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Abstract: Although some patients with coronavirus disease 2019 (COVID-19) develop only mild
symptoms, fatal complications have been observed among those with underlying diseases. Severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative of COVID-19. Human T-cell
lymphotropic virus type-I (HTLV-I) infection can weaken the immune system even in asymptomatic
carriers. The objective of the present study is to formulate a new mathematical model to describe the
co-dynamics of SARS-CoV-2 and HTLV-I in a host. We first investigate the properties of the model’s
solutions, and then we calculate all equilibria and study their global stability. The global asymptotic
stability is examined by constructing Lyapunov functions. The analytical findings are supported via
numerical simulation. Comparison between the solutions of the SARS-CoV-2 mono-infection model
and SARS-CoV-2/HTLV-I coinfection model is given. Our proposed model suggest that the presence
of HTLV-I suppresses the immune response, enhances the SARS-CoV-2 infection and, consequently,
may increase the risk of COVID-19. Our developed coinfection model can contribute to understanding
the SARS-CoV-2 and HTLV-I co-dynamics and help to select suitable treatment strategies for COVID-
19 patients who are infected with HTLV-1.
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1. Introduction

In November 2019, a dangerous type of virus named severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) appeared first in Wuhan, China. This virus infects the human body and
causes coronavirus disease 2019 (COVID-19), which can lead to death. According to the update
provided by the World Health Organization (WHO) on December 4, 2022 [1], over 641 million
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confirmed cases and over 6.6 million deaths have been reported globally. SARS-CoV-2 is transmitted
to people when they are exposed to respiratory fluids carrying infectious viral particles. The
implementation of preventive measures such as hand washing, using face masks, physical and social
distancing, disinfection of surfaces and getting the COVID-19 vaccine can reduce SARS-CoV-2
transmission. Ten vaccines for COVID-19 have been approved by the WHO for emergency use.
These include Novavax, Bharat Biotech, Serum Institute of India (Novavax formulation), Sinopharm,
Pfizer/BioNTech, Sinovac, Janssen (Johnson & Johnson), Oxford/AstraZeneca, Serum Institute of
India (Oxford/AstraZeneca formulation) and that presented in [2].

SARS-CoV-2 is a single-stranded positive-sense RNA virus that infects epithelial cells.
SARS-CoV-2 can lead to acute respiratory distress syndrome, which has high mortality rates,
particularly in patients with other viral infections [3]. It was discovered in [4] that, 94.2% of
individuals with COVID-19 were also coinfected with several other microorganisms, such as fungi,
bacteria and viruses.  Important viral copathogens include the respiratory syncytial virus,
rhinovirus/enterovirus, influenza A and B viruses (IAV and IBV), metapneumovirus, parainfluenza
virus, human immunodeficiency virus (HIV), cytomegalovirus, dengue virus, hepatitis B virus,
Epstein-Barr virus and other coronaviruses, among which the rhinovirus/enterovirus and IAV are the
most common copathogens [5]. Disease progression and outcome in SARS-CoV-2 infection are
highly dependent on the host immune response, particularly in the elderly in whom
immunosenescence may predispose them to increased risk of coinfection [6]. Immunosenescence
renders vaccination less effective and increases the susceptibility to viral infections [7].

Human T-cell lymphotropic virus type-I (HTLV-I) is a single-stranded RNA virus that infects
essential human system immune cells, CD4" T cells. CD4" T cells are considered “helper” cells
because they do not neutralize infections, but rather trigger the body’s response to infections [8]. They
are considered essential in the activation and growth of cytotoxic T lymphocytes (CTLs). The role of
CTLs is to destroy cells infected with microorganisms, such as bacteria or viruses. HTLV-I can cause
immune dysfunction even in asymptomatic carriers [3]. HTLV-I can lead to two diseases: adult T-cell
leukemia (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) [9].
Although HTLV-I can cause fatal diseases (ATL and HAM/TSP), most of the infected persons remain
asymptomatic throughout their lives [3]. An estimation by the WHO stated that about 5 to 10 million
individuals are infected with HTLV-1 worldwide [10]. The primary method of HTLV-I transmission is
through bodily fluids including semen, blood and breast milk [11]. In [3,12], two cases of COVID-19
patients with HTLV-I infection have been reported. These reports highlighted the need for the
accumulation of similar cases to illustrate the risk factors for severe illness, the best-in-class antiviral
agent, the way to manage and prevent secondary infection and the optimal treatment strategy for
patients with SARS-CoV-2-HTLV-I coinfection.

Over the years, mathematical models have demonstrated their ability to provide useful insight to
gain a further understanding of virus dynamics within the host. These models may assist in the
development of viral therapies, as well as in the selection of appropriate therapeutic approaches.
Stability analysis of the model’s equilibria may help researchers to establish the conditions that ensure
the persistence or termination of this infection. Mathematical models of SARS-CoV-2 mono-infection
within a host have recently been developed in several works. Hernandez-Vargas and
Velasco-Hernandez [13] presented the following SARS-CoV-2 mono-infection model with limited
target cells:
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SARS-CoV-2 infectious transmission

. —
X=- oVX : (1.1)
SARS-CoV-2 infectious transmission  latent activation
. — —
N = pVX - kN (1.2)
latent activation death
. — —
Y= kN =&Y, (1.3)

generation of SARS-CoV-2 death
. — —
V= ny - &V, (1.4)

where X = X(¢), N = N(t), Y = Y(¢t) and V = V(¢) are the concentrations of uninfected epithelial cells,
latently SARS-CoV-2-infected epithelial cells, actively SARS-CoV-2-infected epithelial cells and free
SARS-CoV-2 particles at time ¢, respectively. Li et al. [14] have considered a SARS-CoV-2 infection
model with constant regeneration and death for the uninfected epithelial cells:

X =6-&X-pVX.

Models presented in [13, 14] have been extended and modified by including (i) latently infected
epithelial cells [13,15-17], (ii) the effects of the immune response [18-22], (iii) the effects of different
drug therapies [16,23,24] and (iv) the effects of time delay [25].

In very recent works, mathematical models have been formulated to describe the coinfection of
COVID-19 with other diseases in epidemiology, such as COVID-19/Dengue [26],
COVID-19/Influenza [27], COVID-19/HIV [28], COVID-19/ZIKV [29],
COVID-19/Dengue/HIV [30], COVID-19/Tuberculosis [31] and COVID-19/Bacterial [32]. On the
other hand, some studies have been devoted to modeling the within-host co-dynamics of COVID-19
with  other diseases, including COVID-19/cancer  [33], COVID-19/Bacteria  [34],
COVID-19/HIV [35,36], COVID-19/malaria [37,38] and COVID-19/Influenza [39, 40].

Stability analysis for models describing the within-host dynamics of SARS-CoV-2 infection was
studied in [19-21,36,39,41]. Hattaf and Yousfi [19] studied a within-host SARS-CoV-2 infection model
with cell-to-cell transmission and CTL immune response. The model included both lytic and nonlytic
immune responses. The Lyapunov method was used to prove the global stability of the three equilibria
of the model. A SARS-CoV-2 infection model with both CTL and antibody immunities was developed
and analyzed in [21]. Mathematical analysis of the model presented in [14] was studied in [41]. Both
local and global stability analyses of the model’s equilibria were established. Almocera et al. [20]
studied the stability of the two-dimensional SARS-CoV-2 dynamics model with an immune response
presented in [13]. Elaiw et al. [25] studied the global stability of a delayed SARS-CoV-2 dynamics
model with logistic growth of the uninfected epithelial cells and antibody immunity. In very recent
works, the Lyapunov method was used to establish the global stability of coinfection models, including
SARS-CoV-2/HIV-1 [35,36], SARS-CoV-2/IAV [39] and SARS-CoV-2/malaria [37,38].

During the last decades, modeling and analysis of HTLV-I mono-infection have attracted the interest
of several researchers. Stilianakis and Seydel [42] constructed an HTLV-I model within a host as
follows:

CD4*T cells production death HTLV-I infectious transmission
. —— — —
U = b% - &U - nAU ,
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HTLV-I infectious transmission  latent activation death
. — —— ——
L = 7TA U - QL - fLL )
latent activation ~ conversion to ATL death

proliferation of ATL
conversion to ATL ~ ————"——— death

Z = JA +{’Z(1— )

- &7,

max

where (U, L,A,Z) = (U (t),L(t),A(t),Z(t)) respectively denotes the concentrations of healthy (or
uninfected) CD4*T cells, latently HTLV-I-infected CD4*T cells, actively HTLV-I-infected CD4*T
cells and ATL cells. Some biological factors have been considered in the HTLV-I mathematical
models by incorporating (i) CTL immunity [9,43-45], (i1) the mitotic transmission of actively
infected cells [46-50], (iii) intracellular time delay [51,52] or immune response delay [43, 53] and (iv)
reaction and diffusion [54]. Elaiw et al. [55] developed and analyzed a general HTLV-I with CTL
immunity, mitosis and time delay. HIV-1 and HTLV-I have similar ways of transmission between
individuals. Therefore, we presented and analyzed some models for within-host HIV-1/HTLV-I
coinfection [56,57].

To the best of our knowledge, mathematical modeling of within-host SARS-CoV-2-HTLV-I
coinfection has not been studied before. The objective of this work is to formulate a new model for
within-host SARS-CoV-2-HTLV-I coinfection. We study the properties of the model’s solutions,
calculate all equilibrium points, investigate the global stability of equilibria and conduct some
numerical simulations.

The SARS-CoV-2/HTLV-I coinfection model presented in this paper can be helpful to describe the
co-dynamics of several human viruses. In addition, the model may be used to predict new treatment

regimens and strategies for patients who are coinfected with different viruses or multi-variants of a
virus [58].

2. Mathematical SARS-CoV-2 and HTLV-I coinfection model

The dynamics of SARS-CoV-2-HTLV-I coinfection is schematically shown in the transfer diagram
given in Figure 1. Now, we propose a new ordinary differential equation model for SARS-CoV-2-
HTLV-I coinfection within a host as follows:

X =6-&&X-pVX, 2.1)
N = pVX — (k + &N, (2.2)
Y = kN - &Y —uYU, (2.3)
V=nY-§&YV, (2.4)
U=y+0YU - &,U - AU, (2.5)
L =nAU + we'A — (@ + &) L, (2.6)
A=aL+(1-w)e'A-EA. (2.7)
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Figure 1. Schematic diagram of the SARS-CoV-2 and HTLV-I coinfection dynamics in vivo.

All parameters of the model described by (2.1)—(2.7) are positive. Since the CD4"T cells help CTLs
to kill the actively SARS-CoV-2-infected epithelial cells, we assume implicitly that the actively SARS-
CoV-2-infected epithelial cells are killed at a rate uY U and the CD4*T cells are proliferated at a rate
0YU. We assume that actively HTLV-I-infected cells proliferate at a rate £*A, with a part we*A turning
into latent, where w € (0, 1). All parameters of the model are positive. In [49, 56], it was proposed that
g <min{éy, &, &) Since 0 < w < land g < &, (1 —w)e" < &,. Denote &4 = &, — (1 —w)e” > 0 and
& = we”. Therefore, the model described by (2.1)—(2.7) becomes

X =6 -&X-pVX, (2.8)
N = pVX — (k + £v)N, (2.9)
Y = kN — &Y — uYU, (2.10)
V=nY-§&V, (2.11)
U=vy+6YU - &U — AU, (2.12)
L=nAU+&A - (a+&)L, (2.13)
A = aL - £4A. (2.14)

Wehave éy —e=¢&, - > 0.

Remark 2.1. If HTLV-I does not exist and we neglect the regeneration of the uninfected epithelial
cells, the death of the uninfected epithelial cells and the death of the latently SARS-CoV-2-infected
epithelial cells, then the model described by (2.8)—(2.14) will lead to the model described by (1.1)—
(1.4). Moreover, in the absence of SARS-CoV-2, then the model described by (2.8)—(2.14) leads to the
HTLV-I mono-infection models (without considering the HTLV-I-specific CTL ) presented in [49,50].

3. Properties of solutions

Let M; >0,i=1,2,3 be defined as

0 2 0
M, =—+ ﬂ, M, = —an andM3 = —M,.
o b &y H
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Additionally, define the following compact set:
Q={(X,N,Y,V,ULA) €R,:0<X,N,Y <M, 0<V <M, 0<U,L A< Ms}.

Lemma 3.1. The compact set Q is positively invariant for the model described by (2.8)—(2.14).
Proof. We have that

X |x=0= 6 > 0, N |veo= pVX >0 forall X,V > 0,
Y ly=o=kN >0forall N >0, V |y_o=nY >0forall Y >0,
U lyo=7y > 0, L ;0= mAU + €A > 0 for all U, A > 0,

A |po= aL > 0forall L > 0.

It follows from Proposition B.7 of [59] that (X (#), N(),Y (¢),V(t),U(t),L(¢),A(?)) € R;O for all
t > 0 whenever (X (0),N (0),Y (0),V(0),U (0),L(0),A(0)) € R,
To investigate the boundedness of the model’s solutions, we define

&y

)=X+N+Y+ =—
2n

V+%(U+L+A).

Then,

=8+ Py - _ vy, &vév., My pEL. p(éa—€)
[ =0+ Gy~ X~ 6N = Sy = 1ty - BRu - B - ER=a,

We have {4 — & =&, — & > 0. Hence,

ey o M v, &vév,, My MEL ”(SCZ _‘9*)
F(t)—5+57—§xX—§NN—?Y— 2 V_TU_TL_—H

S(5+Ey)—0' X+N+Y+ v weL+a :(5+'L—ly)—0'F(t),
0 ' o 0

A

where oo = min {fx,fN, %,fv,.fy,fbfjg —8*}. Thus, 0 < I'(r) < M; if I'(0) < M, for t > 0. Since
X,N,Y,V,U,L and A are all non-negative, then 0 < X(¢), N(¢), Y(#) < M;,0 < V(t) < M, and 0 <
U(t), L(1),A(t) < M3 forallt > 0if X(0) + N(0) + Y (0) + %V(O) + %(U(O) + L(0)+A ) < M,.
Consequently, X (£) ,N(¢),Y (t),V (t),U (¢), L (¢) and A(¢) are all bounded. O

<
<

4. Equilibrium points

To calculate the equilibrium points of the system given by (2.8)—(2.14), we solve the following
system:

0=6—&X - pVX,

0 =pVX — (k+&N)N,

0= &N — &Y — uYU,
0=nY-&V.

0=y +0YU - & U — 7AU,
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0=nmAU+eA—-(a+é&)L,
OZCYL—fAA.

We find that the system admits four equilibrium points.
(1) Uninfected equilibrium point, EPy = (X, 0,0, 0, Uy, 0,0), where X, = :fix and U, =

A
: fu’
(i1) HTLV-I mono-infection equilibrium point, EP; = (X;,0,0,0, U, L;,A;) , where ’

= —ﬁ _é:LfA‘i'Q’(fA—g)_ﬂ
Xl_XO_fX’ Ur= an R,
_ ubs ayr _ _ ¢uéa B
' ma [fU(§L§A+a(§A_8)) 1]— > (R - 1),
v ayn &
A= -1 =2 @® -1
B [fU(§L§A+a(§A—g)) ] —Ri- D),

where R = ——2—— Here, R, is the basic reproduction number of HTLV-I mono-infection. It
Eu(éréata(éa—e))

determines the establishment of HTLV-I infection. Clearly, X; is always positive. Also, since é4—¢& > 0,
U, and R, are always positive, while L; and A; are positive if R; > 1. Therefore, EP; exists when
R, > 1.

(ii1)) SARS-CoV-2 mono-infection equilibrium point, EP, = (X;, N», Y», V2, U,,0,0) , where

X, = (k +&n) (Yoéy + UzYz,U), N, = Y26y + UzYz,U’ @

néy — 6&y Vs’ KoV, K

and V, satisfies the following equation:

Y=y, gy = —
n

T \V>+T,V, +T
1V 2Va 3 _o, 42)
npk (méy — 6€yV>)
where
T, pr)ff%/@(/("‘f/v),

T, = fxfﬁée (k + &n) — mpéyévéy (k + En) — npyuéy (k + En) — onpxBy,
T3 = 5772.0K§U — néxéyévéy (k + En) — nyuéxéy (k + Ey) .

We want to prove that Eq (4.2) has a positive root. Define a function F (V) as

_ T1V2 +T,V+T;

F nok (néy — 0y V)
We have
F(0) = SPpréy — néxévévéy (2K +&n) — myuéxév (K + &n) _ Exév (k + &n) (Evéu + yu) (Ry— 1),
1°pkéy nekéy
where R, = Onpity This implies that F (0) > O when R, > 1. Further,

Exév(k+éEn)Evéu+yp)
Iim F (V)= —oo0.

ey~
V— %y
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Furthermore,

Evk +Ey)
knp (néy — VOEy)®

Hence, F’ (V) < O for all V € (O, 'i—g). It follows that there exists a unique V, € (0, '72—’;) such that
F(V,) = 0. From Eq (4.1), we get that Y, > 0, U, > 0, X, > O and N, > 0. As a result, EP,
exists when R, > 1. The parameter R, represents the basic reproduction number of SARS-CoV-2
mono-infection. It determines the establishment of SARS-CoV-2 mono-infection.

(iv) HTLV-I and SARS-CoV-2 coinfection equilibrium point EP; = (X3, N3, Y3, V3, Us, L3, A3),
where

F' (V)= -

|oEv (VOEy = név)” + yuéxbnéy + yuoréu| .

_ Svk+&y) Gram + pu(Eréa + @ (éa — &)

X npKamn
Ne = Exév (Evam + p(Eréa + @ (4 — €))) [ Snpkan o
’ nokan Exéy (k+ &) Evan+ pEba+aEn—2) |
_ Exéy [ onpkan _ 1]
T | Exév (k+ &) Evam + p(Ea + a(En — ©))) ’
Vi o éx [ onpkarn 3 1]
T p &by ke Ey) Eran v pEba+aEa-o) |
1
Us = — (£éa+a(éa — &),
an
L = & (O6xéy + UP-fU)X
npna
[ npan ( % . Ok ) ~ 1]
(OExEy +mpéy) \(ELéa + @ (éa —€))  (k+En) (Evam + u(Eéa + a (éa — €))) ’
A= (0ExEv + npéy)
3 = X
npm

[ noarn ( y N oKb )_ 1]
(Oxéy +npéy) \(Eréa + a(éx — &)  (k+&y) (Eyvam + u(Eréa + a (4 — €))) .

It follows that, since £4 — & > 0, X3 and Uj are always positive, while N3 > 0, Y3 > 0 and V3 > O if

onpkan
yoryon ey ywvrr sy Sl 1. On the other hand, L3y > 0 and A; > 0 when
58 )>1

npan ( Y +
(Oéxév+npéy) \ (ELéa+a(éa—e)) (k+éEn)Eyantu(éréa+a(§a—e))
Therefore, we can rewrite the components of EP5 as

X, = ;&’ N, = Exéy (Eyam + pu (ELés + a (€ — €))) (Ri—1).
] npkan
Vo= 85 R, 1y, v, = %(&— D,
1 o,
Us= —@tn+a@-2), L=V ooy
an npna

_ (Béxéy + npéy)
non

A Ry - 1),

AIMS Mathematics Volume 8, Issue 3, 6136-6166.



6144

where
R. - __Tpom ( Y .\ Sk )
YT 0Exéy +péu \(E€a @ En— ) (k+En) Eyam + p(Eéa + a(Ey—2)))
R onpkan
4

T ExEy (K + En) Gram + g Erfa + aEa—8)

Thus, EP; exists when R; > 1 and R, > 1. At this point, R3 and R, are threshold numbers that
determine the occurrence of HTLV-I/SARS-CoV-2 coinfection.
Now, we summarize the above results in the following lemma.

Lemma 4.1. There exist four threshold numbers R;, i = 1,2,3,4, such that

(a) if Ry < 1, then the uninfected equilibrium point, EPy = (X,,0,0,0,Uy,0,0) is the only
equilibrium point,

(b) if Ry > 1, then, in addition to EPy, there is an HTLV-I mono-infection equilibrium point,
EP, =(X;,0,0,0,U,L,Ay),

(c) if R, > 1, then, in addition to EPy, there is a SARS-CoV-2 mono-infection equilibrium point,
EP; = (X2, N2, Y2, V3, U>,0,0),

(d)if Ry > 1 and R4 > 1, then, in addition to E Py, there is an HTLV-I and SARS-CoV-2 coinfection
equilibrium pOiIlt, EP3 = (X3,N3, Y3, V3, U3, L3,A3).

5. Global stability analysis

In this section, we discuss the global stability of four equilibrium points, EP;, i = 0, 1,2, 3. We will
utilize the following arithmetic-mean—geometric-mean inequality:

OH+6+ ...+ 4,

> () ()...(6), €>0,i=1,2,...,n. 5.1

Let A’ be the largest invariant subset of

do; :
Aj: (X’NaYa‘/’U,L’A):W:O s ]207172737
where ®; (X, N, Y,V,U, L, A) is a Lyapunov function candidate.
To prove the results given in the next Theorems 5.1-5.4, we follow the works of [60, 61] to build
suitable Lyapunov functions and apply LaSalle’s invariance principle [62].

Theorem 5.1. If Ry < 1 and R, < 1, then the uninfected equilibrium point EP, is globally

asymptotically stable.

Proof. Define @ as follows:

_ X k+&n,  pXo,  pk+Ey) U
CI)O_XO(H(XO)+N+ p, Y + §VV+ o UOW(UO)
+/l(K+§N)L+/1(K+§N)(a+§L)A’
Ok a Bk
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where H(x) = x—1—Inx.

Obviously, ©y (X, N, Y,V,U,L,A) > 0 for all X, N, Y,V,U,L,A > 0, while ®y(Xp,0,0,0, U,,0,0) =
0. The derivative of @, with respect to ¢ along the solutions of the system given by (2.8)—(2.14) is
calculated as follows:

+ . Xo -
£ §NY+’0 0y +
K &y Ok

d(Do Xo .

dt (1 B Y)X TN+

+M(K+§N)((Y+5L)A-
alk

= (1 - )&)(6—§XX—pVX)+pVX—(K+§N)N+

(K +En)
+§—V( nY — va)‘FT

FHETEN) AU oA — (@t ) L) +

Ok
_ _)& B H(k+E&y) _@ B
—(1 X)<6 £~ Sy Py« B (1 U)(y £,U)

_,U(K+§N) ,U( fzv) ,U(K+§N) _pk+én) (@+&)
K Ok Ok afk

Mk +E&y) (1 B %)U+M(K9",‘<§N)L

+&n

(kN = &yY —uYU)

U

(1 - UO)(y +OYU - &yU — 7AU)

p(k+Eén) (a +&p)
abk

(aL — &£,A)
K+ f N PXO

EaA

Since 6 = &x Xy and y = £y U, then

d®y  &x (pXOU_K+§N§ #(K+§N)UO)Y M(K+§N)§U(U Uo)?

—:——X X, —
dt ( o &y PR K Ok

+ M (Kg':fN) (ﬂ'U() te— (a + fL)fA)

7 U~ Uo)’

:—éz(X X,) + (P(Sn_K"‘fN Y_,U(K"'fN)l)Y Kk +En)Eu
Exéy K Kk & Ok

+/1(K+§N) (ﬂl _&éat+aléa _8))A
Ok &u a
_ _@ X — X7 4 $EEW Eréu + ) ( Supxéy _ 1) y
K&y Exéy (k + &) (Evéy + py)
LK (k +&En) (E16a + @ (€ — €)) ( nay B I)A
Eu (Eréa +a(éx —€)
Ry— 1Y Kk +&En) Eu
K&y Ok
+N(K+§N)(§L§A+a/(§z4 8)) (Rl _ 1)A
Oka

,U(K+fN)§U (U U )
Ok Oka

&x (k + &n) Evéy + py)

= -3 (X - Xo)* + 7 U- Uo)’

Therefore, if R; < 1 and R, < 1, then dq’O <Oforall X,Y,U,A > 0 and d(DO =0when X =X, U =
Upand Y = A = 0. The solutions of the system given by (2.8)—(2.14) converge to A, which comprises
elements with X = X, U = Upand Y = A = 0; then, Y = A = 0. Equations (2.10) and (2.14) yield

0=Y=«kN = N@=0forallt,
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0O=A=aL = L@ =0forallt.

Further, Eq (2.9) gives
0=N=pVX, = V(@) =0forallr

Therefore, A, = {EP,}. We deduce from LaSalle’s invariance principle that EP, is globally
asymptotically stable [62]. O

Theorem 5.2. If R, > 1 and Ry < 1, then the HTLV-I mono-infection equilibrium point E P is globally
asymptotically stable.

Proof. Let ®@; be defined as follows:

D, :Xﬂ-((%)+N+K+§NY+pX1V+#(K+§N)UW( )
1 1

K &y Ok
p(k +En) LY pk+én)(a+ép) A
———L — A — .
T 1(H(Ll " bk HI T
Clearly, @, (X,N,Y,V,U,L,A) > O for all X,N,Y,V,U,L,A > 0 and @, (X;,0,0,0,U,,L;,A;) = O.
Calculate dq" as follows:
dq)l (1_&))( N K+§NY+pX1V+ﬂ(K+§N)(1_E)U+ﬂ(K+§N)(1_l;I)L
dr X K &y Ok U Ok L
+,U(K+§N)(CY+§L) (l—ﬂ)A
abk A
_ X fN
=1- a (0 —&xX —pVX)+pVX — (k+En)N + (kN = &yY —uYU)
X + U
+Q(nY—§VV)+M(1——‘)(y+eYU—§UU—nAU)
fv Ok U

+u(/<9+§zv)( Ll)(Au+6A (@+é) L)+ u(K+§N)(a+§L)( Al)( L-£,4)
K afk
B X K+En pXi p K+ En) U,
=(1-S) -0 - gy 2 . gy + B0 (12 ) - g0
,U(K+§N) 1+#(K+§N)7TAU1—M(K+§N)7TAU ,U(K+§N) #(K+§N)8Al;1
Ok Ok L Ok Ok
,U(K fN)( L)L _ﬂ(K+§1\él(0/+§L)L%
/l(K+§N)(CY+§L) K +E&n)(a+&p)
B aBk Ead + afk Eadki
:(l—é)(5—§XX)+(len— K+§N§Y_/1(K+§N)U1)Y
&v K K
Mk +Ey) U, m(k+E&y) A uk+én) AUL,
T (1 B _)( —SU) T 9K U e MU
,U(K+§N) A u(k+Ey) ,U( +&n)
e N T T AlA L o arel
uk+én)(@+&) LA p(k+é&y)(a+&r) A pk+én)(@+Er)
Ok LlLlA B a Ok fAAIA_l * alk Eadr.
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Utilizing the equilibrium point conditions for EP;:

(5:§XX1, 7:§UU1+7TA1U1,
AU = (@+ &) L — Ay, al; = £4Ay;
we obtain
dod X + + +
—1:—é(X X)) + P 1n_K foy_/J(K fzv)U1 y - u(k §N)§U(U U,
dt &y K K Ok
A AUL
+.U(K+§N)( Ul) AU1+#(K+§N) A U S _ H(k+EN) AU, UL,
Ok U Ok Al Ok A1U1L
M (K + En) A uk+éy) AL ,U(K+§N)
— A — - EA AU A
T A, oK ALt T AU TeA)
LA + A
,U(K é‘:N)( A1U1+8A1) 1_,U(K .fN) (7TA1U1+8A1)—+IJ(K é:N)( A1U1+8A1)
Ok LA Ok Ay Ok
+
:_f_X(X X)) - M&](U U))?
K

+(p5n—”’f”§y “(K+§N)<5L§A+a<@—s>))
Exéy K K@
U, AUL, LA)+,LL(K+.§:N) Al(z_ALl_LA)

p (K + En)
AR "AIU‘(3 U AUL LA o AL LA
:_f_X(X X, - ,U(K;‘fzv)fU(U U,
N (K + &) [évam + u(Eréa + a (éa — o) ( onpkamn _ 1) v
kar Exéy (K + En) [Evam + u(ELéx + a (én — )]

U, AUL, LA, )+/1(K+§N)8A1(2 AL1 LA, )

+
_,_'LM AU (3 - — -
Ok u A U1L LA Ok A L LA

Finally, we get

@:—Q(X X)) - ﬂ(K+§N)§U(U U,y
dt Ok
+ (K +&n) [évam + p (ELéq + CY(cfA )] (Ri=1)Y

Kam

u(k+En) U AUL;, LA,
+ —--1A/U;|3 - — - — - —
QK T ! 1( U A]U]L LlA

AL, LA,
+ plk+En) eA, 2 - =L - =L
Ok AL LA
Using the inequality of (5.1), we obtain

Ui AUL LA
+ >3 VUL A >0,
U TAUL T LAC ~

AL, LA1
AL LA_

>2, VL,A> 0.
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Therefore, if R4 < 1, then d(bl < Oforall X,Y,U L, A > 0, where % =0when X = X;,Y =0,
U=U;,,L=Liand A = A;. The solutions of the system given by (2.8)—(2.14) are limited to A’, which
comprises elements with X = X;, U = Uy, L = L;, A = Ay and Y = 0; then, Y =0. Equation (2.10)
yields
0=Y=«kN = N(@ =O0forallz.

Equation (2.9) gives

0=N=pVX, = V(@ =0forallr
Consequently, A} = {EP,}, and then LaSalle’s invariance principle implies that EP; is globally
asymptotically stable [62]. O

Theorem 5.3. If R, > 1 and R; < 1, then the SARS-CoV-2 mono-infection equilibrium point EP, is
globally asymptotically stable.

Proof. Define @, as follows:

X N\ k+é&y Y\ pX, (V)
O, =X, H|— |+ NyH|— | + YoH + —=VoH
2o (2) ’ (Nz) kK 7 (Yz) & 2\W,

+N(K+§N)U7_[( ) //L(K+§N)L+/1(K+§N)(Q'+SL)A.
Ok U, Ok afk

Clearly, (Dz (X N Y V U L,A) > 0 for all X, N, Y, V, U, L,A > 0 and q)z (Xz,Nz, Yz, Vz, U2,0, 0) = 0.
Calculate d(DZ as follows:

do, (1—&))( (1—&)N+K+§N(1—§)Y pXZ(l—E)V
ar X N p Y & v

+M(K+§N) (1_E)U+/1(K+§N)L+/1(K+§N)(Q’+SL)A-
Ok U Ok afk
X N

_ (1 ——2)(6—§XX—pVX)+(1 ——2)(pVX—(K+§N)N)

K+
L KHeN

. (1——)<KN &Y - uYU) + f (1——)<nY £/V)

+H(K9:€N)(1_%)(7+9YU—§UU—RAU) plx fN)(AU+8A—(a+§L)L)

+ Hk+En) (@ + &)
alk

(aL —&aA)

K"‘fN fzv

1324

X N Y.
- (1 - —2)(6—§XX> VX K+ EN = K+ E) N2 =
LK fzv pX> pX, V, 1K+ Ey) (

&Y,

U
Y,U + —Y——Y—+ pXo Vo + 1——) - &yU
I fvn &y n % 2t Ok U (y —&uU)

_M(K+fN)YU2 +,U(K+§N)7TAU2+#(K+§N)8A_#(K+§N)(af+&)
K Ok Ok alk

(x + fzv)

EaA

N>
(1 - —)(6 EX) = PVXZ + (+ EN2 = (+ fN)N— &Y,

X + + pXo _V,
O G0 M §N>ﬂY2U__ny_+pX2V2
éy K K K &y 1%
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U

+ p (K +E&n) (1 B _2)(7_&][])_'_ p(k + fN) ,U(K"‘fN)gA_ pk+én) (@ + &)
Ok U Ok Ok

Utilizing the equilibrium point conditions for EP;:

EaA

afk

0 =&xXo + pVo X,
pVaXy = (k + En)N2,
kN> = &yYa + uYr Uy,
nY> =&yVa,
Y =&uUs — 0, Us;
we obtain

d®, &x

(X - X,)? + pVoX. VXo 2 o, LN v — o, N2
7 2 PzszzXP22V2X2N,022P22N2Y
+ + YV +
+szXz—(K v, + EE g, Y PV2X2—2+PX2V2—M§U(U U,y
K U2 YQV Ok
U + + -
ros(1- ) pk+ &) (ﬂUz_foA a (é s)) A

Ok @

£y X, VXN, NY; YVi\ (k+é&) U U
= S5 X = XoP 4 pVaXa 4=~ - - Upl2-=-=
(X = X"+ pVaXa |4 = V,XoN~ N,Y YV 2

Uu, U
/J(K"'fN)fU(U U) IJ( +§N)(7T
Ok Ok

_.U(K+§N)
K

(01

U, — 'foA"'a'(fA_g))A-

We have

- uYzUz(z‘E_ﬂ)‘ﬂ(—HfN@(U %
K Ok U

(K+fN),U_Y2(U U) Mk + fN)fU(U U)
K Ok
_u<K+§N><U— n?
= o T 0Y, = &y)
_Hy (K + &)
QKUUZ

(U -U,)*.
Collecting terms, we get

A0, & X, VXN, NY, YV,
2= (X=X pVaa [4 -
d X = Xo)* + Vs 2( X VaXoN  NY Y2V)
+ + + -
_,U’}’(K &n) (U - U2)2+ﬂ(K én) 2U, — Eéa+a(Ea—¢&) N
oxU U, 0

K (0

Hence, if R; < 1, then EP; does not exist since Az < 0 and L3 < 0. This implies that
A()=aL-£A<0,
L(t)=nAU +eA - (a+ &)L <0.
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It follows that (7TU - W)A < 0 forall A > 0. Thus, 7U, — ém++@_g) < 0, and, by using the
inequality of (5.1), we obtain

X, VXN, NY, YV,

4 + + >4, VX,N,Y,V>0.
X WVXN NY LV

Thus, % < Oforall X, NY,VUL,A > Oandd% =0when X = Xo, N =No,Y =Y,V =V,

U = U, and A = 0. The solutions of the system converge to A, which comprises elements with A = 0.
It follows that A = 0, and Eq (2.14) becomes

0=A=aL= L(t)=0forallt.

Therefore, A, = {EP,}. LaSalle’s invariance principle implies that EP, is globally asymptotically
stable [62].0
Let us define a parameter R as follows:
neamy
(06x&v + npéu) (E16a + @ (Ea — €))

Theorem 5.4. If Ry > 1 and 1 < R; < 1 + R, then the HTLV-I/SARS-CoV-2 coinfection equilibrium
point EP;5 is globally asymptotically stable.

R =

Proof. Define @5 as follows:

X N + Y X \%
(D3 = Xg?’{(?) + N37’[(ﬁ) + X é:N Y3']"( (7) + QVK?{(—)

3 3 K 3 &y Vs
MK+ &n) U\ pn+én) L) wpk+éy)(@+é) A
+ —QK U37‘{(73) + —HK L37‘{ (L_3) + v A37"{(A—3) .

Clearly, ®3 (X, N, Y,V,U,L,A) > Oforall X,N,Y,V,U,L,A > 0 and @5 (X3, N3, Y3, V3, Us, L3, A3) = 0.

Calculate % as follows:

d®s :(1—)§)X+(1—&)N+K+§N(1—%)Y+’)—X3(1—E)V

dt X N K &y 14
+N(K+§N) (1_%)U+ﬂ(K+§N) (1_1;3)L+/J(K+'§:N)(a’+§L) (1_12)14-
Ok U Ok L alk A
(1% s _sx_ M _ K+én(, _ 13
_(1 X)(6 ExX pVX)+(1 N)(pVX (k +&n)N) + p (1 Y)X
pX3 V3 p(K+En) Us;
(KN—ny—,uYU)+§—V(1—7)(17Y—§VV)+Q—K(I—F)(7+GYU—§UU—7TAU)
¥ “—(Kg:fN) (1 - %)(nAU reA—(a+e)D) + KT gg;f“ * &) (1 - %)(Q/L —£,A)
X N Y
= (1= 2) 6 - &%) = oV + (N3 -+ ) N2 = gy o K By,
K+&n pX3 X3 V3 (K +Ey) Us Mk +Ey)
+ P MY3U+§—V7]Y—§—V7]Y7 +pX3V3+T(l_i)(y_é‘:UU)_TYU?’
+M(K+§N)7TAU3_M(K+§N)7TAU£3+M(K+§N)8A_M(K+§N)8AE+M(K+§N)(a+§L)L3
Ok Ok L Ok Ok L Ok
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HEHE@+E) Ay pkt & @ +E)
Ok A alk
X N Y
:@—fyﬁﬁm—MW§+wﬂmm—uwMN§+
+(pX377—K+§N§ _N(K+fN)U3)Y+K+fN

+ Mk +En) (a+ &)
alk
K+§N
K

EaA

E4A3

&yYs

X, V.
wvsU = P20y 2 4 oxuv,
&V

+#(K+§N) M(K+§N)7TAU3_,U(K+§N)NAU5+,U(K+§N)8A

Us
1——) _&,U
Ok ( g )T Ok L Ok

—M(K+§N)8Al;3 +,U(K+§N) (@+£)Ls _,U(K+§N)(CY+§L)L13 pk+éN) @+ &)
Ok L Ok Ok A alk
+/1(K+§N)(C¥+§L)

afk

&y PR K

EaA

Eahs.
Utilizing the equilibrium point conditions for EP;:

0 = &xXs + pV3X;,
PV3iXs = (k + En)Ns,
kN3 = &yYs + uY;3Us,
nYs = &vVs,
y =&uUs — 0Y3Us + mA;3Us,
nA3Us = (@ + &) Ls — €As,
aLs = {4433

we obtain

d®s &x 2 X; VXN, NY;
— =2 (X =-X3) +oV3X;5 — pV3X53— — pV3X + oV3X;5 — pV3X5—=
dr X( 3) PV3A3 1033X p33V3X3N PV3A3 '033N3Y

(k +&y) (k + &n) U YV; uk+E&n) &y
Y;Us + YsUs— — pViXs—e + pX3V; — SN0
HY3U3 P HI3 3U3 P3sy3v pA3V3 Ok U

Us p(k+En) Us u(k+En) A
;U 1——)+—AU(1——)+—AU—
: 3( U Ok AT Ok i 3A3
AUL A AL
—'U(K+§N)7TA3U3 3 +M(K+§N)8A3__ﬂ(K+§N)8A3 3 +,U(K+fN)
Ok A3U3L Ok A3 Ok A3L Ok
+ LA + +
_.U(K é:N)(JTA3U3+8A3) 3_M(K én) +,U(K én)
Ok 1A Ok

'fX ) X3 VXN3 NY3 YV3 (K + é:N) U U3
X X — X2 4 oVaXs 4 - 22— _0s - Y,Us|2—- — -3

x XX AoV 4= = N TNy Ty et A TN
_,U(K"‘fN)éi

Mk + En)
Ok U Ok

+pV3X3 - (U - U3)2

_.U(K+§N)
K

(7TA3 U3 + 8A3)

A
(7TA3 U3 + 8A3) A_ (7TA3 U3 + 8A3)
3

U AUL LA
U-Us) + - - —i)

7rA3U3(3—————

We have

- (U -U)
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_ (k +K§N)ﬂ7Y3 (U - Us)? — L%%/ (U - Uy
_pk+E) (U - Uy (Y3 B @)
K U 0
_ p (K + En) (BéxEy + mpéy) (U — Us)? (R _po 1)
1pK6 U : '

Collecting terms, we get

dd X VXN NY YV
s B x4 pvx a2 o AN VBT
dt X X ;XN N;Y  YiV
+ 0 + U - Us)? .
+ u(k + En) (BExEy + mpéu) ( 3) (R3 _h_ 1)
npxo U
+ U AUL LA + AL LA
+,U(K é:N)JTA3U3 3 Us UL; LA +,U(K fN)gA3 ,_ Al _LAs)
Ok U A3 U3L L3A Ok A3L L3A

Using the inequality of (5.1), we obtain

X; VXN; NY; YV,

—= 4+ + +

X  V3XGN | N3Y YV
U, AUL, LA

3 4 3+—323,\7’U,L,A>O,

U ' AUsL LA

AL, LA

W B 50 VLASO.

AL LA

>4, YX,N, Y,V >0,

Moreover, since 1 < Ry < 1 + R, we get % < Oforall X,NV,Y,V,UL,A > 0 and % = 0 when
X =X35,N=N3,Y =Y,V =V;,U = U;, L =1L3;andA = A;. The solutions of the system
converge to A}. Clearly, A} = {EP;}, and then LaSalle’s invariance principle implies that EP; is
globally asymptotically stable [62]. O

Based on the above findings, we summarize the existence and global stability conditions for all

equilibrium points in Table 1.

Table 1. Conditions of existence and global stability of the system’s equilibria.

Equilibrium point Existence conditions Global stability conditions
EP() = (X(),O, 0, 0, U(),O, 0) None R1 <1 and R2 <1
EP, = (X,0,0,0,U,,Ly,Ay) Ry >1 Ry >1land Ry <1
EP2:(X2,N2,Y2,V2,U2,0,0) R2>1 R2>1andR3S1
EP3:(X3,N3,Y3,V3,U3,L3,A3) R3>1andR4>1 R4>1and1<R3S1+IA€

6. Numerical simulations

In this section, we present some numerical results for the model described by (2.1)—-(2.7) to
illustrate the stability of equilibrium points. We used the ODE45 solver in MATLAB to solve the
system numerically.
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6.1. Stability of equilibrium points
We solve the system with three initial conditions:
ICI: (X(0),N (0),Y(0),V(0),U(0),L(0),A(0)) =(9,0.0001,0.0002,0.0003, 600, 150, 15),

IC2: (X(0),N(0),Y(0),V(0),U(0),L(0),A(0)) =(5,0.0005,0.0006,0.0007, 500, 200, 20),
IC3: (X(0),N(0),Y (0),V(0),U (0),L(0),A(0)) =(1,0.001,0.002,0.003,400, 250, 25) .

Table 2. Model parameters.

Parameter Description Value Source
1) Recruitment rate of uninfected epithelial cells 0.11 [25]
&x Natural death rate constant of uninfected epithelial cells 0.011 [25]

Virus-cell incidence rate constant between free SARS-CoV-2 .
o ) ] o Varies Assumed
particles and uninfected epithelial cells

Transmission rate constant of latently SARS-CoV-2-infected epithelial

K ) i o 4.08 [35,40]
cells that become actively SARS-CoV-2-infected epithelial cells

én Death rate constant of latently SARS-CoV-2-infected epithelial cells 0.11 [25]

&y Death rate constant of actively SARS-CoV-2-infected epithelial cells 0.11 [35,41]
Killing rate constant of actively SARS-CoV-2-infected epithelial .

u ) Varies  Assumed
cells due to immune response

n Generation rate constant of new SARS-CoV-2 particles 0.24 [35.41]

&y Death rate constant of free SARS-CoV-2 particles Varies  Assumed

0% Recruitment rate for the uninfected CD4* T cells 10 [48,49,63]
Proliferation rate constant of uninfected CD4* T cells

0 . ) o 0.1 [35,64]
due to actively SARS-CoV-2-infected epithelial cells

&y Natural mortality rate constant for the uninfected CD4*T cells 0.012 [46,48,49]
Cell-cell incidence rate constant between uninfected CD4*T .

T Varies  Assumed

cells and actively HTLV-I-infected CD4*T cells

Probability of new HTLV-I infections via mitosis could
w ; 0.9 [47]
enter a latent period

Proliferation rate constant of newly HTLV-I-infected CD4*T
& . 0011  [47]
cells from mitosis

Transmission rate constant of latently HTLV-I-infected CD4*T

a ) ) 0.003 [46,48,49,65]
cells that become actively HTLV-I-infected CD4*T cells

ér Death rate constant of latently HTLV-I-infected CD4*T cells 0.03 [47-50]

& Death rate constant of actively HTLV-I-infected CD4*T cells 0.03 [46,48,49]

Table 2 contains the values of some parameters. We mention that the values of some parameters
of the model are taken from previous studies for SARS-CoV-2 and HTLV-I mono-infections, while
other parameters p, u, £y and & are chosen just to conduct the numerical simulations. To the best of
our knowledge, now, there is no available data from SARS-CoV-2 and HTLV-I coinfection patients.
Therefore, estimation of the parameters of the coinfection model is still open for future investigation.
We vary the parameters, p, u, £y and 7 to obtain four cases, as follows:
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Ry = 0.2706 < 1 and R, = 0.0004 < 1. Based on Theorem 5.1, the equilibrium point EP is globally
asymptotically stable. This is illustrated in Figure 2, where the concentrations of the uninfected
epithelial cells and uninfected CDA™T cells tend to their healthy values X, = 10 and U, = 833.33
while the concentrations of the other compartments tend to zero. This case means that there are no
SARS-CoV-2 and HTLV-I infections in the body.

Case 1. (R < land R, < 1): Choose p = 0.8, u = 1.1, &y = 5.5 and n = 0.0001, which gives

Case 2. (Ry > 1 and Ry < 1): We take p = 0.5, u = 1.1, &y = 5.5 and m = 0.0015. So, we get
Ry = 4.0584 > 1 and R, = 0.0009 < 1. According to Lemma 4.1 and Theorem 5.2, the HTLV-1
mono-infection equilibrium point E Py exists and is globally asymptotically stable. Figure 3 shows that
the model solutions converge to the equilibrium point EP; = (10,0,0,0,205.33,235.7,24.47) for all
initials IC1-IC3. In this situation, the patient becomes infected by HTLV-I, while the SARS-CoV-2

infection is cleared.

Case 3. (R, > 1l and R; < 1): We choose p = 3, u = 0.01, &y = 0.04 and = = 0.0001. Then, we
calculate R, = 20.7589 > 1 and R; = 0.2979 < 1. Lemma 4.1 and Theorem 5.3 state that the SARS-
CoV-2 mono-infection equilibrium point EP, = (0.529,0.025,0.011,0.066,916.87,0,0) exists and is
globally asymptotically stable. Figure 4 displays the numerical solutions of the system converge to EP,
for all three initials IC1-IC3. The results support the theoretical results presented in Theorem 5.3. In
this situation, the patient becomes infected by SARS-CoV-2, while the HTLV-I infection is removed.

Cased. (R, > land 1 <R3 < 1 + R): We consider p = 3, u = 0.01, & = 0.6 and © = 0.0015. So, we
get Ry = 54014 > 1,R; =4.1538 > 1and R; < 1 + R = 4.7704. Lemma 4.1 and Theorem 5.4 state
that the HTLV-I/SARS-CoV-2 coinfection equilibrium point
EP; = (1.85,0.021,0.04,0.016,205.33,261.62,27.16) exists and is globally asymptotically stable.
Figure 5 shows that the solutions of the system converge to EP;5 for all initials ICI-IC3. The results
support the theoretical results presented in Theorem 5.4. In this case, a SARS-CoV-2 and HTLV-I
coinfection happens, where an HTLV-I-patient gets contaminated with COVID-19. CD4*T cells are
animated to dispense with SARS-CoV-2 disease from the body. In any case, assuming that the patient
has low CD4" T cell counts, the freedom of SARS-CoV-2 may not be accomplished. This can prompt
extreme contamination and passing. Now, we check the local stability of the model’s equilibria.
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Figure 4. Solutions of the system described by (2.1)—(2.7) with the initial conditions IC1-

IC3 in Case 3.
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The Jacobian matrix J = J (X, N, Y, V, U, L, A) can be calculated as follows:

—(pV + &x) 0 0 —pX 0 0 0
pV —(k + &) 0 X 0 0 0
0 K -wU+¢&) O —uY 0 0
J = 0 0 n =&y 0 0 0
0 0 oU 0 60Y-mA-&y 0 —-nU
0 0 0 0 A —(a+ &) U + we*
0 0 0 0 0 a (I-w)e =&,

At each equilibrium point, we compute the eigenvalues 4;, j = 1,2,...,7 of J. If Re(1;) < 0,
j =1,2,...,7, then the equilibrium point is locally stable. We select the parameters p, u, & and 7 as
given in Cases 1-4; then, we compute all nonnegative equilibria and the accompanying eigenvalues.
Table 3 outlines the nonnegative equilibria, the real parts of the eigenvalues and whether or not the
equilibrium point is stable. We found that the local stability agrees with the global one.

Table 3. Local stability of nonnegative equilibria in Cases 1- 4.

Case Equilibrium point Re(1),i=1,2,...,7 Stability
Case 1 EP, =(10,0,0,0,833.33,0,0) (-916.77,-5.51,-4.18,-0.048,-0.014, -0.012, -0.011) stable
Case 2 EP, = (10,0,0,0,833.33,0,0) (-916.77,-5.50,-4.19,-0.092, —-0.012, -0.011, +0.031) unstable

i EP, =(10,0,0,0,205.33,235.70,24.47) (-225.98,-5.52,-4.17,-0.077,-0.017,-0.017,-0.011) stable
Case 3 EP, = (10,0,0,0,833.33,0,0) (—6.65,-6.65,-0.048,-0.014,-0.012, -0.011, +0.631) unstable
EP, =(0.529,0.025,0.011,0.066,916.87,0, 0) (-9.24,-4.27,-0.154,-0.051, -0.049, -0.013, -0.012) stable
EP, =(10,0,0,0,833.33,0,0) (-6.71,-6.71,-0.092, —-0.012, -0.011, +0.031, +0.18) unstable
Case 4 EP, =(10,0,0,0,205.33,235.70,24.47) (—4.03,-4.03,-0.077,-0.017,-0.017,-0.011, +1.10) unstable
EP, =(7.42,0.007,0.003,0.001, 856.07, 0, 0) (=7.85,-5.61,-0.093, -0.012, -0.007, —0.007, +0.031) unstable
EP; = (1.85,0.021,0.04,0.016,205.33,261.62,27.16) (-3.48,-3.48,-0.078, -0.025, -0.025,-0.017, -0.017) stable

6.2. Comparison results

In this subsection, we present a comparison between the HTLV-I single infection and the coinfection
with HTLV-I and SARS-CoV-2. We compare the solutions of the model described by (2.1)—(2.7) and
the following SARS-CoV-2 mono-infection model:

X =6-&X-pVX,
N = pVX — (k + €y)N,
Y = kN - &Y —uYU,
V=nY-&V,
U=vy+0YU -&yU.

We consider p = 3, u = 0.01, &y = 0.6 and 7 = 0.0015 with the initial condition IC3. We observe
from Figure 6 that the presence of HTLV-I reduces the concentrations of uninfected epithelial cells
and uninfected CD4T cells, while it increases the concentrations of latently SARS-CoV-2-infected
epithelial cells, actively SARS-CoV-2-infected epithelial cells and free SARS-CoV-2 particles. This
means that HTLV-I suppresses the immune response and enhances the SARS-CoV-2 infection.
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7. Discussion

SARS-CoV-2 and HTLV-I coinfection cases were reported in [3] and [12]. Therefore, it is important
to understand the within-host dynamics of this coinfection. In this paper, we developed and examined
a within-host SARS-CoV-2 and HTLV-I coinfection model. We studied the basic and global properties
of the model. We found that the system has four equilibria, and we proved the following:

(I) The uninfected equilibrium point EP, always exists. It is globally asymptotically stable when
Ry < 1 and R, < 1. This result suggests that, when R; < 1 and R, < 1, both SARS-CoV-2 and HTLV-I
infections are predicted to die out regardless of the initial conditions. From a control viewpoint, setting
Ry < 1and R, < 1 will be a good strategy. The parameter R, may be reduced by multiplying the
parameters by p or n by (1 — ) or (1 — &), respectively. Here, € € [0,1] and & € [0, 1] represent
the effectiveness of antiviral drugs for blocking the infection and production of SARS-CoV-2 particles,
respectively [18]. Since there is no treatment for HTLV-I infection, R; < 1 is rarely achieved.

(II) The HTLV-I mono-infection equilibrium point EP; exists if R; > 1. Itis globally asymptotically
stable when R; > 1 and R4 < 1. This result establishes that, when R; > 1 and R, < 1, the HTLV-I
mono-infection is always established, regardless of the initial conditions.

(IIT) The SARS-CoV-2 mono-infection equilibrium point EP, exists if R, > 1. It is globally
asymptotically stable when R, > 1 and R; < 1. This result shows that, when R, > 1 and R; < 1, the
SARS-CoV-2 mono-infection is always established, regardless of the initial conditions.

(IV) The HTLV-I and SARS-CoV-2 coinfection equilibrium point EP; exists if R3 > 1 and Ry > 1.
It is globally asymptotically stable when R, > 1 and 1 < R; < 1 + R. This result shows that, when
R, > 1land 1 < Ry < 1 +R, the HTLV-I and SARS-CoV-2 coinfection is always established, regardless
of the initial conditions.

We discussed the impact of HTLV-I infection on the SARS-CoV-2 mono-infection dynamics. We
found that the presence of HTLV-I suppresses the immune response and enhances the SARS-CoV-2
infection. This result agrees with [3], where it was reported that HTLV-I can cause immune dysfunction
even in asymptomatic carriers. Therefore, HTLV-I may increase the risk of COVID-19.

The main limitation of the present research work is that we did not use real data to estimate the
values of the model’s parameters. The reasons are as follows: (i) The real measurements from
HTLV-I/COVID-19 coinfection patients are still very limited; (ii) Comparing our results with a small
number of real studies may not be very precise; (iii) Collecting real data from patients with HTLV-I
and COVID-19 coinfection is not an easy task. Thus, the theoretical results obtained in the present
paper need to be tested against empirical findings when real data become available.

8. Conclusions

Mathematical models are frequently used to understand the complex behavior of biological systems.
In this paper, we constructed a new SARS-CoV-2/HTLV-I coinfection model within a host. The model
considers the interactions between uninfected epithelial cells, latently SARS-CoV-2-infected epithelial
cells, actively SARS-CoV-2-infected epithelial cells, free SARS-CoV-2 particles, uninfected CD4*T
cells, latently HTLV-I-infected CD4*T cells and actively HTLV-I-infected CD4*T cells. We examined
the nonnegativity and boundedness of the solutions. We calculated the equilibrium points of the model
and established the conditions of their existence and stability. We established the global stability of
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all equilibrium points by formulating suitable Lyapunov functions and applying LaSalle’s invariance
principle. We conducted some numerical simulations and showed that they are consistent with the
analytical results. We discussed the effect of HTLV-I infection on the dynamics of SARS-CoV-2 mono-
infection. We found that HTLV-I infection suppresses the immune response and enhances the SARS-
CoV-2 infection; thus, it may increase the risk of COVID-19.

The model developed in this work can be improved by (i) utilizing real data to find a good estimation
of the parameters’ values, (i1) studying the effect of intracellular time delays [25], (ii1) considering
the mutations of SARS-CoV-2 [58, 66] and (iv) including the stochastic interaction. Memory is an
important characteristic of viral infections. It will be interesting to examine the effect of memory on
the dynamics of SARS-CoV-2 and HTLV-I coinfection via formulation of the model through the use
of fractional differential equations [67]. These research points need further investigation, so we leave
them to future works.
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