

Ξ(uξ(i))−Ξ(uξ(i−1))−1

,
f

√√√√√√√
logθ

1 +

k+1∏
i=1

θη f
ξ(i)−1

Ξ(uξ(i))−Ξ(uξ(i−1))

(θ−1)

k+1∑
i=1

Ξ(uξ(i))−Ξ(uξ(i−1))−1

,
f

√√√√√√√√√
logθ

1 +

k+1∏
i=1

θχ f
ξ(i)−1


n∑

i=1
Ξ(uξ(i))−Ξ(uξ(i−1))

(θ−1)

k+1∑
i=1

Ξ(uξ(i))−Ξ(uξ(i−1))−1





.

Since,
∑k+1

i=1 Ξ
(
uξ(i)

)
− Ξ

(
uξ(i−1)

)
= 1. So, we get

FOFCFA(Ω1, ...,Ωk+1)

=



f

√
1 − logθ

(
1 +

k+1∏
i=1

(
θ1−µ f

ξ(i) − 1
)Ξ(uξ(i))−Ξ(uξ(i−1)))

,

f

√
logθ

(
1 +

k+1∏
i=1

(
θη

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))
,

f

√
logθ

(
1 +

k+1∏
i=1

(
θχ

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))


.

This implies that Eq (4.2) true for n = k + 1. This shows that Eq (4.2) true for all values of n.

Theorem 4.2. Let Ωi = (µi, ηi, χi) (i = 1, ..., n) is a family of FOFNs, and ξ(i) is a permutation of
(i = 1, ..., n) such that Ωξ(i) ≥ Ωξ(2) ≥ ...,≥ Ωξ(n). Then,

FOFCFA(λ.Ω1, ..., λ.Ωn) = λ.FOFCFA(Ω1, ...,Ωn). (4.3)
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Proof. By operational law (3) and Theorem 4.1 we have

λ.Ωi =



f

√√√√√
1 − logθ

1 +

θ1−µ f
ξ(i)−1

λ
(θ−1)λ−1

, f

√√√√√
logθ

1 +

θη f
ξ(i)−1

λ
(θ−1)λ−1

,
f

√√√√√
logθ

1 +

θχ f
ξ(i)−1

λ
(θ−1)λ−1




.

Then,

FOFCFA(λ.Ω1, ..., λ.Ωn)

=



f

√√√√√√√
1 − logθ

1 +

n∏
i=1

θ1−µ f
ξ(i)−1

λ(Ξ(uξ(i))−Ξ(uξ(i−1)))

(θ−1)(λ−1)

,
f

√√√√√√√
logθ

1 +

n∏
i=1

θη f
ξ(i)−1

λ(Ξ(uξ(i))−Ξ(uξ(i−1)))

(θ−1)(λ−1)

,
f

√√√√√√√
logθ

1 +

n∏
i=1

θχ f
ξ(i)−1

λ(Ξ(uξ(i))−Ξ(uξ(i−1)))

(θ−1)(λ−1)





.

Now,

λ.FOFCFA(Ω1, ...,Ωn)

= λ.



f

√
1 − logθ

(
1 +

n∏
i=1

(
θ1−µ f

ξ(i) − 1
)Ξ(uξ(i))−Ξ(uξ(i−1)))

,

f

√
logθ

(
1 +

n∏
i=1

(
θη

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))
,

f

√
logθ

(
1 +

n∏
i=1

(
θχ

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))



=



f

√√√√√√√
1 − logθ

1 +

n∏
i=1

θ1−µ f
ξ(i)−1

λ(Ξ(uξ(i))−Ξ(uξ(i−1)))

(θ−1)(λ−1)

,
f

√√√√√√√
logθ

1 +

n∏
i=1

θη f
ξ(i)−1

λ(Ξ(uξ(i))−Ξ(uξ(i−1)))

(θ−1)(λ−1)

,
f

√√√√√√√√
logθ

1 +

n∏
i=1

θχ f
Ωi−1

λ(Ξ(uξ(i))−Ξ(uξ(i−1)))

(θ−1)(λ−1)
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= FOFCFA(λ.Ω1, ..., λ.Ωn).

Therefore, Eq (4.3) holds, so proof completed.
Theorem 4.3. Let Ωi = (µi, ηi, χi) (i = 1, ..., n) is a family of FOFNs, and ξ(i) is a permutation of
(i = 1, ..., n) such that Ωξ(i) ≥ Ωξ(2) ≥ ...,≥ Ωξ(n). Then,

FOFCFA(Ω1 ⊕Ω, ...,Ωn ⊕Ω) = FOFCFA(Ω1, ...,Ωn) ⊕Ω. (4.4)

Proof. Using operational law (1) and Theorem 4.1, we get

(Ωi ⊕Ω) =



f

√√√
1 − logθ

1 +

(
θ

1−µ f
i −1

)(
θ1−µ f

−1
)

θ−1

,
f

√√√
logθ

1 +

(
θ
η

f
i −1

)(
θη

f
−1

)
θ−1

,
f

√√√
logθ

1 +

(
θ
χ

f
i −1

)(
θχ

f
−1

)
θ−1




.

Thus,

FOFCFA(Ω1 ⊕Ω, ...,Ωn ⊕Ω)

=



f

√√√√√√
1 − logθ

1 +

(
θ1−µ f

−1
) n∏

i=1

(
θ

1−µ f
i −1

)Ξ(uξ(i))−Ξ(uξ(i−1))

θ−1

,
f

√√√√√√
logθ

1 +

(
θη

f
−1

) n∏
i=1

(
θ
η

f
i −1

)Ξ(uξ(i))−Ξ(uξ(i−1))

θ−1

,
f

√√√√√√
logθ

1 +

(
θχ

f
−1

) n∏
i=1

(
θ
χ

f
i −1

)Ξ(uξ(i))−Ξ(uξ(i−1))

θ−1





.

Now,

FOFCFA(Ω1, ...,Ωn) ⊕Ω

=



f

√
1 − logθ

(
1 +

n∏
i=1

(
θ1−µ f

ξ(i) − 1
)Ξ(uξ(i))−Ξ(uξ(i−1)))

,

f

√
logθ

(
1 +

n∏
i=1

(
θη

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))
,

f

√
logθ

(
1 +

n∏
i=1

(
θχ

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))


⊕ (µ, η, χ)
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=



f

√√√√√√
1 − logθ

1 +

(
θ1−µ f

−1
) n∏

i=1

(
θ

1−µ f
i −1

)Ξ(uξ(i))−Ξ(uξ(i−1))

θ−1

,
f

√√√√√√
logθ

1 +

(
θη

f
−1

) n∏
i=1

(
θ
η

f
i −1

)Ξ(uξ(i))−Ξ(uξ(i−1))

θ−1

,
f

√√√√√√
logθ

1 +

(
θχ

f
−1

) n∏
i=1

(
θ
χ

f
i −1

)Ξ(uξ(i))−Ξ(uξ(i−1))

θ−1




= FOFCFA(Ω1 ⊕Ω, ...,Ωn ⊕Ω).

Theorem 4.4. Let Ωi = (µi, ηi, χi) (i = 1, ..., n) is a family of FOFNs, and ξ(i) is a permutation of
(i = 1, ..., n) such that Ωξ(i) ≥ Ωξ(2) ≥ ...,≥ Ωξ(n). Then,

FOFCFA(Ωu1 ⊕Ωv1 , ...,Ωun ⊕Ωvn) (4.5)
= FOFCFA(Ωu1 , ...,Ωun) ⊕ FOFCFA(Ωv1 , ...,Ωvn).

Proof. Using operational law (3) and Theorem 4.1, we get

(Ωui ⊕Ωvi) =



f

√√√
1 − logθ

1 +

(
θ

1−µ f
ui−1

)(
θ

1−µ f
vi−1

)
θ−1

,
f

√√√
logθ

1 +

(
θ
η

f
ui−1

)(
θ
η

f
vi−1

)
θ−1

,
f

√√√
logθ

1 +

(
θ
χ

f
ui−1

)(
θ
χ

f
vi−1

)
θ−1




.

Thus,

FOFCFA(Ωu1 ⊕Ωv1 , ...,Ωun ⊕Ωvn)

=



f

√√√√√√
1 − logθ

1 +

n∏
i=1

(
θ

1−µ f
ui−1

)(
θ

1−µ f
vi−1

)Ξ(uξ(i))−Ξ(uξ(i−1))

θ−1

,
f

√√√√√√
logθ

1 +

n∏
i=1

(
θ
η

f
ui−1

)(
θ
η

f
vi−1

)Ξ(uξ(i))−Ξ(uξ(i−1))

θ−1

,
f

√√√√√√
logθ

1 +

n∏
i=1

(
θ
χ

f
ui−1

)(
θ
χ

f
vi−1

)Ξ(uξ(i))−Ξ(uξ(i−1))

θ−1





.

As

FOFCFA(Ωu1 , ...,Ωun)
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=



f

√√√√√√
1 − logθ

1 +

n∏
i=1

(
θ

1−µ f
ui−1

)Ξ(uξ(i))−Ξ(uξ(i−1))

θ−1

,
f

√√√√√√
logθ

1 +

n∏
i=1

(
θ
η

f
ui−1

)Ξ(uξ(i))−Ξ(uξ(i−1))

θ−1

,
f

√√√√√√
logθ

1 +

n∏
i=1

(
θ
χ

f
ui−1

)Ξ(uξ(i))−Ξ(uξ(i−1))

θ−1




and

FOFCFA(Ωv1 , ...,Ωvn)

=



f

√√√√√√
1 − logθ

1 +

n∏
i=1

(
θ

1−µ f
vi−1

)Ξ(uξ(i))−Ξ(uξ(i−1))

θ−1

,
f

√√√√√√
logθ

1 +

n∏
i=1

(
θ
η

f
vi−1

)Ξ(uξ(i))−Ξ(uξ(i−1))

θ−1

,
f

√√√√√√
logθ

1 +

n∏
i=1

(
θ
χ

f
vi−1

)Ξ(uξ(i))−Ξ(uξ(i−1))

θ−1





.

Thus,

FOFCFA(Ωu1 , ...,Ωun) ⊕ FOFCFA(Ωv1 , ...,Ωvn)

=



f

√√√√√√
1 − logθ

1 +

n∏
i=1

(
θ

1−µ f
ui−1

)(
θ

1−µ f
vi−1

)Ξ(uξ(i))−Ξ(uξ(i−1))

θ−1

,
f

√√√√√√
logθ

1 +

n∏
i=1

(
θ
η

f
ui−1

)(
θ
η

f
vi−1

)Ξ(uξ(i))−Ξ(uξ(i−1))

θ−1

,
f

√√√√√√
logθ

1 +

n∏
i=1

(
θ
χ

f
ui−1

)(
θ
χ

f
vi−1

)Ξ(uξ(i))−Ξ(uξ(i−1))

θ−1




= FOFCFA(Ωu1 ⊕Ωv1 , ...,Ωun ⊕Ωvn).

Equation (4.5) holds, so proof completed.
The following properties of the FOFCFA operator can be simply demonstrated.

Theorem 4.5. (Idempotency) Let Ωi = (µi, ηi, χi) (i = 1, ..., n) is a family of FOFNs, if all Ωi(i =

1, ..., n) are equal i.e., Ωi = Ω = (µ, η, χ) for all i. Then,

FOFCFA(Ω1, ...,Ωn) = FOFCFA(Ω, ...,Ω) = Ω. (4.6)
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Proof. The proof is straight forward.
Theorem 4.6. (Monotonicity) Let Ωui =

(
µui , ηui , χui

)
and Ωvi =

(
µvi , ηvi , χvi

)
(i = 1, ..., n) are two family

of FOFNs if µui ≤ µvi , ηui ≤ ηviand χui ≤ χvi for all i. Then,

FOFCFA(Ωu1 , ...,Ωun) ≤ FOFCFA(Ωv1 , ...,Ωvn). (4.7)

Proof. The proof is straight forward. �

Theorem 4.7. (Boundedness) Let Ωi = (µi, ηi, χi) (i = 1, ..., n) is a family of FOFNs, if Ω+ =

(max(µi),min(ηi),min(χi)) and Ω− = (min(µi),max(ηi),max(χi)) . Then,

Ω− ≤ FOFCFA(Ω1, ...,Ωn) ≤ Ω+. (4.8)

Proof. The proof is straight forward. �

Next, we discussed some special cases of parameters for different values.
Theorem 4.8. Let Ωi = (µi, ηi, χi) (i = 1, ..., n) is a family of FOFNs. Then,
Case 1. If θ → 1, then FOFCFA operator becomes a FOFCA operator using the algebraic t-norm and
t-conorm and represented as;

lim
θ→1

FOFCFA =



f

√
1 −

n∏
i=1

(
1 − µ f

ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
,

f

√(
n∏

i=1

(
η

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
)
,

f

√(
n∏

i=1

(
χ

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
)


. (4.9)

Case 2. If θ → 1,Ξi = Ξ
(
uξ(i)

)
− Ξ

(
uξ(i−1)

)
, then FOFCFA operator becomes fractional orthotriple

fuzzy weighted averaging (FOFWA) operator.
Case 3. If θ → 1,Ξi = Ξ

(
uξ(i)

)
−Ξ

(
uξ(i−1)

)
and Ξ (u) =

∑|u|
i=1 wi for all u ∈ X,where w = (w1, ...,wn),w j ∈

[0, 1] and
∑n

j=1 w j = 1. Also, |u| is the ordered set of u, then FOFCFA operator becomes fractional
orthotriple fuzzy ordered weighted averaging (FOFOWA) operator.
Case 4. If θ → ∞, then FOFCFA operator becomes traditional arithmetic weighted averaging operator,
defined as;

lim
θ→∞

FOFCFA =



f

√
1 −

n∑
i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
µ

f
ξ(i),

f

√
n∑

i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
η

f
ξ(i),

f

√
n∑

i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
χ

f
ξ(i),


. (4.10)

Proof. We have only proved Cases 1 and 4, Cases 2 and 3 can be easily obtained from Cases 1 and 4.
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(1) As

lim
θ→1

FOFCFA = lim
θ→1



f

√
1 − logθ

(
1 +

n∏
i=1

(
θ1−µ f

ξ(i) − 1
)Ξ(uξ(i))−Ξ(uξ(i−1)))

,

f

√
logθ

(
1 +

n∏
i=1

(
θη

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))
,

f

√
logθ

(
1 +

n∏
i=1

(
θχ

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))


.

We only need to prove that

lim
θ→1

f

√√
1 − logθ

1 +

n∏
i=1

(
θ1−µ f

ξ(i) − 1
)Ξ(uξ(i))−Ξ(uξ(i−1))

 =
f

√√
1 −

n∏
i=1

(
1 − µ f

ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))

lim
θ→1

f

√√
logθ

1 +

n∏
i=1

(
η

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
 =

f

√√ n∏
i=1

(
η

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))


lim
θ→1

f

√√
logθ

1 +

n∏
i=1

(
χ

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
 =

f

√√ n∏
i=1

(
χ

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
.

We first prove that

lim
θ→1

 f

√√
logθ

1 +

n∏
i=1

(
η

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))

 =

f

√√ n∏
i=1

(
η

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
.

As θ → 1, then
(
η

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
→ 0, thus by equivalent infinitesimal replacement law we have

that ln (1 + x) ∼ x(x > 0) and logarithmic transform, we have

lim
θ→1

f

√√
logθ

1 +

n∏
i=1

(
η

f
ξ(i) − 1 − 1

)Ξ(uξ(i))−Ξ(uξ(i−1))


=

f

√
ln

(
1 +

n∏
i=1

(
η

f
ξ(i) − 1 − 1

)Ξ(uξ(i))−Ξ(uξ(i−1))
)

ln θ

∼

f

√(
1 +

n∏
i=1

(
η

f
ξ(i) − 1 − 1

)Ξ(uξ(i))−Ξ(uξ(i−1))
)

ln θ
.

By Taylor series and ln θ > 0, we get

η
f
ξ(i) − 1 = 1 + η

f
ξ(i) ln θ +

η
f
ξ(i)

2
(ln θ)2 + ... = 1 + η

f
ξ(i) ln θ + O(ln θ)

η
f
ξ(i) − 1 = η

f
ξ(i) ln θ + O(ln θ).
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Thus, η f
ξ(i) − 1→ η

f
ξ(i) ln θ. Then,

lim
θ→1

f

√√
logθ

1 +

n∏
i=1

(
η

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1))
 =

f

√
ln

(
1 +

n∏
i=1

(
η

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1))
)

ln θ

lim
θ→1

f

√√√√√(
n∏

i=1

(
η

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1))
)

ln θ
= lim

θ→1

f

√√√√√(
n∏

i=1

(
η

f
ξ(i) ln θ

)Ξ(uξ(i))−Ξ(uξ(i−1))
)

ln θ

f

√√√√√(
n∏

i=1

(
η

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
)

ln θ

ln θ
=

f

√√ n∏
i=1

(
η

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
.

So,

lim
θ→1

f

√√
logθ

1 +

n∏
i=1

(
η

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
 =

f

√√ n∏
i=1

(
η

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
.

Similarly, we can prove that

lim
θ→1

f

√√
1 − logθ

1 +

n∏
i=1

(
θ1−µ f

ξ(i) − 1
)Ξ(uξ(i))−Ξ(uξ(i−1))

 =
f

√√
1 −

n∏
i=1

(
1 − µ f

ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))

lim
θ→1

f

√√
logθ

1 +

n∏
i=1

(
χ

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
 =

f

√√ n∏
i=1

(
χ

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
.

Thus, we can write

lim
θ→1

FOFCFA =



f

√
1 −

n∏
i=1

(
1 − µ f

ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
,

f

√(
n∏

i=1

(
η

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
)
,

f

√(
n∏

i=1

(
χ

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
)


.

Which is the required proof.

AIMS Mathematics Volume 8, Issue 3, 6323–6355.



6340

(2) We simply need to demonstrate that for Proof (4).

limθ→∞
f

√
1 − logθ

(
1 +

n∏
i=1

(
θ1−µ f

ξ(i) − 1
)Ξ(uξ(i))−Ξ(uξ(i−1)))

= f

√
1 −

n∑
i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
µ

f
ξ(i),

limθ→∞
f

√
logθ

(
1 +

n∏
i=1

(
θη

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))
= f

√
n∑

i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
η

f
ξ(i),

limθ→∞
f

√
logθ

(
1 +

n∏
i=1

(
θχ

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))
= f

√
n∑

i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
χ

f
ξ(i),


We first prove that

lim
θ→∞

f

√√
logθ

1 +

n∏
i=1

(
θη

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1))
 =

f

√√
n∑

i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
η

f
ξ(i),

As, f

√
logθ

(
1 +

n∏
i=1

(
θη

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))
is continuous, so we get

lim
θ→∞

f

√√
logθ

1 +

n∏
i=1

(
θη

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1))
 =

f

√√
lim
θ→∞

logθ

1 +

n∏
i=1

(
θη

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1))
.

Thus by logarithmic transform and by L-Hospital rule, we get

lim
θ→∞

f

√√
logθ

1 +

n∏
i=1

(
θη

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1))
 =

f

√√√√√
lim
θ→∞

ln
(
1 +

n∏
i=1

(
θη

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))
ln θ

=

f

√√√√√√√√√√√√√√√√√√
lim
θ→∞

n∏
i=1

θη f
ξ(i)−1

Ξ(uξ(i))−Ξ(uξ(i−1))

1+
n∏

i=1

θη f
ξ(i)−1

Ξ(uξ(i))−Ξ(uξ(i−1))∑n
i=1(Ξ(uξ(i))−Ξ(uξ(i−1)))

η
f
ξ(i)θ

η
f
ξ(i)−1

η
f
ξ(i)−1

1
θ

= f

√√√√√√√√√√ lim
θ→∞

1
1+1

n∏
i=1

θη f
ξ(i)−1

Ξ(uξ(i))−Ξ(uξ(i−1))

n∑
i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

)) η f
ξ(i)θ

η
f
ξ(i) − 1

η
f
ξ(i) − 1

=
f

√√
n∑

i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
η

f
ξ(i).
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Similarly, we can prove

limθ→∞
f

√
1 − logθ

(
1 +

n∏
i=1

(
θ1−µ f

ξ(i) − 1
)Ξ(uξ(i))−Ξ(uξ(i−1)))

= f

√
1 −

n∑
i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
µ

f
ξ(i),

limθ→∞
f

√
logθ

(
1 +

n∏
i=1

(
θχ

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))
= f

√
n∑

i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
χ

f
ξ(i),


.

So,

lim
θ→∞

FOFCFA =



f

√
1 −

n∑
i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
µ

f
ξ(i),

f

√
n∑

i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
η

f
ξ(i),

f

√
n∑

i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
χ

f
ξ(i),


.

Which is the required proof.

4.2. Fractional orthotriple fuzzy Choquet-Frank geometric operator

Definition 4.2. Let Ωi = (µi, ηi, χi) (i = 1, ..., n) is a family of FOFNs, and ξ(i) is a permutation of
(i = 1, ..., n), such that Ωξ(i) ≥ Ωξ(2) ≥ ...,≥ Ωξ(n). Then, a FOFCFA operator is defined as

FOFCFG(Ω1, ...,Ωn) =

n∏
i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
Ωξ(i). (4.11)

Where uξ(i) =
(
Gξ(1), ...,Gξ(i)

)
, uξ(i) = φ, also Gξ(i) is the attribute related to Ωξ(i).

Theorem 4.9. Let Ωi = (µi, ηi, χi) (i = 1, ..., n) is a family of FOFNs, and ξ(i) is a permutation of
(i = 1, ..., n), such that Ωξ(i) ≥ Ωξ(2) ≥ ...,≥ Ωξ(n). Gξ(i) is the attribute related to Ωξ(i), uξ(i) = φ,

uξ(i) =
(
Gξ(1), ...,Gξ(i)

)
. Then, using FOFCFG operator the aggregated value is also a FOFN and

FOFCFG(Ω1, ...,Ωn) (4.12)

=



f

√
logθ

(
1 +

n∏
i=1

(
θµ

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))
,

f

√
1 − logθ

(
1 +

n∏
i=1

(
θ1−η f

ξ(i) − 1
)Ξ(uξ(i))−Ξ(uξ(i−1)))

,

f

√
1 − logθ

(
1 +

n∏
i=1

(
θ1−χ f

ξ(i) − 1
)Ξ(uξ(i))−Ξ(uξ(i−1)))


.

Proof. Proof is same as Theorem 4.1. �
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Theorem 4.10. Let Ωi = (µi, ηi, χi) (i = 1, ..., n)) is a family of FOFNs, and ξ(i) is a permutation of
(i = 1, ..., n) such that Ωξ(i) ≥ Ωξ(2) ≥ ...,≥ Ωξ(n). Then,

FOFCFG(λ.Ω1, ..., λ.Ωn) = λ.FOFCFG(Ω1, ...,Ωn). (4.13)

Proof. Proof is same as Theorem 4.1.
Theorem 4.11. Let Ωi = (µi, ηi, χi) (i = 1, ..., n) is a family of FOFNs, and ξ(i) is a permutation of
(i = 1, ..., n) such as Ωξ(i) ≥ Ωξ(2) ≥ ...,≥ Ωξ(n). Then,

FOFCFG(Ω1 ⊕Ω, ...,Ωn ⊕Ω) = FOFCFG(Ω1, ...,Ωn) ⊕Ω. (4.14)

Proof. Proof is same as Theorem 4.1.
Theorem 4.12. Let Ωi = (µi, ηi, χi) (i = 1, ..., n) is a family of FOFNs, and ξ(i) is a permutation of
(i = 1, ..., n) such as Ωξ(i) ≥ Ωξ(2) ≥ ...,≥ Ωξ(n). Then,

FOFCFG(Ωu1 ⊕Ωv1 , ...,Ωun ⊕Ωvn) (4.15)
= FOFCFG(Ωu1 , ...,Ωun) ⊕ FOFCFG(Ωv1 , ...,Ωvn).

Proof. Proof is same as Theorem 4.1.
The following properties of the FOFCFG operator can then be simply demonstrated.

Theorem 4.13. (Idempotency) Let Ωi = (µi, ηi, χi) (i = 1, ..., n) is a family of FOFNs, if all Ωi(i =

1, ..., n) are equal i.e., Ωi = Ω = (µ, η, χ) for all i. Then,

FOFCFG(Ω1, ...,Ωn) = FOFCFG(Ω, ...,Ω) = Ω. (4.16)

Proof. The proof is straight forward.
Theorem 4.14. (Monotonicity) Let Ωui =

(
µui , ηui , χui

)
and Ωvi =

(
µvi , ηvi , χvi

)
(i = 1, ..., n) are two

family of FOFNs if µui ≤ µvi , ηui ≤ ηviand χui ≤ χvi for all i. Then,

FOFCFG(Ωu1 , ...,Ωun) ≤ FOFCFG(Ωv1 , ...,Ωvn). (4.17)

Theorem 4.15. (Boundedness) Let Ωi = (µi, ηi, χi) (i = 1, ..., n) is a family of FOFNs, if Ω+ =

(max(µi),min(ηi),min(χi)) and Ω− = (min(µi),max(ηi),max(χi)) . Then,

Ω− ≤ FOFCFG(Ω1, ...,Ωn) ≤ Ω+. (4.18)

Next, we have different special cases of parameters for different values.
Theorem 4.16. Let Ωi = (µi, ηi, χi) (i = 1, ..., n) is a family of FOFNs. Then,
Case 5. If θ → 1, then FOFCFG operator becomes a FOFCG operator using the algebraic t-norm and
t-conorm and represented as

lim
θ→1

FOFCFG =



f

√(
n∏

i=1

(
µ

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
)
,

f

√
1 −

n∏
i=1

(
1 − η f

ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
,

f

√
1 −

n∏
i=1

(
1 − χ f

ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))


. (4.19)
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Case 6. If θ → 1,Ξi = Ξ
(
uξ(i)

)
− Ξ

(
uξ(i−1)

)
, then FOFCFG operator becomes fractional orthotriple

fuzzy weighted geometric (FOFWG) operator.
Case 7. If θ → 1,Ξi = Ξ

(
uξ(i)

)
−Ξ

(
uξ(i−1)

)
and Ξ (u) =

∑|u|
i=1 wi for all u ∈ X,where w = (w1, ...,wn),w j ∈

[0, 1] and
∑n

j=1 w j = 1. Also, |u| is the ordered set of u, then FOFCFG operator becomes fractional
orthotriple fuzzy ordered weighted geometric (FOFOWG) operator.
Case 8. If θ → ∞, then FOFCFG operator becomes traditional geometric weighted averaging operator
defined as;

lim
θ→∞

FOFCFG =



f

√
n∑

i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
µ

f
ξ(i),

f

√
1 −

n∑
i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
η

f
ξ(i),

f

√
1 −

n∑
i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
χ

f
ξ(i)


. (4.20)

Proof. We have only proved Cases 1 and 4, Cases 2 and 3 can be easily obtained from Cases 1 and 4.
(1) As

lim
θ→1

FOFCFG = lim
θ→1



f

√
logθ

(
1 +

n∏
i=1

(
θµ

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))
f

√
1 − logθ

(
1 +

n∏
i=1

(
θ1−η f

ξ(i) − 1
)Ξ(uξ(i))−Ξ(uξ(i−1)))

,

f

√
1 − logθ

(
1 +

n∏
i=1

(
θ1−χ f

ξ(i) − 1
)Ξ(uξ(i))−Ξ(uξ(i−1)))


.

We only need to prove that

lim
θ→1

f

√√
logθ

1 +

n∏
i=1

(
µ

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
 =

f

√√ n∏
i=1

(
µ

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))


lim
θ→1

f

√√
1 − logθ

1 +

n∏
i=1

(
θ1−η f

ξ(i) − 1
)Ξ(uξ(i))−Ξ(uξ(i−1))

 =
f

√√
1 −

n∏
i=1

(
1 − η f

ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))

lim
θ→1

f

√√
1 − logθ

1 +

n∏
i=1

(
θ1−χ f

ξ(i) − 1
)Ξ(uξ(i))−Ξ(uξ(i−1))

 =
f

√√
1 −

n∏
i=1

(
1 − χ f

ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
.

We first prove that

lim
θ→1

 f

√√
logθ

1 +

n∏
i=1

(
µ

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))

 =

f

√√ n∏
i=1

(
µ

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
.

As θ → 1, then
(
µ

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
→ 0, thus by equivalent infinitesimal replacement law we have

that ln (1 + x) ∼ x(x > 0) and logarithmic transform, we have

lim
θ→1

f

√√
logθ

1 +

n∏
i=1

(
µ

f
ξ(i) − 1 − 1

)Ξ(uξ(i))−Ξ(uξ(i−1))
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=

f

√
ln

(
1 +

n∏
i=1

(
µ

f
ξ(i) − 1 − 1

)Ξ(uξ(i))−Ξ(uξ(i−1))
)

ln θ

∼

f

√(
1 +

n∏
i=1

(
µ

f
ξ(i) − 1 − 1

)Ξ(uξ(i))−Ξ(uξ(i−1))
)

ln θ
.

By Taylor series and ln θ > 0, we get

µ
f
ξ(i) − 1 = 1 + µ

f
ξ(i) ln θ +

µ
f
ξ(i)

2
(ln θ)2 + ... = 1 + µ

f
ξ(i) ln θ + O(ln θ)

µ
f
ξ(i) − 1 = µ

f
ξ(i) ln θ + O(ln θ).

Thus, µ f
ξ(i) − 1→ µ

f
ξ(i) ln θ. Then,

lim
θ→1

f

√√
logθ

1 +

n∏
i=1

(
µ

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1))
 =

f

√
ln

(
1 +

n∏
i=1

(
µ

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1))
)

ln θ

lim
θ→1

f

√√√√√(
n∏

i=1

(
µ

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1))
)

ln θ
= lim

θ→1

f

√√√√√(
n∏

i=1

(
µ

f
ξ(i) ln θ

)Ξ(uξ(i))−Ξ(uξ(i−1))
)

ln θ

f

√√√√√(
n∏

i=1

(
µ

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
)

ln θ

ln θ
=

f

√√ n∏
i=1

(
µ

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
.

So,

lim
θ→1

f

√√
logθ

1 +

n∏
i=1

(
µ

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
 =

f

√√ n∏
i=1

(
µ

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
.

Similarly, we can prove that

lim
θ→1

f

√√
1 − logθ

1 +

n∏
i=1

(
θ1−η f

ξ(i) − 1
)Ξ(uξ(i))−Ξ(uξ(i−1))

 =
f

√√
1 −

n∏
i=1

(
1 − η f

ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))

lim
θ→1

f

√√
logθ

1 +

n∏
i=1

(
χ

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
 =

f

√√ n∏
i=1

(
χ

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
.
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Thus, we can write

lim
θ→1

FOFCFG =



f

√(
n∏

i=1

(
µ

f
ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
)
,

f

√
1 −

n∏
i=1

(
1 − η f

ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))
,

f

√
1 −

n∏
i=1

(
1 − χ f

ξ(i)

)Ξ(uξ(i))−Ξ(uξ(i−1))


.

Which is the required proof.
(2) We simply need to demonstrate that for Proof (4).

limθ→∞
f

√
logθ

(
1 +

n∏
i=1

(
θµ

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))
= f

√
n∑

i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
µ

f
ξ(i),

limθ→∞
f

√
1 − logθ

(
1 +

n∏
i=1

(
θ1−η f

ξ(i) − 1
)Ξ(uξ(i))−Ξ(uξ(i−1)))

= f

√
1 −

n∑
i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
η

f
ξ(i),

limθ→∞
f

√
1 − logθ

(
1 +

n∏
i=1

(
θ1−χ f

ξ(i) − 1
)Ξ(uξ(i))−Ξ(uξ(i−1)))

= f

√
1 −

n∑
i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
χ

f
ξ(i)



.

We first prove that

lim
θ→∞

f

√√
logθ

1 +

n∏
i=1

(
θµ

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1))
 =

f

√√
n∑

i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
µ

f
ξ(i).

As, f

√
logθ

(
1 +

n∏
i=1

(
θµ

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))
is continuous, so we get

lim
θ→∞

f

√√
logθ

1 +

n∏
i=1

(
θµ

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1))
 =

f

√√
lim
θ→∞

logθ

1 +

n∏
i=1

(
θµ

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1))
.

Thus by logarithmic transform and by L-Hospital rule, we get

lim
θ→∞

f

√√
logθ

1 +

n∏
i=1

(
θµ

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1))


=

f

√√√√√
lim
θ→∞

ln
(
1 +

n∏
i=1

(
θµ

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))
ln θ
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=

f

√√√√√√√√√√√√√√√√√√
lim
θ→∞

n∏
i=1

θµ f
ξ(i)−1

Ξ(uξ(i))−Ξ(uξ(i−1))

1+
n∏

i=1

θµ f
ξ(i)−1

Ξ(uξ(i))−Ξ(uξ(i−1))∑n
i=1(Ξ(uξ(i))−Ξ(uξ(i−1)))

µ
f
ξ(i)θ

µ
f
ξ(i)−1

µ
f
ξ(i)−1

1
θ

= f

√√√√√√√√√√ lim
θ→∞

1
1+1

n∏
i=1

θµ f
ξ(i)−1

Ξ(uξ(i))−Ξ(uξ(i−1))

n∑
i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

)) µ f
ξ(i)θ

µ
f
ξ(i) − 1

µ
f
ξ(i) − 1

=
f

√√
n∑

i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
µ

f
ξ(i).

Similarly, we can prove

limθ→∞
f

√
1 − logθ

(
1 +

n∏
i=1

(
θ1−η f

ξ(i) − 1
)Ξ(uξ(i))−Ξ(uξ(i−1)))

= f

√
1 −

n∑
i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
η

f
ξ(i),

limθ→∞
f

√
logθ

(
1 +

n∏
i=1

(
θχ

f
ξ(i) − 1

)Ξ(uξ(i))−Ξ(uξ(i−1)))
= f

√
n∑

i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
χ

f
ξ(i),


.

So,

lim
θ→∞

FOFCFG =



f

√
n∑

i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
µ

f
ξ(i),

f

√
1 −

n∑
i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
η

f
ξ(i),

f

√
1 −

n∑
i=1

(
Ξ

(
uξ(i)

)
− Ξ

(
uξ(i−1)

))
χ

f
ξ(i)


.

Which is the required proof.

5. Approach for MADM based on fractional orthotriple fuzzy Choquet-Frank aggregation
operators

In this section, we establish an approach to MADM difficulties with fractional orthotriple fuzzy
information using the established aggregation operators. MADM problem can be explained as; let
H = (H1, ...,Hm) be a set of m alternative, C = (C1, ...,Cn) be a set of n attributes. Suppose a fractional
orthotriple fuzzy number Ωi =

(
µi j, ηi j, χi j

)
an attribute value is given by decision makers for the

alternative hi with respect to the attribute C j, satisfies the following condition µi j, ηi j, χi j ∈ [0, 1] and
0 ≤ µ f

i j + η
f
i j + χ

f
i j ≤ 1. Then, for any solutions, we can use the proposed operators, with given steps:
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Step 1: Normalize the given decision matrix, normally, attributes can be categorized into two kinds,
the first one is the benefit attribute and the second one is the cast attribute. The point to be noted,
no need to normalize the decision making matrix if attributes are of the same type (benefit type). If
attributes have different values, then normalized decision matrix by;

Ωi j =


(
µi j, ηi j, χi j

)
, if attribute are benefit type(

χi j, ηi j, µi j

)
, if attribute are cost type

Step 2: By score function in Definition 2.5, we determine Ξ(Ωi j) to rearrange Ωi j for every alternative
Hi(i = 1, ...,m) in descending order. If Ξ(Ωi j) = Ξ(Ωik), we relate E(Ωi j) and E(Ωik), so partial
evaluation Ωi j of Hi the alternative is rearranged such as Ωi( j) ≥ Ωi( j−1).
Step 3: Find the fuzzy measure of n attributes of Hi. To prevent difficulty, we use Eq (2.9) for defining
the fuzzy measure.
Step 4: Determine the whole preferences for every alternative. For the alternative Hi(i = 1, ...,m), use
the FOFCFA or FOFCFG operator to aggregate the values of the attributes.
Step 5: Determine the score values for each alternative.
Step 6: Choose the best option after ranking the alternatives.

6. Numerical example

Nowadays, a human mental disorder, such as depression, is a serious global health problem. One
of the many characteristics of the psychological illness is a significant and ongoing depressed mood.
Due to an extremely busy lifestyle, mental illness or depression is on the rise. Persistent depression,
, and frustration are three major medical manifestations of the disorder that is affecting an increasing
number of people. In some cases, suicidal thoughts also manifest in these conditions. The World
Health Organization (WHO) estimated that by the end of 2020, depression affected 350 million people
worldwide, making it the second most common disease after heart disease. The depression has been
properly studied as a mental disorder disease since the middle of the 19th century. According to
Beck’s theory of cognitive breakdown, which was developed in the 1960s, depressed people have
negative thoughts about both themselves and the people around them. Clinical diagnosis has been
hampered, though, by the fact that the etiology of depression is unknown and the manifestations are
challenging. The doctors use a variety of diagnostic techniques and routine tests to identify this illness,
and each of these tests yields a unique set of diagnostic findings. This leads to the conclusion that
patients who exhibit symptoms of depression rely on self-care to carry out a management plan of
treatment and that there is no such physical signal that can be used as a measurable constraint. An
initial examination, a diagnosis, and overcoming anticipation depression are very difficult. Due to
the recent rapid advancements in cognitive science and sensor technology, researchers can now use
electroencephalograms (EEGs) to physically record brain activity. Electroencephalograms are used to
assess the clinical history of the disorder. EEG physiological signals can be used to measure and record
depression’s relationship to brain activity. Several clinical tests of brain function can be conducted
using EEG recordings.

According to a large body of research, EEG signals are used to analyze brain activity. Recently,
the sample entropy bi-spectrum entropy, approximate entropy and renyi entropy have been studied
for classifier selection of EEG signals for depression and classify into different classes of depression
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EEG signals. It’s obvious that more knowledge is needed about the processes that occur in the brain
before and during stress in order to monitor diagnosis and treatment. The statistical performance
of the resulting features was evaluated, and they were classified as potential neural networks,
k-nearest neighbor algorithm (k-NN), Gaussian mixture model (GMM), Decision tree (DT) and
Probabilistic neural network (PNN). The proposed intelligent decision technique analyzes the k-nearest
neighbour algorithm (k-NN), Gaussian mixture model (GMM), Decision tree (DT) and probabilistic
neural network (PNN) of EEG signals of depression using the sample entropy bispectrum entropy,
approximate entropy and renyi entropy under the FOF information.

The decision experts are finalized the following method for classifier selection H1: K-nearest
neighbor algorithm(k-NN), H2: Gaussian mixture model (GMM), H3: Decision tree (DT) and H4:
Probabilistic neural network (PNN). The classifier is further evaluated by decision experts based on
attribute C1: Sample entropy, C2: Bispectrum entropy, C3: Approximate entropy C4: Renyi entropy.
The experts give their assessment for the five classifiers of EEG based on five attribute in the Table 1.

Table 1. Fractional orthopair fuzzy decision matrix.

C1 C2 C3 C4

H1 (0.7, 0.5, 0.4) (0.5, 0.8, 0.3) (0.9, 0.7, 0.3) (0.6, 0.8, 0.4)
H2 (0.6, 0.8, 0.7) (0.9, 0.6, 0.5) (0.6, 0.5, 0.8) (0.5, 0.4, 0.9)
H3 (0.4, 0.9, 0.6) (0.6, 0.8, 0.4) (0.5, 0.8, 0.6) (0.8, 0.3, 0.8)
H4 (0.8, 0.4, 0.5) (0.7, 0.5, 0.9) (0.3, 0.4, 0.9) (0.7, 0.5, 0.6)

Step 1: The decision matrix does not require normalization because all attributes are of the benefit
type.
Step 2: To demonstrate a fuzzy measure for the n attributes of Ci. The fuzzy measure of Ci attributes
should be as following:

Ξ(C1) = 0.3,Ξ(C2) = 0.4,Ξ(C3) = 0.2,Ξ(C4) = 0.3.

The fuzzy measure of attribute sets is calculated using the ℘-FM. First, the value of ℘ is determined
by Eq (2.9). We get ℘ = (−0.3417), and then Eq (2.11) can be used to find the fuzzy measure of the
attribute set C = (C1, ...,C4).

Ξ(C1,C2) = 0.271,Ξ(C1,C3) = 0.482,Ξ(C1,C4) = 0.162,Ξ(C2,C4) = 0.370,
Ξ(C3,C4) = 0.517,Ξ(C2,C3) = 0.209,Ξ(C1,C2,C3) = 0.116,Ξ(C1,C2,C4) = 0.464,

Ξ(C1,C3,C4) = 0.487,Ξ(C2,C3,C4) = 0.541,Ξ(C1,C2,C3,C4) = 1.

Step 3: By using score functions, we reorder the FOFNs in the following order, according to Table 1:

Ω1ξ(1) = (0.9, 0.7, 0.3) ,Ω1ξ(2) = (0.7, 0.5, 0.4) ,Ω1ξ(3) = (0.6, 0.8, 0.4) ,Ω1ξ(4) = (0.5, 0.8, 0.3)

Ω2ξ(1) = (0.9, 0.6, 0.5) ,Ω2ξ(2) = (0.6, 0.8, 0.7) ,Ω2ξ(3) = (0.6, 0.5, 0.8) ,Ω2ξ(4) = (0.5, 0.4, 0.9)

Ω3ξ(1) = (0.8, 0.3, 0.8) ,Ω3ξ(2) = (0.6, 0.8, 0.4) ,Ω3ξ(3) = (0.5, 0.8, 0.6) ,Ω3ξ(4) = (0.4, 0.9, 0.6)

Ω4ξ(1) = (0.8, 0.4, 0.5) ,Ω4ξ(2) = (0.7, 0.5, 0.6) ,Ω4ξ(3) = (0.7, 0.5, 0.9) ,Ω4ξ(4) = (0.3, 0.4, 0.9) .
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Then, we obtain

u1ξ(1) = (C1,C2,C3,C4), u1ξ(2) = (C1,C3,C4), u1ξ(3) = (C1,C4), u1ξ(4) = C4

u2ξ(1) = (C1,C2,C3,C4), u2ξ(2) = (C2,C3,C4), u2ξ(3) = (C2,C4), u2ξ(4) = C2

u3ξ(1) = (C1,C2,C3,C4), u3ξ(2) = (C1,C3,C4), u3ξ(3) = (C3,C4), u3ξ(4) = C4

u4ξ(1) = (C1,C2,C3,C4), u4ξ(2) = (C2,C3,C4), u4ξ(3) = (C2,C4), u4ξ(4) = C2.

Step 4: Using the FOFCFA operator and f = 3, to combine the attribute values for alternative H =

(H1, ...,H4). We have a set of overall values if θ = 2.

Ω1 = (0.4291, 0.6385, 0.3816) ,Ω2 = (0.5982, 0.3997, 0.4872)

Ω3 = (0.6271, 0.4208, 0.2752) ,Ω4 = (0.5183, 0.3174, 0.5309) .

Step 5: Find the scores of Ωi(i = 1, ..., 4), using Definition 2.5, we obtained.

S (Ω1) = 0.3525, S (Ω2) = 0.3702, S (Ω3) = 0.4492, S (Ω4) = 0.4137.

Thus, the ranking of the overall values is Ω3 > Ω4 > Ω2 > Ω1.
Step 6: Give ranking to the alternatives Hi(i = 1, ..., 4) according to the rank values of Ωi(i = 1, ..., 4),
we get a result: H3 > H4 > H2 > H1. Thus, H3 is the best alternative, indicating that the Decision Tree
is the best choice.

6.1. Sensitivity analysis

Based on the DM’s preferences, a variety of values may be applied to the parameter. To examine
the variation in the ranking of the four options depending on the value of the parameter, we assigned
θ values ranging from 1 to 50 and computed the scores for these four alternatives. Table 2 provides
a summary of the scores assigned to the alternatives by the FOFCFA operator. It is clear that when
the value of θ rises from 1 to 50, the scores assigned to each alternative rise as well. We can see that
the four options are always in the same order when we use θ ∈ [1, 50], and Decision Tree is the best
choice. When the parameter is between (1,+∞), we can observe that the FOFCFA operator increases
monotonically with respect to that parameter. The values of the alternative increasing if we adjust the
parameter. In Table 2, the fluctuations in the scores are readily seen in relation to the values of the
parameter θ.

Table 2. Overall ranking of alternatives using different value of parameter.

Parameter θ
Scores values

S (Ω1) S (Ω2) S (Ω3) S (Ω4)
Ranking

θ = 1 0.2146 0.2372 0.2641 0.2277 H3 > H4 > H2 > H1

θ = 2 0.3525 0.3702 0.4492 0.4136 H3 > H4 > H2 > H1

θ = 3 0.4417 0.4602 0.4997 0.4736 H3 > H4 > H2 > H1

θ = 10 0.5752 0.5891 0.6142 0.5975 H3 > H4 > H2 > H1

θ = 25 0.7350 0.7424 0.7846 0.7570 H3 > H4 > H2 > H1

θ = 50 0.7764 0.7982 0.8869 0.8473 H3 > H4 > H2 > H1
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We can see from the analysis of Table 2 above that the parameter θ represents the decision makers’
preferences, and the decision makers can select the appropriate values of θ in accordance with their
preferences. We may generate several scoring functions, which in turn allow us to generate various
ranks of the alternatives as well as many optimal alternatives, by selecting various values for the
parameter θ. In other words, different choices of the parameter θ could result in different ultimate
optimal decisions. Since we can choose different values for the parameter in light of various practical
situations, using the developed aggregation operators.

Figure 1 shows graphically the ranking of the alternatives.

Figure 1. Ranking of the alternatives using proposed operator.

6.2. Comparative analysis

In this section, we’ll lay the groundwork for a collaborative analysis of the previously presented
work using a few tried-and-true techniques from the literature. The main points of discussion are listed
below.

Here, we will compare our work with concepts; some new Pythagorean fuzzy Choquet-Frank
aggregation operators for multi-attribute decision making [34]; an approach toward decision-making
and medical diagnosis problems using the concept of spherical fuzzy sets [23]; T-spherical fuzzy Frank
aggregation operators and their application to decision making with unknown weight information [24];
similarity measures for fractional orthotriple fuzzy sets using cosine and cotangent functions [25],
Banzhaf-Choquet Copula based operators for managing fractional orthotriple fuzzy information [26]
and Fractional orthotriple fuzzy rough Hamacher aggregation operators [27]. The final results are now
presented in Table 3 for this discussion.
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Table 3. Ranking and score values of alternatives using different operators.

Method
Scores values

S (Ω1) S (Ω2) S (Ω3) S (Ω4)
Ranking

Xing et al. [34] 0.1526 0.1627 0.1905 0.1724 H3 > H4 > H2 > H1

Mahmood et al. [23] 0.3851 0.3725 0.3519 0.6472 H3 > H1 > H2 > H3

Mahnaz et al. [24] 0.5136 0.5472 0.5961 0.4620 H3 > H2 > H1 > H4

Naeem et al. [25] 0.6168 0.6291 0.6634 0.6472 H3 > H4 > H2 > H1

Qiyas et al. [26] 0.6097 0.5997 0.5821 0.6015 H3 > H4 > H1 > H2

Qiyas et al. [27] 0.4317 0.4421 0.4872 0.4543 H3 > H4 > H2 > H1

Figure 2 shows graphically the ranking of the alternatives.

Figure 2. Ranking of the alternatives using different methods.

7. Conclusions

Fractional orthotriple set is more strong apparatus than picture fuzzy set and spherical fuzzy set,
and it provides extra space to decision makers for decision making in several real-life problems. Also,
aggregation operators are wont to reduce the set of finite values into one value, so motivated by the
generality of fractional orthotriple fuzzy set and basic characteristics of aggregation operators, during
this article. We’ve initiated some new aggregation operator supported Frank t-norm and t-conorm,
called FOFCFA and FOFCFG operators. Moreover, some basic properties of those aggregation
operators are elaborated intimately. Multi-attribute decision making algorithm supported these
operators has introduced an alongside application to point out the effectiveness of introduced work.
The proposed algorithm is considered for classifier selection for EEG under depression information
based on given attribute. The proposed decision making method analyzes the k-nearest neighbor
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algorithm, Gaussian mixture model, decision tree and probabilistic neural network. The proposed
method is attribute based for analyzing optimal classifier selection for EEG under depression patients.
We used the classifier method to obtain depression patients data in normal situations and abnormal
situation based on the given attributes. Furthermore, a comparative study of the proposed work has
been given to point out the authenticity and the superiority of the proposed work. Although the focus
of this paper is hybrid sets of fuzzy sets, it can also be applied to other types of structures.

How to determine the parameter θ in the proposed operators according to the practical situations
has not been discussed in the current paper, which is an interesting topic and is worthy to be further
studied in the future. Moreover, in the future we will apply the proposed operators and approach to
some practical applications such as soft sets, Cubic fuzzy sets, Bipolar fuzzy sets, fractional orthotriple
fuzzy rough sets, Linear Diophantine fuzzy sets, Linear Diophantine fuzzy graphs.
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