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1. Introduction

Let us mention two standard theorems involving direct products of groups in abstract algebra as
follows.

Theorem 1.1. If H and K are normal subgroups of a group (written multiplicatively) that have trivial
intersection, then the internal direct product HK is isomorphic to the external direct product H × K as
groups.

Theorem 1.2. Let G,H, and K be finite groups. If G ×H and G × K are isomorphic as groups, then H
and K are isomorphic as groups.

Theorem 1.1 is sometimes referred to as the direct product theorem for groups (see, for instance,
Theorem 9 in p. 171 of [2]). Theorem 1.2 is sometimes referred to as the cancellation theorem for
direct products of finite groups (see, for instance, [5]). The latter theorem may be used for comparing
external direct products of finite groups such as the uniqueness part of the fundamental theorem of
finite abelian groups (see, for instance, p. 213 of [4]).
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The notion of a gyrogroup is introduced as a suitable generalization of groups. For a detailed
discussion of the formation of gyrogroups, the reader is referred to [14], for instance. For algebraic
aspects of gyrogroups, the reader is referred to [1, 3, 6, 7, 13], for instance. Roughly speaking, a
gyrogroup is a non-associative algebraic structure that shares several properties with groups. In fact,
every group may be viewed as a gyrogroup with gyroautomorphisms being the identity automorphism.
Important theorems on groups can be naturally extended to gyrogroups. This motivates us to continue
studying algebraic aspects of gyrogroups. In the present article, we prove the two aforementioned
theorems in the case of gyrogroups.

2. Preliminaries

For the basic theory of gyrogroups, the reader is referred to [11, 14]. The formal definition of a
gyrogroup can be found in p. 17 of [14]. In this section, we summarize basic terminology, notation,
and results in gyrogroup theory for reference.

In the case when ⊕ is a binary operation on a non-empty set G, let Aut (G) be the set of all
automorphisms of (G,⊕). Let G be a gyrogroup. Recall that G satisfies the left gyroassociative law:

a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ gyr [a, b](c) (2.1)

for all a, b, c ∈ G, where gyr [a, b] is an automorphism in Aut (G). We remark that G has the unique
two-sided identity, denoted by e. Moreover, any element a in G has the unique two-sided inverse,
denoted by 	a. The automorphism gyr [a, b] in (2.1) is called the gyroautomorphism generated by a
and b. It can be proved that G also satisfies the right gyroassociative law:

(a ⊕ b) ⊕ c = a ⊕ (b ⊕ gyr [b, a](c)). (2.2)

for all a, b, c ∈ G. The cooperation of G, denoted by �, is defined as a � b = a ⊕ gyr [a,	b](b) for all
a, b ∈ G. In addition, we define a	 b = a⊕ (	b) and a� b = a� (	b). Throughout the article, if X is a
non-empty set, then IX denotes the identity map on X; that is, IX(x) = x for all x ∈ X.

Let G and H be gyrogroups. A map ϕ from G to H is called a gyrogroup homomorphism if ϕ(a⊕b) =

ϕ(a) ⊕ ϕ(b) for all a, b ∈ G. A bijective gyrogroup homomorphism is called a gyrogroup isomorphism.
If there exists a gyrogroup isomorphism from G to H, then we say that G is isomorphic to H, denoted
by G � H. Let ϕ : G → H be a gyrogroup homomorphism. The kernel of ϕ, denoted by kerϕ, is
defined by kerϕ = {a ∈ G : ϕ(a) = e}. The image of ϕ, denoted by imϕ, is defined by imϕ = {b ∈ H :
b = ϕ(a) for some a ∈ G}.

Let G be a gyrogroup. Recall that a non-empty subset H of G is a subgyrogroup of G if H forms a
gyrogroup under the operation inherited from G. If H and K are subgyrogroups of G, define H ⊕ K =

{h ⊕ k : h ∈ H, k ∈ K}. A subgyrogroup H of G is called an L-subgyrogroup if gyr [a, h](H) = H for all
a ∈ G, h ∈ H. If H is an L-subgyrogroup of G and if G is finite, then the index formula holds:

|G| = [G : H]|H|, (2.3)

where [G : H] = |{a ⊕ H : a ∈ G}| (cf. Corollary 22 of [12]). A subgyrogroup N of G is normal,
denoted by N E G, provided there is a gyrogroup homomorphism ϕ from G to a gyrogroup such that
N = kerϕ. If N EG, then gyr [a, b](N) = N for all a, b ∈ G (see the proof of Proposition 35 of [11]).
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Furthermore, the set of left cosets of N in G, G/N = {a ⊕ N : a ∈ G}, forms a gyrogroup under the
operation defined by (a ⊕ N) ⊕ (b ⊕ N) = (a ⊕ b) ⊕ N for all a, b ∈ G, called the quotient gyrogroup
of G by N. In this case, the map a 7→ a ⊕ N, a ∈ G, defines a gyrogroup homomorphism, called the
canonical projection.

Theorem 2.1. (See Chapter 2 of [14]) Let G be a gyrogroup and let a, b, c ∈ G.

1) a ⊕ b = a ⊕ c implies b = c; (left cancellation law I)
2) 	a ⊕ (a ⊕ b) = b; (left cancellation law II)
3) (b 	 a) � a = b; (right cancellation law I)
4) (b � a) ⊕ a = b. (right cancellation law II)

Proposition 2.1. ( [12, Part 3 of Proposition 23]) If ϕ : G → H is a gyrogroup homomorphism, then
ϕ(gyr [a, b](c)) = gyr [ϕ(a), ϕ(b)](ϕ(c)) for all a, b, c ∈ G.

Proposition 2.2. ( [12, Proposition 26]) Let ϕ : G → H be a gyrogroup homomorphism and let a, b ∈
G. Then 	a ⊕ b ∈ kerϕ if and only if ϕ(a) = ϕ(b).

Let G be a gyrogroup. The set of permutations of G is denoted by Sym (G), which forms a group
under composition of maps. For each a ∈ G, the left gyrotranslation La is defined by La(x) = a⊕ x, x ∈
G, which is a permutation of G (cf. Theorem 10 of [12]). Define Ĝ to be the set of left gyrotranslations,

Ĝ = {La : a ∈ G}, (2.4)

and define Syme(G) to be the set of permutations of G leaving the identity e fixed,

Syme(G) = {ρ ∈ Sym (G) : ρ(e) = e}. (2.5)

Theorem 2.2. ( [12, Theorem 11]) Let G be a gyrogroup. For each σ ∈ Sym (G), σ can be written
uniquely as σ = La ◦ ρ, where a ∈ G and ρ ∈ Syme(G).

Let G and H be gyrogroups. As defined in [10], the direct product of G and H, denoted by G × H,
is a gyrogroup with underlying set {(g, h) : g ∈ G, h ∈ H} whose operation is given componentwise by

(a, b) ⊕ (c, d) = (a ⊕ c, b ⊕ d) (2.6)

for all a, c ∈ G and for all b, d ∈ H.

Proposition 2.3. Let A, B,C, and D be gyrogroups.

1) Then A × B � B × A.
2) If A � B and B � C, then A � C.
3) If A � C and B � D, then A × B � C × D.

Proof. The map Φ defined by Φ(a, b) = (b, a), a ∈ A, b ∈ B, is a gyrogroup isomorphism from A × B
to B × A. If φ : A → B and ψ : B → C are gyrogroup isomorphisms, then ψ ◦ φ is a gyrogroup
isomorphism from A to C. If φ : A → C and ψ : B → D are gyrogroup isomorphisms, then the map θ
defined by θ(a, b) = (φ(a), ψ(b)), a ∈ A, b ∈ B, is a gyrogroup isomorphism from A × B to C × D. �
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3. Main results

The main purpose of this article is to generalize Theorems 1.1 and 1.2 from groups to gyrogroups.
The direct product theorem for gyrogroups proves useful in understanding the gyrogroup that arises
in Cayley’s theorem for gyrogroups, as we will see shortly. The cancellation theorem for gyrogroups
may be used to compare direct products of finite gyrogroups, as in the case of groups.

3.1. Direct product decomposition

To prove the direct product theorem for gyrogroups, we need two preliminary lemmas involving
gyroautomorphisms, which are important in their own right.

Lemma 3.1. Let H and K be normal subgyrogroups of a gyrogroup G such that H ∩ K = {e}.

1) Then h ⊕ k = k ⊕ h for all h ∈ H, k ∈ K.
2) If h ∈ H and b ∈ G, then gyr [h, b](k) = k for all k ∈ K.
3) If k ∈ K and a ∈ G, then gyr [a, k](h) = h for all h ∈ H.

Proof. Since HEG and KEG, we obtain H = kerϕ and K = kerψ, where ϕ and ψ are homomorphisms
of G to some gyrogroups. Let h ∈ H and k ∈ K. Since ϕ preserves the operations and ϕ(h) = e, it
follows that

ϕ(	h ⊕ (	k ⊕ (h ⊕ k))) = 	ϕ(h) ⊕ (	ϕ(k) ⊕ (ϕ(h) ⊕ ϕ(k))) = e.

Hence, 	h⊕ (	k⊕ (h⊕ k)) ∈ H. Similarly, ψ(	h⊕ (	k⊕ (h⊕ k))) = e and then 	h⊕ (	k⊕ (h⊕ k)) ∈ K.
Since H∩K = {e}, we obtain 	h⊕ (	k⊕ (h⊕k)) = e, which implies h⊕k = k⊕h by the left cancellation
law II. This proves Part 1.

Let h ∈ H, b ∈ G, and k ∈ K. Since gyr [h, b](K) = K, it follows that gyr [h, b](k) = k′ for some
k′ ∈ K. By Proposition 2.1, ϕ(k′) = ϕ(gyr [h, b](k)) = gyr [ϕ(h), ϕ(b)](ϕ(k)) = ϕ(k) since ϕ(h) = e. By
Proposition 2.2, 	k⊕k′ ∈ H. Hence, 	k⊕k′ ∈ H∩K. By assumption, 	k⊕k′ = e, which implies k′ = k
by the left cancellation law II. This proves Part 2. Part 3 is proved in a similar fashion to Part 2. �

Lemma 3.2. ( [8, Lemma 1]) If H and K are subgyrogroups of a gyrogroup G with the property that
gyr [a, b](K) ⊆ K for all a, b ∈ H and H ∩ K = {e}, then h1 ⊕ k1 = h2 ⊕ k2, where h1, h2 ∈ H, k1, k2 ∈ K,
implies h1 = h2 and k1 = k2.

Proof. See the proof of Lemma 1 of [8]. �

The following theorem gives a criterion to decompose a gyrogroup into the direct product of its
subgyrogroups. This generalizes the familiar direct product theorem for groups.

Theorem 3.1. (Direct product theorem for gyrogroups) Let G be a gyrogroup. If H and K are
subgyrogroups of G such that

(i) G = H ⊕ K;
(ii) H EG and K EG;

(iii) H ∩ K = {e},

then G � H × K as gyrogroups.
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Proof. Define a map φ by φ(h, k) = h ⊕ k for all h ∈ H, k ∈ K. Then φ sends H × K to G. We show
that φ is an isomorphism. By condition (i), φ is surjective. Let h1, h2 ∈ H and k1, k2 ∈ K. Suppose that
φ(h1, k1) = φ(h2, k2). Then h1 ⊕ k1 = h2 ⊕ k2. By Lemma 3.2, h1 = h2 and k1 = k2. This proves that φ is
injective. Using the left and right gyroassociative laws and Lemma 3.1, we obtain

φ((h1, k1) ⊕ (h2, k2)) = φ(h1 ⊕ h2, k1 ⊕ k2)
= (h1 ⊕ h2) ⊕ (k1 ⊕ k2)
= h1 ⊕ (h2 ⊕ gyr [h2, h1](k1 ⊕ k2))
= h1 ⊕ (h2 ⊕ (k1 ⊕ k2))
= h1 ⊕ ((h2 ⊕ k1) ⊕ gyr [h2, k1](k2))
= h1 ⊕ ((h2 ⊕ k1) ⊕ k2)
= h1 ⊕ ((k1 ⊕ h2) ⊕ k2)
= h1 ⊕ (k1 ⊕ (h2 ⊕ gyr [h2, k1](k2)))
= h1 ⊕ (k1 ⊕ (h2 ⊕ k2))
= (h1 ⊕ k1) ⊕ gyr [h1, k1](h2 ⊕ k2)
= (h1 ⊕ k1) ⊕ (gyr [h1, k1](h2) ⊕ gyr [h1, k1](k2))
= (h1 ⊕ k1) ⊕ (h2 ⊕ k2)
= φ(h1, k1) ⊕ φ(h2, k2).

This proves that φ preserves the gyrogroup operations. �

The converse of the above theorem also holds, in the sense of the following theorem.

Theorem 3.2. Let A and B be gyrogroups and let G = A × B. Then G contains subgyrogroups H and
K such that

(i) G = H ⊕ K;
(ii) H EG and K EG;

(iii) H ∩ K = {(e, e)}.

Proof. Set H = {(a, e) : a ∈ A} and K = {(e, b) : b ∈ B}. By definition, (a, b) = (a, e) ⊕ (e, b) for all
a ∈ A, b ∈ B. Hence, G = H ⊕ K. Let π1 : A × B → A and π2 : A × B → B be the projection
maps defined by π1(a, b) = a and π2(a, b) = b for all (a, b) ∈ A × B, respectively. Then π1 and π2 are
gyrogroup homomorphisms such that H = ker π2 and K = ker π1. This shows that H EG and K EG.
It is clear that H ∩ K = {(e, e)}. �

We give a few concrete examples to illustrate Theorem 3.1 below.

Example 3.1. Let A be the gyrogroup Dih(G8) given in Example 5 of [8], called the dihedralized
gyrogroup of G8. Let B be the gyrogroup Qgyr

16 given in Example 5.2 of [9]. Then G = A × B is a finite
gyrogroup of order 256. Set H = {(a, (0, 0)) : a ∈ A} and K = {((0, 0), b) : b ∈ B}. As in the proof of
Theorem 3.2, H and K are distinct normal subgyrogroups of G such that H ∩ K contains precisely the
identity of G.
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Example 3.2. Referring to the Einstein gyrogroup (B,⊕E) in Section 3.8 of [14], we know by
Theorem 12 of [12] that Sym (B) forms a gyrogroup under the operation given by

σ ⊕ τ = Lu⊕Ev ◦ (α ◦ β) (3.1)

for all u, v ∈ B, α, β ∈ Sym0(B) = {ρ ∈ Sym (B) : ρ(0) = 0}. Using (3.1), one can check that H =

{Lu : u ∈ B} and K = Sym0(B) are distinct normal subgyrogroups of Sym (B) such that H∩K contains
precisely the identity of Sym (B).

The previous example can be generalized to arbitrary gyrogroups as follows. Recall that Cayley’s
theorem for gyrogroups states that every gyrogroup is isomorphic to a gyrogroup of permutations. Let
G be a gyrogroup. Let σ and τ be arbitrary permutations of G. By Theorem 2.2, σ and τ have unique
factorizations σ = La ◦ α and τ = Lb ◦ β, where a, b ∈ G and α, β ∈ Syme(G). This allows us to
introduce a gyrogroup operation on Sym (G), given by

σ ⊕ τ = La⊕b ◦ (α ◦ β). (3.2)

Then (Sym (G),⊕) becomes a gyrogroup containing Ĝ as an isomorphic copy of G. Moreover, by the
direct product theorem, (Sym (G),⊕) � Ĝ × Syme(G) as gyrogroups. This leads to new insight into the
gyrogroup version of Cayley’s theorem.

3.2. Cancellation in direct products of finite gyrogroups

To prove the cancellation theorem for direct products of finite gyrogroups, we need preliminary
results, which are important in their own right. We remark that this method of proof follows the same
steps as in the case of finite groups. Let G and H be gyrogroups. Define Hom (G,H) to be the set of
all homomorphisms from G to H,

Hom (G,H) = {ϕ : ϕ is a homomorphism from G to H}, (3.3)

and define IHom (G,H) to be the set of all injective homomorphisms from G to H,

IHom (G,H) = {ϕ : ϕ is an injective homomorphism from G to H}. (3.4)

Proposition 3.1. Let G,H, and K be gyrogroups.

1) If H � K, then there is a bijection from Hom (G,H) to Hom (G,K).
2) There is a bijection from Hom (G,H) × Hom (G,K) to Hom (G,H × K).
3) There is a bijection from IHom (G,H) to IHom (G/{e},H).

Proof. To prove Part 1, suppose that Φ : H → K is an isomorphism. Define a map σ by σ(ϕ) =

Φ ◦ ϕ for all ϕ ∈ Hom (G,H). As the composite of gyrogroup homomorphisms is again a gyrogroup
homomorphism, σ(ϕ) lies in Hom (G,K). Hence, σ sends Hom (G,H) to Hom (G,K). Note that Φ−1

is an isomorphism from K to H. We obtain similarly that the map τ defined by τ(ψ) = Φ−1 ◦ ψ for all
ψ ∈ Hom (G,K) sends Hom (G,K) to Hom (G,H). Direct computation shows that σ ◦ τ = IHom (G,K)

and τ ◦ σ = IHom (G,H). Hence, σ is bijective and σ−1 = τ.
For α ∈ Hom (G,H) and β ∈ Hom (G,K), define a map α × β by

α × β(g) = (α(g), β(g)) for all g ∈ G.
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It is not difficult to see that α×β is a homomorphism from G to H×K. Define a mapσ byσ(α, β) = α×β

for all α ∈ Hom (G,H), β ∈ Hom (G,K). Then σ maps Hom (G,H) × Hom (G,K) to Hom (G,H × K).
It is easy to see that σ is injective. Suppose that ϕ ∈ Hom (G,H × K). Let π1 : H × K → H and
π2 : H × K → K be the projection maps defined by π1(h, k) = h and π2(h, k) = k for all (h, k) ∈ H × K,
respectively. Then π1 ◦ ϕ ∈ Hom (G,H) and π2 ◦ ϕ ∈ Hom (G,K). Let g ∈ G and assume that
ϕ(g) = (h, k) with h ∈ H, k ∈ K. Then σ(π1 ◦ ϕ, π2 ◦ ϕ)(g) = (π1(ϕ(g)), π2(ϕ(g))) = (h, k) = ϕ(g) and so
σ(π1 ◦ ϕ, π2 ◦ ϕ) = ϕ. This proves that σ is surjective, which completes the proof of Part 2. The proof
of Part 3 is straightforward. �

Proposition 3.2. Let G and H be gyrogroups. Then there is a bijection from Hom (G,H)

to
⋃
NEG

IHom (G/N,H).

Proof. First, note that if N EG and K EG, then G/N = G/K if and only if N = K. In fact, G/N = G/K
implies e ⊕ N is the identity of G/K. Hence, e ⊕ N = e ⊕ K by the uniqueness of the identity and so
N = K. It follows that IHom (G/N,H) and IHom (G/K,H) have empty intersection whenever N , K.

Set U =
⋃
NEG

IHom (G/N,H). For each ϕ ∈ Hom (G,H), let ϕ be the isomorphism from G/ kerϕ

to imϕ defined as in the proof of the first isomorphism theorem (cf. Theorem 28 of [12]) by the
equation ϕ(a ⊕ kerϕ) = ϕ(a) for all a ∈ G. Then ϕ is an injective homomorphism from G/ kerϕ to
H; that is, ϕ ∈ IHom (G/ kerϕ,H). Define a map σ by σ(ϕ) = ϕ for all ϕ ∈ Hom (G,H). Then σ
maps Hom (G,H) to U . For each normal subgyrogroup N of G, let πN be the canonical projection
from G to G/N. For each ψ ∈ U , as noted above, there is a unique normal subgyrogroup N of G
such that ψ ∈ IHom (G/N,H) and we can define τ(ψ) = ψ ◦ πN . Then τ defines a map from U
to Hom (G,H). We show that σ and τ are inverses of each other. Let ϕ ∈ Hom (G,H). Note that
(τ ◦ σ)(ϕ) = τ(ϕ) = ϕ ◦ πkerϕ and that (ϕ ◦ πkerϕ)(a) = ϕ(a ⊕ kerϕ) = ϕ(a) for all a ∈ G. Hence,
ϕ ◦ πkerϕ = ϕ. This proves that τ ◦ σ = IHom (G,H). Let ψ ∈ U . Then ψ ∈ IHom (G/N,H), where N EG.
Note that (σ ◦ τ)(ψ) = σ(ψ ◦ πN) = ψ ◦ πN . Since ker (ψ ◦ πN) = N, we obtain by definition that

ψ ◦ πN(a ⊕ N) = ψ ◦ πN(a ⊕ ker (ψ ◦ πN)) = (ψ ◦ πN)(a) = ψ(a ⊕ N)

for all a ∈ G. Hence, ψ ◦ πN = ψ. This proves that σ◦τ = IU . Therefore, σ is bijective and σ−1 = τ. �

Suppose that G and H are finite gyrogroups. Because the union in the previous proposition
is disjoint, we derive a counting formula for homomorphisms from G to H in terms of injective
homomorphisms from G/N to H, where N runs over all normal subgyrogroups of G.

Corollary 3.1. If G and H are finite gyrogroups, then

|Hom (G,H)| =
∑
N EG

|IHom (G/N,H)|. (3.5)

Proof. Since G and H are finite, Hom (G,H) is a finite set. As noted in the proof of Proposition 3.2,
if N , K, then IHom (G/N,H) ∩ IHom (G/K,H) = ∅. Hence, Hom (G,H) is the disjoint union
of the sets IHom (G/N,H) as N varies over all normal subgyrogroups of G. Thus, |Hom (G,H)| =∣∣∣∣ ⋃

N EG

IHom (G/N,H)
∣∣∣∣ =

∑
N EG

|IHom (G/N,H)|. �
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We are now in a position to prove a left cancellation law for direct products of finite gyrogroups: if
G,H, and K are finite gyrogroups, then G × H � G × K implies H � K.

Theorem 3.3. (Left cancellation in direct products) Let G,H, and K be finite gyrogroups. If G × H �

G × K, then H � K.

Proof. Suppose that G × H � G × K. First, we show that

|Hom (L,H)| = |Hom (L,K)|

for all finite gyrogroups L. Let L be a finite gyrogroup. Note that |Hom (L,G)| , 0 because the trivial
homomorphism t defined by t(a) = e for all a ∈ L is an element in Hom (L,G). By Part 1 and Part 2 of
Proposition 3.1,

|Hom (L,G)||Hom (L,H)| = |Hom (L,G × H)|
= |Hom (L,G × K)|
= |Hom (L,G)||Hom (L,K)|,

which implies |Hom (L,H)| = |Hom (L,K)|.
Next, we show that |IHom (L,H)| = |IHom (L,K)| for all finite gyrogroups L by induction on |L|.

The case where |L| = 1 is clear. Suppose that {e} , N E L. Since N is an L-subgyrogroup of G, we

obtain that |L/N| =
|L|
|N|

< |L|. Hence, by the inductive hypothesis, |IHom (L/N,H)| = |IHom (L/N,K)|.

By Part 3 of Proposition 3.1 and (3.5),

|IHom (L,H)| = |IHom (L/{e},H)|

= |Hom (L,H)| −
∑

{e},N E L

|IHom (L/N,H)|

= |Hom (L,K)| −
∑

{e},N E L

|IHom (L/N,K)|

= |IHom (L/{e},K)|
= |IHom (L,K)|,

which completes the induction.
In the particular case when L = H, we have |IHom (H,K)| = |IHom (H,H)| ≥ 1 because the identity

homomorphism on H is in IHom (H,H). Hence, there is a homomorphism φ ∈ IHom (H,K). Since
|G||H| = |G × H| = |G × K| = |G||K|, it follows that |H| = |K|. Since φ is injective, |φ(H)| = |H| = |K|.
Since φ(H) ⊆ K and K is finite, φ(H) = K. This proves that φ is surjective and so φ becomes an
isomorphism from H to K. Thus, H � K. �

Corollary 3.2. (Right cancellation in direct products) Let G,H, and K be finite gyrogroups. If H×G �

K ×G, then H � K.

Proof. This follows directly from Theorem 3.3 and Proposition 2.3. �

We may weaken the assumptions of Theorem 3.3 and Corollary 3.2, as shown in the following
theorem.
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Theorem 3.4. (Cancellation in direct products) Let A, B,H, and K be finite gyrogroups such that
A � B. If A × H � B × K or H × A � K × B, then H � K.

Proof. Suppose that A × H � B × K. Since A � B, it follows by Part 3 of Proposition 2.3 that
A × H � B × H. By Part 2 of Proposition 2.3, B × H � B × K. By Theorem 3.3, H � K. The case
where H × A � K × B is proved similarly. �

We emphasize that the finiteness of gyrogroups in Theorem 3.3 is crucial. In fact, there are infinite
gyrogroups (indeed, infinite groups) G,H, and K such that G × H � G × K but H and K are not

isomorphic. For example, let G =

∞∏
i=1

Z, let H = Z, and let K = Z × Z, where Z is the additive group

of integers. Then G × H � G × K but H and K are not isomorphic.

4. Conclusions

We prove a few theorems that involve direct products of gyrogroups, especially the direct product
theorem for gyrogroups and some cancellation laws for direct products of finite gyrogroups. These
results extend two well-known results in abstract algebra.
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