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1. Introduction

Cassava is the fifth most important food crop after wheat, corn, rice and potatoes. It is an important
food crop of tropical countries, especially African countries and South America [1]. In Asia, cassava
is popularly grown in Indonesia and Thailand because it is easy to grow in low-nutrient soil and is
drought tolerant, able to adapt to different climates [2]. Since 2000, the world production of cassava has
increased by approximately 100 million tons due to the demand for cassava products in various regions
increasing. Especially in Asia, cassava is used in animal feed production and industrial use. Among the
cassava-growing regions of the world, Africa accounts for more than 50 percent [3]. Cassava has been
attacked by complex arthropod pests in the tropical regions of the crop-growing world which found to
have pest infestation problems causing severe damage to farmers. In addition to moina and mealybug,
there is also another insect, the whitefly. The survey found that the number of whiteflies is increasing
and this is likely to be a major pest that damages cassava farmers [4]. The main disease in cassava is
cassava mosaic disease (CMD), which is caused by insects and results in lower yields. Cassava mosaic
virus (CMV) contaminates the cassava leaves and is transmitted by the whitefly vector called Bemisia
tabaci and through the movement of infected planting materials [5]. The first outbreak of this disease
was seen in East Africa in the 1890s [6]. In Asia, the cassava mosaic disease outbreak in Cambodia in
2015 and in Thailand in 2016, respectively [7]. This disease causes stunted cassava tubers and small
heads. If a pandemic of disease would result in reduced yields of 80–100 percent (National Agricultural
Big Data Center, 2020). The severity of cassava mosaic disease is affected by environmental factors
such as light intensity, wind, rainfall, density and plant temperature. Since the virus is transmitted by
whitefly, its transmission depends largely on vector. In general, high temperatures are associated with a
dramatic increase in the number of insects and the longer the whitefly lives [4,5]. To solve the problem
of cassava mosaic disease, farmers eliminate cassava plants and whitefly which are disease carriers to
cut the cycle of disease transmission by burning the diseased cassava [8]. In this regard, mathematical
processes can be used as a tool for determining factors contributing to outbreaks and as a guide to
reducing disease outbreaks.

Mathematical models provide a tool used to understand the dynamics of disease spread through
a population and in decision-making in regard to disease prediction and disease control [9–12]. The
researchers studied the dynamics of disease plants, including disease patterns, disease transmission
and disease control strategies [13]. In the past, many researchers have been interested in plant disease
which it is transmitted by a vector. They have developed the model of plant disease using mathematical
models to analyze and explain plant disease epidemic dynamics. For instance, Jeger et al. analyzed the
model of the propagation characteristics of the virus in plants through vector mating and to examine
the transmission effect on plant disease control [14]. Shi et al. offered model of a vector-borne plant
disease model by considering co-infection between infected plants and infected insects [15]. Kinene et
al. developed a model of cassava brown streak disease with vectors in Uganda and applied the optimal
control theory to reduce the number of cassava infections. They created a control strategy, which was
to increase vector mortality by spraying pesticides, uprooting and burning infected cassava [16]. In
2019, Florence et al. developed a cassava mosaic virus model by considering resistant and susceptible
breed [17]. Basir et al. presented a model of cassava mosaic and the role of vector growth in which
he was interested in how delayed vector growth affects vector population in 2021 [18]. In 2022,
Erickab et al. have studied the transmission of cassava mosaic disease in cassava and non-cassava
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plants. They found the mortality rate of whiteflies and the carrying capacity of whiteflies affect disease
transmission [19].

In the study of the behavior of infectious disease, the incidence function plays a significant role
in describing epidemics’ rise and fall. It indicates the number of new infections per unit of time.
The general epidemic model frequently uses the bilinear incidence rate and the standard incidence
rate. The bilinear incidence rate βS I where β is a parameter used to measure the rate of infection
of the disease [20]. It describes an epidemic in which the number of host contacts increases linearly
with population density. The bilinear incidence rate is not suitable for large populations because it
cannot clearly explain the phenomenon of the disease. For standard incidence rate βS I

N describes an
epidemic where the population is constant and regardless of population density, but infection depends
only on the frequency of exposure to the infected population [16,18,21]. This incidence is appropriate
for a population that is large enough. In 1978, Capasso and Serio [22] found that the number of
infections between infected and healthy populations did not always increase linearly. They proposed
saturation incidence rate βS I

1+αI which tends to reach saturation levels when I reach the maximum number
of effective infections between the infected and susceptible populations, where βI measures the force
of infection when the disease enters a fully susceptible population, α is the inhibition constant, and

1
1+αI measures the inhibitory effect from changes in the behavior of susceptible populations as their
numbers increase or from the overcrowding of infected individuals [23–26]. From considering the
above incidence rates, we can be seen that the saturation incidence rate is appropriate for the actual
situation because behavioral changes and the impact of the infected population are taken into account.
In addition, there is a scope for infection rates as the uninfected or infected population increases.
Therefore, it is this incidence rate that interests us and is used in the development of this model.

In this paper, we consider a model with a nonlinear saturation incidence rate in analyzing the
dynamics of cassava mosaic disease. The research aims to measure the spreading of the disease and
to study factor that the effect of whitefly on the spread of cassava mosaic disease. We believe that the
results of this research will be useful in controlling the spread of this disease. This paper is organized as
follows: In Section 2, analyze the mathematical model and find the basic reproductive number which
is the threshold value by using the next-generation method. Considering local stability and global
stability of each steady state are derived from the Jacobian matrix. The Castillo-Chovez method is
used to consider the global stability at a disease-free steady state when R0 < 1. For the global stability
at an endemic steady state when R0 > 1, we use the geometric approach method to help created global
stability. This method is a generalization of the Lyapunov theory. In Section 3, we show the results of
numerical simulations to prove the theoretical results. The sensitivity analysis was used to study the
effects of the parameters in our model. Section 4 presents a discussion. The last section contains the
summary of this paper.

2. Formulation and analysis of the model

In this section, we defined the cassava mosaic model by dividing the population into two groups
such as cassava population density and whitefly vector population density. The total cassava population
density (K) and the total whitefly population density (P) are positive constants. The assumption is that
the plants in the area are fixed since we must replace the dead cassava with new cassava. In addition, we
assume that emigrates the number of vectors per time unit is a constant. The cassava population density
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is divided into two subclasses: healthy and infectious cassava at time t which is H and I, respectively.
The whitefly vector population density is divided into two subclasses: healthy and infectious vector
which is X and Z, respectively. The healthy vector can be infected by infected cassava only and that it
will be infected for the rest of your life. Our parameters used in the model can be described in Table 1.

Table 1. Description of parameters of the cassava mosaic model.

parameter symbol Description Unit
b replanting rate of cassava day−1

σ removal rate of infected cassava day−1

µ mortality rate of cassava or harvest rate of cassava day−1

βp acquisition rate of the infected vectors due to healthy cassava vector−1day−1

βv inoculation rate of the infected cassava due to healthy vectors m−2day−1

α the birth rate of vector day−1

m the death rate of vector day−1

γp saturation constant of cassava due to vectors vector−1

γv saturation constant of vectors due to cassava m−2

V emigrates number of vectors vectorday−1

Each variable describes the population at time t. The model is formulated as follow:

dH
dt

= bK −
βpHZ

1 + γpZ
− µH (2.1)

dI
dt

=
βpHZ

1 + γpZ
− σI − µI (2.2)

dX
dt

= αP + V −
βvIX

1 + γvI
−

V
P

X − mX (2.3)

dZ
dt

=
βvIX

1 + γvI
−

V
P

Z − mZ (2.4)

where H + I = K and X + Z = P
From the vector population density is constant, then we have dP

dt = 0 that is α = m (birth rate of
vector equal to death rate of vector).

We get host-vector model which is dynamic Eqs (2.1)–(2.4) as follows:

dH
dt

= µK −
βpHZ

1 + γpZ
− µH (2.5)

dI
dt

=
βpHZ

1 + γpZ
− σI − µI (2.6)

dX
dt

= αP + V −
βvIX

1 + γvI
−

V
P

X − αX (2.7)

dZ
dt

=
βvIX

1 + γvI
−

V
P

Z − αZ. (2.8)
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The feasible region is

Ω =

{
(H, I, X,Z) ∈ R4 : H + I ≤ K, X + Z ≤ P

}
. (2.9)

2.1. Positivity and boundedness of the solution

To confirm that the model has epidemiological meaning, it must necessary to prove that the system
of equations ODEs is non-negative and has a boundary for all time t ≥ 0.

Theorem 1. Let t ≥ 0. In the model, H(t), I(t), X(t),Z(t) be the solution of Eqs (2.5)–(2.8) with positive
initial conditions in H(0), I(0), X(0),Z(0). Then, the bounded solution which is positively invariant set
of the model given by

Ω = {(H, I, X,Z) ∈ R4
+ : N1(t) ≤ K,N2(t) ≤ P}.

Proof. For this model, we set Eqs (2.5)–(2.8) by

N(t) = (N1(t),N2(t))
= (H + I, X + Z).

Then, differentiating the function N(t) with respect to t

dN(t)
dt

=

(dN1(t)
dt

,
dN2(t)

dt

)
=

(
µK −

βpHZ
1 + γpZ

− µH +
βpHZ

1 + γpZ
− σI − µI, αP + V −

βvIX
1 + γvI

−
V
P

X − αX +
βvIX

1 + γvI
−

V
P

Z − αZ
)

=

(
µK − σI − µ(H + I), αP − α(X + Z)

)
≤

(
µK − µN1, αP − αN2

)
.

Therefore, we obtained dN1(t)
dt = µK − µN1 ≤ 0 for N1(t) ≥ K and dN2(t)

dt = αP − αN2 ≤ 0 for N2(t) ≥ P
Using the integration of the above equation is

0 ≤ (N1(t),N2(t)) ≤
(
K + (N1(0) − K)e−µt, P + (N2(0) − P)e−αt

)
.

As t → ∞, then 0 ≤ (N1(t),N2(t)) ≤ (K, P). Hence, The feasible solution set of all solutions of Ω in R4
+

and given by

Ω = {(H, I, X,Z) ∈ R4
+ : N1(t) ≤ K,N2(t) ≤ P}.

Thus, Ω is positively invariant set for all t ≥ 0. In other words, Eqs (2.5)–(2.8) are described as
non-negative in the R4

+. �
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2.2. The existence of steady state

The steady state (H∗, I∗, X∗,Z∗) can be obtained from setting the right hand side of the Eqs (2.5)–
(2.8) equal to zero. We get 2 steady state, namely
i) disease-free steady state: E0(H∗, I∗, X∗,Z∗) = E0(K, 0, P, 0)
ii) endemic steady state: E1(H∗, I∗, X∗,Z∗)
where

H∗ =
µK(1 + γpZ∗)

βpZ∗ + µ(1 + γpZ∗)

I∗ =
µβpKZ∗

(σ + µ)(βpZ∗ + µ(1 + γpZ∗))

X∗ =
(V + αP)P((σ + µ)(βpZ∗ + µ(1 + γpZ∗)) + µγvβpKZ∗)

µβvβpPKZ∗ + (V + αP)((σ + µ)(βpZ∗ + µ(1 + γpZ∗)) + µγvβpKZ∗)

Z∗ =
µβvβpKP2 − µ(σ + µ)(V + αP)

µβvβpPK + (V + αP)((σ + µ)(βp + µγp) + µγvβpK)
.

2.3. The basic reproductive number

The basic reproductive number or R0 is the threshold parameter that measures the expected number
of secondary infections caused by one new infected individual introduced into susceptible population
group. It represents the average number of infected cassava and infected vector that will cross-infection
between one infected cassava plant or one infected vector in group of only susceptible populations. We
calculate the basic reproductive number using the next-generation method [27, 28]. The population
is divided into m compartments and there are n infected population compartment where m < n. We
consider only the infected compartments in the form:

dxi

dt
= Fi(x) − Vi(x). (2.10)

Fi is the rate at which new infections are created in compartment i where i = 1, 2, 3, ...,m,
Vi is the rate of transfer into and out of the class of infected state in compartment i where i =

1, 2, 3, ...,m.
In this case x =

[
I Z

]t
and we obtained

F =
∂Fi(E0)
∂x j

=

[
0 βpK
βvP 0

]
(2.11)

V =
∂Vi(E0)
∂x j

=

[
σ + µ 0

0 V+αP
P

]
(2.12)

where i = 1, 2 and j = 1, 2.
The inverse of V is

V−1 =

[ 1
σ+µ

0
0 P

V+αP

]
. (2.13)

Hence, The next generation matrix is

FV−1 =

 0 βpKP
V+αP

βvP
σ+µ

0

 . (2.14)

AIMS Mathematics Volume 8, Issue 3, 6233–6254.



6239

Therefore, the basic reproductive number is given by the spectral radius of matrix FV−1 is

R0 = ρ(FV−1) = P

√
βvβpK

(σ + µ)(V + αP)
. (2.15)

2.4. Stability analysis

2.4.1. Local stability of the steady state

The local stability of each steady state, we can analyze the system by linearization from considering
Jacobian matrix.

Theorem 2. The disease-free equilibrium point E0(K, 0, P, 0) is locally asymptotically stable if R0 < 1
and unstable if R0 > 1

Proof. We found the Jacobian matrix of Eqs (2.5)–(2.8) is

J =


−

βpZ∗

1+γpZ∗ − µ 0 0 −
βpH∗

(1+γpZ∗)2

βpZ∗

1+γpZ∗ −(σ + µ) 0 βpH∗

(1+γpZ∗)2

0 −
βvX∗

(1+γvI∗)2 −V+αP
P −

βvI∗

(1+γvI∗) 0
0 βvX∗

(1+γvI∗)2
βvI∗

1+γvI∗ −V+αP
P

 . (2.16)

Disease-free equilibrium point E0(K, 0, P, 0) is

J =


−µ 0 0 −βpK
0 −(σ + µ) 0 βpK
0 −βvP −V+αP

P 0
0 βvP 0 −V+αP

P

 . (2.17)

Therefore, we obtained the characteristic equation is given by

(µ + λ)(V + αP + λ)(λ2 + a1λ + a0) = 0. (2.18)

Where a1 = V+αP
P + σ + µ

a2 =
(V+αP)(σ+µ)

P (1 − R2
0).

From the characteristic Eq (2.18), two eigenvalues are λ = −µ and λ = −V+αP
P which they are always

negative real parts. So, other eigenvalues are quadratic equation that can be obtained solving the
equations as follows

λ2 + a1λ + a2 = 0. (2.19)

We only need consider the roots of quadratic equation is negative real parts when they satisfy the
Routh-Hurwitz criterion which are:

i) a1 > 0 (2.20)

and
ii) a2 > 0. (2.21)

Clearly, a1 and a2 are always positive that satisfies with condition (2.20) to (2.21) of Routh-Hurwitz
criterion. Hence, disease-free equilibrium point is locally asymptotically stable when R0 < 1. �
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Theorem 3. If R0 > 1, The endemic equilibrium point E1(H∗, I∗, X∗,Z∗) of Eqs (2.5)–(2.8) is locally
asymptotically stable.

Proof. endemic equilibrium point E1(H∗, I∗, X∗,Z∗) where
Z∗ =

µβvβpKP2−µ(σ+µ)(V+αP)
µβvβpKP+(V+αP)((σ+µ)(βp+µγp)+µγvβpK)

H∗ =
µK(1+γpZ∗)

βpZ∗+µ(1+γpZ∗)

I∗ =
µβpKZ∗

(σ+µ)(βpZ∗+µ(1+γpZ∗))

X∗ =
(V+αP)P((σ+µ)(βpZ∗+µ(1+γpZ∗))+µγvβpKZ∗)

µβvβpPKZ∗+(V+αP)((σ+µ)(βpZ∗+µ(1+γpZ∗))+µγvβpKZ∗)
we get

J =


−

βpZ∗

1+γpZ∗ − µ 0 0 −
βpH∗

(1+γpZ∗)2

βpZ∗

1+γpZ∗ −(σ + µ) 0 βpH∗

(1+γpZ∗)2

0 −
βvX∗

(1+γvI∗)2 −V+αP
P −

βvI∗

(1+γvI∗) 0
0 βvX∗

(1+γvI∗)2
βvI∗

1+γvI∗ −V+αP
P

 . (2.22)

Therefore, the characteristic equation of J can be obtained from(V + αP
P

+ λ
)
(λ3 + a1λ

2 + a2λ + a3) = 0. (2.23)

Where

a1 = σ + µ +
(V + αP)

(
g3 + βpP(σ + µ)

)
g4P

+
µ
(
µR2

0(σ + µ)(1 + γpP + βpP) + µγvβpKP
)

g2

a2 =

(V + αP)g3

(
σ(R2

0 − 1)
(
µR2

0(σ + µ)(1 + γpP) + µγvβpKP
)

+ µg1(2R2
0 − 1)

)
g2g4R2

0P
+
µg1(σ + µ)

g2

a3 =
µg1g3(σ + µ)(V + αP)(R2

0 − 1)

g2g4PR2
0

with coefficients

g1 = (σ + µ)R2
0(βpP + µ + µγpP) + µγvβpKP

g2 = µR2
0(σ + µ)(1 + γpP) + βpP(σ + µ + µγvK)

g3 = (σ + µ)(βpP + µγpP + µR2
0) + µγvβpKP

g4 = (σ + µ)(βpP + µ + µγpP) + µγvβpKP.

From the characteristic Eq (2.23), we get 1 eigenvalue is λ = −V+αP
P which it always negative real part.

The remaining eigenvalue is cubic equation which in this form.

λ3 + a1λ
2 + a2λ + a3 = 0. (2.24)

Considering the roots of the cubic equation have negative real parts when conditions satisfy the Routh-
Hurwitz criterion which are:

i) a1 > 0 (2.25)
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ii) a3 > 0 (2.26)

and
iii) a1a2 − a3 > 0. (2.27)

For a1 and a3 is always positive, then we consider conditions (2.27).
Finally, we obtain

a1a2 − a3 =

(
σ + µ +

(V + αP)βp(σ + µ)
g4

+
µ2

(
R2

0(σ + µ)(1 + γpP + βpP) + γvβpKP
)

g2

)

µ

( (V + αP)g3

(
σ(R2

0 − 1)
(
R2

0(σ + µ)(1 + γpP) + γvβpKP
)

+ g1(2R2
0 − 1)

)
g2g4R2

0P

+
g1(σ + µ)

g2

)
+

(V + αP)µg3

g4P

( (V + αP)g3

(
R2

0(σ + µ)(1 + γpP + βpP) + γvβpKP
)

g2g4R2
0P

+ g1(2R2
0 − 1) +

g1(µ + σ)
g2R2

0

)
> 0.

It can be seen that a1 > 0, a3 > 0, and a1a2 − a3 > 0, which corresponds to condition of Routh Hurwitz
criterion for the third order polynomial equation. Therefore, The endemic equilibrium point is locally
asymptotically stable when R0 > 1.

From this model, we get 2 equilibrium point such as disease-free equilibrium point and endemic
equilibrium point. The disease-free equilibrium point is stable when R0 < 1 and the endemic
equilibrium point is stable when R0 > 1. This means that to reduce the spread of cassava mosaic
disease that we must be set value of the parameter according conditions described above. �

2.4.2. Global stability of the steady state

2.4.2.1. disease-free steady state
For our model in Eqs (2.5)–(2.8), we will to investigate the global stability of disease-free

equilibrium point by technique of Castillo-Chavez [29]. We rewrite our model into two subsystems
which is in the following form:

dY1

dt
= F(Y1,Y2)

dY2

dt
= G(Y1,Y2).

(2.28)

Where Y1 represent uninfected populations and Y2 represent infected populations, respectively, that is
Y1 = (H, X) ∈ R2 and Y2 = (I,Y) ∈ R2. E0 denotes the disease-free equilibrium point and set as
E0 = (Y0

1 , 0). The existence of the globally stability at disease-free equilibrium point for our model
must satisfies the following two conditions:
i) For dY1

dt = F(Y1, 0), Y0
1 is globally asymptotically stable.

ii) G(Y1,Y2) = AY2 − Ĝ(Y1,Y2) where Ĝ(Y1,Y2) ≤ 0 for all (Y1,Y2) ∈ Ω.
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Where A = DY2G(Y∗1 , 0) is M-matrix that is the off diagonal elements are nonnegative and Ω is feasible
region. If Eqs (2.5)–(2.8) satisfies with two conditions above then the following the statement holds.

Theorem 4. If R0 < 1, then the equilibrium point E0 = (Y∗1 , 0) of the Eqs (2.5)–(2.8) is globally
asymptotically stable at the disease-free equilibrium point E0 and unstable otherwise.

Proof. Let Y1 = (H, X) and Y2 = (I,Z). From Eqs (2.5)–(2.8), we get F(Y1,Y2) and G(Y1,Y2) is

F(Y1,Y2) =

 µK − βPZH
1+γPZ − µH

αP + V − βvIX
1+γvI −

V
P X − αX


G(Y1,Y2) =

 βPZH
1+γPZ − σI − µI
βV IX
1+γvI −

V
P Z − αZ

 . (2.29)

Then, we defined E0 = (Y0
1 , 0) where Y0

1 = (K, P).
Consider H = H0, X = X0 and F(Y1, 0) = 0. Therefore, we be obtained

F(Y1, 0) =

[
µK − µH

αP + V − V
P X − αX

]
= 0. (2.30)

Then, we solve Eq (2.30) which we get Y1 → Y0
1 as t → ∞.

Hence, it mean that the convergence of Eqs (2.5)–(2.8) is globally asymptotically stable in Ω.
For G(Y1,Y2) = AY2 − Ĝ(Y1,Y2) and we show that Ĝ(Y1,Y2) ≥ 0.
Now, we compute

A =

−(σ + µ) βpK

βvP −

(
V
P + α

) (2.31)

and

Ĝ(Y1,Y2) =

βpKZ − βpZH
1+γPZ

βvPI − βV IX
1+γV I

 . (2.32)

That is K ≥ H
1+γPZ and P ≥ X

1+γV I . So, Ĝ(Y1,Y2) ≥ 0 for all (Y1,Y2) ∈ Ω. Obviously, A is M-matrix
and that means both conditions are proved. Therefore, the disease-free equilibrium point E1 is globally
asymptotically stable when R0 < 1. �

2.4.2.2. Endemic steady state
In this section, we consider global stability at endemic equilibrium point E∗1 using geometrical

approach [30]. This method is used to investigate and find sufficient conditions for global stability at
endemic equilibrium point E∗1. We describe this method as follows. We consider differential equation

ẋ = f (x) (2.33)

where x ∈ Ω ⊂ Rn is an open set and is simply connected and f (x) : Ω → Rn is a continuous
and differentiable function in Ω. Let x(t, x0) is a solution of Eq (2.33) which determined initial value
x(0, x0) = x0. We will hypothesis as follows:

(a) There exists a compact absorbing set K ⊂ Ω.
(b) System (2.33) has a unique equilibrium x∗ ∈ Ω.
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The basic concept of this method is that if x∗ is locally stable, then stability must be consistent
with condition (a) and (b) and the nonexistence of non-constant periodic solutions of system (2.33).
Therefore, the sufficient condition of f (x) can preclusion the existence of such solutions and we found
the solution.

Suppose that the condition (a) and (b) are satisfied and if Bendixson criterion which is robust under
C1 local perturbation of f at all non-equilibrium, non-wandering is also satisfied with Eq (2.33), then
x∗ is globally asymptotically stable in Ω provides it is stable. Let x 7→ P(x) is a nonsingular

(
n
1

)
×

(
n
1

)
matrix valued function which is C1 for x ∈ Ω.

Assume that P−1 exist and continuous for x ∈ K. We give

B = P f P−1 + PJ |3|P−1 (2.34)

where P f is the matrix obtained by substituting in each element pi j in P by the direction derivative in
the direction of f and the matrix J |3| is the third additive compound matrix of the Jacobian matrix J
that is J(x) = D f (x).

Let `(B) is the Lozinskii measure ` of B with respect to the vector norm ‖ · ‖ in Rn defined by

`(B) = lim
x→0+

|I + Bx| − 1
x

. (2.35)

Define a quantity q̄ is

q̄ = lim
t→∞

sup sup
x0∈K

1
t

∫ t

0
`(B)dt. (2.36)

It is proven in [30] which if Ω is simply connected then q̄ < 0 eliminate the existence of any orbit that
produces a simple closed rectifiable curve that is periodic orbits, homoclinic orbits, and heteroclinic
cycles.

Lemma 1. Suppose that Ω is simply connected and condition (a) and (b) are satisfied then the unique
equilibrium x∗ of Eq (2.33) is globally asymptotically stable in Ω if q̄ < 0.

Theorem 5. If (H∗)2

1+γpZ∗ (
1

X∗ + 1
Z∗ ) < Z∗, βv(I∗)2

H∗(1+γvI∗) <
βpZ∗

1+γpZ∗ ,
(X∗)2

(1+γvI∗) (
1

H∗ + 1
I∗ ) < I∗, and βp(Z∗)2

X∗(1+γpZ∗) <
βvI∗

1+γvI∗ and
if R0 > 1, then the Eqs (2.5)–(2.8) is globally asymptotically stable at the endemic equilibrium E∗ and
unstable otherwise.

Proof. We prove the globally asymptotically stability of this model which is Eqs (2.5)–(2.8) with
endemic equilibrium point, we consider the nonlinear equations in Eqs (2.5)–(2.8).

dH
dt

= µK −
βPZH

1 + γpZ
− µH,

dI
dt

=
βpZH

1 + γpZ
− σI − µI,

dX
dt

= αP + V −
βvIX

1 + γvI
−

V
P

X − αX,

dZ
dt

=
βvIX

1 + γvI
−

V
P

Z − αZ

(2.37)

for which the Jacobian matrix at disease-endemic equilibrium points is:
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J(E∗) =


−µ−

Z∗βp
1+γpZ∗ 0 0 −

βpH∗

(1+γpZ∗)2

βpZ∗

1+γpZ∗ −µ−σ 0
βpH∗

(1+γpZ∗)2

0 −
βvX∗

(1+γvI∗)2
−α− V

P−
βvI∗

1+γvI∗ 0

0 βvX∗

(1+γvI∗)2
βvI∗

1+γvI∗ −α− V
P

 . (2.38)

Furthermore, the general form of third additive compound matrix J |3|, is given by

J |3| =


j11 + j22 + j33 j34 − j24 j14

j43 j11 + j22 + j44 j23 − j13

− j42 j32 j11 + j33 + j44 j12

j41 − j31 j21 j22 + j33 + j44

 (2.39)

from matrix Eqs (2.38) and (2.39) implies that

J |3| =


− j11 0 −

βpH∗

(1+γpZ∗)2
−

βpH∗

(1+γpZ∗)2

βvI∗

1+γvI∗ − j22 0 0

−
βvX∗

(1+γvI∗)2 −
βvX∗

(1+γvI∗)2
− j33 0

0 0
βpZ∗

1+γpZ∗ − j44

 . (2.40)

Where j11 = α+2µ+σ+ V
P +

βvI∗

1+γvI∗ +
βpZ∗

1+γpZ∗ , j22 = α+2µ+σ+ V
P +

βpZ∗

1+γpZ∗ , j33 = 2α+µ+ 2V
P +

βvI∗

1+γvI∗ +
βpZ∗

1+γpZ∗ ,

and j44 = 2α + µ + σ + 2V
P +

βvI∗

1+γvI∗ .
Consider P(X) = diag{H(t), I(t), X(t),Z(t)}, the inverse of P(X) is given as

P−1(X) = diag{1/H(t), 1/I(t), 1/X(t), 1/Z(t)}, the derivative with respect to time is
P f (X) = diag{Ḣ(t), İ(t), Ẋ(t), Ż(t)}, while P f P−1 = diag{Ḣ(t)/H(t), İ(t)/I(t), Ẋ(t)/X(t), Ż(t)/Z(t)}, and

PJ |3|P−1 =


− j11 0 a13 a14
βv(I∗)2

H∗(1+γvI∗) − j22 0 0
a31 a32 − j33 0
0 0 βp(Z∗)2

X∗(1+γpZ∗) − j44

 . (2.41)

Where a13 = −H∗
X∗

(
βpH∗

(1+γpZ∗)2

)
, a14 = −H∗

Z∗

(
βpH∗

(1+γpZ∗)2

)
, a31 = − X∗

H∗

(
βvX∗

(1+γvI∗)2

)
, and

a32 = −X∗
I∗

(
βvX∗

(1+γvI∗)2

)
.

Furthermore, B = P f P−1 + PJ |3|P−1 that is

B =



Ḣ(t)
H(t) − j11 0 a13 a14
βv(I∗)2

H∗(1+γvI∗)
İ(t)
I(t) − j22 0 0

a31 a32
Ẋ(t)
X(t) − j33 0

0 0 βp(Z∗)2

X∗(1+γpZ∗)
Ż(t)
Z(t) − j44


. (2.42)

Now, consequently we are to find ~i(t), i = 1, 2, 3, 4, by assuming that Bi j are the entries of matrix B,
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such that

~1(t) = B11 +

4∑
j,1∧ j=2

|B1 j|

~2(t) = B22 +

4∑
j=1∧ j,2

|B2 j|

~3(t) = B33 +

4∑
j=1∧ j,3

|B3 j|

~4(t) = B44 +

4∑
j=1∧ j,4

|B4 j|.

(2.43)

Now, for ~1(t) if (H∗)2

1+γpZ∗ (
1

X∗ + 1
Z∗ ) < Z∗, then

~1(t) =
Ḣ(t)
H(t)

− (α + 2µ + σ +
V
P

) −
(

βvI∗

1 + γvI∗
+

βpZ∗

1 + γpZ∗

)
+

∣∣∣∣∣∣−H∗

X∗

(
βpH∗

(1 + γpZ∗)2

)∣∣∣∣∣∣
+

∣∣∣∣∣∣−H∗

Z∗

(
βpH∗

(1 + γpZ∗)2

)∣∣∣∣∣∣
~1(t) =

Ḣ(t)
H(t)

− (α + 2µ + σ +
V
P

) −
(

βvI∗

1 + γvI∗
+

βpZ∗

1 + γpZ∗

)
+ H∗

 βpH∗(
1 + γpZ∗

)2


×

(
1
X∗

+
1
Z∗

)
~1(t) ≤

Ḣ(t)
H(t)

− (α + 2µ + σ +
V
P

). (2.44)

For ~2(t) if βv(I∗)2

H∗(1+γvI∗) <
βpZ∗

1+γpZ∗ , then

~2(t) =
İ(t)
I(t)
− (α + 2µ + σ +

V
P

) −
βpZ∗

1 + γpZ∗
+

∣∣∣∣∣∣ βv(I∗)2

H∗(1 + γvI∗)

∣∣∣∣∣∣
~2(t) =

İ(t)
I(t)
− (α + 2µ + σ +

V
P

) −
βpZ∗

1 + γpZ∗
+

βv(I∗)2

H∗(1 + γvI∗)

~2(t) ≤
İ(t)
I(t)
− (α + 2µ + σ +

V
P

). (2.45)

If, (X∗)2

(1+γvI∗) (
1

H∗ + 1
I∗ ) < I∗, then

~3(t) =
Ẋ(t)
X(t)

− (2α + µ +
2V
P

) −
(

βvI∗

1 + γvI∗
+

βpZ∗

1 + γpZ∗

)
+

∣∣∣∣∣∣−X∗

H∗

(
βvX∗

(1 + γvI∗)2

)∣∣∣∣∣∣
+

∣∣∣∣∣∣−X∗

I∗

(
βvX∗

(1 + γvI∗)2

)∣∣∣∣∣∣
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~3(t) =
Ẋ(t)
X(t)

− (2α + µ +
2V
P

) −
(

βvI∗

1 + γvI∗
+

βpZ∗

1 + γpZ∗

)
+

(
βv(X∗)2

(1 + γvI∗)2

)
×

(
1

H∗
+

1
I∗

)
~3(t) ≤

Ẋ(t)
X(t)

− (2α + µ +
2V
P

) (2.46)

and, similarly for βp(Z∗)2

X∗(1+γpZ∗) <
βvI∗

1+γvI∗ , then

~4(t) =
Ż(t)
Z(t)
− (2α + µ + σ +

2V
P

) −
βvI∗

1 + γvI∗
+

∣∣∣∣∣∣∣∣ βp(Z∗)2

X∗
(
1 + γpZ∗

)
∣∣∣∣∣∣∣∣

~4(t) =
Ż(t)
Z(t)
− (2α + µ + σ +

2V
P

) −
βvI∗

1 + γvI∗
+

βp(Z∗)2

X∗
(
1 + γpZ∗

)
~4(t) ≤

Ż(t)
Z(t)
− (2α + µ + σ +

2V
P

). (2.47)

Now, in R4 we assume a vector (b1, b2, b3, b4). The Lozinski measure `(B) is defined as `(B) = ~i,
i = 1, 2, 3, 4. The integration of the Lozinski measure `(B) and taking the limits as t → ∞ lead to the
following equations:

q̄1 = lim
t→∞

sup sup
1
t

∫ t

0
~1(t)dt,

≤ lim
t→∞

sup sup
1
t

∫ t

0

Ḣ(t)
H(t)

−

(
α + 2µ + σ +

V
P

)
dt,

q̄1 < −
(
α + 2µ + σ +

V
P

)
. (2.48)

q̄2 = lim
t→∞

sup sup
1
t

∫ t

0
~2(t)dt,

≤ lim
t→∞

sup sup
1
t

∫ t

0

İ(t)
I(t)
−

(
α + 2µ + σ +

V
P

)
dt,

q̄2 < −
(
α + 2µ + σ +

V
P

)
. (2.49)

q̄3 = lim
t→∞

sup sup
1
t

∫ t

0
~3(t)dt,

≤ lim
t→∞

sup sup
1
t

∫ t

0

˙X(t)
X(t)

−

(
2α + µ +

2V
P

)
dt,

q̄3 < −

(
2α + µ +

2V
P

)
. (2.50)
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q̄4 = lim
t→∞

sup sup
1
t

∫ t

0
~4(t)dt

≤ lim
t→∞

sup sup
1
t

∫ t

0

˙Z(t)
Z(t)
−

(
2α + µ + σ +

2V
P

)
dt,

q̄4 < −

(
2α + µ + σ +

2V
P

)
. (2.51)

Now, the combination of the last four inequalities from Eqs (2.48)–(2.51)

q̄ = lim
t→∞

sup sup
E1∈K

1
t

∫ t

0
`(B)dt < 0. (2.52)

The system containing only four non-linear equations of model Eqs (2.5)–(2.8) is globally
asymptotically stable around its interior equilibrium (H∗, I∗, X∗,Z∗) when R0 > 1. �

3. Numerical results

In this section, we consider numerical solutions of transmission of the cassava mosaic disease by
Matlab which shown disease-free and endemic regions. The parameter values in Table 2 are derived
from literature and some values have been assumed. Normally, cassava takes about 375 days to harvest.
Therefore, we set µ = 1/375 per day. The whitefly lives for about 37.5 days, so α = 1/37.5 per day. The
initial value of our model is H(0) = 800, I(0) = 200, X(0) = 150 and Z(0) = 50.

Table 2. Show the parameter values for model of cassava mosaic disease.

Parameter symbol Value Reference
µ 1

375 [31]
σ 0.1 [16]
βv 0.0002 Assumption
α 1

37.5 [18]
γp 0.01 [32]
γv 0.01 [32]
V 10 Assumption
βp 0-1 Assumption

The equations of the model defined (2.5) to (2.8) were analyzed using the parameter values in
Table 2. We examine the behavior of system and show the globally stability of the disease-free and
endemic state. From Figure 1, we calculate and get R0 = 0.71283 < 1. We can conclude that the model
exists a globally asymptotically stable at the disease free equilibrium point consistent with Theorem 4.
Similarly, we obtained R0 = 5.96432 > 1 which is shown in Figure 2. It shows the numerical trajectory
of the existence of the globally asymptotically stable at the endemic equilibrium point consistent with
Theorem 5.
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Figure 1. Time series of healthy cassava, infectious cassava, healthy vector and infectious
vector, for R0 < 1. The value of βp = 0.0001 and R0 = 0.71287. The fractions of populations
approach to the disease-free equilibrium point (1000, 0, 200, 0).

Figure 2. Time series of healthy cassava, infectious cassava, healthy vector and infectious
vector, for R0 > 1. The value of βp = 0.007 and R0 = 5.96432. The fractions of populations
approach to the endemic equilibrium point (40.5986, 24.9195, 190.1069, 9.8931).
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3.1. Sensitivity analysis of the model parameter

Sensitivity analysis is also considered the best method to reduce mortality and the incidence of
cassava mosaic disease in cassava. We performed a sensitivity analysis to find the correlation between
the model parameters on the spread of disease. The analysis demonstrated the effect of parameters on
the basic reproduction number. The explicit expression of R0, is given by

R0 = P

√
βvβpK

(σ + µ)(V + αP)
. (3.1)

We analyzed it following Rodrigues et al. [33]. This technique was developed and obtained a
formula for obtaining the parameter sensitivity index.

Definition 1. The normalized forward sensitivity index of R0, which depends differentiable on a
parameter, Λ is defined by

Υ
R0
Λ

=
∂R0

∂Λ
×

Λ

R0
. (3.2)

All sensitivity indices have been operated and are shown in Table 2.
From the sensitivity indices of the basic reproductive number with respect to the parameter in

Table 2 then we obtained the sensitivity index for parameter values shown in Table 3. The parameters
that have positive sensitivity indices, i.e., βv and βp have a positive effect on the basic reproductive
number. As these parameters increase, the basic reproductive number also increases, so the average
number of secondary infections increases. It means that βv and βp increase make the number of
the infectious cassava population and the infectious vector population may lead to an outbreak.
Furthermore, the parameters that have negative sensitivity indices, i.e., µ, V , σ and α have a negative
effect on the basic reproductive number. It means that µ, V , σ and α is increase the basic reproductive
number is decrease. Therefore, if µ, V , σ and α increases while the others parameter are constant then
it results in a reduction in the spread of this disease. We want to show how each parameter affects R0

which each sensitivity parameter is compared with R0, which is shown in Figure 3.

Table 3. Sensitivity indices (3.2) of the basic reproductive number by the parameters used in
the calculation of endemic equilibrium point.

Parameter symbol Sensitivity index Sensitivity index for parameter values
βv 0.5 0.5
βp 0.5 0.5

µ −(2µ + σ)
√

µ+σ

µ
-0.653576

V − V
2(V+αP) -0.326087

α − αP
2(V+αP) -0.173913

σ − σ
σ+µ

-0.974026
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(a) parameter βv and βp are compared with R0 (b) parameter µ and βv are compared with R0.

(c) parameter βv and V are compared with R0. (d) parameter βv and α are compared with R0.

(e) parameter µ and σ are compared with R0. (f) parameter µ and V are compared with R0.

Figure 3. The simulation results of the sensitivity analysis were compared with different
parameters.

4. Discussion

In this paper, we have presented and analyzed a differential system of the model of cassava mosaic
disease. We considered the transmission response of the disease with a saturation incidence rate,
which is biological truth. For this model, our primary objective is to study the effect of whitefly on
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the spread of cassava mosaic disease. From the epidemiological model, We found 2 steady state:
disease-free steady state and endemic steady state. We obtain the basic reproduction number or R0

which is a method used to measure the spread of disease by using the next-generation method. The

basic reproduction number for this model is P
√

βvβpK
(σ+µ)(V+αP) . Our results show that R0 is less than 1

in which the infected cassava population decreases and the disease are eventually eliminated. For R0

is greater than 1, the infected cassava population will increase sequentially (multiple) and this will
cause an epidemic. We have obtained the necessary conditions for locally asymptotically stability
when R0 < 1 in Theorem 2 which is the disease-free steady state. For R0 > 1, we have shown in
Theorem 3 which is the endemic steady state. Furthermore, Theorems 4 and 5 confirmed the existence
of globally asymptotically stability by application of Castillo-Chavez’s method for disease-free steady
state and geometric approach method for endemic steady state. Finally, numerical simulations with
true parameters were used to confirm the theoretical analysis results. It shows that over time we can
control and eliminate cassava mosaic disease.

Our goal is to describe cassava mosaic disease by determining the severity of the disease and
identifying the parameters that most affect the stability of the model. Parameter sensitivity analyses
revealed parameters that influence the spread of this disease. It makes known which parameters cause
the disease to persist and disappear. We can see that βv = 0.5 and βp = 0.5 is positive, thus affecting the
increase of basic reproductive number. An increase in the basic reproductive number has resulted in
increased outbreaks and indicates that the transmission of the disease largely depends on the infection
rate (acquisition rate and inoculation rate). Therefore, we should try to minimize contact with infected
cassava and the susceptible whitefly, as well as healthy cassava and infected whitefly. Moreover, the
increase of parameters σ and µ made the basic reproductive number lower. It means that if we increase
the mortality rate of whitefly and the removal rate of infected cassava then fewer cassava mosaic disease
outbreaks. This will be a guideline for increasing the policy to reduce the epidemic. Therefore, the
whitefly should be eradicated with pesticides to reduce the spread of infected whitefly and get rid of the
infected cassava by burning them in the field before the whitefly arrives. In addition to the analysis of
factors affecting the outbreak of mosaic cassava disease and control strategies. We see that the best and
most cost-effective disease control strategies, as well as optimal costs, are interesting. It is necessary
for farmers and they must consider using strategies reasonably in choosing ways to reduce mosaic
cassava disease outbreaks. Therefore, the optimal control method will be considered in the next paper.

5. Conclusions

We developed a mathematical model to describe the epidemic dynamics of cassava mosaic disease.
The basic reproductive number is obtained which was established as criteria for the stability analysis
of the disease and showed that the disease would be stable both locally and globally. The theoretical
possibility of our model was confirmed by numerical simulations. Finally, the parameters affecting
the persistence and extinction of this disease can be identified through sensitivity analysis and have
been shown. We found that the acquisition rate and inoculation rate influenced the increase in disease
outbreaks.
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