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Abstract: The research groups in engineering and technological fields are becoming increasingly 

interested in the investigations into and utilization of artificial intelligence techniques in order to offer 

enhanced productivity gains and amplified human capabilities in day-to-day activities, business 

strategies and societal development. In the present study, the hydromagnetic second-order velocity slip 

nanofluid flow of a viscous material with nonlinear mixed convection over a stretching and rotating 

disk is numerically investigated by employing the approach of Levenberg-Marquardt back-propagated 

artificial neural networks. Heat transport properties are examined from the perspectives of thermal 

radiation, Joule heating and dissipation. The activation energy of chemical processes is also taken into 

account. A system of ordinary differential equations (ODEs) is created from the partial differential 

equations (PDEs), indicating the velocity slip nanofluid flow. To resolve the ODEs and assess the 

reference dataset for the intelligent network, Lobatto IIIA is deployed. The reference dataset makes it 

easier to compute the approximate solution of the velocity slip nanofluid flow in the MATLAB 

programming environment. A comparison of the results is presented with a state-of-the-art Lobatto 

IIIA analysis method in terms of absolute error, regression studies, error histogram analysis, mu, 

gradients and mean square error, which validate the performance of the proposed neural networks. 

Further, the impacts of thermal, axial, radial and tangential velocities on the stretching parameter, 

magnetic variable, Eckert number, thermal Biot numbers and second-order slip parameters are also 

examined in this article.  With an increase in the stretching parameter's values, the speed increases. In 

contrast, the temperature profile drops as the magnetic variable's value increases. The technique's 
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worthiness and effectiveness are confirmed by the absolute error range of 10-7 to 10-4. The proposed 

system is stable, convergent and precise according to the performance validation up to E-10. The 

outcomes demonstrate that artificial neural networks are capable of highly accurate predictions and 

optimizations. 

Keywords: velocity slip; artificial neural network; Levenberg-Marquardt; Lobatto IIIA; activation 

energy 

Mathematics Subject Classification: 68T20, 70E99, 35-XX 

 

1. Introduction 

Artificial neural networks (ANNs) are a significant technique for artificial intelligence. ANNs 

have developed applications in a wide range of fields owing to their capacity to refabricate and model 

nonlinear phenomena. System identification, sequence recognition, process control, sensor data 

analysis, natural resource management, quantum chemistry, data mining, pattern recognition, medical 

diagnosis, finance, visualization, machine translation, e-mail spam filtering and social network 

filtering are just a few examples of its applications based on the input that flows via a network during 

the learning process, either externally or internally, ANNs are evolutionarily versatile under a variety 

of conditions. The back propagation helps to reliable back propagation stochastic numerical technique. 

Backpropagation is a supervised learning method that applies the gradient descent approach to lower 

the gradient of the error curve and thereby minimize error. Paul Werbos devised the backpropagation 

method in 1974, which Rumelhart and Parker rediscovered. In feed-forward multilayer neural 

networks, the backpropagation algorithm is commonly used as a learning method. The Levenberg-

Marquardt (LM) backpropagation technique for ANNs is a ground-breaking convergent stability 

methodology that gives numerical solutions to a large extent of fluid flow issues. Numerous 

researchers have recently experimented with Newtonian and non-Newtonian fluid systems by using 

an Levenberg-Marquardt back-propagated ANN (LBM-BN). Ly et al. [1] provided a metaheuristic 

analysis for the parameters and construction of LBM-BN to forecast the shear capacity of foamed 

concrete accurately and quickly. Zhao et al. [2] used the LBM-BN method to estimate the defection of 

reinforced concrete beams. Nguyen et al. [3] used ANN-based LM to improve the reliability of robot 

placement. The ANN approach was adopted by Ali et al. [4] to estimate the expulsion over a sharp-

crested weir, and the training technique is based on LM. Ye and Kim [5] used an LBM-BN in China 

to evaluate electricity usage in a building. Bharati et al. [6] created a neuro-fuzzy system framework 

and self-organizing maps for superconductor prediction. 

Nanofluids are usually utilized as coolants in heat transfer devices such as heat exchangers, 

electronic cooling systems and radiators because of their improved thermal properties. Nanofluids have 

unique characteristics that could make them fruitful in a variety of heat transfer applications, including 

pharmaceutical practices, microelectronics and hybrid-powered engines, as well as in engine cooling, 

heat exchangers, domestic refrigerators, grinding, chillers and boiler flue gas temperature reduction. 

Numerous studies based on the nanofluid concept have been published in the previous few decades. 

Choi and Eastman [7] proposed nanoparticle diffusion in a base fluid for engineering disciplines for 

the first time two decades ago. In an analysis by Uddin et al. [8], in the presence of a stretching and 

contracting sheet, steady two-dimensional laminar mixed convective boundary slip nanofluid flow 

arises in a permeable Darcian medium. A Din et al. [9] investigation found that the temperature 

dispersion, productivity and temperature of the fin's tip are significantly influenced by thermal and 
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thermo-geometric aspects. According to their analysis, the fading exponential fin is more efficient than 

the expanding exponential fin, and this offers important benefits for mechanical engineering. The 

results on a magnetohydrodynamics (MHD) nanofluid in a circular permeable material, as presented 

by Jalili et al. [10], demonstrates that the convection mechanism weakens with an increase in the 

volume fraction of solid nanoparticles. A stronger and more unified core vortex will result from a 

substantial rise in the Rayleigh number. Additionally, a favorable Nuave occurs when a magnetic force 

is applied horizontally. A ferrofluid over a shrinking sheet with effective thermal conductivity was 

another subject of study by Jalili et al [11]. The results indicate that the magnetic and boundary 

parameters have a similar effect on velocity as the micro-rotation parameter. By examining natural 

convection in a cavity equipped with a nanofluid, Geridonmez reported in [12] that the fluid velocity 

and heat transmission are boosted in the presence of nanoparticles, and that convective heat transfer 

is decreased in a rectangular cavity. The squeezing nanofluid flow that was developed by the authors 

of [13,14] investigated the Casson-type hybrid nanofluid with slip and sinusoidal heat conditions. 

Tawade et al. [15] observed increments in the temperature profile for increasing values of the Brownian 

motion parameter, and that the energy distribution increases with increment in the value of the 

thermophoresis parameter. Hamid et al. [16] investigated the fractional-order unsteady natural 

convective radiating flow of a nanofluid; they observed that the velocity field decreases with enhancing 

magnetic field effects. A heat and mass transmission study of radiative and chemical reactive effects 

on an MHD nanofluid over an infinite moving vertical plate was performed by Arulmozh et al. [17]. 

The behavior of an ionized nano-liquid motion with reference to heat transmission between two 

parallel discs was studied by Khan et al. [18]. Tuz Zohra et al. [19] explored the MHD bio-nano 

convective slip stream with Stefan blowing phenomena across a spinning disc, demonstrating that, 

compared to blowing, suction offers a better medium for enhancing the amount of heat, mass and 

microbial transmission. Various studies pertaining to nanofluids can be found in [20–23]. 

The activation energy (AE) in a fluid stream is significant in a broad range of industrial 

applications. Arrhenius proposed the concept of activation energy in 1889. It is the absolute basic 

minimum of energy required for the organisms to transform the reaction mixture into products. Oil 

emulsions, geothermal energy, fluid mechanics and chemical engineering all benefit from this 

phenomenon. Given a Carreau nanofluid with magnetic influence, Irfan et al. [24] applied mass flux 

theory and Arrhenius activation energy. Waqas et al. [25] proposed a bio-convection flow of a tangent 

hyperbolic nanofluid over a Riga plate with activation energy, demonstrating that increasing the 

chances of mixed convection parameters increases the velocity of the tangent hyperbolic fluid. Bhatti 

and Michaelides [26] also used activation energy to transmit a thermo-bioconvection nanofluid across 

a Riga plate. The nanofluid and bacteria existing in the base fluid were filled into the Riga plate. The 

study of modulated heat plus mass fluxes in 3D Eyring-Powell nanofluid nonlinear thermal radiation 

was done by Muhammad et al. [27]. For preventing boundary-layer separation and reducing submarine 

friction and pressure drag, a Riga plate has been used. In the presence of electromagnetic fields and 

gyrotactic microorganisms, slip effects on an MHD nanofluid were explored by Habib et al. [28], who 

used a mathematical approach. The MHD peristaltic transport of a Sutterby nanofluid with mixed 

convection and a Hall current was described by Hayat et al. [29]. In contrast to higher activation 

energies and radiation factors, concentration was seen to increase. Entropy continues to decrease in 

response to greater diffusion parameters. 

In real-life situations, many complex problems demand an ANN due to their complex structure. 

Due to their extensive applicability in a wide range of domains, analytical and numerical actions that 

address computational fluid dynamic problems with a deterministic computing model are garnering 

increasing interest from technical groups, specifically, mathematicians and physicists. When compared 
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to traditional numerical techniques, artificial intelligence algorithms based on stochastic numerical 

computing have produced accurate and validated results, inspiring authors to work in this paradigm. 

Researchers in ANNs have recently accomplished some valuable work, like entropy-generated 

systems [30], porous fins [31], COVID-19 [32], hydromagnetic Williamson fluid flow [33], carbon 

nanotubes [34], Emden-Fowler equation [35], second-order singular functional differential models [36], 

Darcy-Forchheimer models [37], dissipative fluid flow systems [38], mosquito dispersal models [39] 

and many others [40–43]. 

The authors’ main goal of this paper is to exploit the strength of artificial back-propagated neural 

networks with an LBM-BN algorithm that augment the computing power and level of accuracy of the 

solver to scrutinize the hydromagnetic velocity slip nanofluid flow (VSN) of a viscous material with 

nonlinear mixed convection over a stretching and rotating disc. No one has used this technique for the 

proposed problem. It is a novel approach to solve the problem of intelligent computing technique-

based supervised learning for VSN model dynamics by using a modern stochastic solution approach 

based on the artificial intelligence algorithm. Artificial intelligence-based stochastic solution 

approaches are a more effective and practical substitute for the implementation of numerous linear and 

nonlinear mathematical frameworks. These problem-solving methods were developed by using a 

contemporary computing paradigm to address a system of extremely nonlinear ordinary differential 

equations (ODEs) that describe the mathematical representations of such fluid problems. The main 

objectives of this research are as follows: 

(i). Represent the mathematical modeling for hydromagnetic VSN. 

(ii). Explain the solution for designed hydromagnetic VSN via testing, validation and training 

processes. 

(iii). Examine the reference data samples arbitrarily preferred for testing, training and validation and 

analyze the approximated solutions of the proposed LBM-BN in comparison with the reference 

results.  

(iv). Generate datasets through the use of LM, and in training/validation/testing processes, as a 

target for identifying the approximated solution of the proposed LBM-BN. 

(v). The suggested technique efficiently examines the dynamics of the problem for many scenarios 

based on the variation of pertinent parameters to depict velocity, concentration and temperature 

profiles. 

(vi). The LBM-BN validity and verification are based on a thorough examination of accuracy 

assessments, histograms and regression analysis conducted for the VSN, which are given 

graphically and numerically in sufficient detail. 

(vii). Examine the various scenarios of the VSN by varying the stretching parameter, magnetic 

variable, Eckert number, thermal Biot numbers and second-order slip parameters. 

The proposed mathematical model is illustrated in Section II. Section III describes the 

methodology of the designed LBM-BNs with the interpretation of the result. Section IV discusses the 

effects of several physical parameters on axial 𝑓(𝜉),  radial 𝑓′(𝜉),  thermal 𝜃(𝜉),  and tangential 

velocities 𝑔(𝜉). The current study's conclusion is drawn in Section V. 

2. Problem model 

Nonlinear mixed convection hydromagnetic slip flow for nanofluid flow is considered. The slip 

velocity is of second order. The considered fluid is incompressible, electrically conductive and flowing 

along a stretching and rotating surface. The disk is located at z = 0 and rotating with a frequency 𝛺 

about the z axis. At 𝑧 > 0, the heat transfer is taken out matter to thermal radiation, Joule heating, 
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Brownian motion and thermophoresis diffusion are also incorporated in the fluid flow system. Figure 1 

is a physical illustration of the model.  
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Figure 1. Problem model. 

The governing flow model is given in [44–47]. The stimulated magnetic field is ignored because of 

small values of the following: 

𝜕𝑤

𝜕𝑧
+

𝑢

𝑟
+

𝜕𝑢

𝜕𝑟
= 0,          (1) 

𝜕𝑢

𝜕𝑧
𝑤 −

𝑣2

𝑟
+
𝜕𝑢

𝜕𝑟
𝑢 

𝜕2𝑢

𝜕𝑧2
𝜈𝑓 −

𝜎𝑓

𝜌𝑓
𝐵0
2𝑢 + 𝑔{𝛽1(𝑇 − 𝑇∞) + 𝛽2(𝑇 − 𝑇∞)

2 + 𝛽3(𝐶 − 𝐶∞) + 𝛽4(𝐶 − 𝐶∞)4}, (2) 

𝜕𝑣

𝜕𝑧
𝑤 +

𝜕𝑣

𝜕𝑟
𝑢 +

𝑢𝑣

𝑟
=

𝜕2𝑣

𝜕𝑧2
𝜈𝑓 −

𝜎𝑓

𝜌𝑓
𝐵0
2𝑣,       (3) 

(
𝜕𝑇

𝜕𝑧
𝑤 +

𝜕𝑇

𝜕𝑟
𝑢) =

𝜕2𝑇

𝜕𝑧2
𝜅𝑓

(𝜌𝑐𝑝)𝑓

+
(𝜌𝑐𝑝)𝑝

(𝜌𝑐𝑝)𝑓

{(
𝜕𝑇

𝜕𝑧
)
2 𝐷𝑇

𝑇∞
+ (

𝜕𝐶

𝜕𝑧
.
𝜕𝑇

𝜕𝑧
)𝐷𝐵} 

+ {(
𝜕𝑣

𝜕𝑧
)
2
+ (

𝜕𝑢

𝜕𝑧
)
2
}

𝜇𝑓

(𝜌𝑐𝑝)𝑓
+

𝜎𝑓𝐵0
2

(𝜌𝑐𝑝)𝑓

(𝑢2 + 𝑣2) +
𝜕2𝑇

𝜕𝑧2
16𝜎 𝑇∞

3

3𝜅 (𝜌𝑐𝑝)𝑓
, (4) 

𝜕𝐶

𝜕𝑧
𝑤 +

𝜕𝐶

𝜕𝑟
𝑢 =

𝜕2𝐶

𝜕𝑧2
𝐷𝐵 +

𝜕2𝑇

𝜕𝑧2
𝐷𝑇

𝑇∞
− 𝜅𝑟

2(𝐶 − 𝐶∞) (
𝑇

𝑇∞
)
𝑛
𝑒𝑥𝑝 (

−𝐸𝛼

𝜅𝑇
),    (5) 

𝑢 = 𝑎1𝑟 +
𝜕𝑢

𝜕𝑧
𝜆1 +

𝜕2𝑢

𝜕𝑧2
𝜆2, 𝑣 = 𝛺𝑟 +

𝜕𝑣

𝜕𝑧
𝜆3 +

𝜕2𝑣

𝜕𝑧2
𝜆4, 𝑤 = 0, 

−𝜕𝑇

𝜕𝑧
𝜅𝑓 = (𝑇𝑤 − 𝑇)ℎ1, −

𝜕𝐶

𝜕𝑧
𝐷𝐵 = (𝐶𝑤 − 𝐶)ℎ2𝑎𝑡𝑧 = 0,    (6) 

𝑢 → 0, 𝑣 → 0, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞𝑤ℎ𝑒𝑛𝑧 → ∞. 

Here, from [46], 

, , 2 , , , .
w w

C C T T z
u r f v r g w h f

C C T T h
   

 

− −
=  =  = −

−
  = = =

−
 (7) 

The dimensionless equations are as follows: 

𝑓′′′ + ℜ(2𝑓𝑓′′ − 𝑓′2 + 𝑔2 −𝑀𝑓′) + 𝜆𝜃(1 + 𝛽𝑡𝜃) + 𝜆𝑁 𝜙(1 + 𝛽𝑐𝜙) = 0,  (8) 

𝑔′′ + ℜ(2𝑓𝑔′ − 2𝑓′𝑔 −𝑀𝑔) = 0,       (9) 

1
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(𝑅 + 1)𝜃′′ + 2𝑅𝑒𝑓𝜃′ + 𝑁𝑡𝜃′2 + 𝑁𝑏𝜃′𝜙′ +𝑀𝐸𝑐(𝑓′2 + 𝑔2) + 𝐸𝑐, (10) 



6260 

AIMS Mathematics  Volume 8, Issue 3, 6255–6277. 

 

1

𝑆𝑐
𝜙+fϕ'+{1}over{Sc}left({Nt}over{Nb}right)θ − 𝜅1𝜙(1 + 𝛼1𝜃)

𝑛𝑒𝑥𝑝 (
−𝐸1

1+𝛼1𝜃
) = 0,   (11) 

𝑓′(0) = 𝐴1 + 𝐿1𝑓′′(0)+L2f′left(0right), 𝑓left(0right) = 0, 

𝑔left(0right) = 1 + {𝐿}rsub{3}𝑔′left(0right) + {𝐿}rsub{4}𝑔′′left(0right), 

𝜃′(0) = −𝐵1(1 − 𝜃(0)), 𝜙′(0) = −𝐵2(1 − 𝜙(0)), 𝑎𝑡𝑧 = 0,    (12) 

𝑓′(∞) → 0, 𝑔(∞) → 0, 𝜃(∞) → 0, 𝜙(∞) → 0. 

Here, 

ℜ =
𝑟2𝛺

𝜈𝑓
, 𝑀 =

𝜎𝑓𝐵0
2

𝜌𝑓𝑎
, 𝜆 =

𝑔𝛽1(𝑇𝑤 − 𝑇∞)

𝑟𝛺2
, 𝑁 =

𝛽3(𝐶𝑤 − 𝐶∞)

𝛽1(𝑇𝑤 − 𝑇∞)
, 𝑃𝑟 =

(𝜌𝑐𝑝)𝑓
𝜈𝑓

𝜅𝑓
, 

𝑅 =
16𝜎 𝑇∞

3

3𝜅𝑓𝜅
, 𝑁𝑡 =

𝜏𝐷𝑇(𝑇𝑤 − 𝑇∞)

𝑇∞𝜈𝑓
, 𝐸𝑐 =

(𝑟𝛺)2

𝑐𝑝(𝑇𝑤 − 𝑇∞)
, 𝑁𝑏 =

𝜏𝐷𝐵(𝐶𝑤 − 𝐶∞)

𝜈𝑓
, 𝑆𝑐 =

𝜈𝑓

𝐷𝐵
, 

𝜅1 =
𝜅𝑟
2

𝛺
, 𝛼1 =

(𝑇𝑤 − 𝑇∞)

𝑇∞
, 𝛽𝑡 =

𝛽2(𝑇𝑤 − 𝑇∞)

𝛽1
, 𝛽𝑐 =

𝛽4(𝐶𝑤 − 𝐶∞)

𝛽3
, 𝐸1 =

𝐸𝑎
𝜅𝑇∞

, 𝐴1 =
𝑎1
𝛺
, 

𝐿1 =
𝜆1
ℎ
, 𝐿2 =

𝜆2
ℎ2

, 𝐿3 =
𝜆3
ℎ
, 𝐿4 =

𝜆4
ℎ2

, 𝐵1 =
ℎ1ℎ2
𝜅𝑓

, 𝐵2 =
ℎ2ℎ

𝐷𝐵
, 𝜅 = 8.61 × 10−5 𝑒𝑉 𝐾⁄ . 

3. Solution methodology 

The novel concept of the proposed LBM-BN-based method is applied to examine the steady 3D 

incompressible hydromagnetic VSN flow for a rotating disc surface with nonlinear mixed convection. 

Nonlinear PDEs are altered into ODEs through appropriate transformations, and the computational 

results can be calculated by utilizing the Lobatto IIIA formula in the bvp4c technique in MATLAB 

software. For boundary-value problems, the Lobatto IIIA approach has been studied to test the stability 

of attributes. The Lobatto IIIA method is used by many researchers in different fields [48–51]. This 

technique is applied for the solution of ODEs and generates a dataset for the LBM-BN. The datasets 

are attained from Lobatto IIIA based on the variation of influential parameters. Later on, a solution 

can be approximated through a training, testing and validation procedure in MATLAB by using the 

nftool module, and a comparison is made between the standard results and those of the LBM-BN. The 

designed neural network weights are connected with nodes and optimized via hidden layers and 

activation functions. If the weights are not optimized through a forward pass, then the backward pass 

is taken into account to tune the values of weights, which provides the best solution for the governing 

mathematical systems. The procedure for the ANNs is provided in [52,53]. This dataset can be used to 

assist in the calculation of the approximated solution of the VSN problem in MATLAB. Figure 2 

illustrates the ANN for the VSN. Figure 3 illustrates the flowchart for the given problem. Regarding 

the influence of different parameters of the VSN, the graphs are presented for axial 𝑓(𝜉), radial 𝑓′(𝜉), 

thermal 𝜃(𝜉), and tangential velocity 𝑔(𝜉) profiles. Also, Table 1 shows all of the scenarios and cases 

for variants of the VSN. Table 2 reflects the outcomes of the LBM-BN for all scenarios of the VSN. 

Table 2 contains the epochs, mean square error (MSE) values, performances, mu parameters, gradients 

and times for all scenarios related to the VSN. For validation of the performance of the LBM-BN, error 

histogram (EH) regression analysis was performed and the transition state (TS) and MSE results are 

analyzed. 
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Figure 2. Neural network of VSN. 
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4. Results and discussion 

The effects of the VSN model were resolved by using an ANN with back-propagated LM. The 

reference dataset was generated by applying the Lobatto IIIA procedure using MATLAB software. 

The numerical solution achieved for the allocation of axial 𝑓(𝜉),  radial 𝑓′(𝜉),  thermal 𝜃(𝜉),  and 

tangential velocity 𝑔(𝜉) profiles has been studied and explained through diagrams. All six different 

scenarios of each have four different cases that are listed in Table 1. The input ranged between 0 and 

7, with a step size of 0.07 for each case of the proposed LBM-BN for the VSN model. After the dataset 

was generated, the ‘nftool’ command was employed to evaluate the solution for the VSN. The solutions 

of the LBM-BN for all scenarios of Case IV, in the form of the MSE, curve fitness plot, error histogram, 

regression and training state, are demonstrated in Figures 4–8. Figures 4–8 show the outcomes of the 

stretching parameter (𝐴1), magnetic variable (𝑀, Eckert number (𝐸𝑐), thermal Biot numbers (𝐵1), and 

second-order slip parameters (𝐿2, 𝐿4) for the VSN model. Additionally, convergence through MSE 

curves for training and testing, as well as the gradient, best performance index, time taken, mu and 

epochs are presented in Table 2 for each scenario of all four cases.  

Figure 4 shows the training, validation and testing MSE curves for Case IV for all six scenarios 

of the VSN. Figure 4(a) shows the MSE curves for Scenario 1 of Case IV. The MSE curves for the 

best validation performance were attained at 2.97E-10 with 145 epochs in 9 s. Figure 4(b) shows the 

MSE curves for Scenario 2 of Case IV. The MSE curves for the best validation performance were 

attained at 3.42E-10 with 84 epochs in 1 s. Figure 4(c) shows the MSE curves for Scenario 3 of Case 

IV. The MSE curves for the best validation performance were attained at 6.22E-11 with 58 epochs in 

0 s. Figure 4(d) shows the MSE curves for Scenario 4 of Case IV. The MSE curves for the best 

validation performance were attained at 2.25E-10 with 148 epochs in 0 s. Figure 4(e) shows the MSE 

curves for Scenario 5 of Case IV. The MSE curves for the best validation performance were attained 

at 1.20E-09 with 103 epochs in 0 s. Figure 4(f) shows the MSE curves for Scenario 6 of Case IV. The 

MSE curves for the best validation performance were attained at 2.54E-09 with 193 epochs in 1 s.  

Figure 5 illustrates the TS for Case IV for all six scenarios, which was obtained by using the 

LBM-BN. The impacts of the axial 𝑓(𝜉), radial 𝑓′(𝜉), temperature 𝜃(𝜉), and tangential velocities 𝑔(𝜉) 

on the stretching parameter (𝐴1), magnetic variable (𝑀, Eckert number (𝐸𝑐), thermal Biot number 

(𝐵1), and second-order slip parameters (𝐿2, 𝐿4) were investigated. The gradient had values of 9.93E-

08, 9.95E-08, 9.66E-08, 9.90E-08, 9.67E-08 and 9.71E-08, where the values of the mu parameter were 

1.00E-08, 1.00E-09, 1.00E-10, 1.00E-09, 1.00E-09 and 1.00E-09 for the LBM-BN, as shown in the 

depicted plots. The enhanced networks training and test the enhanced convergence of the results can 

be obtained for the smallest values of gradient, and Mu provide the best convenience. 

Figures 6(a–f) and 7(a–f) represent the fitness curves and EHs for Case IV in terms of 𝐴1 , 

𝑀, 𝐿2, 𝐿4,𝐵1 and 𝐸𝑐, as obtained by using the LBM-BN for the VSN model. The scrutiny of the EHs 

reveals that the maximum values depicting the errors were found to be very close to zero, which 

validates the worth of the solver. 

Figure 8(a–f) reflects the graphical illustration of the regression analysis for Case IV for all 

scenarios of the LBM-BN VSN. The regression plots show that the solver gave the most optimal 

solution corresponding to the scenarios in terms of 𝐴1, 𝑀, 𝐿2, 𝐿4,𝐵1 and 𝐸𝑐𝑓𝑜𝑟𝑓(𝜉), 𝑓′(𝜉), 𝑔(𝜉),∧ 𝜃(𝜉), 

as associated with the presented fluid flow system. 

Figure 9 demonstrates the behavior of all physical quantities 𝐴1 , 𝑀, 𝐿2, 𝐿4,𝐵1  and 𝐸𝑐  for 𝑓(𝜉), 

𝑓′(𝜉), 𝑔(𝜉),∧ 𝜃(𝜉). From Figure 9(a,b) it can be perceived that, for a higher value of 𝐴1 , the flow 

increases in the radial and axial velocity directions. Substantially, for a larger 𝐴1, the stretching rate 

increases and creates more disturbance in the liquid. Thus, the velocity increases. Figure 9(c,d) shows 
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the effect of 𝐿2  for 𝑓(𝜉),∧ 𝑓′(𝜉) . Clearly, we examined that the velocity components 𝑓(𝜉),∧

𝑓′(𝜉)decline due to an enrichment in 𝐿2. 

Figure 9(e) depicts the impact of the tangential velocity 𝑔(𝜉)  due to the second-order slip 

parameter 𝐿4. It can be seen that the tangential velocity declines with the increase of second order slip 

parameter. 

The effects of reducing the influence of the tangential velocity and its relationship with larger 

values of M are depicted in Figure 9(f). Physically, for larger values of M, the Lorentz force increases, 

which is a force that is resistant to the motion of producing material elements. Hence, the velocity 

decreases. Figure 9(g) displays the effect of 𝐸𝑐 on temperature. The parameter Ec was used to calculate 

the effect of self-heating on the dissipation properties of a liquid. At extreme flow rates, the thermal 

field in a fluidic framework is swamped by the temperature gradients appearing in the framework. 

Also, the effects of dissipation caused by the internal friction temperature are enhanced with the 

increase of Ec. Figure 9(h) was sketched to discuss the performance of 𝐵1 on temperature function. 

We can see that 𝜃(𝜉) increases with increment in the value of 𝐵1. 

Figure 10 shows the graphical representation of absolute error (AE) with the variation of 𝑓(𝜉), 

𝑓′(𝜉), 𝑔(𝜉) and 𝜃(𝜉), which validates the performance of the proposed technique.  In Figure 10(a), the 

AE lies between 10-4 and 10-7 with the increment in 𝐴1 for 𝑓(𝜉), whereas, in Figure 10(b), the AE 

ranges between 10-4 and 10-6 with the increase in 𝐴1 for 𝑓′(𝜉). Figure 10(c, d) illustrates the AE of 

𝐿2for 𝑓(𝜉) and 𝑓′(𝜉) in the range of 10-4 to 10-7. Figure 10(e, f) depicts the AE of  𝐿4 and M for the 

tangential velocity 𝑔(𝜉)in the range of 10-4 to 10-7 and 10-4 to 10-6, respectively. Figure 10(g, h) exhibits 

the AE in the range of 10-4 to 10-7 for both Ec and 𝐵1 for the temperature function 𝜃(𝜉). 

Table 1. All scenarios and cases for physical quantities of the VSN. 

  

Scenario 
Physical 

Quantities 
Profile 

Cases 

Case 1 Case 2 Case 3 Case 4 

1 𝐴1 
𝑓(𝜒) 0.3 0.6 0.9 1.2 

𝑓′(𝜒) 0.3 0.6 0.9 1.2 

2 𝐿2 
𝑓(𝜒) -0.3 -0.6 -0.9 -1.0 

𝑓′(𝜒) -0.3 -0.6 -0.9 -1.0 

3 𝐿4 𝑔(𝜒) -0.15 -0.3 -0.45 -0.6 

4 𝑀 𝑔(𝜒) 1.0 2.0 3.0 4.0 

5 𝐸𝑐 𝜃(𝜒) 0.2 0.4 0.6 0.8 

6 𝐵1 𝜃(𝜒) 0.3 0.6 0.9 1.2 
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Table 2. Outcomes of LBM-BN for all scenarios of the VSN. 

Scenario Case 
MSE 

Performance 
Mu 

parameter 
Gradient Epochs Time 

Training Validation Testing 

S-I 

I 3.83E-10 5.45E-10 4.93E-10 3.83E-10 1.00E-08 9.93E-09 127 2 s 

II 2.81E-10 2.29E-10 3.33E-10 2.81E-10 1.00E-09 9.78E-07 104 1 s 

III 7.39E-10 8.33E-10 8.29E-10 7.40E-09 1.00E-08 9.84E-08 161 2 s 

IV 2.32E-10 2.97E-10 2.44E-10 1.10E-08 1.00E-08 9.93E-08 107 9 s 

S-II 

I 3.40E-10 4.88E-10 3.69E-10 3.41E-10 1.00E-09 9.84E-08 126 0 s 

II 3.03E-11 3.14E-11 4.44E-11 3.04E-11 1.00E-10 9.79E-08 63 1 s 

III 2.18E-11 2.67E-11 1.94E-11 2.19E-11 1.00E-10 9.93E-08 65 1 s 

IV 2.84E-10 3.42E-10 3.38E-10 2.84E-10 1.00E-09 9.95E-07 84 1 s 

S-III 

I 3.14E-10 3.96E-10 3.16E-10 3.15E-10 1.00E-09 9.76E-09 133 1 s 

II 3.25E-11 3.74E-11 6.04E-11 3.25E-11 1.00E-10 9.85E-08 76 0 s 

III 4.08E-11 4.75E-11 6.16E-11 4.08E-11 1.00E-10 9.75E-07 56 0 s 

IV 5.57E-11 6.22E-11 7.19E-11 5.57E-11 1.00E-10 9.66E-08 58 0 s 

S-IV 

I 8.82E-10 9.32E-10 1.78E-09 8.83E-10 1.00E-09 9.97E-08 122 1 s 

II 3.65E-09 4.73E-09 3.86E-09 3.65E-09 1.00E-09 9.86E-08 50 0 s 

III 1.82E-09 4.45E-09 3.02E-09 1.82E-09 1.00E-09 9.76E-08 83 0 s 

IV 1.69E-10 2.25E-10 1.41E-10 1.70E-10 1.00E-09 9.90E-08 148 0 s 

S-V 

I 4.01E-10 4.19E-10 4.86E-10 4.01E-10 1.00E-09 9.99E-09 151 1 s 

II 5.36E-10 8.74E-10 6.63E-10 5.36E-10 1.00E-09 9.81E-08 126 0 s 

III 7.90E-10 7.35E-10 7.61E-10 7.91E-10 1.00E-09 9.54E-07 107 0 s 

IV 9.13E-10 1.20E-09 9.52E-10 9.14E-10 1.00E-09 9.67E-08 103 0 s 

S-VI 

I 1.76E-09 1.73E-09 1.66E-09 1.76E-09 1.00E-09 9.92E-07 76 0 s 

II 1.08E-09 1.18E-09 1.26E-09 1.08E-09 1.00E-09 9.86E-08 96 0 s 

III 2.03E-09 2.28E-09 2.13E-09 2.04E-09 1.00E-09 9.93E-09 68 0 s 

IV 2.20E-09 2.54E-09 2.36E-09 2.21E-09 1.00E-09 9.71E-08 193 1 s 
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Figure 4. MSE representations of Case IV for all scenarios of the LBM-BN VSN. 
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Figure 5. Graphical illustration of transition statistics for Case IV for all scenarios of the 

LBM-BN VSN. 
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Figure 6. Graphical illustration of fitness representation of Case IV for all scenarios of the 

LBM-BN VSN. 
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Figure 7. Graphical illustration of EH results for Case IV for all scenarios of the LBM-

BN VSN. 
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Figure 8. Graphical illustration of regression analysis results for Case IV for all scenarios 

of the LBM-BN VSN. 
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Figure 9. Comparison of numerical reference solutions with those of the LBM-BN 

according to variation of the influential parameters for 𝑓(𝜉), 𝑓′(𝜉), 𝑔(𝜉) and 𝜃(𝜉). 
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Figure 10. AE representation for the LBM-BN according to variation of the influential 

parameters for 𝑓(𝜉), 𝑓′(𝜉), 𝑔(𝜉) and 𝜃(𝜉). 
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5. Conclusions 

For the present analysis, the author’s main aim was exploitation of the concept of the VSN 

through the application of an LBM-BN to a stretched rotating disk for the inspection of a second-order 

velocity slip in the presence of activation energy. The PDEs indicating the VSN were converted into 

ODEs. The designed approach is efficient and accurate based on the MSEs obtained via the training, 

testing and validation procedures. Moreover, the convergence and stability of LBM-BN mappings 

have been validated on the basis of achieved accuracy through the application of regression-based 

statistical analysis and EHs for the proposed model.  Lobatto IIIA was utilized to resolve the ODEs 

and generate the reference dataset for the LBM-BN. The reference dataset was used to facilitate 

calculation of the approximated solution of the VSN in MATLAB. The flow consequences on the 

𝑓(𝜉), 𝑓′(𝜉), 𝑔(𝜉),∧ 𝜃(𝜉) profiles were analyzed from the perspectives of different physical quantities, 

i.e., 𝐴1, 𝑀, 𝐿2, 𝐿4,𝐵1 and 𝐸𝑐. The substantial findings taken from this research are as follows: 

• The axial and radial velocity functions grow as values of 𝐴1 increase, but a reverse trend can 

be seen for 𝐿2. 

• The tangential velocity decreases with increment in 𝐿4. 

• With larger values of M, the tangential velocity increases. 

• The temperature function is increased with increment in Ec and 𝐵1. 

Further, the proposed technique can also be applied to a micropolar nanofluid [54], a Casson 

nanofluid [55], the waterborne spread and control of diseases [56] and computer epidemic viruses [57]. 

As a future work direction, the authors will consider other machine learning techniques to study the 

activation energy of various chemical processes. 
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Appendix 

Nomenclature: 

𝑁𝑁 Neural network 𝐴𝑁𝑁 Artificial neural network 

𝑁𝐹 Nanofluid 𝐴𝐸 ( )J  Activation energy 

𝑇 ( )K  Temperature 𝑢, 𝑣, 𝑤 Velocity component 

𝐶 Concentration 𝑟, 𝑣, 𝑧 Coordinates system 

𝑇∞ Ambient temperature 𝜎𝑓
( / )S m

 Electrical conductivity 

𝐶∞ Ambient concentration 𝜌𝑓
3( / )kg m

 Density 

𝑔
2( / )m s

 Gravitational acceleration 𝐵0
( )Tesla

 Strength of magnetic field 

𝑎1 Dimensional or stretching constant 𝑁  Ratio of concentration to temperature 

buoyancy force 

𝐷𝑇 Thermophoretic diffusion 𝜎  Stefan-Boltzman constant 

𝜅𝑟 Chemical reaction rate 𝜅  Mean absorption coefficient 

𝐷𝐵 Brownian diffusion 𝑛  Fitted rate constant 

𝐸𝑎 Coefficient of activation energy 𝛺 Angular frequency 

𝜅𝑓
1 1( )Wm K− −

 Thermal conductivity 𝑇𝑤 Fluid temperature 

ℎ1 Heat transfer coefficients ℎ2  Mass transfer coefficients 

𝜅 Boltzmann constant 𝐶𝑤
( )M  Fluid concentration 

ℜ Reynolds number  𝑀 Magnetic variable 

𝜆 Mixed convection variable 
pc

 

Specific heat 

𝑃𝑟 Prandtl number 𝑅 Radiation parameter 

𝑁𝑡 Thermophoretic parameter Ec  Eckert number 

𝑁𝑏 Brownian motion parameter 𝑆𝑐 Schmidt number 

𝜅1 Chemical reaction parameter 𝛼1 Temperature ratio parameter 

𝛽𝑡 Nonlinear convection parameters 

related to temperature 

𝛽𝑐
( )M

 Nonlinear convection parameters related to 

concentration 

𝐸1 Activation energy parameter 𝐴1 Stretching parameter 

𝐿1, 𝐿3 First-order slip parameters 𝐿2, 𝐿4 Second-order slip parameters 

𝐵1 Thermal Biot numbers 𝐵2 Solutal Biot numbers 

𝐿𝑀 Levenberg-Marquardt  𝑀𝐻𝐷 Magnetohydrodynamic 

𝜆1,3 First-order slip coefficient for 

velocity 

2, 4 Second-order slip coefficient for velocity 

MSE Mean square error TS Transition state 

MHD Magnetohydrodynamics AE Absolute error 

EH Error histogram 𝑉𝑆𝑁 Second-order velocity slip nanofluid 

𝐿𝐵𝑀 − 𝐵𝑁 Levenberg-Marquardt 

backpropagation artificial neural 

network 

AI Artificial intelligence 
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