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Abstract: Although some patients with coronavirus disease 2019 (COVID-19) develop only mild
symptoms, fatal complications have been observed among those with underlying diseases. Severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative of COVID-19. Human T-cell
lymphotropic virus type-I (HTLV-I) infection can weaken the immune system even in asymptomatic
carriers. The objective of the present study is to formulate a new mathematical model to describe the
co-dynamics of SARS-CoV-2 and HTLV-I in a host. We first investigate the properties of the model’s
solutions, and then we calculate all equilibria and study their global stability. The global asymptotic
stability is examined by constructing Lyapunov functions. The analytical findings are supported via
numerical simulation. Comparison between the solutions of the SARS-CoV-2 mono-infection model
and SARS-CoV-2/HTLV-I coinfection model is given. Our proposed model suggest that the presence
of HTLV-I suppresses the immune response, enhances the SARS-CoV-2 infection and, consequently,
may increase the risk of COVID-19. Our developed coinfection model can contribute to understanding
the SARS-CoV-2 and HTLV-I co-dynamics and help to select suitable treatment strategies for COVID-
19 patients who are infected with HTLV-I.
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1. Introduction

In November 2019, a dangerous type of virus named severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) appeared first in Wuhan, China. This virus infects the human body and
causes coronavirus disease 2019 (COVID-19), which can lead to death. According to the update
provided by the World Health Organization (WHO) on December 4, 2022 [1], over 641 million
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confirmed cases and over 6.6 million deaths have been reported globally. SARS-CoV-2 is transmitted
to people when they are exposed to respiratory fluids carrying infectious viral particles. The
implementation of preventive measures such as hand washing, using face masks, physical and social
distancing, disinfection of surfaces and getting the COVID-19 vaccine can reduce SARS-CoV-2
transmission. Ten vaccines for COVID-19 have been approved by the WHO for emergency use.
These include Novavax, Bharat Biotech, Serum Institute of India (Novavax formulation), Sinopharm,
Pfizer/BioNTech, Sinovac, Janssen (Johnson & Johnson), Oxford/AstraZeneca, Serum Institute of
India (Oxford/AstraZeneca formulation) and that presented in [2].

SARS-CoV-2 is a single-stranded positive-sense RNA virus that infects epithelial cells.
SARS-CoV-2 can lead to acute respiratory distress syndrome, which has high mortality rates,
particularly in patients with other viral infections [3]. It was discovered in [4] that, 94.2% of
individuals with COVID-19 were also coinfected with several other microorganisms, such as fungi,
bacteria and viruses. Important viral copathogens include the respiratory syncytial virus,
rhinovirus/enterovirus, influenza A and B viruses (IAV and IBV), metapneumovirus, parainfluenza
virus, human immunodeficiency virus (HIV), cytomegalovirus, dengue virus, hepatitis B virus,
Epstein-Barr virus and other coronaviruses, among which the rhinovirus/enterovirus and IAV are the
most common copathogens [5]. Disease progression and outcome in SARS-CoV-2 infection are
highly dependent on the host immune response, particularly in the elderly in whom
immunosenescence may predispose them to increased risk of coinfection [6]. Immunosenescence
renders vaccination less effective and increases the susceptibility to viral infections [7].

Human T-cell lymphotropic virus type-I (HTLV-I) is a single-stranded RNA virus that infects
essential human system immune cells, CD4+ T cells. CD4+ T cells are considered “helper” cells
because they do not neutralize infections, but rather trigger the body’s response to infections [8]. They
are considered essential in the activation and growth of cytotoxic T lymphocytes (CTLs). The role of
CTLs is to destroy cells infected with microorganisms, such as bacteria or viruses. HTLV-I can cause
immune dysfunction even in asymptomatic carriers [3]. HTLV-I can lead to two diseases: adult T-cell
leukemia (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) [9].
Although HTLV-I can cause fatal diseases (ATL and HAM/TSP), most of the infected persons remain
asymptomatic throughout their lives [3]. An estimation by the WHO stated that about 5 to 10 million
individuals are infected with HTLV-I worldwide [10]. The primary method of HTLV-I transmission is
through bodily fluids including semen, blood and breast milk [11]. In [3,12], two cases of COVID-19
patients with HTLV-I infection have been reported. These reports highlighted the need for the
accumulation of similar cases to illustrate the risk factors for severe illness, the best-in-class antiviral
agent, the way to manage and prevent secondary infection and the optimal treatment strategy for
patients with SARS-CoV-2-HTLV-I coinfection.

Over the years, mathematical models have demonstrated their ability to provide useful insight to
gain a further understanding of virus dynamics within the host. These models may assist in the
development of viral therapies, as well as in the selection of appropriate therapeutic approaches.
Stability analysis of the model’s equilibria may help researchers to establish the conditions that ensure
the persistence or termination of this infection. Mathematical models of SARS-CoV-2 mono-infection
within a host have recently been developed in several works. Hernandez-Vargas and
Velasco-Hernandez [13] presented the following SARS-CoV-2 mono-infection model with limited
target cells:
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Ẋ = −

SARS-CoV-2 infectious transmission︷︸︸︷
ρVX , (1.1)

Ṅ =

SARS-CoV-2 infectious transmission︷︸︸︷
ρVX −

latent activation︷︸︸︷
κN , (1.2)

Ẏ =

latent activation︷︸︸︷
κN −

death︷︸︸︷
ξYY , (1.3)

V̇ =

generation of SARS-CoV-2︷︸︸︷
ηY −

death︷︸︸︷
ξVV , (1.4)

where X = X(t), N = N(t), Y = Y(t) and V = V(t) are the concentrations of uninfected epithelial cells,
latently SARS-CoV-2-infected epithelial cells, actively SARS-CoV-2-infected epithelial cells and free
SARS-CoV-2 particles at time t, respectively. Li et al. [14] have considered a SARS-CoV-2 infection
model with constant regeneration and death for the uninfected epithelial cells:

Ẋ = δ − ξXX − ρVX.

Models presented in [13, 14] have been extended and modified by including (i) latently infected
epithelial cells [13,15–17], (ii) the effects of the immune response [18–22], (iii) the effects of different
drug therapies [16,23,24] and (iv) the effects of time delay [25].

In very recent works, mathematical models have been formulated to describe the coinfection of
COVID-19 with other diseases in epidemiology, such as COVID-19/Dengue [26],
COVID-19/Influenza [27], COVID-19/HIV [28], COVID-19/ZIKV [29],
COVID-19/Dengue/HIV [30], COVID-19/Tuberculosis [31] and COVID-19/Bacterial [32]. On the
other hand, some studies have been devoted to modeling the within-host co-dynamics of COVID-19
with other diseases, including COVID-19/cancer [33], COVID-19/Bacteria [34],
COVID-19/HIV [35,36], COVID-19/malaria [37,38] and COVID-19/Influenza [39, 40].

Stability analysis for models describing the within-host dynamics of SARS-CoV-2 infection was
studied in [19–21,36,39,41]. Hattaf and Yousfi [19] studied a within-host SARS-CoV-2 infection model
with cell-to-cell transmission and CTL immune response. The model included both lytic and nonlytic
immune responses. The Lyapunov method was used to prove the global stability of the three equilibria
of the model. A SARS-CoV-2 infection model with both CTL and antibody immunities was developed
and analyzed in [21]. Mathematical analysis of the model presented in [14] was studied in [41]. Both
local and global stability analyses of the model’s equilibria were established. Almocera et al. [20]
studied the stability of the two-dimensional SARS-CoV-2 dynamics model with an immune response
presented in [13]. Elaiw et al. [25] studied the global stability of a delayed SARS-CoV-2 dynamics
model with logistic growth of the uninfected epithelial cells and antibody immunity. In very recent
works, the Lyapunov method was used to establish the global stability of coinfection models, including
SARS-CoV-2/HIV-1 [35,36], SARS-CoV-2/IAV [39] and SARS-CoV-2/malaria [37,38].

During the last decades, modeling and analysis of HTLV-I mono-infection have attracted the interest
of several researchers. Stilianakis and Seydel [42] constructed an HTLV-I model within a host as
follows:

U̇ =

CD4+T cells production︷︸︸︷
γ −

death︷︸︸︷
ξUU −

HTLV-I infectious transmission︷︸︸︷
πAU ,
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L̇ =

HTLV-I infectious transmission︷︸︸︷
πAU −

latent activation︷︸︸︷
αL −

death︷︸︸︷
ξLL ,

Ȧ =

latent activation︷︸︸︷
αL −

conversion to ATL︷︸︸︷
ϑA −

death︷︸︸︷
ξ∗AA ,

Ż =

conversion to ATL︷︸︸︷
ϑA +

proliferation of ATL︷           ︸︸           ︷
`Z

(
1 −

Z
Zmax

)
−

death︷︸︸︷
ξZZ ,

where (U, L, A,Z) = (U (t) , L (t) , A (t) ,Z(t)) respectively denotes the concentrations of healthy (or
uninfected) CD4+T cells, latently HTLV-I-infected CD4+T cells, actively HTLV-I-infected CD4+T
cells and ATL cells. Some biological factors have been considered in the HTLV-I mathematical
models by incorporating (i) CTL immunity [9,43–45], (ii) the mitotic transmission of actively
infected cells [46–50], (iii) intracellular time delay [51,52] or immune response delay [43,53] and (iv)
reaction and diffusion [54]. Elaiw et al. [55] developed and analyzed a general HTLV-I with CTL
immunity, mitosis and time delay. HIV-1 and HTLV-I have similar ways of transmission between
individuals. Therefore, we presented and analyzed some models for within-host HIV-1/HTLV-I
coinfection [56, 57].

To the best of our knowledge, mathematical modeling of within-host SARS-CoV-2-HTLV-I
coinfection has not been studied before. The objective of this work is to formulate a new model for
within-host SARS-CoV-2-HTLV-I coinfection. We study the properties of the model’s solutions,
calculate all equilibrium points, investigate the global stability of equilibria and conduct some
numerical simulations.

The SARS-CoV-2/HTLV-I coinfection model presented in this paper can be helpful to describe the
co-dynamics of several human viruses. In addition, the model may be used to predict new treatment
regimens and strategies for patients who are coinfected with different viruses or multi-variants of a
virus [58].

2. Mathematical SARS-CoV-2 and HTLV-I coinfection model

The dynamics of SARS-CoV-2-HTLV-I coinfection is schematically shown in the transfer diagram
given in Figure 1. Now, we propose a new ordinary differential equation model for SARS-CoV-2-
HTLV-I coinfection within a host as follows:

Ẋ = δ − ξXX − ρVX, (2.1)
Ṅ = ρVX − (κ + ξN)N, (2.2)
Ẏ = κN − ξYY − µYU, (2.3)
V̇ = ηY − ξVV, (2.4)
U̇ = γ + θYU − ξUU − πAU, (2.5)
L̇ = πAU + ωε∗A − (α + ξL) L, (2.6)
Ȧ = αL + (1 − ω) ε∗A − ξ∗AA. (2.7)
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Figure 1. Schematic diagram of the SARS-CoV-2 and HTLV-I coinfection dynamics in vivo.

All parameters of the model described by (2.1)–(2.7) are positive. Since the CD4+T cells help CTLs
to kill the actively SARS-CoV-2-infected epithelial cells, we assume implicitly that the actively SARS-
CoV-2-infected epithelial cells are killed at a rate µYU and the CD4+T cells are proliferated at a rate
θYU. We assume that actively HTLV-I-infected cells proliferate at a rate ε∗A, with a part ωε∗A turning
into latent, where ω ∈ (0, 1). All parameters of the model are positive. In [49,56], it was proposed that
ε∗ < min{ξU , ξL, ξ

∗
A}. Since 0 < ω < 1 and ε∗ < ξ∗A, (1−ω)ε∗ < ξ∗A. Denote ξA = ξ∗A − (1−ω)ε∗ > 0 and

ε = ωε∗. Therefore, the model described by (2.1)–(2.7) becomes

Ẋ = δ − ξXX − ρVX, (2.8)
Ṅ = ρVX − (κ + ξN)N, (2.9)
Ẏ = κN − ξYY − µYU, (2.10)
V̇ = ηY − ξVV, (2.11)
U̇ = γ + θYU − ξUU − πAU, (2.12)
L̇ = πAU + εA − (α + ξL) L, (2.13)
Ȧ = αL − ξAA. (2.14)

We have ξA − ε = ξ∗A − ε
∗ > 0.

Remark 2.1. If HTLV-I does not exist and we neglect the regeneration of the uninfected epithelial
cells, the death of the uninfected epithelial cells and the death of the latently SARS-CoV-2-infected
epithelial cells, then the model described by (2.8)–(2.14) will lead to the model described by (1.1)–
(1.4). Moreover, in the absence of SARS-CoV-2, then the model described by (2.8)–(2.14) leads to the
HTLV-I mono-infection models (without considering the HTLV-I-specific CTL ) presented in [49,50].

3. Properties of solutions

Let Mi > 0, i = 1, 2, 3 be defined as

M1 =
δ

σ
+
µγ

σθ
, M2 =

2η
ξY

M1 and M3 =
θ

µ
M1.
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Additionally, define the following compact set:

Ω = {(X,N,Y,V,U, L, A) ∈ R7
≥0 : 0 ≤ X,N,Y ≤ M1, 0 ≤ V ≤ M2, 0 ≤ U, L, A ≤ M3}.

Lemma 3.1. The compact set Ω is positively invariant for the model described by (2.8)–(2.14).

Proof. We have that

Ẋ |X=0= δ > 0, Ṅ |N=0= ρVX ≥ 0 for all X,V ≥ 0,
Ẏ |Y=0= κN ≥ 0 for all N ≥ 0, V̇ |V=0= ηY ≥ 0 for all Y ≥ 0,
U̇ |U=0= γ > 0, L̇ |L=0= πAU + εA ≥ 0 for all U, A ≥ 0,
Ȧ |A=0= αL ≥ 0 for all L ≥ 0.

It follows from Proposition B.7 of [59] that (X (t) ,N (t) ,Y (t) ,V (t) ,U (t) , L (t) , A (t)) ∈ R7
≥0 for all

t ≥ 0 whenever (X (0) ,N (0) ,Y (0) ,V (0) ,U (0) , L (0) , A (0)) ∈ R7
≥0.

To investigate the boundedness of the model’s solutions, we define

Γ(t) = X + N + Y +
ξY

2η
V +

µ

θ
(U + L + A) .

Then,

Γ̇(t) = δ +
µ

θ
γ − ξXX − ξN N −

ξY

2
Y −

ξYξV

2η
V −

µξU

θ
U −

µξL

θ
L −

µ (ξA − ε)
θ

A.

We have ξA − ε = ξ∗A − ε
∗ > 0. Hence,

Γ̇(t) = δ +
µ

θ
γ − ξXX − ξN N −

ξY

2
Y −

ξYξV

2η
V −

µξU

θ
U −

µξL

θ
L −

µ
(
ξ∗A − ε

∗
)

θ
A

≤

(
δ +

µ

θ
γ
)
− σ

[
X + N + Y +

ξY

2η
V +

µ

θ
(U + L + A)

]
=

(
δ +

µ

θ
γ
)
− σΓ(t),

where σ = min
{
ξX, ξN ,

ξY
2 , ξV , ξU , ξL, ξ

∗
A − ε

∗
}
. Thus, 0 ≤ Γ(t) ≤ M1 if Γ(0) ≤ M1 for t ≥ 0. Since

X,N,Y,V,U, L and A are all non-negative, then 0 ≤ X(t),N(t),Y(t) ≤ M1, 0 ≤ V(t) ≤ M2 and 0 ≤
U(t), L(t), A(t) ≤ M3 for all t ≥ 0 if X (0) + N (0) + Y (0) +

ξY
2ηV (0) +

µ

θ
(U (0) + L (0) + A (0)) ≤ M1.

Consequently, X (t) ,N (t) ,Y (t) ,V (t) ,U (t) , L (t) and A(t) are all bounded. �

4. Equilibrium points

To calculate the equilibrium points of the system given by (2.8)–(2.14), we solve the following
system:

0 = δ − ξXX − ρVX,

0 = ρVX − (κ + ξN)N,
0 = κN − ξYY − µYU,

0 = ηY − ξVV,

0 = γ + θYU − ξUU − πAU,
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0 = πAU + εA − (α + ξL) L,

0 = αL − ξAA.

We find that the system admits four equilibrium points.
(i) Uninfected equilibrium point, EP0 = (X0, 0, 0, 0,U0, 0, 0) , where X0 = δ

ξX
and U0 =

γ

ξU
.

(ii) HTLV-I mono-infection equilibrium point, EP1 = (X1, 0, 0, 0,U1, L1, A1) , where

X1 = X0 =
δ

ξX
, U1 =

ξLξA + α (ξA − ε)
απ

=
U0

R1
,

L1 =
ξUξA

πα

[
αγπ

ξU (ξLξA + α (ξA − ε))
− 1

]
=
ξUξA

πα
(R1 − 1) ,

A1 =
ξU

π

[
αγπ

ξU (ξLξA + α (ξA − ε))
− 1

]
=
ξU

π
(R1 − 1) ,

where R1 =
αγπ

ξU (ξLξA+α(ξA−ε)) . Here, R1 is the basic reproduction number of HTLV-I mono-infection. It
determines the establishment of HTLV-I infection. Clearly, X1 is always positive. Also, since ξA−ε > 0,
U1 and R1 are always positive, while L1 and A1 are positive if R1 > 1. Therefore, EP1 exists when
R1 > 1.

(iii) SARS-CoV-2 mono-infection equilibrium point, EP2 = (X2,N2,Y2,V2,U2, 0, 0) , where

Y2 =
ξV

η
V2, U2 =

ηγ

ηξU − θξVV2
, X2 =

(κ + ξN) (Y2ξY + U2Y2µ)
κρV2

, N2 =
Y2ξY + U2Y2µ

κ
, (4.1)

and V2 satisfies the following equation:

T1V2
2 + T2V2 + T3

ηρκ (ηξU − θξVV2)
= 0, (4.2)

where

T1 = ρξYξ
2
Vθ (κ + ξN) ,

T2 = ξXξYξ
2
Vθ (κ + ξN) − ηρξYξVξU (κ + ξN) − ηργµξV (κ + ξN) − δηρκθξV ,

T3 = δη2ρκξU − ηξXξYξVξU (κ + ξN) − ηγµξXξV (κ + ξN) .

We want to prove that Eq (4.2) has a positive root. Define a function F (V) as

F (V) =
T1V2 + T2V + T3

ηρκ (ηξU − θξVV)
.

We have

F (0) =
δη2ρκξU − ηξXξYξVξU (κ + ξN) − ηγµξXξV (κ + ξN)

η2ρκξU
=
ξXξV (κ + ξN) (ξYξU + γµ)

ηρκξU
(R2 − 1) ,

where R2 =
δηρκξU

ξXξV (κ+ξN )(ξYξU+γµ) . This implies that F (0) > 0 when R2 > 1. Further,

lim
V−→ ηξU

θξV

−
F (V) = −∞.
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Furthermore,

F′ (V) = −
ξV(κ + ξN)

κηρ (ηξU − VθξV)2

[
ρξY (VθξV − ηξU)2 + γµξXθηξV + γµρη2ξU

]
.

Hence, F′ (V) < 0 for all V ∈ (0, ηξU
θξV

). It follows that there exists a unique V2 ∈ (0, ηξU
θξV

) such that
F (V2) = 0. From Eq (4.1), we get that Y2 > 0, U2 > 0, X2 > 0 and N2 > 0. As a result, EP2

exists when R2 > 1. The parameter R2 represents the basic reproduction number of SARS-CoV-2
mono-infection. It determines the establishment of SARS-CoV-2 mono-infection.

(iv) HTLV-I and SARS-CoV-2 coinfection equilibrium point EP3 = (X3,N3,Y3,V3,U3, L3, A3) ,
where

X3 =
ξV (κ + ξN) (ξYαπ + µ (ξLξA + α (ξA − ε)))

ηρκαπ
,

N3 =
ξXξV (ξYαπ + µ (ξLξA + α (ξA − ε)))

ηρκαπ

[
δηρκαπ

ξXξV (κ + ξN) (ξYαπ + µ (ξLξA + α (ξA − ε)))
− 1

]
,

Y3 =
ξXξV

ηρ

[
δηρκαπ

ξXξV (κ + ξN) (ξYαπ + µ (ξLξA + α (ξA − ε)))
− 1

]
,

V3 =
ξX

ρ

[
δηρκαπ

ξXξV (κ + ξN) (ξYαπ + µ (ξLξA + α (ξA − ε)))
− 1

]
,

U3 =
1
απ

(ξLξA + α (ξA − ε)) ,

L3 =
ξA (θξXξV + ηρξU)

ηρπα
×[

ηραπ

(θξXξV + ηρξU)

(
γ

(ξLξA + α (ξA − ε))
+

δκθ

(κ + ξN) (ξYαπ + µ (ξLξA + α (ξA − ε)))

)
− 1

]
,

A3 =
(θξXξV + ηρξU)

ηρπ
×[

ηραπ

(θξXξV + ηρξU)

(
γ

(ξLξA + α (ξA − ε))
+

δκθ

(κ + ξN) (ξYαπ + µ (ξLξA + α (ξA − ε)))

)
− 1

]
.

It follows that, since ξA − ε > 0, X3 and U3 are always positive, while N3 > 0, Y3 > 0 and V3 > 0 if
δηρκαπ

ξXξV (κ+ξN )(ξYαπ+µ(ξLξA+α(ξA−ε))) > 1. On the other hand, L3 > 0 and A3 > 0 when
ηραπ

(θξXξV +ηρξU )

(
γ

(ξLξA+α(ξA−ε)) + δκθ
(κ+ξN )(ξYαπ+µ(ξLξA+α(ξA−ε)))

)
> 1.

Therefore, we can rewrite the components of EP3 as

X3 =
X0

R4
, N3 =

ξXξV (ξYαπ + µ (ξLξA + α (ξA − ε)))
ηρκαπ

(R4 − 1) ,

Y3 =
ξXξV

ηρ
(R4 − 1) , V3 =

ξX

ρ
(R4 − 1) ,

U3 =
1
απ

(ξLξA + α (ξA − ε)) , L3 =
ξA (θξXξV + ηρξU)

ηρπα
(R3 − 1) ,

A3 =
(θξXξV + ηρξU)

ηρπ
(R3 − 1) ,
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where

R3 =
ηραπ

θξXξV + ηρξU

(
γ

(ξLξA + α (ξA − ε))
+

δκθ

(κ + ξN) (ξYαπ + µ (ξLξA + α (ξA − ε)))

)
,

R4 =
δηρκαπ

ξXξV (κ + ξN) (ξYαπ + µ (ξLξA + α (ξA − ε)))
.

Thus, EP3 exists when R3 > 1 and R4 > 1. At this point, R3 and R4 are threshold numbers that
determine the occurrence of HTLV-I/SARS-CoV-2 coinfection.

Now, we summarize the above results in the following lemma.

Lemma 4.1. There exist four threshold numbers Ri, i = 1, 2, 3, 4, such that

(a) if R1 ≤ 1, then the uninfected equilibrium point, EP0 = (X0, 0, 0, 0,U0, 0, 0) is the only
equilibrium point,

(b) if R1 > 1, then, in addition to EP0, there is an HTLV-I mono-infection equilibrium point,
EP1 = (X1, 0, 0, 0,U1, L1, A1),

(c) if R2 > 1, then, in addition to EP0, there is a SARS-CoV-2 mono-infection equilibrium point,
EP2 = (X2,N2,Y2,V2,U2, 0, 0),

(d) if R3 > 1 and R4 > 1, then, in addition to EP0, there is an HTLV-I and SARS-CoV-2 coinfection
equilibrium point, EP3 = (X3,N3,Y3,V3,U3, L3, A3).

5. Global stability analysis

In this section, we discuss the global stability of four equilibrium points, EPi, i = 0, 1, 2, 3. We will
utilize the following arithmetic-mean–geometric-mean inequality:

`1 + `2 + ... + `n

n
≥

n
√

(`1)(`2)...(`n), `i ≥ 0, i = 1, 2, ..., n. (5.1)

Let ∆′j be the largest invariant subset of

∆ j =

{
(X,N,Y,V,U, L, A) :

dΦ j

dt
= 0

}
, j = 0, 1, 2, 3,

where Φ j (X,N,Y,V,U, L, A) is a Lyapunov function candidate.
To prove the results given in the next Theorems 5.1–5.4, we follow the works of [60, 61] to build

suitable Lyapunov functions and apply LaSalle’s invariance principle [62].

Theorem 5.1. If R1 ≤ 1 and R2 ≤ 1, then the uninfected equilibrium point EP0 is globally
asymptotically stable.

Proof. Define Φ0 as follows:

Φ0 = X0H

(
X
X0

)
+ N +

κ + ξN

κ
Y +

ρX0

ξV
V +

µ (κ + ξN)
θκ

U0H

(
U
U0

)
+
µ (κ + ξN)

θκ
L +

µ (κ + ξN) (α + ξL)
αθκ

A,
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whereH(x) = x − 1 − ln x.
Obviously, Φ0 (X,N,Y,V,U, L, A) > 0 for all X,N,Y,V,U, L, A > 0, while Φ0(X0, 0, 0, 0,U0, 0, 0) =

0. The derivative of Φ0 with respect to t along the solutions of the system given by (2.8)–(2.14) is
calculated as follows:

dΦ0

dt
=

(
1 −

X0

X

)
Ẋ + Ṅ +

κ + ξN

κ
Ẏ +

ρX0

ξV
V̇ +

µ (κ + ξN)
θκ

(
1 −

U0

U

)
U̇ +

µ (κ + ξN)
θκ

L̇

+
µ (κ + ξN) (α + ξL)

αθκ
Ȧ

=

(
1 −

X0

X

)
(δ − ξXX − ρVX) + ρVX − (κ + ξN)N +

κ + ξN

κ
(κN − ξYY − µYU)

+
ρX0

ξV
(ηY − ξVV) +

µ (κ + ξN)
θκ

(
1 −

U0

U

)
(γ + θYU − ξUU − πAU)

+
µ (κ + ξN)

θκ
(πAU + εA − (α + ξL) L) +

µ (κ + ξN) (α + ξL)
αθκ

(αL − ξAA)

=

(
1 −

X0

X

)
(δ − ξXX) −

κ + ξN

κ
ξYY +

ρX0

ξV
ηY +

µ (κ + ξN)
θκ

(
1 −

U0

U

)
(γ − ξUU)

−
µ (κ + ξN)

κ
YU0 +

µ (κ + ξN)
θκ

πAU0 +
µ (κ + ξN)

θκ
εA −

µ (κ + ξN) (α + ξL)
αθκ

ξAA.

Since δ = ξXX0 and γ = ξUU0, then

dΦ0

dt
= −

ξX

X
(X − X0)2 +

(
ρX0

ξV
η −

κ + ξN

κ
ξY −

µ (κ + ξN)
κ

U0

)
Y −

µ (κ + ξN)
θκ

ξU

U
(U − U0)2

+
µ (κ + ξN)

θκ

(
πU0 + ε −

(α + ξL)
α

ξA

)
A

= −
ξX

X
(X − X0)2 +

(
ρδ

ξXξV
η −

κ + ξN

κ
ξY −

µ (κ + ξN)
κ

γ

ξU

)
Y −

µ (κ + ξN)
θκ

ξU

U
(U − U0)2

+
µ (κ + ξN)

θκ

(
π
γ

ξU
−
ξLξA + α (ξA − ε)

α

)
A

= −
ξX

X
(X − X0)2 +

(κ + ξN) (ξYξU + µγ)
κξU

(
δηρκξU

ξXξV (κ + ξN) (ξYξU + µγ)
− 1

)
Y

−
µ (κ + ξN)

θκ

ξU

U
(U − U0)2 +

µ (κ + ξN) (ξLξA + α (ξA − ε))
θκα

(
παγ

ξU (ξLξA + α (ξA − ε))
− 1

)
A

= −
ξX

X
(X − X0)2 +

(κ + ξN) (ξYξU + µγ)
κξU

(R2 − 1) Y −
µ (κ + ξN)

θκ

ξU

U
(U − U0)2

+
µ (κ + ξN) (ξLξA + α (ξA − ε))

θκα
(R1 − 1) A.

Therefore, if R1 ≤ 1 and R2 ≤ 1, then dΦ0
dt ≤ 0 for all X,Y,U, A > 0 and dΦ0

dt = 0 when X = X0, U =

U0 and Y = A = 0. The solutions of the system given by (2.8)–(2.14) converge to ∆′0, which comprises
elements with X = X0, U = U0 and Y = A = 0; then, Ẏ = Ȧ = 0. Equations (2.10) and (2.14) yield

0 = Ẏ = κN =⇒ N (t) = 0 for all t,
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0 = Ȧ = αL =⇒ L (t) = 0 for all t.

Further, Eq (2.9) gives
0 = Ṅ = ρVX0 =⇒ V (t) = 0 for all t.

Therefore, ∆′0 = {EP0}. We deduce from LaSalle’s invariance principle that EP0 is globally
asymptotically stable [62]. �

Theorem 5.2. If R1 > 1 and R4 ≤ 1, then the HTLV-I mono-infection equilibrium point EP1 is globally
asymptotically stable.

Proof. Let Φ1 be defined as follows:

Φ1 = X1H

(
X
X1

)
+ N +

κ + ξN

κ
Y +

ρX1

ξV
V +

µ (κ + ξN)
θκ

U1H

(
U
U1

)
+
µ (κ + ξN)

θκ
L1H

(
L
L1

)
+
µ (κ + ξN) (α + ξL)

αθκ
A1H

(
A
A1

)
.

Clearly, Φ1 (X,N,Y,V,U, L, A) > 0 for all X,N,Y,V,U, L, A > 0 and Φ1 (X1, 0, 0, 0,U1, L1, A1) = 0.
Calculate dΦ1

dt as follows:

dΦ1

dt
=

(
1 −

X1

X

)
Ẋ + Ṅ +

κ + ξN

κ
Ẏ +

ρX1

ξV
V̇ +

µ (κ + ξN)
θκ

(
1 −

U1

U

)
U̇ +

µ (κ + ξN)
θκ

(
1 −

L1

L

)
L̇

+
µ (κ + ξN) (α + ξL)

αθκ

(
1 −

A1

A

)
Ȧ

=

(
1 −

X1

X

)
(δ − ξXX − ρVX) + ρVX − (κ + ξN)N +

κ + ξN

κ
(κN − ξYY − µYU)

+
ρX1

ξV
(ηY − ξVV) +

µ (κ + ξN)
θκ

(
1 −

U1

U

)
(γ + θYU − ξUU − πAU)

+
µ (κ + ξN)

θκ

(
1 −

L1

L

)
(πAU + εA − (α + ξL) L) +

µ (κ + ξN) (α + ξL)
αθκ

(
1 −

A1

A

)
(αL − ξAA)

=

(
1 −

X1

X

)
(δ − ξXX) −

κ + ξN

κ
ξYY +

ρX1

ξV
ηY +

µ (κ + ξN)
θκ

(
1 −

U1

U

)
(γ − ξUU)

−
µ (κ + ξN)

κ
YU1 +

µ (κ + ξN)
θκ

πAU1 −
µ (κ + ξN)

θκ
πAU

L1

L
+
µ (κ + ξN)

θκ
εA −

µ (κ + ξN)
θκ

εA
L1

L

+
µ (κ + ξN)

θκ
(α + ξL) L1 −

µ (κ + ξN) (α + ξL)
θκ

L
A1

A

−
µ (κ + ξN) (α + ξL)

αθκ
ξAA +

µ (κ + ξN) (α + ξL)
αθκ

ξAA1

=

(
1 −

X1

X

)
(δ − ξXX) +

(
ρX1

ξV
η −

κ + ξN

κ
ξY −

µ (κ + ξN)
κ

U1

)
Y

+
µ (κ + ξN)

θκ

(
1 −

U1

U

)
(γ − ξUU) +

µ (κ + ξN)
θκ

πA1U1
A
A1
−
µ (κ + ξN)

θκ
πA1U1

AUL1

A1U1L

+
µ (κ + ξN)

θκ
εA1

A
A1
−
µ (κ + ξN)

θκ
εA1

AL1

A1L
+
µ (κ + ξN)

θκ
(α + ξL) L1

−
µ (κ + ξN) (α + ξL)

θκ
L1

LA1

L1A
−
µ (κ + ξN) (α + ξL)

αθκ
ξAA1

A
A1

+
µ (κ + ξN) (α + ξL)

αθκ
ξAA1.
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Utilizing the equilibrium point conditions for EP1:

δ = ξXX1, γ = ξUU1 + πA1U1,

πA1U1 = (α + ξL) L1 − εA1, αL1 = ξAA1;

we obtain

dΦ1

dt
= −

ξX

X
(X − X1)2 +

(
ρX1

ξV
η −

κ + ξN

κ
ξY −

µ (κ + ξN)
κ

U1

)
Y −

µ (κ + ξN)
θκ

ξU

U
(U − U1)2

+
µ (κ + ξN)

θκ

(
1 −

U1

U

)
πA1U1 +

µ (κ + ξN)
θκ

πA1U1
A
A1
−
µ (κ + ξN)

θκ
πA1U1

AUL1

A1U1L

+
µ (κ + ξN)

θκ
εA1

A
A1
−
µ (κ + ξN)

θκ
εA1

AL1

A1L
+
µ (κ + ξN)

θκ
(πA1U1 + εA1)

−
µ (κ + ξN)

θκ
(πA1U1 + εA1)

LA1

L1A
−
µ (κ + ξN)

θκ
(πA1U1 + εA1)

A
A1

+
µ (κ + ξN)

θκ
(πA1U1 + εA1)

= −
ξX

X
(X − X1)2

−
µ (κ + ξN)

θκ

ξU

U
(U − U1)2

+

(
ρδ

ξXξV
η −

κ + ξN

κ
ξY −

µ (κ + ξN)
καπ

(ξLξA + α (ξA − ε))
)

Y

+
µ (κ + ξN)

θκ
πA1U1

(
3 −

U1

U
−

AUL1

A1U1L
−

LA1

L1A

)
+
µ (κ + ξN)

θκ
εA1

(
2 −

AL1

A1L
−

LA1

L1A

)
= −

ξX

X
(X − X1)2

−
µ (κ + ξN)

θκ

ξU

U
(U − U1)2

+
(κ + ξN)

[
ξYαπ + µ (ξLξA + α (ξA − ε))

]
καπ

(
δηρκαπ

ξXξV (κ + ξN)
[
ξYαπ + µ (ξLξA + α (ξA − ε))

] − 1
)

Y

+
µ (κ + ξN)

θκ
πA1U1

(
3 −

U1

U
−

AUL1

A1U1L
−

LA1

L1A

)
+
µ (κ + ξN)

θκ
εA1

(
2 −

AL1

A1L
−

LA1

L1A

)
.

Finally, we get

dΦ1

dt
= −

ξX

X
(X − X1)2

−
µ (κ + ξN)

θκ

ξU

U
(U − U1)2

+
(κ + ξN)

[
ξYαπ + µ (ξLξA + α (ξA − ε))

]
καπ

(R4 − 1) Y

+
µ (κ + ξN)

θκ
πA1U1

(
3 −

U1

U
−

AUL1

A1U1L
−

LA1

L1A

)
+
µ (κ + ξN)

θκ
εA1

(
2 −

AL1

A1L
−

LA1

L1A

)
.

Using the inequality of (5.1), we obtain

U1

U
+

AUL1

A1U1L
+

LA1

L1A
≥ 3, ∀U, L, A > 0,

AL1

A1L
+

LA1

L1A
≥ 2, ∀L, A > 0.
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Therefore, if R4 ≤ 1, then dΦ1
dt ≤ 0 for all X,Y,U, L, A > 0, where dΦ1

dt = 0 when X = X1, Y = 0,
U = U1, L = L1 and A = A1. The solutions of the system given by (2.8)–(2.14) are limited to ∆′1, which
comprises elements with X = X1, U = U1, L = L1, A = A1 and Y = 0; then, Ẏ = 0. Equation (2.10)
yields

0 = Ẏ = κN =⇒ N (t) = 0 for all t.

Equation (2.9) gives
0 = Ṅ = ρVX1 =⇒ V (t) = 0 for all t.

Consequently, ∆′1 = {EP1} , and then LaSalle’s invariance principle implies that EP1 is globally
asymptotically stable [62]. �

Theorem 5.3. If R2 > 1 and R3 ≤ 1, then the SARS-CoV-2 mono-infection equilibrium point EP2 is
globally asymptotically stable.

Proof. Define Φ2 as follows:

Φ2 = X2H

(
X
X2

)
+ N2H

(
N
N2

)
+
κ + ξN

κ
Y2H

(
Y
Y2

)
+
ρX2

ξV
V2H

(
V
V2

)
+
µ (κ + ξN)

θκ
U2H

(
U
U2

)
+
µ (κ + ξN)

θκ
L +

µ (κ + ξN) (α + ξL)
αθκ

A.

Clearly, Φ2 (X,N,Y,V,U, L, A) > 0 for all X,N,Y,V,U, L, A > 0 and Φ2 (X2,N2,Y2,V2,U2, 0, 0) = 0.
Calculate dΦ2

dt as follows:

dΦ2

dt
=

(
1 −

X2

X

)
Ẋ +

(
1 −

N2

N

)
Ṅ +

κ + ξN

κ

(
1 −

Y2

Y

)
Ẏ +

ρX2

ξV

(
1 −

V2

V

)
V̇

+
µ (κ + ξN)

θκ

(
1 −

U2

U

)
U̇ +

µ (κ + ξN)
θκ

L̇ +
µ (κ + ξN) (α + ξL)

αθκ
Ȧ

=

(
1 −

X2

X

)
(δ − ξXX − ρVX) +

(
1 −

N2

N

)
(ρVX − (κ + ξN)N)

+
κ + ξN

κ

(
1 −

Y2

Y

)
(κN − ξYY − µYU) +

ρX2

ξV

(
1 −

V2

V

)
(ηY − ξVV)

+
µ (κ + ξN)

θκ

(
1 −

U2

U

)
(γ + θYU − ξUU − πAU) +

µ (κ + ξN)
θκ

(πAU + εA − (α + ξL) L)

+
µ (κ + ξN) (α + ξL)

αθκ
(αL − ξAA)

=

(
1 −

X2

X

)
(δ − ξXX) − ρVX

N2

N
+ (κ + ξN)N2 − (κ + ξN) N

Y2

Y
−
κ + ξN

κ
ξYY +

κ + ξN

κ
ξYY2

+
κ + ξN

κ
µY2U +

ρX2

ξV
ηY −

ρX2

ξV
ηY

V2

V
+ ρX2V2 +

µ (κ + ξN)
θκ

(
1 −

U2

U

)
(γ − ξUU)

−
µ (κ + ξN)

κ
YU2 +

µ (κ + ξN)
θκ

πAU2 +
µ (κ + ξN)

θκ
εA −

µ (κ + ξN) (α + ξL)
αθκ

ξAA

=

(
1 −

X2

X

)
(δ − ξXX) − ρVX

N2

N
+ (κ + ξN)N2 − (κ + ξN) N

Y2

Y
+

(κ + ξN)
κ

ξYY2

+

(
ρX2

ξV
η −

κ + ξN

κ
ξY −

µ (κ + ξN)
κ

U2

)
Y +

(κ + ξN)
κ

µY2U −
ρX2

ξV
ηY

V2

V
+ ρX2V2
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+
µ (κ + ξN)

θκ

(
1 −

U2

U

)
(γ − ξUU) +

µ (κ + ξN)
θκ

πAU2 +
µ (κ + ξN)

θκ
εA −

µ (κ + ξN) (α + ξL)
αθκ

ξAA.

Utilizing the equilibrium point conditions for EP2:

δ = ξXX2 + ρV2X2,

ρV2X2 = (κ + ξN)N2,

κN2 = ξYY2 + µY2U2,

ηY2 = ξVV2,

γ = ξUU2 − θY2U2;

we obtain

dΦ2

dt
= −

ξX

X
(X − X2)2 + ρV2X2 − ρV2X2

X2

X
− ρV2X2

VXN2

V2X2N
+ ρV2X2 − ρV2X2

NY2

N2Y

+ ρV2X2 −
(κ + ξN)

κ
µY2U2 +

(κ + ξN)
κ

µY2U2
U
U2
− ρV2X2

YV2

Y2V
+ ρX2V2 −

µ (κ + ξN)
θκ

ξU

U
(U − U2)2

−
µ (κ + ξN)

κ
Y2U2

(
1 −

U2

U

)
+
µ (κ + ξN)

θκ

(
πU2 −

ξLξA + α (ξA − ε)
α

)
A

= −
ξX

X
(X − X2)2 + ρV2X2

(
4 −

X2

X
−

VXN2

V2X2N
−

NY2

N2Y
−

YV2

Y2V

)
−

(κ + ξN)
κ

µY2U2

(
2 −

U
U2
−

U2

U

)
−
µ (κ + ξN)

θκ

ξU

U
(U − U2)2 +

µ (κ + ξN)
θκ

(
πU2 −

ξLξA + α (ξA − ε)
α

)
A.

We have

−
κ + ξN

κ
µY2U2

(
2 −

U
U2
−

U2

U

)
−
µ (κ + ξN)

θκ

ξU

U
(U − U2)2

=
(κ + ξN)

κ

µY2

U
(U − U2)2

−
µ (κ + ξN)

θκ

ξU

U
(U − U2)2

=
µ (κ + ξN)

θκ

(U − U2)2

U
(θY2 − ξU)

= −
µγ (κ + ξN)
θκUU2

(U − U2)2 .

Collecting terms, we get

dΦ2

dt
= −

ξX

X
(X − X2)2 + ρV2X2

(
4 −

X2

X
−

VXN2

V2X2N
−

NY2

N2Y
−

YV2

Y2V

)
−
µγ (κ + ξN)
θκUU2

(U − U2)2 +
µ (κ + ξN)

θκ

(
πU2 −

ξLξA + α (ξA − ε)
α

)
A.

Hence, if R3 ≤ 1, then EP3 does not exist since A3 ≤ 0 and L3 ≤ 0. This implies that

Ȧ (t) = αL − ξAA ≤ 0,
L̇ (t) = πAU + εA − (α + ξL) L ≤ 0.
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It follows that
(
πU − ξLξA+α(ξA−ε)

α

)
A ≤ 0 for all A > 0. Thus, πU2 −

ξLξA+α(ξA−ε)
α

≤ 0, and, by using the
inequality of (5.1), we obtain

X2

X
+

VXN2

V2X2N
+

NY2

N2Y
+

YV2

Y2V
≥ 4, ∀X,N,Y,V > 0.

Thus, dΦ2
dt ≤ 0 for all X,N,Y,V,U, L, A > 0 and dΦ2

dt = 0 when X = X2, N = N2,Y = Y2, V = V2,

U = U2 and A = 0. The solutions of the system converge to ∆′2, which comprises elements with A = 0.
It follows that Ȧ = 0, and Eq (2.14) becomes

0 = Ȧ = αL =⇒ L (t) = 0 for all t.

Therefore, ∆′2 = {EP2} . LaSalle’s invariance principle implies that EP2 is globally asymptotically
stable [62].�

Let us define a parameter R̂ as follows:

R̂ =
ηραπγ

(θξXξV + ηρξU) (ξLξA + α (ξA − ε))
.

Theorem 5.4. If R4 > 1 and 1 < R3 ≤ 1 + R̂, then the HTLV-I/SARS-CoV-2 coinfection equilibrium
point EP3 is globally asymptotically stable.

Proof. Define Φ3 as follows:

Φ3 = X3H

(
X
X3

)
+ N3H

(
N
N3

)
+
κ + ξN

κ
Y3H

(
Y
Y3

)
+
ρX3

ξV
V3H

(
V
V3

)
+
µ (κ + ξN)

θκ
U3H

(
U
U3

)
+
µ (κ + ξN)

θκ
L3H

(
L
L3

)
+
µ (κ + ξN) (α + ξL)

αθκ
A3H

(
A
A3

)
.

Clearly, Φ3 (X,N,Y,V,U, L, A) > 0 for all X,N,Y,V,U, L, A > 0 and Φ3 (X3,N3,Y3,V3,U3, L3, A3) = 0.
Calculate dΦ3

dt as follows:

dΦ3

dt
=

(
1 −

X3

X

)
Ẋ +

(
1 −

N3

N

)
Ṅ +

κ + ξN

κ

(
1 −

Y3

Y

)
Ẏ +

ρX3

ξV

(
1 −

V3

V

)
V̇

+
µ (κ + ξN)

θκ

(
1 −

U3

U

)
U̇ +

µ (κ + ξN)
θκ

(
1 −

L3

L

)
L̇ +

µ (κ + ξN) (α + ξL)
αθκ

(
1 −

A3

A

)
Ȧ

=

(
1 −

X3

X

)
(δ − ξXX − ρVX) +

(
1 −

N3

N

)
(ρVX − (κ + ξN)N) +

κ + ξN

κ

(
1 −

Y3

Y

)
×

(κN − ξYY − µYU) +
ρX3

ξV

(
1 −

V3

V

)
(ηY − ξVV) +

µ (κ + ξN)
θκ

(
1 −

U3

U

)
(γ + θYU − ξUU − πAU)

+
µ (κ + ξN)

θκ

(
1 −

L3

L

)
(πAU + εA − (α + ξL) L) +

µ (κ + ξN) (α + ξL)
αθκ

(
1 −

A3

A

)
(αL − ξAA)

=

(
1 −

X3

X

)
(δ − ξXX) − ρVX

N3

N
+ (κ + ξN)N3 − (κ + ξN) N

Y3

Y
−
κ + ξN

κ
ξYY +

κ + ξN

κ
ξYY3

+
κ + ξN

κ
µY3U +

ρX3

ξV
ηY −

ρX3

ξV
ηY

V3

V
+ ρX3V3 +

µ (κ + ξN)
θκ

(
1 −

U3

U

)
(γ − ξUU) −

µ (κ + ξN)
κ

YU3

+
µ (κ + ξN)

θκ
πAU3 −

µ (κ + ξN)
θκ

πAU
L3

L
+
µ (κ + ξN)

θκ
εA −

µ (κ + ξN)
θκ

εA
L3

L
+
µ (κ + ξN)

θκ
(α + ξL) L3
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−
µ (κ + ξN) (α + ξL)

θκ
L

A3

A
−
µ (κ + ξN) (α + ξL)

αθκ
ξAA +

µ (κ + ξN) (α + ξL)
αθκ

ξAA3

=

(
1 −

X3

X

)
(δ − ξXX) − ρVX

N3

N
+ (κ + ξN)N3 − (κ + ξN) N

Y3

Y
+
κ + ξN

κ
ξYY3

+

(
ρX3

ξV
η −

κ + ξN

κ
ξY −

µ (κ + ξN)
κ

U3

)
Y +

κ + ξN

κ
µY3U −

ρX3

ξV
ηY

V3

V
+ ρX3V3

+
µ (κ + ξN)

θκ

(
1 −

U3

U

)
(γ − ξUU) +

µ (κ + ξN)
θκ

πAU3 −
µ (κ + ξN)

θκ
πAU

L3

L
+
µ (κ + ξN)

θκ
εA

−
µ (κ + ξN)

θκ
εA

L3

L
+
µ (κ + ξN)

θκ
(α + ξL) L3 −

µ (κ + ξN) (α + ξL)
θκ

L
A3

A
−
µ (κ + ξN) (α + ξL)

αθκ
ξAA

+
µ (κ + ξN) (α + ξL)

αθκ
ξAA3.

Utilizing the equilibrium point conditions for EP3:

δ = ξXX3 + ρV3X3,

ρV3X3 = (κ + ξN)N3,

κN3 = ξYY3 + µY3U3,

ηY3 = ξVV3,

γ = ξUU3 − θY3U3 + πA3U3,

πA3U3 = (α + ξL) L3 − εA3,

αL3 = ξAA3;

we obtain
dΦ3

dt
= −

ξX

X
(X − X3)2 + ρV3X3 − ρV3X3

X3

X
− ρV3X3

VXN3

V3X3N
+ ρV3X3 − ρV3X3

NY3

N3Y

+ ρV3X3 −
(κ + ξN)

κ
µY3U3 +

(κ + ξN)
κ

µY3U3
U
U3
− ρV3X3

YV3

Y3V
+ ρX3V3 −

µ (κ + ξN)
θκ

ξU

U
(U − U3)2

−
µ (κ + ξN)

κ
Y3U3

(
1 −

U3

U

)
+
µ (κ + ξN)

θκ
πA3U3

(
1 −

U3

U

)
+
µ (κ + ξN)

θκ
πA3U3

A
A3

−
µ (κ + ξN)

θκ
πA3U3

AUL3

A3U3L
+
µ (κ + ξN)

θκ
εA3

A
A3
−
µ (κ + ξN)

θκ
εA3

AL3

A3L
+
µ (κ + ξN)

θκ
(πA3U3 + εA3)

−
µ (κ + ξN)

θκ
(πA3U3 + εA3)

LA3

L3A
−
µ (κ + ξN)

θκ
(πA3U3 + εA3)

A
A3

+
µ (κ + ξN)

θκ
(πA3U3 + εA3)

= −
ξX

X
(X − X3)2 + ρV3X3

(
4 −

X3

X
−

VXN3

V3X3N
−

NY3

N3Y
−

YV3

Y3V

)
−

(κ + ξN)
κ

µY3U3

(
2 −

U
U3
−

U3

U

)
−
µ (κ + ξN)

θκ

ξU

U
(U − U3)2 +

µ (κ + ξN)
θκ

πA3U3

(
3 −

U3

U
−

AUL3

A3U3L
−

LA3

L3A

)
+
µ (κ + ξN)

θκ
εA3

(
2 −

AL3

A3L
−

LA3

L3A

)
.

We have

−
(κ + ξN)

κ
µY3U3

(
2 −

U
U3
−

U3

U

)
−
µ (κ + ξN)

θκ

ξU

U
(U − U3)2
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=
(κ + ξN)

κ

µY3

U
(U − U3)2

−
µ (κ + ξN)

θκ

ξU

U
(U − U3)2

=
µ (κ + ξN)

κ

(U − U3)2

U

(
Y3 −

ξU

θ

)
=
µ (κ + ξN) (θξXξV + ηρξU)

ηρκθ

(U − U3)2

U

(
R3 − R̂ − 1

)
.

Collecting terms, we get

dΦ3

dt
= −

ξX

X
(X − X3)2 + ρV3X3

(
4 −

X3

X
−

VXN3

V3X3N
−

NY3

N3Y
−

YV3

Y3V

)
+
µ (κ + ξN) (θξXξV + ηρξU)

ηρκθ

(U − U3)2

U

(
R3 − R̂ − 1

)
+
µ (κ + ξN)

θκ
πA3U3

(
3 −

U3

U
−

AUL3

A3U3L
−

LA3

L3A

)
+
µ (κ + ξN)

θκ
εA3

(
2 −

AL3

A3L
−

LA3

L3A

)
.

Using the inequality of (5.1), we obtain

X3

X
+

VXN3

V3X3N
+

NY3

N3Y
+

YV3

Y3V
≥ 4, ∀X,N,Y,V > 0,

U3

U
+

AUL3

A3U3L
+

LA3

L3A
≥ 3, ∀U, L, A > 0,

AL3

A3L
+

LA3

L3A
≥ 2, ∀L, A > 0.

Moreover, since 1 < R3 ≤ 1 + R̂, we get dΦ3
dt ≤ 0 for all X,N,Y,V,U, L, A > 0 and dΦ3

dt = 0 when
X = X3, N = N3, Y = Y3, V = V3, U = U3, L = L3 and A = A3. The solutions of the system
converge to ∆′3. Clearly, ∆′3 = {EP3} , and then LaSalle’s invariance principle implies that EP3 is
globally asymptotically stable [62]. �

Based on the above findings, we summarize the existence and global stability conditions for all
equilibrium points in Table 1.

Table 1. Conditions of existence and global stability of the system’s equilibria.

Equilibrium point Existence conditions Global stability conditions
EP0 = (X0, 0, 0, 0,U0, 0, 0) None R1 ≤ 1 and R2 ≤ 1
EP1 = (X1, 0, 0, 0,U1, L1, A1) R1 > 1 R1 > 1 and R4 ≤ 1
EP2 = (X2,N2,Y2,V2,U2, 0, 0) R2 > 1 R2 > 1 and R3 ≤ 1
EP3 = (X3,N3,Y3,V3,U3, L3, A3) R3 > 1 and R4 > 1 R4 > 1 and 1 < R3 ≤ 1 + R̂

6. Numerical simulations

In this section, we present some numerical results for the model described by (2.1)–(2.7) to
illustrate the stability of equilibrium points. We used the ODE45 solver in MATLAB to solve the
system numerically.
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6.1. Stability of equilibrium points

We solve the system with three initial conditions:

IC1: (X(0),N (0) ,Y (0) ,V (0) ,U (0) , L (0) , A (0)) = (9, 0.0001, 0.0002, 0.0003, 600, 150, 15) ,
IC2: (X(0),N (0) ,Y (0) ,V (0) ,U (0) , L (0) , A (0)) = (5, 0.0005, 0.0006, 0.0007, 500, 200, 20) ,
IC3: (X(0),N (0) ,Y (0) ,V (0) ,U (0) , L (0) , A (0)) = (1, 0.001, 0.002, 0.003, 400, 250, 25) .

Table 2. Model parameters.

Parameter Description Value Source

δ Recruitment rate of uninfected epithelial cells 0.11 [25]
ξX Natural death rate constant of uninfected epithelial cells 0.011 [25]

ρ
Virus-cell incidence rate constant between free SARS-CoV-2
particles and uninfected epithelial cells

Varies Assumed

κ
Transmission rate constant of latently SARS-CoV-2-infected epithelial
cells that become actively SARS-CoV-2-infected epithelial cells

4.08 [35,40]

ξN Death rate constant of latently SARS-CoV-2-infected epithelial cells 0.11 [25]
ξY Death rate constant of actively SARS-CoV-2-infected epithelial cells 0.11 [35,41]

µ
Killing rate constant of actively SARS-CoV-2-infected epithelial
cells due to immune response

Varies Assumed

η Generation rate constant of new SARS-CoV-2 particles 0.24 [35,41]
ξV Death rate constant of free SARS-CoV-2 particles Varies Assumed
γ Recruitment rate for the uninfected CD4+T cells 10 [48,49,63]

θ
Proliferation rate constant of uninfected CD4+T cells
due to actively SARS-CoV-2-infected epithelial cells

0.1 [35,64]

ξU Natural mortality rate constant for the uninfected CD4+T cells 0.012 [46, 48, 49]

π
Cell-cell incidence rate constant between uninfected CD4+T
cells and actively HTLV-I-infected CD4+T cells

Varies Assumed

ω
Probability of new HTLV-I infections via mitosis could
enter a latent period

0.9 [47]

ε∗
Proliferation rate constant of newly HTLV-I-infected CD4+T
cells from mitosis

0.011 [47]

α
Transmission rate constant of latently HTLV-I-infected CD4+T
cells that become actively HTLV-I-infected CD4+T cells

0.003 [46,48,49,65]

ξL Death rate constant of latently HTLV-I-infected CD4+T cells 0.03 [47–50]

ξ∗A Death rate constant of actively HTLV-I-infected CD4+T cells 0.03 [46, 48, 49]

Table 2 contains the values of some parameters. We mention that the values of some parameters
of the model are taken from previous studies for SARS-CoV-2 and HTLV-I mono-infections, while
other parameters ρ, µ, ξV and π are chosen just to conduct the numerical simulations. To the best of
our knowledge, now, there is no available data from SARS-CoV-2 and HTLV-I coinfection patients.
Therefore, estimation of the parameters of the coinfection model is still open for future investigation.
We vary the parameters, ρ, µ, ξV and π to obtain four cases, as follows:
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Case 1. (R1 ≤ 1 and R2 ≤ 1): Choose ρ = 0.8, µ = 1.1, ξV = 5.5 and π = 0.0001, which gives
R1 = 0.2706 < 1 and R2 = 0.0004 < 1. Based on Theorem 5.1, the equilibrium point EP0 is globally
asymptotically stable. This is illustrated in Figure 2, where the concentrations of the uninfected
epithelial cells and uninfected CD4+T cells tend to their healthy values X0 = 10 and U0 = 833.33
while the concentrations of the other compartments tend to zero. This case means that there are no
SARS-CoV-2 and HTLV-I infections in the body.

Case 2. (R1 > 1 and R4 ≤ 1): We take ρ = 0.5, µ = 1.1, ξV = 5.5 and π = 0.0015. So, we get
R1 = 4.0584 > 1 and R4 = 0.0009 < 1. According to Lemma 4.1 and Theorem 5.2, the HTLV-I
mono-infection equilibrium point EP1 exists and is globally asymptotically stable. Figure 3 shows that
the model solutions converge to the equilibrium point EP1 = (10, 0, 0, 0, 205.33, 235.7, 24.47) for all
initials IC1–IC3. In this situation, the patient becomes infected by HTLV-I, while the SARS-CoV-2
infection is cleared.

Case 3. (R2 > 1 and R3 ≤ 1): We choose ρ = 3, µ = 0.01, ξV = 0.04 and π = 0.0001. Then, we
calculate R2 = 20.7589 > 1 and R3 = 0.2979 < 1. Lemma 4.1 and Theorem 5.3 state that the SARS-
CoV-2 mono-infection equilibrium point EP2 = (0.529, 0.025, 0.011, 0.066, 916.87, 0, 0) exists and is
globally asymptotically stable. Figure 4 displays the numerical solutions of the system converge to EP2

for all three initials IC1–IC3. The results support the theoretical results presented in Theorem 5.3. In
this situation, the patient becomes infected by SARS-CoV-2, while the HTLV-I infection is removed.

Case 4. (R4 > 1 and 1 < R3 ≤ 1 + R̂): We consider ρ = 3, µ = 0.01, ξV = 0.6 and π = 0.0015. So, we
get R4 = 5.4014 > 1, R3 = 4.1538 > 1 and R3 < 1 + R̂ = 4.7704. Lemma 4.1 and Theorem 5.4 state
that the HTLV-I/SARS-CoV-2 coinfection equilibrium point
EP3 = (1.85, 0.021, 0.04, 0.016, 205.33, 261.62, 27.16) exists and is globally asymptotically stable.
Figure 5 shows that the solutions of the system converge to EP3 for all initials IC1–IC3. The results
support the theoretical results presented in Theorem 5.4. In this case, a SARS-CoV-2 and HTLV-I
coinfection happens, where an HTLV-I-patient gets contaminated with COVID-19. CD4+T cells are
animated to dispense with SARS-CoV-2 disease from the body. In any case, assuming that the patient
has low CD4+ T cell counts, the freedom of SARS-CoV-2 may not be accomplished. This can prompt
extreme contamination and passing. Now, we check the local stability of the model’s equilibria.
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Figure 2. Solutions of the system described by (2.1)–(2.7) with the initial conditions IC1–
IC3 in Case 1.
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Figure 3. Solutions of the system described by (2.1)–(2.7) with the initial conditions IC1–
IC3 in Case 2.
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Figure 4. Solutions of the system described by (2.1)–(2.7) with the initial conditions IC1–
IC3 in Case 3.
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Figure 5. Solutions of the system described by (2.1)–(2.7) with the initial conditions IC1–
IC3 in Case 4.
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The Jacobian matrix J = J (X,N,Y,V,U, L, A) can be calculated as follows:

J =



− (ρV + ξX) 0 0 −ρX 0 0 0
ρV − (κ + ξN) 0 ρX 0 0 0
0 κ − (µU + ξY) 0 −µY 0 0
0 0 η −ξV 0 0 0
0 0 θU 0 θY − πA − ξU 0 −πU
0 0 0 0 πA − (α + ξL) πU + ωε∗

0 0 0 0 0 α (1 − ω) ε∗ − ξ∗A


.

At each equilibrium point, we compute the eigenvalues λ j, j = 1, 2, ..., 7 of J. If Re(λ j) < 0,
j = 1, 2, ..., 7, then the equilibrium point is locally stable. We select the parameters ρ, µ, ξV and π as
given in Cases 1–4; then, we compute all nonnegative equilibria and the accompanying eigenvalues.
Table 3 outlines the nonnegative equilibria, the real parts of the eigenvalues and whether or not the
equilibrium point is stable. We found that the local stability agrees with the global one.

Table 3. Local stability of nonnegative equilibria in Cases 1– 4.

Case Equilibrium point Re(λi), i = 1, 2, ..., 7 Stability
Case 1 EP0 = (10, 0, 0, 0, 833.33, 0, 0) (−916.77,−5.51,−4.18,−0.048,−0.014,−0.012,−0.011) stable

Case 2
EP0 = (10, 0, 0, 0, 833.33, 0, 0)
EP1 = (10, 0, 0, 0, 205.33, 235.70, 24.47)

(−916.77,−5.50,−4.19,−0.092,−0.012,−0.011,+0.031)
(−225.98,−5.52,−4.17,−0.077,−0.017,−0.017,−0.011)

unstable
stable

Case 3
EP0 = (10, 0, 0, 0, 833.33, 0, 0)
EP2 = (0.529, 0.025, 0.011, 0.066, 916.87, 0, 0)

(−6.65,−6.65,−0.048,−0.014,−0.012,−0.011,+0.631)
(−9.24,−4.27,−0.154,−0.051,−0.049,−0.013,−0.012)

unstable
stable

Case 4

EP0 = (10, 0, 0, 0, 833.33, 0, 0)
EP1 = (10, 0, 0, 0, 205.33, 235.70, 24.47)
EP2 = (7.42, 0.007, 0.003, 0.001, 856.07, 0, 0)
EP3 = (1.85, 0.021, 0.04, 0.016, 205.33, 261.62, 27.16)

(−6.71,−6.71,−0.092,−0.012,−0.011,+0.031,+0.18)
(−4.03,−4.03,−0.077,−0.017,−0.017,−0.011,+1.10)
(−7.85,−5.61,−0.093,−0.012,−0.007,−0.007,+0.031)
(−3.48,−3.48,−0.078,−0.025,−0.025,−0.017,−0.017)

unstable
unstable
unstable
stable

6.2. Comparison results

In this subsection, we present a comparison between the HTLV-I single infection and the coinfection
with HTLV-I and SARS-CoV-2. We compare the solutions of the model described by (2.1)–(2.7) and
the following SARS-CoV-2 mono-infection model:



Ẋ = δ − ξXX − ρVX,
Ṅ = ρVX − (κ + ξN)N,
Ẏ = κN − ξYY − µYU,
V̇ = ηY − ξVV,
U̇ = γ + θYU − ξUU.

We consider ρ = 3, µ = 0.01, ξV = 0.6 and π = 0.0015 with the initial condition IC3. We observe
from Figure 6 that the presence of HTLV-I reduces the concentrations of uninfected epithelial cells
and uninfected CD4+T cells, while it increases the concentrations of latently SARS-CoV-2-infected
epithelial cells, actively SARS-CoV-2-infected epithelial cells and free SARS-CoV-2 particles. This
means that HTLV-I suppresses the immune response and enhances the SARS-CoV-2 infection.
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Figure 6. Comparison between the solutions of the SARS-CoV-2 mono-infection model and
SARS-CoV-2/HTLV-I coinfection model.
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7. Discussion

SARS-CoV-2 and HTLV-I coinfection cases were reported in [3] and [12]. Therefore, it is important
to understand the within-host dynamics of this coinfection. In this paper, we developed and examined
a within-host SARS-CoV-2 and HTLV-I coinfection model. We studied the basic and global properties
of the model. We found that the system has four equilibria, and we proved the following:

(I) The uninfected equilibrium point EP0 always exists. It is globally asymptotically stable when
R1 ≤ 1 and R2 ≤ 1. This result suggests that, when R1 ≤ 1 and R2 ≤ 1, both SARS-CoV-2 and HTLV-I
infections are predicted to die out regardless of the initial conditions. From a control viewpoint, setting
R1 ≤ 1 and R2 ≤ 1 will be a good strategy. The parameter R2 may be reduced by multiplying the
parameters by ρ or η by (1 − ε1) or (1 − ε2), respectively. Here, ε1 ∈ [0, 1] and ε2 ∈ [0, 1] represent
the effectiveness of antiviral drugs for blocking the infection and production of SARS-CoV-2 particles,
respectively [18]. Since there is no treatment for HTLV-I infection, R1 ≤ 1 is rarely achieved.

(II) The HTLV-I mono-infection equilibrium point EP1 exists if R1 > 1. It is globally asymptotically
stable when R1 > 1 and R4 ≤ 1. This result establishes that, when R1 > 1 and R4 ≤ 1, the HTLV-I
mono-infection is always established, regardless of the initial conditions.

(III) The SARS-CoV-2 mono-infection equilibrium point EP2 exists if R2 > 1. It is globally
asymptotically stable when R2 > 1 and R3 ≤ 1. This result shows that, when R2 > 1 and R3 ≤ 1, the
SARS-CoV-2 mono-infection is always established, regardless of the initial conditions.

(IV) The HTLV-I and SARS-CoV-2 coinfection equilibrium point EP3 exists if R3 > 1 and R4 > 1.
It is globally asymptotically stable when R4 > 1 and 1 < R3 ≤ 1 + R̂. This result shows that, when
R4 > 1 and 1 < R3 ≤ 1 + R̂, the HTLV-I and SARS-CoV-2 coinfection is always established, regardless
of the initial conditions.

We discussed the impact of HTLV-I infection on the SARS-CoV-2 mono-infection dynamics. We
found that the presence of HTLV-I suppresses the immune response and enhances the SARS-CoV-2
infection. This result agrees with [3], where it was reported that HTLV-I can cause immune dysfunction
even in asymptomatic carriers. Therefore, HTLV-I may increase the risk of COVID-19.

The main limitation of the present research work is that we did not use real data to estimate the
values of the model’s parameters. The reasons are as follows: (i) The real measurements from
HTLV-I/COVID-19 coinfection patients are still very limited; (ii) Comparing our results with a small
number of real studies may not be very precise; (iii) Collecting real data from patients with HTLV-I
and COVID-19 coinfection is not an easy task. Thus, the theoretical results obtained in the present
paper need to be tested against empirical findings when real data become available.

8. Conclusions

Mathematical models are frequently used to understand the complex behavior of biological systems.
In this paper, we constructed a new SARS-CoV-2/HTLV-I coinfection model within a host. The model
considers the interactions between uninfected epithelial cells, latently SARS-CoV-2-infected epithelial
cells, actively SARS-CoV-2-infected epithelial cells, free SARS-CoV-2 particles, uninfected CD4+T
cells, latently HTLV-I-infected CD4+T cells and actively HTLV-I-infected CD4+T cells. We examined
the nonnegativity and boundedness of the solutions. We calculated the equilibrium points of the model
and established the conditions of their existence and stability. We established the global stability of
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all equilibrium points by formulating suitable Lyapunov functions and applying LaSalle’s invariance
principle. We conducted some numerical simulations and showed that they are consistent with the
analytical results. We discussed the effect of HTLV-I infection on the dynamics of SARS-CoV-2 mono-
infection. We found that HTLV-I infection suppresses the immune response and enhances the SARS-
CoV-2 infection; thus, it may increase the risk of COVID-19.

The model developed in this work can be improved by (i) utilizing real data to find a good estimation
of the parameters’ values, (ii) studying the effect of intracellular time delays [25], (iii) considering
the mutations of SARS-CoV-2 [58, 66] and (iv) including the stochastic interaction. Memory is an
important characteristic of viral infections. It will be interesting to examine the effect of memory on
the dynamics of SARS-CoV-2 and HTLV-I coinfection via formulation of the model through the use
of fractional differential equations [67]. These research points need further investigation, so we leave
them to future works.
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