Research article

Stability analysis of SARS-CoV-2/HTLV-I coinfection dynamics model

A. M. Elaiw1,*, A. S. Shflot1,2 and A. D. Hobiny1

1 Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
2 Department of Mathematics, Faculty of Science, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia

* Correspondence: Email: aelaiwksu.edu.sa@kau.edu.sa.

Abstract: Although some patients with coronavirus disease 2019 (COVID-19) develop only mild symptoms, fatal complications have been observed among those with underlying diseases. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative of COVID-19. Human T-cell lymphotropic virus type-I (HTLV-I) infection can weaken the immune system even in asymptomatic carriers. The objective of the present study is to formulate a new mathematical model to describe the co-dynamics of SARS-CoV-2 and HTLV-I in a host. We first investigate the properties of the model’s solutions, and then we calculate all equilibria and study their global stability. The global asymptotic stability is examined by constructing Lyapunov functions. The analytical findings are supported via numerical simulation. Comparison between the solutions of the SARS-CoV-2 mono-infection model and SARS-CoV-2/HTLV-I coinfection model is given. Our proposed model suggest that the presence of HTLV-I suppresses the immune response, enhances the SARS-CoV-2 infection and, consequently, may increase the risk of COVID-19. Our developed coinfection model can contribute to understanding the SARS-CoV-2 and HTLV-I co-dynamics and help to select suitable treatment strategies for COVID-19 patients who are infected with HTLV-I.

Keywords: COVID-19; SARS-CoV-2; HTLV-I; coinfection; global stability; Lyapunov function

Mathematics Subject Classification: 34D20, 34D23, 37N25, 92B05

1. Introduction

In November 2019, a dangerous type of virus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appeared first in Wuhan, China. This virus infects the human body and causes coronavirus disease 2019 (COVID-19), which can lead to death. According to the update provided by the World Health Organization (WHO) on December 4, 2022 [1], over 641 million
confirmed cases and over 6.6 million deaths have been reported globally. SARS-CoV-2 is transmitted to people when they are exposed to respiratory fluids carrying infectious viral particles. The implementation of preventive measures such as hand washing, using face masks, physical and social distancing, disinfection of surfaces and getting the COVID-19 vaccine can reduce SARS-CoV-2 transmission. Ten vaccines for COVID-19 have been approved by the WHO for emergency use. These include Novavax, Bharat Biotech, Serum Institute of India (Novavax formulation), Sinopharm, Pfizer/BioNTech, Sinovac, Janssen (Johnson & Johnson), Oxford/AstraZeneca, Serum Institute of India (Oxford/AstraZeneca formulation) and that presented in [2].

SARS-CoV-2 is a single-stranded positive-sense RNA virus that infects epithelial cells. SARS-CoV-2 can lead to acute respiratory distress syndrome, which has high mortality rates, particularly in patients with other viral infections [3]. It was discovered in [4] that, 94.2% of individuals with COVID-19 were also coinfected with several other microorganisms, such as fungi, bacteria and viruses. Important viral copathogens include the respiratory syncytial virus, rhinovirus/enterovirus, influenza A and B viruses (IAV and IBV), metapneumovirus, parainfluenza virus, human immunodeficiency virus (HIV), cytomegalovirus, dengue virus, hepatitis B virus, Epstein-Barr virus and other coronaviruses, among which the rhinovirus/enterovirus and IAV are the most common copathogens [5]. Disease progression and outcome in SARS-CoV-2 infection are highly dependent on the host immune response, particularly in the elderly in whom immunosenescence may predispose them to increased risk of coinfection [6]. Immunosenescence renders vaccination less effective and increases the susceptibility to viral infections [7].

Human T-cell lymphotropic virus type-I (HTLV-I) is a single-stranded RNA virus that infects essential human system immune cells, CD4+ T cells. CD4+ T cells are considered “helper” cells because they do not neutralize infections, but rather trigger the body’s response to infections [8]. They are considered essential in the activation and growth of cytotoxic T lymphocytes (CTLs). The role of CTLs is to destroy cells infected with microorganisms, such as bacteria or viruses. HTLV-I can cause immune dysfunction even in asymptomatic carriers [3]. HTLV-I can lead to two diseases: adult T-cell leukemia (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) [9]. Although HTLV-I can cause fatal diseases (ATL and HAM/TSP), most of the infected persons remain asymptomatic throughout their lives [3]. An estimation by the WHO stated that about 5 to 10 million individuals are infected with HTLV-I worldwide [10]. The primary method of HTLV-I transmission is through bodily fluids including semen, blood and breast milk [11]. In [3,12], two cases of COVID-19 patients with HTLV-I infection have been reported. These reports highlighted the need for the accumulation of similar cases to illustrate the risk factors for severe illness, the best-in-class antiviral agent, the way to manage and prevent secondary infection and the optimal treatment strategy for patients with SARS-CoV-2-HTLV-I coinfection.

Over the years, mathematical models have demonstrated their ability to provide useful insight to gain a further understanding of virus dynamics within the host. These models may assist in the development of viral therapies, as well as in the selection of appropriate therapeutic approaches. Stability analysis of the model’s equilibria may help researchers to establish the conditions that ensure the persistence or termination of this infection. Mathematical models of SARS-CoV-2 mono-infection within a host have recently been developed in several works. Hernandez-Vargas and Velasco-Hernandez [13] presented the following SARS-CoV-2 mono-infection model with limited target cells:
\[\dot{X} = -\rho V X, \]
\[\dot{N} = \rho V X - \kappa N, \]
\[\dot{Y} = \kappa N - \xi Y, \]
\[\dot{V} = \eta Y - \xi V, \]
\[\dot{X} = \delta - \xi X - \rho VX. \]

where \(X = X(t), N = N(t), Y = Y(t) \) and \(V = V(t) \) are the concentrations of uninfected epithelial cells, latently SARS-CoV-2-infected epithelial cells, actively SARS-CoV-2-infected epithelial cells and free SARS-CoV-2 particles at time \(t \), respectively. Li et al. [14] have considered a SARS-CoV-2 infection model with constant regeneration and death for the uninfected epithelial cells:

Models presented in [13, 14] have been extended and modified by including (i) latently infected epithelial cells [13,15–17], (ii) the effects of the immune response [18–22], (iii) the effects of different drug therapies [16,23,24] and (iv) the effects of time delay [25].

In very recent works, mathematical models have been formulated to describe the coinfection of COVID-19 with other diseases in epidemiology, such as COVID-19/Dengue [26], COVID-19/Influenza [27], COVID-19/HIV [28], COVID-19/ZIKV [29], COVID-19/Dengue/HIV [30], COVID-19/Tuberculosis [31] and COVID-19/Bacterial [32]. On the other hand, some studies have been devoted to modeling the within-host co-dynamics of COVID-19 with other diseases, including COVID-19/cancer [33], COVID-19/Bacteria [34], COVID-19/HIV [35,36], COVID-19/malaria [37,38] and COVID-19/Influenza [39,40].

Stability analysis for models describing the within-host dynamics of SARS-CoV-2 infection was studied in [19–21,36,39,41]. Hattaf and Youssi [19] studied a within-host SARS-CoV-2 infection model with cell-to-cell transmission and CTL immune response. The model included both lytic and nonlytic immune responses. The Lyapunov method was used to prove the global stability of the three equilibria of the model. A SARS-CoV-2 infection model with both CTL and antibody immunities was developed and analyzed in [21]. Mathematical analysis of the model presented in [14] was studied in [41]. Both local and global stability analyses of the model’s equilibria were established. Almocera et al. [20] studied the stability of the two-dimensional SARS-CoV-2 dynamics model with an immune response presented in [13]. Elaiw et al. [25] studied the global stability of a delayed SARS-CoV-2 dynamics model with logistic growth of the uninfected epithelial cells and antibody immunity. In very recent works, the Lyapunov method was used to establish the global stability of coinfection models, including SARS-CoV-2/HIV-1 [35,36], SARS-CoV-2/IAV [39] and SARS-CoV-2/malaria [37,38].

During the last decades, modeling and analysis of HTLV-I mono-infection have attracted the interest of several researchers. Stilianakis and Seydel [42] constructed an HTLV-I model within a host as follows:

\[\dot{U} = \gamma \frac{CD4^+ T \text{ cells production}}{\xi U U} - \frac{death}{\pi AU} \]
where \((U, L, A, Z) = (U(t), L(t), A(t), Z(t))\) respectively denotes the concentrations of healthy (or uninfected) CD4\(^+\)T cells, latently HTLV-I-infected CD4\(^+\)T cells, actively HTLV-I-infected CD4\(^+\)T cells and ATL cells. Some biological factors have been considered in the HTLV-I mathematical models by incorporating (i) CTL immunity \([9, 43–45]\), (ii) the mitotic transmission of actively infected cells \([46–50]\), (iii) intracellular time delay \([51, 52]\) or immune response delay \([43, 53]\) and (iv) reaction and diffusion \([54]\). Elaiw et al. \([55]\) developed and analyzed a general HTLV-I with CTL immunity, mitosis and time delay. HIV-1 and HTLV-I have similar ways of transmission between individuals. Therefore, we presented and analyzed some models for within-host HIV-1/HTLV-I coinfection \([56, 57]\).

To the best of our knowledge, mathematical modeling of within-host SARS-CoV-2-HTLV-I coinfection has not been studied before. The objective of this work is to formulate a new model for within-host SARS-CoV-2-HTLV-I coinfection. We study the properties of the model’s solutions, calculate all equilibrium points, investigate the global stability of equilibria and conduct some numerical simulations.

The SARS-CoV-2/HTLV-I coinfection model presented in this paper can be helpful to describe the co-dynamics of several human viruses. In addition, the model may be used to predict new treatment regimens and strategies for patients who are coinfected with different viruses or multi-variants of a virus \([58]\).

2. Mathematical SARS-CoV-2 and HTLV-I coinfection model

The dynamics of SARS-CoV-2-HTLV-I coinfection is schematically shown in the transfer diagram given in Figure 1. Now, we propose a new ordinary differential equation model for SARS-CoV-2-HTLV-I coinfection within a host as follows:

\[
\begin{align*}
\dot{X} &= \delta - \xi_X X - \rho VX, \\
\dot{N} &= \rho VX - (\kappa + \xi_N)N, \\
\dot{Y} &= \kappa N - \xi_Y Y - \mu YU, \\
\dot{V} &= \eta Y - \xi_V V, \\
\dot{U} &= \gamma + \theta YU - \xi_U U - \pi AU, \\
\dot{L} &= \pi AU + \omega \varepsilon A - (\alpha + \xi_L) L, \\
\dot{A} &= \alpha L + (1 - \omega) \varepsilon A - \xi_A A.
\end{align*}
\]
Figure 1. Schematic diagram of the SARS-CoV-2 and HTLV-I coinfection dynamics in vivo.

All parameters of the model described by (2.1)–(2.7) are positive. Since the CD4⁺ T cells help CTLs to kill the actively SARS-CoV-2-infected epithelial cells, we assume implicitly that the actively SARS-CoV-2-infected epithelial cells are killed at a rate μYU and the CD4⁺ T cells are proliferated at a rate θYU. We assume that actively HTLV-I-infected cells proliferate at a rate $\varepsilon \ast A$, with a part $\omega \varepsilon \ast A$ turning into latent, where $\omega \in (0, 1)$. All parameters of the model are positive. In [49, 56], it was proposed that $\varepsilon \ast < \min\{\xi_U, \xi_L, \xi_A\}$. Since $0 < \omega < 1$ and $\varepsilon \ast < \xi_A\ast$, $(1 - \omega)\varepsilon < \xi_A\ast$. Denote $\xi_A = \xi_A\ast - (1 - \omega)\varepsilon > 0$ and $\varepsilon = \omega \varepsilon \ast$. Therefore, the model described by (2.1)–(2.7) becomes

$$
\dot{X} = \delta - \xi_X X - \rho VX, \\
\dot{N} = \rho VX - (\kappa + \xi_N)N, \\
\dot{Y} = \kappa N - \xi_Y Y - \mu YU, \\
\dot{V} = \eta Y - \xi_V V, \\
\dot{U} = \gamma + \theta Y U - \xi_U U - \pi AU, \\
\dot{L} = \pi AU + \varepsilon A - (\alpha + \xi_L) L, \\
\dot{A} = \alpha L - \xi_A A.
$$

We have $\xi_A - \varepsilon = \xi_A\ast - \varepsilon \ast > 0$.

Remark 2.1. If HTLV-I does not exist and we neglect the regeneration of the uninfected epithelial cells, the death of the uninfected epithelial cells and the death of the latently SARS-CoV-2-infected epithelial cells, then the model described by (2.8)–(2.14) will lead to the model described by (1.1)–(1.4). Moreover, in the absence of SARS-CoV-2, then the model described by (2.8)–(2.14) leads to the HTLV-I mono-infection models (without considering the HTLV-I-specific CTL) presented in [49, 50].

3. Properties of solutions

Let $M_i > 0$, $i = 1, 2, 3$ be defined as

$$
M_1 = \frac{\delta}{\sigma} + \frac{\mu y}{\sigma \theta}, \quad M_2 = \frac{2\eta}{\xi_Y} M_1 \quad \text{and} \quad M_3 = \frac{\theta}{\mu} M_1.
$$
Additionally, define the following compact set:

\[\Omega = \{(X, N, Y, V, U, L, A) \in \mathbb{R}^7_{\geq 0} : 0 \leq X, N, Y \leq M_1, 0 \leq V \leq M_2, 0 \leq U, L, A \leq M_3 \} . \]

Lemma 3.1. The compact set \(\Omega \) is positively invariant for the model described by (2.8)--(2.14).

Proof. We have that

\[
\begin{align*}
\dot{X} |_{x=0} &= \delta > 0, \\
\dot{N} |_{n=0} &= \rho VX \geq 0 \text{ for all } X, V \geq 0, \\
\dot{Y} |_{y=0} &= \kappa N \geq 0 \text{ for all } N \geq 0, \\
\dot{V} |_{v=0} &= \eta Y \geq 0 \text{ for all } Y \geq 0, \\
\dot{U} |_{u=0} &= \gamma > 0, \\
\dot{L} |_{l=0} &= \pi AU + \varepsilon A \geq 0 \text{ for all } A, U \geq 0, \\
\dot{A} |_{a=0} &= \alpha L \geq 0 \text{ for all } L \geq 0.
\end{align*}
\]

It follows from Proposition B.7 of [59] that \((X(t), N(t), Y(t), V(t), U(t), L(t), A(t)) \in \mathbb{R}^7_{\geq 0} \) for all \(t \geq 0 \) whenever \((X(0), N(0), Y(0), V(0), U(0), L(0), A(0)) \in \mathbb{R}^7_{\geq 0} \).

To investigate the boundedness of the model’s solutions, we define

\[\Gamma(t) = X + N + Y + \frac{\xi_Y}{2\eta} V + \frac{\mu}{\theta} (U + L + A) . \]

Then,

\[\dot{\Gamma}(t) = \delta + \frac{\mu}{\theta} \gamma - \xi_X X - \xi_N N - \frac{\xi_Y}{2} Y - \frac{\xi_V}{2\eta} V - \frac{\mu \xi_U}{\theta} U - \frac{\mu \xi_L}{\theta} L - \frac{\mu (\xi_A - \varepsilon)}{\theta} A . \]

We have \(\xi_A - \varepsilon = \xi_A^* - \varepsilon^* > 0 \). Hence,

\[
\dot{\Gamma}(t) \leq \left(\delta + \frac{\mu}{\theta} \gamma \right) - \sigma \left[X + N + Y + \frac{\xi_Y}{2\eta} V + \frac{\mu}{\theta} (U + L + A) \right] = \left(\delta + \frac{\mu}{\theta} \gamma \right) - \sigma \Gamma(t),
\]

where \(\sigma = \min \left\{ \xi_X, \xi_N, \frac{\xi_Y}{2}, \xi_V, \xi_U, \xi_L, \xi_A^* - \varepsilon^* \right\} \). Thus, \(0 \leq \Gamma(t) \leq M_1 \) if \(\Gamma(0) \leq M_1 \) for \(t \geq 0 \). Since \(X, N, Y, V, U, L \) and \(A \) are all non-negative, then \(0 \leq X(t), N(t), Y(t) \leq M_1, 0 \leq V(t) \leq M_2 \) and \(0 \leq U(t), L(t), A(t) \leq M_3 \) for all \(t \geq 0 \) if \(X(0) + N(0) + Y(0) + \frac{\xi_Y}{2\eta} V(0) + \frac{\mu}{\theta} (U(0) + L(0) + A(0)) \leq M_1 \).

Consequently, \(X(t), N(t), Y(t), V(t), U(t), L(t) \) and \(A(t) \) are all bounded. \(\square \)

4. Equilibrium points

To calculate the equilibrium points of the system given by (2.8)--(2.14), we solve the following system:

\[
\begin{align*}
0 &= \delta - \xi_X X - \rho VX, \\
0 &= \rho VX - (\kappa + \xi_N)N, \\
0 &= \kappa N - \xi_Y Y - \mu YU, \\
0 &= \eta Y - \xi_V V, \\
0 &= \gamma + \theta YU - \xi_U U - \pi AU, \\
\end{align*}
\]
We want to prove that Eq (4.2) has a positive root. Define a function

\[F \]

We find that the system admits four equilibrium points.

(i) Uninfected equilibrium point, \(EP_0 = (X_0, 0, 0, 0, U_0, 0, 0) \), where \(X_0 = \frac{\delta}{\xi} \) and \(U_0 = \frac{\gamma}{\xi} \).

(ii) HTLV-I mono-infection equilibrium point, \(EP_1 = (X_1, 0, 0, 0, U_1, L_1, A_1) \), where

\[X_1 = X_0 = \frac{\delta}{\xi} \]
\[U_1 = \frac{\xi U_0 + \alpha (\xi_\Lambda - \epsilon)}{\alpha \pi} = \frac{U_0}{R_1} \]
\[L_1 = \frac{\xi U_0 \xi_\Lambda}{\pi \alpha} \left[\frac{\alpha \pi}{\xi U (\xi_\Lambda + \alpha (\xi_\Lambda - \epsilon))} - 1 \right] = \frac{\xi U_0 \xi_\Lambda}{\pi \alpha} (R_1 - 1) \]
\[A_1 = \frac{\xi U_0}{\pi} \left[\frac{\alpha \pi}{\xi U (\xi_\Lambda + \alpha (\xi_\Lambda - \epsilon))} - 1 \right] = \frac{\xi U_0}{\pi} (R_1 - 1) \]

where \(R_1 = \frac{\alpha \pi}{\xi U_0 \xi_\Lambda + \alpha (\xi_\Lambda - \epsilon)} \). Here, \(R_1 \) is the basic reproduction number of HTLV-I mono-infection. It determines the establishment of HTLV-I infection. Clearly, \(X_1 \) is always positive. Also, since \(\xi_\Lambda - \epsilon > 0 \), \(U_1 \) and \(R_1 \) are always positive, while \(L_1 \) and \(A_1 \) are positive if \(R_1 > 1 \). Therefore, \(EP_1 \) exists when \(R_1 > 1 \).

(iii) SARS-CoV-2 mono-infection equilibrium point, \(EP_2 = (X_2, N_2, Y_2, V_2, U_2, 0, 0) \), where

\[Y_2 = \frac{\xi U}{\eta} V_2 \]
\[U_2 = \frac{\eta Y}{\eta \xi U - \theta \xi V} V_2 \]
\[X_2 = \frac{(k + \xi_N) (Y_2 \xi_V + U_2 Y_2 \mu)}{\xi V_2} \]
\[N_2 = \frac{Y_2 \xi_V + U_2 Y_2 \mu}{\kappa} \]

and \(V_2 \) satisfies the following equation:

\[\frac{T_1}{\eta \kappa} \eta \xi U - \theta \xi V \]

\[T_1 = \frac{\rho \xi_\Lambda \xi_\Lambda}{(k + \xi_N)} \]
\[T_2 = \xi_\Lambda \xi_\Lambda \theta \xi_\Lambda \]
\[T_3 = \frac{\eta \gamma \mu \xi V (k + \xi_N)}{\kappa \eta \mu \xi_\Lambda} \]

We want to prove that Eq (4.2) has a positive root. Define a function \(F (V) \) as

\[F (V) = \frac{T_1 V^2 + T_2 V + T_3}{\eta \kappa} \eta \xi U - \theta \xi V \]

We have

\[F (0) = \frac{\delta \gamma \kappa \xi U - \eta \xi_\Lambda \xi_\Lambda \xi V (k + \xi_N)}{\eta \gamma \mu \xi_\Lambda} (R_2 - 1) \]

where \(R_2 = \frac{\delta \gamma \kappa \xi U - \eta \xi_\Lambda \xi_\Lambda \xi V (k + \xi_N)}{\eta \gamma \mu \xi_\Lambda} \). This implies that \(F (0) > 0 \) when \(R_2 > 1 \). Further,

\[\lim_{V \rightarrow \frac{\xi U}{\eta V}} F (V) = -\infty. \]
Furthermore,

\[F'(V) = -\frac{\xi_V(k + \xi_N)}{\kappa \rho \eta \xi_N} \left[\rho \xi_V (V \theta V - \eta \xi_U)^2 + \gamma \mu \xi_V \theta \xi_V + \gamma \mu \rho \eta^2 \xi_U \right]. \]

Hence, \(F'(V) < 0 \) for all \(V \in (0, \frac{\xi_V}{\kappa \rho \eta \xi_N}) \). It follows that there exists a unique \(V_2 \in (0, \frac{\xi_V}{\kappa \rho \eta \xi_N}) \) such that \(F(V_2) = 0 \). From Eq (4.1), we get that \(Y_2 > 0, U_2 > 0, X_2 > 0 \) and \(N_2 > 0 \). As a result, \(EP_2 \) exists when \(R_2 > 1 \). The parameter \(R_2 \) represents the basic reproduction number of SARS-CoV-2 mono-infection. It determines the establishment of SARS-CoV-2 mono-infection.

(iv) HTLV-I and SARS-CoV-2 coinfection equilibrium point \(EP_3 = (X_3, N_3, Y_3, V_3, U_3, L_3, A_3) \), where

\[
X_3 = \frac{\xi_V (k + \xi_N) (\xi_Y \alpha \pi + \mu (\xi_L \xi_A + \alpha (\xi_A - \varepsilon)))}{\eta \rho \pi \alpha},
\]

\[
N_3 = \frac{\xi_V \eta \xi_V + \mu (\xi_L \xi_A + \alpha (\xi_A - \varepsilon))]}{\eta \rho \pi \alpha \left[\xi_V (k + \xi_N) (\xi_Y \alpha \pi + \mu (\xi_L \xi_A + \alpha (\xi_A - \varepsilon))] - 1 \right]}
\]

\[
Y_3 = \frac{\xi_V \eta \xi_V}{\eta \pi \alpha [\xi_V (k + \xi_N) (\xi_Y \alpha \pi + \mu (\xi_L \xi_A + \alpha (\xi_A - \varepsilon))] - 1],}
\]

\[
V_3 = \frac{\xi_V}{\rho [\xi_V (k + \xi_N) (\xi_Y \alpha \pi + \mu (\xi_L \xi_A + \alpha (\xi_A - \varepsilon))] - 1]}
\]

\[
U_3 = \frac{1}{\alpha \pi} (\xi_L \xi_A + \alpha (\xi_A - \varepsilon)),
\]

\[
L_3 = \frac{\xi_A (\theta \xi \xi_V + \eta \pi \xi_U)}{\eta \rho \pi a} \times \left[\frac{\eta \rho \pi a}{(\theta \xi \xi_V + \eta \pi \xi_U)} \left(\frac{\gamma}{(\xi_L \xi_A + \alpha (\xi_A - \varepsilon))} + \frac{\delta \kappa \theta}{(k + \xi_N) (\xi_Y \alpha \pi + \mu (\xi_L \xi_A + \alpha (\xi_A - \varepsilon))] - 1 \right),
\]

\[
A_3 = \frac{\theta \xi \xi_V + \eta \pi \xi_U}{\eta \rho \pi a} \times \left[\frac{\eta \rho \pi a}{(\theta \xi \xi_V + \eta \pi \xi_U)} \left(\frac{\gamma}{(\xi_L \xi_A + \alpha (\xi_A - \varepsilon))} + \frac{\delta \kappa \theta}{(k + \xi_N) (\xi_Y \alpha \pi + \mu (\xi_L \xi_A + \alpha (\xi_A - \varepsilon))] - 1 \right). \right.
\]

It follows that, since \(\xi_A - \varepsilon > 0, X_3 \) and \(U_3 \) are always positive, while \(N_3 > 0, Y_3 > 0 \) and \(V_3 > 0 \) if

\[
\frac{\xi_V \eta \xi_V (k + \xi_N) (\xi_Y \alpha \pi + \mu (\xi_L \xi_A + \alpha (\xi_A - \varepsilon))] - 1 \right]}
\]

\[
\frac{\xi_V \eta \xi_V (k + \xi_N) (\xi_Y \alpha \pi + \mu (\xi_L \xi_A + \alpha (\xi_A - \varepsilon))] - 1 \right]}
\]

Therefore, we can rewrite the components of \(EP_3 \) as

\[
X_3 = \frac{X_0}{R_4}, \quad N_3 = \frac{\xi_V \eta \xi_V (\xi_Y \alpha \pi + \mu (\xi_L \xi_A + \alpha (\xi_A - \varepsilon))]}{\eta \rho \pi \alpha (R_4 - 1)},
\]

\[
Y_3 = \frac{\xi_V \eta \xi_V}{\eta \pi \alpha (R_4 - 1)}, \quad V_3 = \frac{\xi_V}{\rho (R_4 - 1)},
\]

\[
U_3 = \frac{1}{\alpha \pi} (\xi_L \xi_A + \alpha (\xi_A - \varepsilon)), \quad L_3 = \frac{\xi_A (\theta \xi \xi_V + \eta \pi \xi_U)}{\eta \rho \pi a (R_4 - 1)},
\]

\[
A_3 = \frac{(\theta \xi \xi_V + \eta \pi \xi_U)}{\eta \rho \pi a (R_3 - 1)},
\]
where

\[R_3 = \frac{\eta \rho \alpha \pi}{\theta \xi X \xi V + \eta \rho \xi U} \left(\frac{\gamma}{(\xi L \xi A + \alpha (\xi A - \varepsilon))} + \frac{\delta \kappa \theta}{(\kappa + \xi N)(\xi Y \alpha \pi + \mu (\xi L \xi A + \alpha (\xi A - \varepsilon)))} \right), \]

\[R_4 = \frac{\eta \rho \kappa \alpha \pi}{\xi X \xi V (\kappa + \xi N)(\xi Y \alpha \pi + \mu (\xi L \xi A + \alpha (\xi A - \varepsilon)))}. \]

Thus, EP_3 exists when R_3 > 1 and R_4 > 1. At this point, R_3 and R_4 are threshold numbers that determine the occurrence of HTLV-I/SARS-CoV-2 coinfection.

Now, we summarize the above results in the following lemma.

Lemma 4.1. There exist four threshold numbers R_i, i = 1, 2, 3, 4, such that

(a) if R_1 \leq 1, then the uninfected equilibrium point, EP_0 = (X_0, 0, 0, 0, U_0, 0, 0) is the only equilibrium point,

(b) if R_1 > 1, then, in addition to EP_0, there is an HTLV-I mono-infection equilibrium point, EP_1 = (X_1, 0, 0, 0, U_1, L_1, A_1),

(c) if R_2 > 1, then, in addition to EP_0, there is a SARS-CoV-2 mono-infection equilibrium point, EP_2 = (X_2, N_2, Y_2, V_2, U_2, 0, 0),

(d) if R_3 > 1 and R_4 > 1, then, in addition to EP_0, there is an HTLV-I and SARS-CoV-2 coinfection equilibrium point, EP_3 = (X_3, N_3, Y_3, V_3, U_3, L_3, A_3).

5. Global stability analysis

In this section, we discuss the global stability of four equilibrium points, EP_i, i = 0, 1, 2, 3. We will utilize the following arithmetic-mean–geometric-mean inequality:

\[\frac{\ell_1 + \ell_2 + \ldots + \ell_n}{n} \geq \sqrt[n]{(\ell_1)(\ell_2)\ldots(\ell_n)}, \quad \ell_i \geq 0, \quad i = 1, 2, \ldots, n. \quad (5.1) \]

Let \(\Delta_j \) be the largest invariant subset of

\[\Delta_j = \left\{ (X, N, Y, V, U, L, A) : \frac{d\Phi_j}{dt} = 0 \right\}, \quad j = 0, 1, 2, 3, \]

where \(\Phi_j (X, N, Y, V, U, L, A) \) is a Lyapunov function candidate.

To prove the results given in the next Theorems 5.1–5.4, we follow the works of [60, 61] to build suitable Lyapunov functions and apply LaSalle’s invariance principle [62].

Theorem 5.1. If R_1 \leq 1 and R_2 \leq 1, then the uninfected equilibrium point EP_0 is globally asymptotically stable.

Proof. Define \(\Phi_0 \) as follows:

\[
\Phi_0 = X_0 \mathcal{H} \left(\frac{X}{X_0} \right) + N + \frac{\kappa + \xi N}{\kappa} Y + \frac{\rho X_0}{\xi V} V + \frac{\mu (\kappa + \xi N)}{\theta \kappa} U_0 \mathcal{H} \left(\frac{U}{U_0} \right) + \frac{\mu (\kappa + \xi N)}{\theta \kappa} L + \frac{\mu (\kappa + \xi N)(\alpha + \xi L)}{\alpha \theta \kappa} A,
\]

\[
\frac{d}{dt} \Phi_0 = X_0 \mathcal{H} \left(\frac{X}{X_0} \right) + N + \frac{\kappa + \xi N}{\kappa} Y + \frac{\rho X_0}{\xi V} V + \frac{\mu (\kappa + \xi N)}{\theta \kappa} U_0 \mathcal{H} \left(\frac{U}{U_0} \right) + \frac{\mu (\kappa + \xi N)}{\theta \kappa} L + \frac{\mu (\kappa + \xi N)(\alpha + \xi L)}{\alpha \theta \kappa} A,
\]
where $H(x) = x - 1 - \ln x$.

Obviously, $\Phi_0(X, Y, V, U, L, A) > 0$ for all $X, N, Y, V, U, L, A > 0$, while $\Phi_0(X_0, 0, 0, U_0, 0, 0) = 0$. The derivative of Φ_0 with respect to t along the solutions of the system given by (2.8)–(2.14) is calculated as follows:

\[
\frac{d\Phi_0}{dt} = \left(1 - \frac{X_0}{X}\right)X + N + \frac{\kappa + \xi_N Y}{\kappa} + \frac{\rho X_0}{\xi_V} \nu + \frac{\mu (\kappa + \xi_N)}{\theta_k} \left(1 - \frac{U_0}{U}\right)U + \frac{\mu (\kappa + \xi_N)}{\theta_k}L
\]

\[
+ \frac{\mu (\kappa + \xi_N) (\alpha + \xi_L)}{\alpha \theta_k} A
\]

\[
= \left(1 - \frac{X_0}{X}\right)\left(\delta - \xi_X X - \rho V X + \frac{\rho X_0}{\xi_V} \nu\right) + \frac{\mu (\kappa + \xi_N)}{\theta_k} \left(1 - \frac{U_0}{U}\right)\left(\gamma + \theta Y U - \xi_U U - \alpha A U\right)
\]

\[
+ \frac{\mu (\kappa + \xi_N)}{\theta_k} \left(\alpha A U + \varepsilon A - (\alpha + \xi_L) L\right) + \frac{\mu (\kappa + \xi_N)}{\alpha \theta_k} \left(\alpha L - \xi_A A\right)
\]

\[
= \left(1 - \frac{X_0}{X}\right)\left(\delta - \xi_X X\right) - \frac{\kappa + \xi_N}{\kappa} \xi_Y Y + \frac{\rho X_0}{\xi_V} \nu \left(\gamma + \theta Y U - \xi_U U\right)
\]

\[
- \frac{\mu (\kappa + \xi_N)}{\kappa} Y U_0 + \frac{\mu (\kappa + \xi_N)}{\theta_k} \alpha A - \frac{\mu (\kappa + \xi_N)}{\alpha \theta_k} \xi_A A.
\]

Since $\delta = \xi_X X_0$ and $\gamma = \xi_U U_0$, then

\[
\frac{d\Phi_0}{dt} = -\frac{\xi_X}{X} (X - X_0)^2 + \left(\frac{\rho X_0}{\xi_V} \nu - \frac{\kappa + \xi_N}{\kappa} \xi_Y Y - \frac{\mu (\kappa + \xi_N)}{\kappa} U_0\right) Y - \frac{\mu (\kappa + \xi_N)}{\theta_k} \frac{\xi_U U}{U} (U - U_0)^2
\]

\[
+ \frac{\mu (\kappa + \xi_N)}{\theta_k} \left(\pi U_0 + \varepsilon - \frac{(\alpha + \xi_L)}{\alpha} \xi_A\right) A
\]

\[
= -\frac{\xi_X}{X} (X - X_0)^2 + \left(\frac{\rho \delta}{\xi_X} \nu - \frac{\kappa + \xi_N}{\kappa} \xi_Y Y - \frac{\mu (\kappa + \xi_N)}{\kappa} \gamma \right) Y - \frac{\mu (\kappa + \xi_N)}{\theta_k} \frac{\xi_U U}{U} (U - U_0)^2
\]

\[
+ \frac{\mu (\kappa + \xi_N)}{\theta_k} \left(\frac{\pi \gamma}{\xi_U} \xi_A + \alpha (\xi_A - \varepsilon)\right) A
\]

\[
= -\frac{\xi_X}{X} (X - X_0)^2 + \left(\frac{\kappa + \xi_N}{\kappa} (\xi_Y \xi_U + \nu) \frac{\delta \eta \rho_k \xi_U}{\xi_X} \xi_V (\kappa + \xi_N) (\xi_Y \xi_U + \mu) \right) Y
\]

\[
- \frac{\mu (\kappa + \xi_N)}{\theta_k} \frac{\xi_U U}{U} (U - U_0)^2 + \frac{\mu (\kappa + \xi_N)}{\theta_k} \left(\xi_U \xi_A + \alpha (\xi_A - \varepsilon)\right) \left(\frac{\pi \gamma}{\xi_U} (\xi_L \xi_A + \alpha (\xi_A - \varepsilon)) - 1\right) A
\]

\[
= -\frac{\xi_X}{X} (X - X_0)^2 + \left(\frac{\kappa + \xi_N}{\kappa} (\xi_Y \xi_U + \nu) \frac{\delta \eta \rho_k \xi_U}{\xi_X} \xi_V (\kappa + \xi_N) (\xi_Y \xi_U + \mu) \right) Y
\]

\[
- \frac{\mu (\kappa + \xi_N)}{\theta_k} \frac{\xi_U U}{U} (U - U_0)^2 + \frac{\mu (\kappa + \xi_N)}{\theta_k} \left(\xi_U \xi_A + \alpha (\xi_A - \varepsilon)\right) \left(\frac{\pi \gamma}{\xi_U} (\xi_L \xi_A + \alpha (\xi_A - \varepsilon)) - 1\right) A
\]

\[
+ \frac{\mu (\kappa + \xi_N) (\xi_L \xi_A + \alpha (\xi_A - \varepsilon))}{\theta_k \alpha} (R_1 - 1) A.
\]

Therefore, if $R_1 \leq 1$ and $R_2 \leq 1$, then $\frac{d\Phi_0}{dt} \leq 0$ for all $X, Y, U, L > 0$ and $\frac{d\Phi_0}{dt} = 0$ when $X = X_0, U = U_0$ and $Y = A = 0$. The solutions of the system given by (2.8)–(2.14) converge to Δ_0, which comprises elements with $X = X_0, U = U_0$ and $Y = A = 0$; then, $\dot{Y} = \dot{A} = 0$. Equations (2.10) and (2.14) yield

\[0 = \dot{Y} = \kappa N \quad \implies \quad N(t) = 0 \quad \text{for all} \quad t,
\]
Further, Eq (2.9) gives
\[0 = \dot{N} = \rho VX_0 \implies V(t) = 0 \text{ for all } t. \]

Therefore, \(\Delta'_1 = \{EP_0\} \). We deduce from LaSalle’s invariance principle that \(EP_0 \) is globally asymptotically stable [62]. \(\square \)

Theorem 5.2. If \(R_1 > 1 \) and \(R_4 \leq 1 \), then the HTLV-I mono-infection equilibrium point \(EP_1 \) is globally asymptotically stable.

Proof. Let \(\Phi_1 \) be defined as follows:

\[
\Phi_1 = X_1 \mathcal{H} \left(\frac{X}{X_1} \right) + N + \frac{\kappa + \xi_N}{\kappa} Y + \frac{\rho X_1}{\xi_V} V + \frac{\mu (\kappa + \xi_N)}{\theta_k} U_1 \mathcal{H} \left(\frac{U}{U_1} \right) + \frac{\mu (\kappa + \xi_N)}{\theta_k} L_1 \mathcal{H} \left(\frac{L}{L_1} \right) + \frac{\mu (\kappa + \xi_N) (\alpha + \xi_L)}{\alpha \theta_k} A_1 \mathcal{H} \left(\frac{A}{A_1} \right) .
\]

Clearly, \(\Phi_1 (X, N, Y, V, U, L, A) > 0 \) for all \(X, N, Y, V, U, L, A > 0 \) and \(\Phi_1 (X_1, 0, 0, 0, U_1, L_1, A_1) = 0 \). Calculate \(\frac{d\Phi_1}{dt} \) as follows:

\[
\frac{d\Phi_1}{dt} = \left(1 - \frac{X_1}{X} \right) \dot{X} + \dot{N} + \frac{\kappa + \xi_N}{\kappa} Y + \frac{\rho X_1}{\xi_V} V + \frac{\mu (\kappa + \xi_N)}{\theta_k} \left(1 - \frac{U_1}{U} \right) U + \frac{\mu (\kappa + \xi_N)}{\theta_k} \left(1 - \frac{L_1}{L} \right) L + \frac{\mu (\kappa + \xi_N) (\alpha + \xi_L)}{\alpha \theta_k} A_1
\]

\[
= \left(1 - \frac{X_1}{X} \right) \left(\delta - \xi_X X - \rho VX \right) + \frac{\mu (\kappa + \xi_N)}{\theta_k} \left(1 - \frac{U_1}{U} \right) \left(\gamma + \theta U - \xi_V U - \pi AU \right) + \frac{\mu (\kappa + \xi_N) (\alpha + \xi_L)}{\alpha \theta_k} \left(1 - \frac{A_1}{A} \right) (\alpha L - \xi_A A)
\]

\[
= \left(1 - \frac{X_1}{X} \right) \left(\delta - \xi_X X - \frac{\kappa + \xi_N}{\kappa} \xi_Y Y + \frac{\rho X_1}{\xi_V} \eta Y + \frac{\mu (\kappa + \xi_N)}{\theta_k} \left(1 - \frac{U_1}{U} \right) (\gamma - \xi_U U) \right) - \mu (\kappa + \xi_N) \frac{\kappa}{\theta_k} YU_1 + \frac{\mu (\kappa + \xi_N)}{\theta_k} \frac{\pi AU_1 - \mu (\kappa + \xi_N)}{\theta_k} \pi AU_1 \frac{L_1}{L} + \mu (\kappa + \xi_N) \frac{\pi AU_1 - \mu (\kappa + \xi_N)}{\theta_k} \frac{\pi AU_1 A_1}{A}
\]

\[
= \left(1 - \frac{X_1}{X} \right) \left(\delta - \xi_X X \right) + \frac{\rho X_1}{\xi_V} \eta - \frac{\kappa + \xi_N}{\kappa} \xi_Y - \frac{\mu (\kappa + \xi_N)}{\kappa} U_1 Y + \frac{\mu (\kappa + \xi_N)}{\theta_k} \left(1 - \frac{U_1}{U} \right) (\gamma - \xi_U U) + \mu (\kappa + \xi_N) \frac{(\alpha + \xi_L)}{\alpha \theta_k} \xi_A A_1
\]

\[
= \left(1 - \frac{X_1}{X} \right) \left(\delta - \xi_X X \right) + \frac{\rho X_1}{\xi_V} \eta - \frac{\kappa + \xi_N}{\kappa} \xi_Y - \frac{\mu (\kappa + \xi_N)}{\kappa} U_1 Y + \mu (\kappa + \xi_N) \frac{(\alpha + \xi_L)}{\alpha \theta_k} \xi_A A_1
\]

\[
+ \frac{\mu (\kappa + \xi_N)}{\theta_k} \left(1 - \frac{U_1}{U} \right) \left(\gamma - \xi_U U \right) + \frac{\mu (\kappa + \xi_N)}{\theta_k} \frac{(\alpha + \xi_L)}{\alpha \theta_k} \xi_A A_1
\]

\[
= \left(1 - \frac{X_1}{X} \right) \left(\delta - \xi_X X \right) + \frac{\rho X_1}{\xi_V} \eta - \frac{\kappa + \xi_N}{\kappa} \xi_Y - \frac{\mu (\kappa + \xi_N)}{\kappa} U_1 Y + \mu (\kappa + \xi_N) \frac{(\alpha + \xi_L)}{\alpha \theta_k} \xi_A A_1
\]

\[
+ \frac{\mu (\kappa + \xi_N)}{\theta_k} \left(1 - \frac{U_1}{U} \right) \left(\gamma - \xi_U U \right) + \frac{\mu (\kappa + \xi_N)}{\theta_k} \frac{(\alpha + \xi_L)}{\alpha \theta_k} \xi_A A_1
\]
Utilizing the equilibrium point conditions for EP$_1$:

\[
\delta = \xi X_1, \quad \gamma = \xi U_1 + \pi A_1 U_1, \\
\pi A_1 U_1 = (\alpha + \xi_L) L - \varepsilon A_1, \quad \alpha L_A = \xi A L_A;
\]

we obtain

\[
\frac{d\Phi_1}{dt} = -\frac{\xi X}{X} (X - X_1)^2 + \left(\frac{\rho X_1}{\xi V} \eta - \frac{\kappa + \xi_N}{\kappa} \xi Y - \frac{\mu (k + \xi_N)}{\kappa} U_1\right) Y - \frac{\mu (k + \xi_N) \xi U}{\theta_k} (U - U_1)^2 \\
+ \frac{\mu (k + \xi_N)}{\theta_k} \left(1 - \frac{U_1}{U}\right) \pi A_1 U_1 + \frac{\mu (k + \xi_N)}{\theta_k} \pi A_1 U_1 \frac{A_1}{A_1} - \frac{\mu (k + \xi_N)}{\theta_k} \pi A_1 U_1 \frac{AUL_1}{A_1 U_1 L} \\
+ \frac{\mu (k + \xi_N)}{\theta_k} \frac{AU_1}{A_1} - \frac{\mu (k + \xi_N)}{\theta_k} \frac{AL_1}{A_1 L} + \frac{\mu (k + \xi_N)}{\theta_k} (\pi A_1 U_1 + \varepsilon A_1) \\
- \frac{\mu (k + \xi_N)}{\theta_k} (\pi A_1 U_1 + \varepsilon A_1) \frac{LA_1}{L_1 A} - \frac{\mu (k + \xi_N)}{\theta_k} (\pi A_1 U_1 + \varepsilon A_1) \frac{A}{A_1} + \frac{\mu (k + \xi_N)}{\theta_k} (\pi A_1 U_1 + \varepsilon A_1)
\]

\[
= -\frac{\xi X}{X} (X - X_1)^2 - \frac{\mu (k + \xi_N) \xi U}{\theta_k} (U - U_1)^2 \\
+ \left(\frac{\rho \delta}{\xi X} \eta - \frac{\kappa + \xi_N}{\kappa} \xi Y - \frac{\mu (k + \xi_N)}{\kappa} (\xi Y + \alpha (\xi L_A - \varepsilon))\right) Y \\
+ \frac{\mu (k + \xi_N)}{\theta_k} \pi A_1 U_1 \left(3 - \frac{U_1}{U} - \frac{AU_1}{A_1 U_1 L} - \frac{LA_1}{L_1 A}\right) + \frac{\mu (k + \xi_N)}{\theta_k} \varepsilon A_1 \left(2 - \frac{AL_1}{A_1 L} - \frac{LA_1}{L_1 A}\right)
\]

Finally, we get

\[
\frac{d\Phi_1}{dt} = -\frac{\xi X}{X} (X - X_1)^2 - \frac{\mu (k + \xi_N) \xi U}{\theta_k} (U - U_1)^2 \\
+ \left(\frac{\kappa + \xi_N}{\kappa} \xi Y + \mu (k + \xi_N) (\xi Y + \alpha (\xi L_A - \varepsilon))\right) \left(\frac{\delta \eta \rho \kappa \pi}{\xi X} (k + \xi_N) \xi Y + \alpha (\xi L_A - \varepsilon)\right) - 1) Y \\
+ \frac{\mu (k + \xi_N)}{\theta_k} \pi A_1 U_1 \left(3 - \frac{U_1}{U} - \frac{AU_1}{A_1 U_1 L} - \frac{LA_1}{L_1 A}\right) + \frac{\mu (k + \xi_N)}{\theta_k} \varepsilon A_1 \left(2 - \frac{AL_1}{A_1 L} - \frac{LA_1}{L_1 A}\right).
\]

Using the inequality of (5.1), we obtain

\[
\frac{U_1}{U} + \frac{AU_1}{A_1 U_1 L} + \frac{LA_1}{L_1 A} \geq 3, \forall U, L, A > 0, \\
\frac{AL_1}{A_1 L} + \frac{LA_1}{L_1 A} \geq 2, \forall L, A > 0.
\]
Therefore, if \(R_4 \leq 1 \), then \(\frac{d\theta}{dt} \leq 0 \) for all \(X, Y, U, L, A > 0 \), where \(\frac{d\theta}{dt} = 0 \) when \(X = X_1, Y = 0, U = U_1, L = L_1 \) and \(A = A_1 \). The solutions of the system given by (2.8)–(2.14) are limited to \(\Delta'_1 \), which comprises elements with \(X = X_1, U = U_1, L = L_1, A = A_1 \) and \(Y = 0 \); then, \(\dot{Y} = 0 \). Equation (2.10) yields

\[
0 = \dot{Y} = \kappa N \implies N(t) = 0 \text{ for all } t.
\]

Equation (2.9) gives

\[
0 = \dot{N} = \rho VX \implies V(t) = 0 \text{ for all } t.
\]

Consequently, \(\Delta'_1 = \{ EP_1 \} \), and then LaSalle’s invariance principle implies that \(EP_1 \) is globally asymptotically stable [62]. \(\square \)

Theorem 5.3. If \(R_2 > 1 \) and \(R_3 \leq 1 \), then the SARS-CoV-2 mono-infection equilibrium point \(EP_2 \) is globally asymptotically stable.

Proof. Define \(\Phi_2 \) as follows:

\[
\Phi_2 = X_2 \mathcal{H} \left(\frac{X}{X_2} \right) + N_2 \mathcal{H} \left(\frac{N}{N_2} \right) + \frac{\kappa + \xi N}{\kappa} Y_2 \mathcal{H} \left(\frac{Y}{Y_2} \right) + \frac{\rho X_2}{\xi V} Y_2 \mathcal{H} \left(\frac{V}{V_2} \right) + \frac{\mu (\kappa + \xi N)}{\theta k} U_2 \mathcal{H} \left(\frac{U}{U_2} \right) + \frac{\mu (\kappa + \xi N) (\alpha + \xi L)}{\alpha \theta k} A.
\]

Clearly, \(\Phi_2 (X, N, Y, V, U, L, A) > 0 \) for all \(X, N, Y, V, U, L, A > 0 \) and \(\Phi_2 (X_2, N_2, Y_2, V_2, U_2, 0, 0) = 0 \). Calculate \(\frac{d\Phi_2}{dt} \) as follows:

\[
\frac{d\Phi_2}{dt} = \left(1 - \frac{X_2}{X} \right) X + \left(1 - \frac{N_2}{N} \right) N + \frac{\kappa + \xi N}{\kappa} \left(1 - \frac{Y_2}{Y} \right) Y + \frac{\rho X_2}{\xi V} \left(1 - \frac{V}{V_2} \right) V
\]

\[
+ \frac{\mu (\kappa + \xi N)}{\theta k} \left(1 - \frac{U_2}{U} \right) U + \frac{\mu (\kappa + \xi N)}{\theta k} L + \frac{\mu (\kappa + \xi N) (\alpha + \xi L)}{\alpha \theta k} A.
\]

\[
= \left(1 - \frac{X_2}{X} \right) (\delta - \xi X - \rho VX) + \left(1 - \frac{N_2}{N} \right) (\rho VX - (\kappa + \xi N) N)
\]

\[
+ \frac{\kappa + \xi N}{\kappa} \left(1 - \frac{Y_2}{Y} \right) (\kappa N - \xi Y - \mu YU) + \frac{\rho X_2}{\xi V} \left(1 - \frac{V}{V_2} \right) (\eta Y - \xi V Y)
\]

\[
+ \frac{\mu (\kappa + \xi N)}{\theta k} \left(1 - \frac{U_2}{U} \right) (\gamma + \theta Y U - \xi U U - \pi AU) + \frac{\mu (\kappa + \xi N)}{\theta k} (\pi AU + \varepsilon A - (\alpha + \xi L) L)
\]

\[
+ \frac{\mu (\kappa + \xi N) (\alpha + \xi L)}{\alpha \theta k} (\alpha L - \xi A).
\]

\[
= \left(1 - \frac{X_2}{X} \right) (\delta - \xi X) - \rho VX N_2 \frac{N}{N} + (\kappa + \xi N) N_2 - (\kappa + \xi N) N Y_2 \frac{Y}{Y} - \frac{\kappa + \xi N}{\kappa} \xi Y Y + \frac{\kappa + \xi N}{\kappa} \xi Y Y
\]

\[
+ \frac{\kappa + \xi N}{\kappa} \mu Y_2 U + \frac{\rho X_2}{\xi V} \eta Y - \frac{\rho X_2}{\xi V} \eta Y V_2 \frac{V}{V} + \rho X_2 V_2 + \frac{\mu (\kappa + \xi N)}{\theta k} \left(1 - \frac{U_2}{U} \right) (\gamma - \xi U U)
\]

\[
- \frac{\mu (\kappa + \xi N)}{\theta k} Y U_2 + \frac{\mu (\kappa + \xi N) \pi A U_2}{\theta k} + \frac{\mu (\kappa + \xi N) \pi A A}{\theta k} - \frac{\mu (\kappa + \xi N) (\alpha + \xi L)}{\alpha \theta k} \xi A A
\]

\[
= \left(1 - \frac{X_2}{X} \right) (\delta - \xi X) - \rho VX N_2 \frac{N}{N} + (\kappa + \xi N) N_2 - (\kappa + \xi N) N Y_2 \frac{Y}{Y} + \frac{\kappa + \xi N}{\kappa} \xi Y Y
\]

\[
+ \left(\frac{\rho X_2}{\xi V} \eta - \frac{\kappa + \xi N}{\kappa} \xi Y - \frac{\mu (\kappa + \xi N)}{\kappa} U_2 \right) Y + \left(\frac{\kappa + \xi N}{\kappa} \mu Y_2 U - \frac{\rho X_2}{\xi V} \eta Y V_2 \frac{V}{V} + \rho X_2 V_2
\]
\[+ \frac{\mu (k + \xi_N)}{\theta k} \left(1 - \frac{U_2}{U} \right) (\gamma - \xi_U U) + \frac{\mu (k + \xi_N)}{\theta k} \pi AU_2 + \frac{\mu (k + \xi_N)}{\theta k} \varepsilon A - \frac{\mu (k + \xi_N) (\alpha + \xi_L)}{\alpha \theta k} \xi_A A. \]

Utilizing the equilibrium point conditions for \(EP_2 \):

\[\delta = \xi_X X_2 + \rho V_2 X_2, \]
\[\rho V_2 X_2 = (k + \xi_N) N_2, \]
\[\kappa N_2 = \xi_Y Y_2 + \mu Y_2 U_2, \]
\[\eta Y_2 = \xi_V V_2, \]
\[\gamma = \xi_U U_2 - \theta Y_2 U_2; \]

we obtain

\[
\frac{d\Phi_2}{dt} = -\frac{\xi_X}{X} (X - X_2)^2 + \rho V_2 X_2 - \rho V_2 X_2 \frac{VXN_2}{V_2 X_2 N} + \rho V_2 X_2 - \rho V_2 X_2 \frac{YV_2}{Y_2 V} + \rho V_2 X_2 - \frac{(k + \xi_N)}{\theta k} (\xi_U U - U_2)^2
\]
\[
= \frac{\xi_X}{X} (X - X_2)^2 + \rho V_2 X_2 \left(4 - \frac{X_2}{X} \frac{VXN_2}{V_2 X_2 N} - \frac{YV_2}{Y_2 V} \right) - \frac{(k + \xi_N)}{\theta k} \xi_U U_2 \left(2 - \frac{U}{U_2} - \frac{U_2}{U} \right)
\]
\[
= \frac{\xi_X}{X} (X - X_2)^2 + \rho V_2 X_2 \left(4 - \frac{X}{X} \frac{VXN_2}{V_2 X_2 N} - \frac{NY_2}{N_2 Y} \frac{YV_2}{Y_2 V} \right) - \frac{(k + \xi_N)}{\theta k} \xi_U U_2 \left(2 - \frac{U}{U_2} - \frac{U_2}{U} \right)
\]
\[
= \frac{\xi_X}{X} (X - X_2)^2 + \frac{\mu (k + \xi_N)}{\theta k} \left(\pi U_2 - \frac{\xi_U A + \alpha (\xi_A - \alpha)}{\alpha} \right) A.
\]

We have

\[-\frac{\kappa + \xi_N}{\kappa} \mu Y_2 U_2 \left(2 - \frac{U}{U_2} - \frac{U_2}{U} \right) = \frac{(k + \xi_N)}{\theta k} \xi_U U \left(U - U_2 \right)^2 \]
\[= \frac{\mu (k + \xi_N)}{\theta k} \xi_U U \left(U - U_2 \right)^2 \]
\[= \frac{\mu (k + \xi_N)}{\theta k} \xi_U U \left(U - U_2 \right)^2 \]
\[= \frac{\mu \gamma (k + \xi_N)}{\theta k U U_2} \left(\theta Y_2 - \xi_U \right) \]
\[= \frac{\mu \gamma (k + \xi_N)}{\theta \kappa U U_2} \left(U - U_2 \right)^2 . \]

Collecting terms, we get

\[
\frac{d\Phi_2}{dt} = -\frac{\xi_X}{X} (X - X_2)^2 + \rho V_2 X_2 \left(4 - \frac{X}{X} \frac{VXN_2}{V_2 X_2 N} - \frac{NY_2}{N_2 Y} \frac{YV_2}{Y_2 V} \right)
\]
\[
- \frac{\mu \gamma (k + \xi_N)}{\theta \kappa U U_2} \left(U - U_2 \right)^2 + \frac{\mu (k + \xi_N)}{\theta k} \left(\pi U_2 - \frac{\xi_U A + \alpha (\xi_A - \alpha)}{\alpha} \right) A.
\]

Hence, if \(R_3 \leq 1 \), then \(EP_3 \) does not exist since \(A_3 \leq 0 \) and \(L_3 \leq 0 \). This implies that

\[\dot{A} (t) = \alpha L - \xi_A A \leq 0, \]
\[\dot{L} (t) = \pi AU + \varepsilon A - (\alpha + \xi_L) L \leq 0 . \]
It follows that \((\pi U - \frac{\xi \xi_A + a(\xi_A - \epsilon)}{\theta})\) \(A \leq 0\) for all \(A > 0\). Thus, \(\pi U_2 - \frac{\xi \xi_A + a(\xi_A - \epsilon)}{\theta} \leq 0\), and, by using the inequality of (5.1), we obtain
\[
\frac{X_2}{X} + \frac{VN_{N_2}}{V_2 X_2 N} + \frac{NY_2}{N_2 Y} + \frac{V Y_2}{Y_2 V} \geq 4, \ \forall X, N, Y, V > 0.
\]
Thus, \(\frac{\partial U}{\partial t} \leq 0\) for all \(X, N, Y, V, U, L, A > 0\) and \(\frac{\partial U}{\partial t} = 0\) when \(X = X_2, N = N_2, Y = Y_2, V = V_2, U = U_2\) and \(A = 0\). The solutions of the system converge to \(\Delta_2^\prime\), which comprises elements with \(A = 0\). It follows that \(\dot{A} = 0\), and Eq (2.14) becomes
\[
0 = \dot{A} = aL \implies L(t) = 0 \text{ for all } t.
\]
Therefore, \(\Delta_2^\prime = \{EP_2\}\). LaSalle’s invariance principle implies that \(EP_2\) is globally asymptotically stable [62].\(\Box\)

Let us define a parameter \(\hat{R}\) as follows:
\[
\hat{R} = \frac{\eta \rho \alpha \gamma}{(\theta \xi \xi V + \eta \rho \xi U)(\xi \xi_A + \alpha(\xi_A - \epsilon))}.
\]

Theorem 5.4. If \(R_0 > 1\) and \(1 < R_2 < \hat{R}\), then the HTLV-I/SARS-CoV-2 coinfection equilibrium point \(EP_3\) is globally asymptotically stable.

Proof. Define \(\Phi_3\) as follows:
\[
\Phi_3 = X_3 H \left(\frac{X}{X_3}\right) + N_3 H \left(\frac{N}{N_3}\right) + \frac{\kappa + \xi N}{\kappa} Y_3 H \left(\frac{Y}{Y_3}\right) + \frac{\rho X_3}{\xi V} V_3 H \left(\frac{V}{V_3}\right)
\]
\[
+ \frac{\mu(\kappa + \xi N)}{\theta A} U_3 H \left(\frac{U}{U_3}\right) + \frac{\mu(\kappa + \xi N)}{\theta A} L_3 H \left(\frac{L}{L_3}\right) + \frac{\mu(\kappa + \xi N)(\alpha + \xi L)}{\alpha A} A_3 H \left(\frac{A}{A_3}\right).
\]

Clearly, \(\Phi_3(X, N, Y, V, U, L, A) > 0\) for all \(X, N, Y, V, U, L, A > 0\) and \(\Phi_3(X_3, N_3, Y_3, V_3, U_3, L_3, A_3) = 0\). Calculate \(\frac{d\Phi_3}{dt}\) as follows:
\[
\frac{d\Phi_3}{dt} = \left(1 - \frac{X_3}{X}\right) \frac{\dot{X}}{X} + \left(1 - \frac{N_3}{N}\right) \frac{\dot{N}}{N} + \frac{\kappa + \xi N}{\kappa} \left(1 - \frac{Y_3}{Y}\right) \frac{\dot{Y}}{Y} + \frac{\rho X_3}{\xi V} \left(1 - \frac{V_3}{V}\right) \frac{\dot{V}}{V}
\]
\[
+ \frac{\mu(\kappa + \xi N)}{\theta A} \left(1 - \frac{U_3}{U}\right) \frac{\dot{U}}{U} + \frac{\mu(\kappa + \xi N)}{\theta A} \left(1 - \frac{L_3}{L}\right) \frac{\dot{L}}{L}
\]
\[
+ \frac{\mu(\kappa + \xi N)(\alpha + \xi L)}{\alpha A} \left(1 - \frac{A_3}{A}\right) \frac{\dot{A}}{A}.
\]

In order to show the global asymptotic stability, we need to verify that \(\Phi_3 \leq 0\) and \(\Phi_3 = 0\) implies \(\dot{\Phi}_3 = 0\). This is a straightforward calculation involving the expressions for \(\dot{X}, \dot{N}, \dot{Y}, \dot{V}, \dot{U}, \dot{L}, \dot{A}\) and the inequality (5.1). Therefore, (5.10) becomes
\[
\frac{\partial U}{\partial t} \geq 0 \implies \frac{\partial U}{\partial t} = 0 \text{ for all } X, N, Y, V, U, L, A > 0 \text{ and } \frac{\partial U}{\partial t} = 0 \text{ when } X = X_2, N = N_2, Y = Y_2, V = V_2, U = U_2 \text{ and } A = 0.
\]

The solutions of the system converge to \(\Delta_2^\prime\), which comprises elements with \(A = 0\). It follows that \(\dot{A} = 0\), and Eq (2.14) becomes
\[
0 = \dot{A} = aL \implies L(t) = 0 \text{ for all } t.
\]

Therefore, \(\Delta_2^\prime = \{EP_2\}\). LaSalle’s invariance principle implies that \(EP_2\) is globally asymptotically stable [62].\(\Box\)

Let us define a parameter \(\hat{R}\) as follows:
\[
\hat{R} = \frac{\eta \rho \alpha \gamma}{(\theta \xi \xi V + \eta \rho \xi U)(\xi \xi_A + \alpha(\xi_A - \epsilon))}.
\]

Theorem 5.4. If \(R_0 > 1\) and \(1 < R_2 < \hat{R}\), then the HTLV-I/SARS-CoV-2 coinfection equilibrium point \(EP_3\) is globally asymptotically stable.

Proof. Define \(\Phi_3\) as follows:
\[
\Phi_3 = X_3 H \left(\frac{X}{X_3}\right) + N_3 H \left(\frac{N}{N_3}\right) + \frac{\kappa + \xi N}{\kappa} Y_3 H \left(\frac{Y}{Y_3}\right) + \frac{\rho X_3}{\xi V} V_3 H \left(\frac{V}{V_3}\right)
\]
\[
+ \frac{\mu(\kappa + \xi N)}{\theta A} U_3 H \left(\frac{U}{U_3}\right) + \frac{\mu(\kappa + \xi N)}{\theta A} L_3 H \left(\frac{L}{L_3}\right) + \frac{\mu(\kappa + \xi N)(\alpha + \xi L)}{\alpha A} A_3 H \left(\frac{A}{A_3}\right).
\]

Clearly, \(\Phi_3(X, N, Y, V, U, L, A) > 0\) for all \(X, N, Y, V, U, L, A > 0\) and \(\Phi_3(X_3, N_3, Y_3, V_3, U_3, L_3, A_3) = 0\). Calculate \(\frac{d\Phi_3}{dt}\) as follows:
\[
\frac{d\Phi_3}{dt} = \left(1 - \frac{X_3}{X}\right) \frac{\dot{X}}{X} + \left(1 - \frac{N_3}{N}\right) \frac{\dot{N}}{N} + \frac{\kappa + \xi N}{\kappa} \left(1 - \frac{Y_3}{Y}\right) \frac{\dot{Y}}{Y} + \frac{\rho X_3}{\xi V} \left(1 - \frac{V_3}{V}\right) \frac{\dot{V}}{V}
\]
\[
+ \frac{\mu(\kappa + \xi N)}{\theta A} \left(1 - \frac{U_3}{U}\right) \frac{\dot{U}}{U} + \frac{\mu(\kappa + \xi N)}{\theta A} \left(1 - \frac{L_3}{L}\right) \frac{\dot{L}}{L}
\]
\[
+ \frac{\mu(\kappa + \xi N)(\alpha + \xi L)}{\alpha A} \left(1 - \frac{A_3}{A}\right) \frac{\dot{A}}{A}.
\]

In order to show the global asymptotic stability, we need to verify that \(\Phi_3 \leq 0\) and \(\Phi_3 = 0\) implies \(\dot{\Phi}_3 = 0\). This is a straightforward calculation involving the expressions for \(\dot{X}, \dot{N}, \dot{Y}, \dot{V}, \dot{U}, \dot{L}, \dot{A}\) and the inequality (5.1). Therefore, (5.10) becomes
\[
\frac{\partial U}{\partial t} \geq 0 \implies \frac{\partial U}{\partial t} = 0 \text{ for all } X, N, Y, V, U, L, A > 0 \text{ and } \frac{\partial U}{\partial t} = 0 \text{ when } X = X_2, N = N_2, Y = Y_2, V = V_2, U = U_2 \text{ and } A = 0.
\]

The solutions of the system converge to \(\Delta_2^\prime\), which comprises elements with \(A = 0\). It follows that \(\dot{A} = 0\), and Eq (2.14) becomes
\[
0 = \dot{A} = aL \implies L(t) = 0 \text{ for all } t.
\]

Therefore, \(\Delta_2^\prime = \{EP_2\}\). LaSalle’s invariance principle implies that \(EP_2\) is globally asymptotically stable [62].\(\Box\)
\[\begin{align*}
- \mu (k + \xi_N) (\alpha + \xi_L) \xi_A A & = \mu (k + \xi_N) (\alpha + \xi_L) \xi_A A + \frac{\mu (k + \xi_N) (\alpha + \xi_L)}{\alpha \theta_k} \xi_A A \\
= (1 - \frac{X_3}{X}) (\xi_x X_3 - \rho V_3 X_3) - \frac{\rho V_3 X_3}{\theta_k} \xi_A A \\
+ \frac{\rho N_3 X}{\kappa} \xi_A A & = \left(1 - \frac{U_3}{U} \right) (\xi_x U_3 - \xi_V V_3) - \frac{\mu (k + \xi_N)}{\theta_k} \xi_A A \\
& \quad + \frac{\mu (k + \xi_N)}{\theta_k} \xi_A A.
\end{align*} \]

Utilizing the equilibrium point conditions for \(E P_3 \):

\[
\begin{align*}
\delta &= \xi_x X_3 + \rho V_3 X_3, \\
\rho V_3 X_3 &= (k + \xi_N) N_3, \\
\kappa N_3 &= \xi_Y Y_3 + \mu Y_3 U_3, \\
\eta Y_3 &= \xi_v V_3, \\
\gamma &= \xi_U U_3 - \theta Y_3 U_3 + \pi A_3 U_3, \\
\pi A_3 U_3 &= (\alpha + \xi_L) L_3 - \varepsilon A_3, \\
\alpha L_3 &= \xi_A A_3;
\end{align*}
\]

we obtain

\[
\begin{align*}
\frac{d \Phi_3}{dt} &= -\frac{\xi_x}{X} (X - X_3)^2 + \rho V_3 X_3 - \frac{\rho V_3 X_3}{X} X - \rho V_3 X_3 \frac{V X N_3}{V N_3} + \rho V_3 X_3 - \frac{\rho V_3 X_3}{V N_3 Y_3} \\
& \quad + \rho V_3 X_3 - \frac{(k + \xi_N)}{\kappa} Y_3 U_3 + \frac{(k + \xi_N)}{\kappa} \mu Y_3 U_3 \frac{U}{U_3} - \frac{\rho V_3 X_3}{\theta_k} V_3 Y_3 \frac{V_3}{V_3 Y_3} + \rho V_3 X_3 - \frac{\mu (k + \xi_N)}{\theta_k} \xi U_3 (U - U_3)^2 \\
& \quad - \mu \frac{(k + \xi_N)}{\theta_k} \pi A_3 U_3 \left(1 - \frac{U_3}{U} \right) + \frac{\mu (k + \xi_N)}{\theta_k} \pi A_3 U_3 \frac{U}{U_3} + \frac{\mu (k + \xi_N)}{\theta_k} \pi A_3 U_3 \frac{A}{U_3} \\
& \quad - \frac{\mu (k + \xi_N)}{\theta_k} \pi A_3 U_3 \frac{A L_3}{A_3 U_3 L} + \frac{\mu (k + \xi_N)}{\theta_k} \pi A_3 U_3 \frac{A L_3}{A_3 U_3 L} + \frac{\mu (k + \xi_N)}{\theta_k} \pi A_3 U_3 \frac{A L_3}{A_3 U_3 L} \\
& \quad - \frac{\xi_x}{X} (X - X_3)^2 + \rho V_3 X_3 \left(4 - \frac{X_3}{X} - \frac{V X N_3}{V N_3} - \frac{N Y_3}{N_3 Y} - \frac{Y V_3}{Y_3 V} \right) - \frac{(k + \xi_N)}{\kappa} \mu Y_3 U_3 \left(2 - \frac{U}{U_3} \right) \\
& \quad - \frac{\mu (k + \xi_N)}{\theta_k} \xi U_3 (U - U_3)^2 + \frac{\mu (k + \xi_N)}{\theta_k} \pi A_3 U_3 \left(3 - \frac{U_3}{U} - \frac{A L_3}{A_3 U_3 L} - \frac{L A_3}{A_3 L} \right) \\
& \quad + \frac{\mu (k + \xi_N)}{\theta_k} \xi A_3 \left(2 - \frac{A L_3}{A_3 U_3 L} - \frac{L A_3}{A_3 L} \right).
\end{align*}
\]

We have

\[
- \frac{(k + \xi_N)}{\kappa} \mu Y_3 U_3 \left(2 - \frac{U}{U_3} - \frac{U_3}{U} \right) - \frac{\mu (k + \xi_N)}{\theta_k} \xi U_3 (U - U_3)^2
\]
Moreover, since 1 < R∗ ≤ 1 + R, we obtain $\frac{d\phi_3}{dt} \leq 0$ for all $X, N, Y, V, U, L, A > 0$ and $\frac{d\phi_0}{dt} = 0$ when $X = X_3, N = N_3, Y = Y_3, V = V_3, U = U_3, L = L_3$ and $A = A_3$. The solutions of the system converge to Δ'_3. Clearly, $\Delta'_3 = \{EP_3\}$, and then LaSalle’s invariance principle implies that EP_3 is globally asymptotically stable [62].

Based on the above findings, we summarize the existence and global stability conditions for all equilibrium points in Table 1.

<table>
<thead>
<tr>
<th>Equilibrium point</th>
<th>Existence conditions</th>
<th>Global stability conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$EP_0 = (X_0, 0, 0, 0, U_0, 0, 0)$</td>
<td>None</td>
<td>$R_1 \leq 1$ and $R_2 \leq 1$</td>
</tr>
<tr>
<td>$EP_1 = (X_1, 0, 0, 0, U_1, L_1, A_1)$</td>
<td>$R_1 > 1$</td>
<td>$R_1 > 1$ and $R_4 \leq 1$</td>
</tr>
<tr>
<td>$EP_2 = (X_2, N_2, Y_2, V_2, U_2, 0, 0)$</td>
<td>$R_2 > 1$</td>
<td>$R_2 > 1$ and $R_3 \leq 1$</td>
</tr>
<tr>
<td>$EP_3 = (X_3, N_3, Y_3, V_3, U_3, L_3, A_3)$</td>
<td>$R_3 > 1$ and $R_4 > 1$</td>
<td>$R_4 > 1$ and 1 < $R_3 \leq 1 + R$</td>
</tr>
</tbody>
</table>

6. Numerical simulations

In this section, we present some numerical results for the model described by (2.1)–(2.7) to illustrate the stability of equilibrium points. We used the ODE45 solver in MATLAB to solve the system numerically.
6.1. Stability of equilibrium points

We solve the system with three initial conditions:

IC1: \((X(0), N(0), Y(0), V(0), U(0), L(0), A(0)) = (9, 0.0001, 0.0002, 0.0003, 600, 150, 15)\),

IC2: \((X(0), N(0), Y(0), V(0), U(0), L(0), A(0)) = (5, 0.0005, 0.0006, 0.0007, 500, 200, 20)\),

IC3: \((X(0), N(0), Y(0), V(0), U(0), L(0), A(0)) = (1, 0.001, 0.002, 0.003, 400, 250, 25)\).

Table 2. Model parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta)</td>
<td>Recruitment rate of uninfected epithelial cells</td>
<td>0.11</td>
<td>[25]</td>
</tr>
<tr>
<td>(\xi_X)</td>
<td>Natural death rate constant of uninfected epithelial cells</td>
<td>0.011</td>
<td>[25]</td>
</tr>
<tr>
<td>(\rho)</td>
<td>Virus-cell incidence rate constant between free SARS-CoV-2 particles</td>
<td>Varies</td>
<td>Assumed</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>Transmission rate constant of latently SARS-CoV-2-infected epithelial cells</td>
<td>4.08</td>
<td>[35, 40]</td>
</tr>
<tr>
<td>(\xi_N)</td>
<td>Death rate constant of latently SARS-CoV-2-infected epithelial cells</td>
<td>0.11</td>
<td>[25]</td>
</tr>
<tr>
<td>(\xi_V)</td>
<td>Death rate constant of actively SARS-CoV-2-infected epithelial cells</td>
<td>0.11</td>
<td>[35, 41]</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Killing rate constant of actively SARS-CoV-2-infected epithelial cells due to immune response</td>
<td>Varies</td>
<td>Assumed</td>
</tr>
<tr>
<td>(\eta)</td>
<td>Generation rate constant of new SARS-CoV-2 particles</td>
<td>0.24</td>
<td>[35, 41]</td>
</tr>
<tr>
<td>(\xi_V)</td>
<td>Death rate constant of free SARS-CoV-2 particles</td>
<td>Varies</td>
<td>Assumed</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>Recruitment rate for the uninfected CD4(^+)T cells</td>
<td>10</td>
<td>[48, 49, 63]</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Proliferation rate constant of uninfected CD4(^+)T cells</td>
<td>0.1</td>
<td>[35, 64]</td>
</tr>
<tr>
<td>(\xi_U)</td>
<td>Natural mortality rate constant for the uninfected CD4(^+)T cells</td>
<td>0.012</td>
<td>[46, 48, 49]</td>
</tr>
<tr>
<td>(\pi)</td>
<td>Cell-cell incidence rate constant between uninfected CD4(^+)T cells and actively HTLV-I-infected CD4(^+)T cells</td>
<td>Varies</td>
<td>Assumed</td>
</tr>
<tr>
<td>(\omega)</td>
<td>Probability of new HTLV-I infections via mitosis could enter a latent period</td>
<td>0.9</td>
<td>[47]</td>
</tr>
<tr>
<td>(\varepsilon^*)</td>
<td>Proliferation rate constant of newly HTLV-I-infected CD4(^+)T cells from mitosis</td>
<td>0.011</td>
<td>[47]</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Transmission rate constant of latently HTLV-I-infected CD4(^+)T cells that become actively HTLV-I-infected CD4(^+)T cells</td>
<td>0.003</td>
<td>[46, 48, 49, 65]</td>
</tr>
<tr>
<td>(\xi_L)</td>
<td>Death rate constant of latently HTLV-I-infected CD4(^+)T cells</td>
<td>0.03</td>
<td>[47–50]</td>
</tr>
<tr>
<td>(\xi_A)</td>
<td>Death rate constant of actively HTLV-I-infected CD4(^+)T cells</td>
<td>0.03</td>
<td>[46, 48, 49]</td>
</tr>
</tbody>
</table>

Table 2 contains the values of some parameters. We mention that the values of some parameters of the model are taken from previous studies for SARS-CoV-2 and HTLV-I mono-infections, while other parameters \(\rho, \mu, \xi_V\) and \(\pi\) are chosen just to conduct the numerical simulations. To the best of our knowledge, now, there is no available data from SARS-CoV-2 and HTLV-I coinfection patients. Therefore, estimation of the parameters of the coinfection model is still open for future investigation. We vary the parameters, \(\rho, \mu, \xi_V\) and \(\pi\) to obtain four cases, as follows:
Case 1. \((R_1 \leq 1 \text{ and } R_2 \leq 1)\): Choose \(\rho = 0.8, \mu = 1.1, \xi_V = 5.5\) and \(\pi = 0.0001\), which gives \(R_1 = 0.2706 < 1\) and \(R_2 = 0.0004 < 1\). Based on Theorem 5.1, the equilibrium point \(EP_0\) is globally asymptotically stable. This is illustrated in Figure 2, where the concentrations of the uninfected epithelial cells and uninfected CD4+ T cells tend to their healthy values \(X_0 = 10\) and \(U_0 = 833.33\) while the concentrations of the other compartments tend to zero. This case means that there are no SARS-CoV-2 and HTLV-I infections in the body.

Case 2. \((R_1 > 1 \text{ and } R_4 \leq 1)\): We take \(\rho = 0.5, \mu = 1.1, \xi_V = 5.5\) and \(\pi = 0.0015\). So, we get \(R_1 = 4.0584 > 1\) and \(R_4 = 0.0009 < 1\). According to Lemma 4.1 and Theorem 5.2, the HTLV-I mono-infection equilibrium point \(EP_1\) exists and is globally asymptotically stable. Figure 3 shows that the model solutions converge to the equilibrium point \(EP_1 = (10, 0, 0, 0, 205.33, 235.7, 24.47)\) for all initials IC1–IC3. In this situation, the patient becomes infected by HTLV-I, while the SARS-CoV-2 infection is cleared.

Case 3. \((R_2 > 1 \text{ and } R_3 \leq 1)\): We choose \(\rho = 3, \mu = 0.01, \xi_V = 0.04\) and \(\pi = 0.0001\). Then, we calculate \(R_2 = 20.7589 > 1\) and \(R_3 = 0.2979 < 1\). Lemma 4.1 and Theorem 5.3 state that the SARS-CoV-2 mono-infection equilibrium point \(EP_2 = (0.529, 0.025, 0.011, 0.066, 916.87, 0, 0)\) exists and is globally asymptotically stable. Figure 4 displays the numerical solutions of the system converge to \(EP_2\) for all three initials IC1–IC3. The results support the theoretical results presented in Theorem 5.3. In this situation, the patient becomes infected by SARS-CoV-2, while the HTLV-I infection is removed.

Case 4. \((R_4 > 1 \text{ and } 1 < R_3 \leq 1 + \hat{R})\): We consider \(\rho = 3, \mu = 0.01, \xi_V = 0.6\) and \(\pi = 0.0015\). So, we get \(R_3 = 5.4014 > 1\), \(R_4 = 4.1538 > 1\) and \(R_3 < 1 + \hat{R} = 4.7704\). Lemma 4.1 and Theorem 5.4 state that the HTLV-I/SARS-CoV-2 coinfection equilibrium point \(EP_3 = (1.85, 0.021, 0.04, 0.016, 205.33, 261.62, 27.16)\) exists and is globally asymptotically stable. Figure 5 shows that the solutions of the system converge to \(EP_3\) for all initials IC1–IC3. The results support the theoretical results presented in Theorem 5.4. In this case, a SARS-CoV-2 and HTLV-I coinfection happens, where an HTLV-I-patient gets contaminated with COVID-19. CD4+ T cells are animated to dispense with SARS-CoV-2 disease from the body. In any case, assuming that the patient has low CD4+ T cell counts, the freedom of SARS-CoV-2 may not be accomplished. This can prompt extreme contamination and passing. Now, we check the local stability of the model’s equilibria.
Figure 2. Solutions of the system described by (2.1)–(2.7) with the initial conditions IC1–IC3 in Case 1.
Figure 3. Solutions of the system described by (2.1)–(2.7) with the initial conditions IC1–IC3 in Case 2.
Figure 4. Solutions of the system described by (2.1)–(2.7) with the initial conditions IC1–IC3 in Case 3.
Figure 5. Solutions of the system described by (2.1)–(2.7) with the initial conditions IC1–IC3 in Case 4.
The Jacobian matrix $J = J(X, N, Y, V, U, L, A)$ can be calculated as follows:

$$
J = \begin{pmatrix}
-\left(\rho V + \xi_X\right) & 0 & 0 & -\rho X & 0 & 0 & 0 \\
\rho V & -\left(\kappa + \xi_N\right) & 0 & \rho X & 0 & 0 & 0 \\
0 & \kappa & -\left(\mu U + \xi_Y\right) & 0 & -\mu Y & 0 & 0 \\
0 & 0 & \eta & -\xi_V & 0 & 0 & 0 \\
0 & 0 & \theta U & 0 & \theta Y - \pi A - \xi_U & 0 & -\pi U \\
0 & 0 & 0 & \pi A & -\left(\alpha + \xi_L\right) & \pi U + \omega \varepsilon^* & \alpha \\
0 & 0 & 0 & 0 & 0 & \rho & \left(1 - \omega\right)\varepsilon^* - \xi_A \\
\end{pmatrix}.
$$

At each equilibrium point, we compute the eigenvalues λ_j, $j = 1, 2, \ldots, 7$ of J. If $\text{Re}(\lambda_j) < 0$, $j = 1, 2, \ldots, 7$, then the equilibrium point is locally stable. We select the parameters ρ, μ, ξ_V and π as given in Cases 1–4; then, we compute all nonnegative equilibria and the accompanying eigenvalues. Table 3 outlines the nonnegative equilibria, the real parts of the eigenvalues and whether or not the equilibrium point is stable. We found that the local stability agrees with the global one.

<table>
<thead>
<tr>
<th>Case</th>
<th>Equilibrium point</th>
<th>$\text{Re}(\lambda_j)$ if $j = 1, 2, \ldots, 7$</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>$EP_0 = (10, 0, 0, 0, 0, 0, 0, 0)$</td>
<td>$(-916.77, -5.51, -4.18, -0.048, -0.014, -0.012, -0.011)$</td>
<td>stable</td>
</tr>
<tr>
<td>Case 2</td>
<td>$EP_1 = (10, 0, 0, 0, 205.33, 235.70, 24.47)$</td>
<td>$(-225.98, -5.52, -4.17, -0.077, -0.017, -0.017, -0.011)$</td>
<td>stable</td>
</tr>
<tr>
<td>Case 3</td>
<td>$EP_2 = (10, 0, 0, 0, 0.833, 3, 0, 0)$</td>
<td>$(-6.65, -6.65, -0.048, -0.014, -0.012, -0.011, +0.631)$</td>
<td>unstable</td>
</tr>
<tr>
<td>Case 4</td>
<td>$EP_3 = (0.529, 0.025, 0.011, 0.066, 916.87, 0, 0)$</td>
<td>$(-9.24, -4.27, -0.154, -0.051, -0.049, -0.013, -0.012)$</td>
<td>stable</td>
</tr>
</tbody>
</table>

6.2. Comparison results

In this subsection, we present a comparison between the HTLV-I single infection and the coinfection with HTLV-I and SARS-CoV-2. We compare the solutions of the model described by (2.1)–(2.7) and the following SARS-CoV-2 mono-infection model:

$$
\begin{align*}
\dot{X} &= \delta - \xi_X X - \rho VX, \\
\dot{N} &= \rho VX - \left(\kappa + \xi_N\right)N, \\
\dot{Y} &= \kappa N - \xi_Y Y - \mu YU, \\
\dot{V} &= \eta Y - \xi_V V, \\
\dot{U} &= \gamma + \theta U - \xi_U U.
\end{align*}
$$

We consider $\rho = 3$, $\mu = 0.01$, $\xi_V = 0.6$ and $\pi = 0.0015$ with the initial condition IC3. We observe from Figure 6 that the presence of HTLV-I reduces the concentrations of uninfected epithelial cells and uninfected CD4+T cells, while it increases the concentrations of latently SARS-CoV-2-infected epithelial cells, actively SARS-CoV-2-infected epithelial cells and free SARS-CoV-2 particles. This means that HTLV-I suppresses the immune response and enhances the SARS-CoV-2 infection.
Figure 6. Comparison between the solutions of the SARS-CoV-2 mono-infection model and SARS-CoV-2/HTLV-I coinfection model.
7. Discussion

SARS-CoV-2 and HTLV-I coinfection cases were reported in [3] and [12]. Therefore, it is important to understand the within-host dynamics of this coinfection. In this paper, we developed and examined a within-host SARS-CoV-2 and HTLV-I coinfection model. We studied the basic and global properties of the model. We found that the system has four equilibria, and we proved the following:

(I) The uninfected equilibrium point EP_0 always exists. It is globally asymptotically stable when $R_1 \leq 1$ and $R_2 \leq 1$. This result suggests that, when $R_1 \leq 1$ and $R_2 \leq 1$, both SARS-CoV-2 and HTLV-I infections are predicted to die out regardless of the initial conditions. From a control viewpoint, setting $R_1 \leq 1$ and $R_2 \leq 1$ will be a good strategy. The parameter R_2 may be reduced by multiplying the parameters by ρ or η by $(1 - \epsilon_1)$ or $(1 - \epsilon_2)$, respectively. Here, $\epsilon_1 \in [0, 1]$ and $\epsilon_2 \in [0, 1]$ represent the effectiveness of antiviral drugs for blocking the infection and production of SARS-CoV-2 particles, respectively [18]. Since there is no treatment for HTLV-I infection, $R_1 \leq 1$ is rarely achieved.

(II) The HTLV-I mono-infection equilibrium point EP_1 exists if $R_1 > 1$. It is globally asymptotically stable when $R_1 > 1$ and $R_4 \leq 1$. This result establishes that, when $R_1 > 1$ and $R_4 \leq 1$, the HTLV-I mono-infection is always established, regardless of the initial conditions.

(III) The SARS-CoV-2 mono-infection equilibrium point EP_2 exists if $R_2 > 1$. It is globally asymptotically stable when $R_2 > 1$ and $R_3 \leq 1$. This result shows that, when $R_2 > 1$ and $R_3 \leq 1$, the SARS-CoV-2 mono-infection is always established, regardless of the initial conditions.

(IV) The HTLV-I and SARS-CoV-2 coinfection equilibrium point EP_3 exists if $R_3 > 1$ and $R_4 > 1$. It is globally asymptotically stable when $R_4 > 1$ and $1 < R_3 \leq 1 + \hat{R}$. This result shows that, when $R_4 > 1$ and $1 < R_3 \leq 1 + \hat{R}$, the HTLV-I and SARS-CoV-2 coinfection is always established, regardless of the initial conditions.

We discussed the impact of HTLV-I infection on the SARS-CoV-2 mono-infection dynamics. We found that the presence of HTLV-I suppresses the immune response and enhances the SARS-CoV-2 infection. This result agrees with [3], where it was reported that HTLV-I can cause immune dysfunction even in asymptomatic carriers. Therefore, HTLV-I may increase the risk of COVID-19.

The main limitation of the present research work is that we did not use real data to estimate the values of the model’s parameters. The reasons are as follows: (i) The real measurements from HTLV-I/COVID-19 coinfection patients are still very limited; (ii) Comparing our results with a small number of real studies may not be very precise; (iii) Collecting real data from patients with HTLV-I and COVID-19 coinfection is not an easy task. Thus, the theoretical results obtained in the present paper need to be tested against empirical findings when real data become available.

8. Conclusions

Mathematical models are frequently used to understand the complex behavior of biological systems. In this paper, we constructed a new SARS-CoV-2/HTLV-I coinfection model within a host. The model considers the interactions between uninfected epithelial cells, latently SARS-CoV-2-infected epithelial cells, actively SARS-CoV-2-infected epithelial cells, free SARS-CoV-2 particles, uninfected CD4+ T cells, latently HTLV-I-infected CD4+ T cells and actively HTLV-I-infected CD4+ T cells. We examined the nonnegativity and boundedness of the solutions. We calculated the equilibrium points of the model and established the conditions of their existence and stability. We established the global stability of
all equilibrium points by formulating suitable Lyapunov functions and applying LaSalle’s invariance principle. We conducted some numerical simulations and showed that they are consistent with the analytical results. We discussed the effect of HTLV-I infection on the dynamics of SARS-CoV-2 mono-infection. We found that HTLV-I infection suppresses the immune response and enhances the SARS-CoV-2 infection; thus, it may increase the risk of COVID-19.

The model developed in this work can be improved by (i) utilizing real data to find a good estimation of the parameters’ values, (ii) studying the effect of intracellular time delays [25], (iii) considering the mutations of SARS-CoV-2 [58, 66] and (iv) including the stochastic interaction. Memory is an important characteristic of viral infections. It will be interesting to examine the effect of memory on the dynamics of SARS-CoV-2 and HTLV-I coinfection via formulation of the model through the use of fractional differential equations [67]. These research points need further investigation, so we leave them to future works.

Acknowledgment

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia, under grant no. (KEP-PhD-38-130-43). The authors, therefore, acknowledge, with thanks, the DSR for technical and financial support.

Conflict of interest

The authors declare that there is no conflict of interest.

References

© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)