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1. Introduction

The classical diffusion equation describes the random motion of particles suspended in a medium.
But when the particles do not obey a certain law, it may not give a correct result. Anomalous diffusion
which occurs in a very heterogeneous aquifer, is an example of this case. Here, fractional diffusion
equations can be used as an accurate model [1–3]. In recent years, these equations have been getting
more attention, since they are able to create new models for a wide range of natural processes in
physics, medicine, and so on [4].

Some of the significant works for initial-boundary value problems (IBVP) involving fractional-
order diffusion equations are as follows: Luchko [2] solved this kind of problem for the homogeneous
equation and by the same method, the inhomogeneous case was studied in [3]. As for the non-linear
equations with fractional order 0 < α < 1 and Laplace operator, Luchko et al. [5] and Jin et al. [6, 7]
considered existence, uniqueness and regularity of the solutions. Kian and Yamamoto [8] studied a
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more general operator for 1 < α < 2. In [4, 9], some systems involving non-linear fractional diffusion
equations were examined. In this work, we generalize these results by taking a more general elliptic
operator with 0 < α < 1.

As for the recent algorithms for the non-linear partial differential equations which include fractional
derivatives and integrals, we refer to [10–12].

2. Preliminaries

We use eigenfunction expansions in order to establish the weak solution of the problem, which
is a fundamental technique for finding solutions of IBVP for partial differential equations. In the
literature, this method was used by [1,2] for a homogeneous linear fractional diffusion equation. In [2],
since the operator in the equation is a symmetric uniformly elliptic operator with time-independent
coefficients, the problem for a fractional partial differential equation was solved by transforming into
two different problems for fractional ordinary differential equations. Their solutions were obtained by
using Laplace transform and the theory of boundary value problems for elliptic equations [13]. By
using the result of [2] in the case of inhomogeneous classical partial differential equations, Sakamoto
and Yamamoto [3] obtained the solution of the IBVP for an inhomogeneous linear fractional diffusion
equation. Then, Luchko et al. [5] and Jin et al. [7] used this idea for a non-linear fractional diffusion
equation.

In order to investigate the existence, uniqueness and regularity properties of the solution of the
problem, we use a priori estimates in L2 (Ω). Sakamoto and Yamamoto [3] proved regularity of
solution of an IBVP for an inhomogeneous linear diffusion equation. For non-linear fractional diffusion
equations, Jin [7] applied a generalized method of Bielecki [14] which is widely used in the theory of
functional equations.

Let d ∈ {1, 2, 3} and

Ω =


(0, r1) , if d = 1,
(0, r1) × (0, r2) , if d = 2,
(0, r1) × (0, r2) × (0, r3) , if d = 3

(2.1)

be a bounded domain in Rd such that r1, r2, r3 are positive real numbers. See Table 1 for the symbols
and notations used in the paper.

We consider a partial differential equation with the Caputo fractional derivative in time t for 0 <
α < 1, and the fractional derivative is defined by

∂αt u (x, t) =
1

Γ (1 − α)

t∫
0

∂τu (x, τ)
(t − τ)α

dτ, (2.2)

see [15, 16]. Let us assume that

F(x, t, u(x, t)) = g(u(x, t)) + s(t)p(x), (2.3)

and g, s, p are given functions in Ω × (0,T ) and T > 0 is a fixed value.

AIMS Mathematics Volume 8, Issue 3, 5432–5444.



5434

Table 1. Nomenclature.

Type Notation Description

Symbol
d dimension of the space domain,
k a fixed positive number,

r1, r2, r3 positive real numbers,
t the time variable,
x the space variable,

A, L the second order symmetric uniformly elliptic operators,
C j positive constants for 1 ≤ j ≤ 29,

Eα,β the Mittag-Leffer function,
T the upper limit of time domain,
∂αt α-th Caputo fractional derivative.

Greek
Symbol

α the order of the fractional derivative,
β a positive real number,
δ, τ parameters,
λ j the j-th eigenvalue,
µ a parameter for Mittag-Leffler function,
ξ the vector ξ =

(
ξ1, ..., ξn

)
∈ Rn,

φ j the j-th eigenfunction,
Γ the Gamma function,
Σ the summation symbol,
Ω domain of the solution according to space coordinates.

Abbreviation IBVP Initial-Boundary Value Problem

We aim to solve the equation

∂αt u (x, t) = Lu (x, t) + F (x, t, u (x, t)) , (x, t) ∈ Ω × (0,T ) (2.4)

satisfying the following initial and boundary conditions:

u(x, 0) = b (x) , x ∈ Ω, (2.5)

u(x, t) = 0, (x, t) ∈ ∂Ω × [0,T ] . (2.6)

We also define the second order symmetric uniformly elliptic operator by

Lu =
d∑

i, j=1

∂xi

(
ai j (x) ∂x ju

)
, x ∈ Ω. (2.7)

Here, we assume that the coefficients have the following properties:

ai j ∈ C∞
(
Ω
)
, ai j = a ji, (2.8)

for every integer 0 ≤ i, j ≤ d, and there exists a constant v > 0 satisfying

v
d∑

i=1

ξ2
i ≤

d∑
i, j=1

ai j (x) ξiξ j. (2.9)

AIMS Mathematics Volume 8, Issue 3, 5432–5444.



5435

In this paper, H1
0 (Ω) and H2 (Ω) denote the usual Sobolev spaces [17, 18]. Additionally, the space

H̃ s (Ω) is associated with the elliptic operator

A : H2 (Ω) ∩ H1
0 (Ω)→ L2 (Ω) , (2.10)

where it is assumed that s ≥ 0 is a real number, A is defined as A = −L. The spectrum of A consists
entirely of eigenvalues

{
λ j

}∞
j=1

. By Section 6.5 of [19], there exists an orthonormal basis
{
φ j

}∞
j=1

of

L2 (Ω) such that
Aφ j = λ jφ j, φ j

∣∣∣
∂Ω
= 0, (2.11)

thus, φ j ∈ H̃2 (Ω) is an eigenfunction corresponding to j-th eigenvalue λ j.
For any s ≥ 0, the space H̃ s (Ω) is defined by

H̃ s (Ω) =

v ∈ L2 (Ω) :
∞∑
j=1

λs
j

∣∣∣∣(v, φ j

)∣∣∣∣2 < ∞ , (2.12)

and it is a Hilbert space with the norm

∥v∥2
H̃s(Ω)

=

∞∑
j=1

λs
j

∣∣∣∣(v, φ j

)∣∣∣∣2 = ∥∥∥As/2v
∥∥∥2

L2(Ω) . (2.13)

Moreover, we have H̃ s (Ω) ⊂ H s (Ω) for s > 0 and

H̃2 (Ω) = H2 (Ω) ∩ H1
0 (Ω) . (2.14)

Since H̃ s (Ω) ⊂ L2 (Ω), by identifying the dual
(
L2 (Ω)

)′
with L2 (Ω), we have

H̃ s (Ω) ⊂ L2 (Ω) ⊂
(
H̃ s (Ω)

)′
, (2.15)

see [3, 7]. Here, we can write

H̃−s (Ω) =

v ∈ L2 (Ω) :
∞∑
j=1

1
λs

j

∣∣∣∣(v, φ j

)∣∣∣∣2 < ∞ = (
H̃ s (Ω)

)′
. (2.16)

Since our solution will be written by using the orthonormal basis, we will work in the space L2 (Ω).
Furthermore, for 0 < α < 1, the space C0,α

(
[0,T ] ; L2 (Ω)

)
is defined as{

u ∈ C
(
[0,T ] ; L2 (Ω)

)
: sup

0≤t<s≤T

∥u (., t) − u (., s)∥L2(Ω)

|t − s|α
< ∞

}
(2.17)

with the norm

∥u∥C0,α([0,T ];L2(Ω)) = ∥u∥C([0,T ];L2(Ω)) + sup
0≤t<s≤T

∥u (., t) − u (., s)∥L2(Ω)

|t − s|α
, (2.18)

see [3].
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In this work, Eα,β (z) denotes the Mittag-Leffler function, for α, β > 0 and z ∈ C. The function
Eα,β (z) satisfies the following properties (see Section 1.2 of [16]):

(i) Let 0 < α < 2, β be an arbitrary real number and µ satisfy πα < µ < min {π, πα}. Then there
exists a real constant C1 = C1 (α, β, µ) such that∣∣∣Eα,β (z)

∣∣∣ ≤ C1

1 + |z|
, µ ≤

∣∣∣arg (z)
∣∣∣ ≤ π. (2.19)

(ii) We have
dm

dtm Eα,1 (−λntα) = −λntα−mEα,α−m+1 (−λntα) (2.20)

for t, α, λn > 0 and positive m ∈ Z.
From now on, we assume that C j, 1 ≤ j ≤ 29 are positive constants which are independent of the

function F in (2.4) and the initial condition b in (2.5). But it may depend on the fractional order α, the
coefficients of the operator L and the domain of the solution.

3. Main result

By the method of eigenfunction expansions, the solution is sought in the form of

u (x, t) =
∞∑

n=1

un (t)φn (x) , (3.1)

where the functions φn (x) are the solution of the following problem:

Lφn = −λnφn, φn

∣∣∣
∂Ω
= 0. (3.2)

From (3.1), we see that
un (t) =

(
u (., t) , φn

)
L2(Ω) , (3.3)

where (., .)L2(Ω) denotes the usual inner product of the space L2 (Ω). We multiply both sides of Eq (2.4)
by φn and integrate it with respect to the space variable and we get(

∂αt u (., t) , φn
)

L2(Ω) =
(
Lu (., t) , φn

)
L2(Ω) +

(
F (., t, u (., t)) , φn

)
L2(Ω) , t ∈ (0,T ) . (3.4)

By analyzing the terms in (3.4), we have(
∂αt u (., t) , φn

)
L2(Ω) = ∂

α
t un (t) , (3.5)(

Lu (., t) , φn
)

L2(Ω) = −λnun (t) . (3.6)

For simplicity, we can denote

Fn (u (t)) =
(
F (., t, u (., t)) , φn

)
L2(Ω) . (3.7)

Similarly, for the initial condition (2.5), we can write

un (0) =
(
b, φn

)
L2(Ω) . (3.8)
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Now, un (t) can be found by the means of Laplace transform, and then we have

un (t) =
(
b, φn

)
Eα,1 (−λntα) +

t∫
0

(t − τ)α−1 Eα,α (−λn (t − τ)α) Fn (u (τ)) dτ. (3.9)

By substituting (3.9) into (3.1), solution of the problem can be written as follows:

u (x, t) = I1 (x, t) + I2 (x, t) , (3.10)

where

I1 (x, t) =
∞∑

n=1

(
b, φn

)
Eα,1 (−λntα)φn (x) , (3.11)

I2 (x, t) =
∞∑

n=1


t∫

0

(t − τ)α−1 Eα,α (−λn (t − τ)α) Fn (u (τ)) dτ

φn (x) . (3.12)

Since solution (3.10) is in the form of an integral equation, we can use the Banach fixed point theorem,
see [20, 21].

The main result of this paper is given in the following theorem:

Theorem 3.1. Let b ∈ H̃2 (Ω), s ∈ C [0,T ] and p ∈ L2 (Ω) . We also assume that for any u, v ∈
C

(
[0,T ] ; L2 (Ω)

)
there exists a positive real constant C2 such that

∥g (u (., t)) − g (v (., t))∥L2(Ω) ≤ C2 ∥u (., t) − v (., t)∥L2(Ω) . (3.13)

Then, for problem (2.4)–(2.6), there exists a unique solution u and a constant C3 > 0 such that

∥u∥C((0,T ];H̃2(Ω)) + ∥∂tu∥C((0,T ];L2(Ω)) +
∥∥∥∂αt u

∥∥∥
C((0,T ];L2(Ω)) + ∥u∥C0,α([0,T ];L2(Ω))

≤ C3

(
∥b∥H2(Ω) + ∥s∥C[0,T ] ∥p∥L2(Ω)

)
. (3.14)

Moreover, we have
u ∈ C0,α

(
[0,T ] ; L2 (Ω)

)
∩C

(
(0,T ] ; H̃2 (Ω)

)
, (3.15)

∂tu ∈ C
(
(0,T ] ; L2 (Ω)

)
, ∂αt u ∈ C

(
(0,T ] ; L2 (Ω)

)
. (3.16)

In the proof, we will use the same method as [7]. It can be seen as a generalization of Bielecki’s
method [14] which is used to investigate solvability of initial value problems for ordinary differential
equations.

Proof. We will show the existence of the solution by defining a map in the following form:

M : C
(
[0,T ] ; L2 (Ω)

)
→ C

(
[0,T ] ; L2 (Ω)

)
, (3.17)

M (u (x, t)) = u (x, t) . (3.18)

Here, instead of the usual norm of C
(
[0,T ] ; L2 (Ω)

)
, we consider

∥u∥k = max
t∈[0,T ]

{∥∥∥e−ktu (t)
∥∥∥

L2(Ω)

}
(3.19)
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for any fixed k > 0. In order to use the Banach fixed point theorem, we will determine the value of k
later. The function u is a solution of problem (2.4)–(2.6) if and only if u is a fixed point of the map M.
We have

∥M (u (., t)) − M (v (., t))∥2L2(Ω)

=

∞∑
n=1

∣∣∣∣∣∣∣∣
t∫

0

(t − τ)α−1 Eα,α (−λn (t − τ)α)
(
g (u (., τ)) − g (v (., τ)) , φn

)
L2(Ω) dτ

∣∣∣∣∣∣∣∣
2

, (3.20)

and using the Cauchy-Schwarz inequality, we get

e−2kt ∥M (u (., t)) − M (v (., t))∥2L2(Ω) ≤

∞∑
n=1

∣∣∣∣∣∣∣∣
t∫

0

[
(t − τ)α−1 Eα,α (−λn (t − τ)α)

]2
dτ

∣∣∣∣∣∣∣∣
∥∥∥φn

∥∥∥2

L2(Ω)

×

∣∣∣∣∣∣∣∣e−2kt

t∫
0

∥g (u (., τ)) − g (v (., τ))∥2L2(Ω) dτ

∣∣∣∣∣∣∣∣
= I3 (t) × I4 (t) , (3.21)

for any u, v ∈ C
(
[0,T ] ; L2 (Ω)

)
. Using (2.19), the properties for function φn and the fact that λn ≥

C4n2/d, n ∈ N by [3], we evaluate

I3 (t) =
∞∑

n=1

∣∣∣∣∣∣∣∣
t∫

0

[
wα−1Eα,α (−λnwα)

]2
dw

∣∣∣∣∣∣∣∣
∥∥∥φn

∥∥∥2

L2(Ω)

≤ C2
1

∞∑
n=1

1
(λn)2(α−1)/α

∣∣∣∣∣∣∣∣
t∫

0

[
(λnwα)(α−1)/α

1 + λnwα

]2

dw

∣∣∣∣∣∣∣∣
∥∥∥φn

∥∥∥2

L2(Ω)

≤ tC2
5. (3.22)

Now we consider I4 with (3.13), (3.19), we get

I4 (t) ≤ e−2kt

t∫
0

C2
2 ∥u (., τ) − v (., τ)∥2L2(Ω) dτ

≤ C2
2e−2kt

t∫
0

max
τ∈[0,T ]

{
e−2kτ ∥u (., τ) − v (., τ)∥2L2(Ω)

}
e2kτdτ

= C2
2

1
2k

(
1 −

1
e2kt

)
∥u − v∥2k . (3.23)

Multiplying the terms I3 and I4, we get
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∥M (u) − M (v)∥2k = max
t∈[0,T ]

{
e−2kt ∥M (u (., t)) − M (v (., t))∥2L2(Ω)

}
≤ max

t∈[0,T ]

{
tC2

5C2
2

1
2k

(
1 −

1
e2kt

)
∥u − v∥2k

}
≤ C2

5TC2
2

1
2k

(
1 −

1
e2kT

)
∥u − v∥2k

≤ C2
6
T
k
∥u − v∥2k . (3.24)

With the choice of
k > C2

6T, (3.25)

inequality (3.24) becomes a contraction on the space C
(
[0,T ] ; L2 (Ω)

)
with the norm ∥.∥k. From the

Banach fixed point theorem, we conclude that the transform M has a fixed point, which is the solution u
of the integral equation (3.10).

Next, we will show the uniqueness of the solution. Let us assume that u and ũ are two solutions of
initial-value problem (2.4)–(2.6). We set

C2
7 = C2

6
T
k
. (3.26)

By (3.18), we can write
∥M (u) − M (ũ)∥2k = ∥u − ũ∥2k ≤ C2

7 ∥u − ũ∥2k , (3.27)

and
(1 −C7) ∥u − ũ∥k ≤ 0. (3.28)

Therefore, we have
∥u − ũ∥k = 0, (3.29)

which implies u = ũ. Thus, the solution u is unique.
Finally, we will examine the regularity property of the solution. We can divide this part of the proof

into five steps.
Step 1. From (3.10), we write

∥u (., t)∥2L2(Ω) ≤ 2 ∥I1 (., t)∥2L2(Ω) + 2 ∥I2 (., t)∥2L2(Ω) . (3.30)

Here, using (2.19), (2.20) and the Cauchy-Schwarz inequality, we get

∥I1 (., t)∥2L2(Ω) =

∞∑
n=1

∣∣∣(b, φn
)

Eα,1 (−λntα)
∣∣∣2

≤ C2
1 ∥−Lb∥2L2(Ω)

∞∑
n=1

1
λ2

n

≤ C2
8 ∥b∥

2
H2(Ω) (3.31)
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and

∥I2 (., t)∥2L2(Ω) =

∞∑
n=1

∣∣∣∣∣∣∣∣
t∫

0

(t − τ)α−1 Eα,α (−λn (t − τ)α) Fn (u (τ)) dτ

∣∣∣∣∣∣∣∣
2

≤ ∥F (u)∥2C([0,T ];L2(Ω))

∞∑
n=1

∣∣∣∣∣∣∣∣
t∫

0

(t − τ)α−1 Eα,α (−λn (t − τ)α) dτ

∣∣∣∣∣∣∣∣
2

= ∥F (u)∥2C([0,T ];L2(Ω))

∞∑
n=1

∣∣∣∣∣∣∣∣
t∫

0

d
dw

[
−

1
λn

Eα,1 (−λnwα)
]

dw

∣∣∣∣∣∣∣∣
2

≤ 2 ∥F (u)∥2C([0,T ];L2(Ω))

 ∞∑
n=1

1
λ2

n

[
1 +

(
Eα,1 (−λntα)

)2
]

≤ C2
9 ∥F (u)∥2C([0,T ];L2(Ω)) . (3.32)

Now, we examine the right hand side of (3.32). By the hypotheses of Theorem 3.1, we can write

∥F (u (., t))∥2L2(Ω) = ∥F (u (., t)) − F (u (0, 0)) + F (u (0, 0))∥2L2(Ω)

≤ 2 ∥s (t) p (x) + g (0)∥2L2(Ω) + 2 ∥g (u (., t)) − g (u (0, 0))∥2L2(Ω)

≤ 4 [s (t)]2
∥p∥2L2(Ω) + 4

[
g (0)

]2
∥1∥2L2(Ω) + 2C2

2 ∥u (., t) − u (0, 0)∥2L2(Ω)

≤ C2
10 + 4 [s (t)]2

∥p∥2L2(Ω) + 2C2
2 ∥u (., t) − u (0, 0)∥2L2(Ω) , (3.33)

and by (3.19), (3.24), we have

e−2kt ∥u (., t) − ũ (., t)∥2L2(Ω) ≤ max
t∈[0,T ]

{
e−2kt ∥u (., t) − ũ (., t)∥2L2(Ω)

}
≤ C2

6
T
k
∥u − ũ∥2k . (3.34)

Taking a sufficiently large k implies

e−2kt ∥u (., t) − ũ (., t)∥2L2(Ω) ≤ C2
11, (3.35)

and
∥u (., t) − ũ (., t)∥2L2(Ω) ≤ C2

11e2kt ≤ C2
12. (3.36)

Therefore, it yields
∥F (u (., t))∥2L2(Ω) ≤ C2

10 + 4 [s (t)]2
∥p∥2L2(Ω) + 2C2

2C2
12, (3.37)

and taking the maximum with respect to the time variable t on [0,T ], we obtain

∥F (u)∥C([0,T ];L2(Ω)) ≤ C13 ∥s∥C[0,T ] ∥p∥L2(Ω) . (3.38)

From (3.31) and (3.32), we get

∥u (., t)∥L2(Ω) ≤ C14

{
∥b∥H2(Ω) + ∥s∥C[0,T ] ∥p∥L2(Ω)

}
, (3.39)

which results in
∥u∥C([0,T ];L2(Ω)) ≤ C15

(
∥b∥H2(Ω) + ∥s∥C[0,T ] ∥p∥L2(Ω)

)
(3.40)
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and u ∈ C
(
[0,T ] ; L2 (Ω)

)
.

Step 2. In this step, we will show the inequality

∥u∥C((0,T ];H̃2(Ω)) ≤ C16

(
∥b∥H2(Ω) + ∥s∥C[0,T ] ∥p∥L2(Ω)

)
. (3.41)

We apply the second order operator L to both sides of (3.10) by using (3.2), then we have

∥Lu (., t)∥2L2(Ω) ≤ 2 ∥I5 (., t)∥2L2(Ω) + 2 ∥I6 (., t)∥2L2(Ω) , (3.42)

where

∥I5 (., t)∥2L2(Ω) =

∞∑
n=1

∣∣∣−λn
(
b, φn

)
Eα,1 (−λntα)

∣∣∣2 (3.43)

and

∥I6 (., t)∥2L2(Ω) =

∞∑
n=1

∣∣∣∣∣∣∣∣−λn

t∫
0

(t − τ)α−1 Eα,α (−λn (t − τ)α) Fn (u (τ)) dτ

∣∣∣∣∣∣∣∣
2

. (3.44)

On the other hand, with a similar technique to the one used in the previous steps, we can write

∥I5 (., t)∥2L2(Ω) ≤ C2
17t−2α ∥b∥2H2(Ω) , t > 0, (3.45)

∥I6 (., t)∥2L2(Ω) ≤ C2
18 ∥F (u)∥2C([0,T ];L2(Ω)) ≤ C2

19 ∥s∥
2
C[0,T ] ∥p∥

2
L2(Ω) . (3.46)

By adding (3.45) and (3.46) and taking the maximum of both sides with respect to t, we reach (3.41)
and therefore we obtain

u ∈ C
(
(0,T ] ; H2 (Ω) ∩ H1

0 (Ω)
)
. (3.47)

Step 3. Here, we will prove the inequality

∥∂tu∥C((0,T ];L2(Ω)) ≤ C20

(
∥b∥H2(Ω) + ∥s∥C[0,T ] ∥p∥L2(Ω)

)
. (3.48)

By calculating the classical derivative of (3.10) with respect to t and making use of the Leibnitz integral
rule, we get

∥∂tu (., t)∥2L2(Ω) ≤ 2 ∥I7 (., t)∥2L2(Ω) + 2 ∥I8 (., t)∥2L2(Ω) , (3.49)

where

∥I7 (., t)∥2L2(Ω) =

∞∑
n=1

∣∣∣(b, φn
)

(−λn) tα−1Eα,1 (−λntα)
∣∣∣2 (3.50)

and

∥I8 (., t)∥2L2(Ω) =

∞∑
n=1

∣∣∣∣∣∣∣∣
t∫

0

∂t

[
(t − τ)α−1 Eα,α (−λn (t − τ)α)

]
Fn (u (τ)) dτ

∣∣∣∣∣∣∣∣
2

. (3.51)

Then, we see that
∥I7 (., t)∥2L2(Ω) ≤ C2

21t−2 ∥b∥2H2(Ω) , t > 0, (3.52)

and
∥I8 (., t)∥2L2(Ω) ≤ C2

22t−2 ∥F (u)∥2C([0,T ];L2(Ω)) , t > 0. (3.53)
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By (3.52), (3.53), considering (3.38) and taking the maximum of both sides with respect to t, we
get (3.48).

Step 4. For this step, we will obtain (3.14), (3.16) and the inequality∥∥∥∂αt u
∥∥∥

C((0,T ];L2(Ω)) ≤ C23

(
∥b∥H2(Ω) + ∥s∥C[0,T ] ∥p∥L2(Ω)

)
. (3.54)

Since, the terms on the right-hand side of Eq (2.4) are examined in the first and second step, we can
easily write inequality (3.54). As for (3.16), the first part is obvious from (2.14) and (3.47). We can
write the second part by (3.54).

Step 5. Finally, at this step, we will prove

∥u∥C0,α([0,T ];L2(Ω)) ≤ C24

(
∥b∥H2(Ω) + ∥s∥C[0,T ] ∥p∥L2(Ω)

)
(3.55)

and (3.15). By taking s = t + h, we can rewrite the norm of the space as

∥u∥C0,α([0,T ];L2(Ω)) = ∥u∥C([0,T ];L2(Ω)) + sup
0≤t<s≤T

∥u (., t + h) − u (., t)∥L2(Ω)

hα
. (3.56)

We know from the previous steps that the first term on the right hand side is finite. Now, we consider
the second one and we set

u (., t + h) − u (., t) = I9 (., t) hα + I10 (., t) hα + I11 (., t) hα, (3.57)

where

I9 (., t) hα =
∞∑

n=1

(
b, φn

) [
Eα,1 (−λn (t + h)α) − Eα,1 (−λntα)

]
φn (x) , (3.58)

I10 (., t) hα =
∞∑

n=1


t+h∫
t

(t + h − τ)α−1 Eα,α (−λn (t + h − τ)α) Fn (u (τ)) dτ

φn (x) , (3.59)

I11 (., t) hα =
∞∑

n=1


t∫

0

W (t, τ) · Fn (u (τ)) dτ

φn (x) , (3.60)

and

W (t, τ) =
[
(t + h − τ)α−1 Eα,α (−λn (t + h − τ)α) − (t − τ)α−1 Eα,α (−λn (t − τ)α)

]
. (3.61)

Since

∣∣∣Eα,1 (−λn (t + h)α) − Eα,1 (−λntα)
∣∣∣2 =

∣∣∣∣∣∣∣∣
t+h∫
t

−λnτ
α−1

1 + λnτα
dτ

∣∣∣∣∣∣∣∣
2

≤ C25

(
h
t

)2α

≤ C25

(
h
δ

)2α

, (3.62)

where δ is a number such that 0 < δ ≤ t ≤ T , and

|W (t, τ)| =

∣∣∣∣∣∣∣∣
t+h−τ∫
t−τ

τα−2Eα,α−1 (−λnτ
α) dτ

∣∣∣∣∣∣∣∣ ≤ C26h
λn (t − τ) (t + h − τ)

, (3.63)
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we can evaluate (3.58)–(3.60) and obtain the following results.
There are two cases for the term I9, which are

∥I9 (., t)∥2L2(Ω) h2α ≤
C2

27 ∥b∥
2
H2(Ω) h2α

δ2α (3.64)

for 0 < δ ≤ t ≤ T and

∥I9 (., t)∥2L2(Ω) h2α ≤
4C2

1

h2α ∥b∥
2
H2(Ω) h2α (3.65)

for t = 0. We also have
∥I10 (., t)∥2L2(Ω) h2α ≤ C2

28 ∥F (u)∥2C([0,T ];L2(Ω)) h2α (3.66)

and
∥I11 (., t)∥2L2(Ω) h2α ≤ C2

29 ∥F (u)∥2C([0,T ];L2(Ω)) h2α. (3.67)

By considering (3.64)–(3.67), we get (3.55). Therefore, we can write

u ∈ C0,α
(
[0,T ] ; L2 (Ω)

)
. (3.68)

Using (3.41), (3.48), (3.54) and (3.55), we obtain (3.14). Additionally, taking into account of (3.47)
and (3.68), we have (3.15).

This completes the proof of the theorem. □

4. Conclusions

In this study, we consider an initial-boundary value problem for a non-linear fractional diffusion
equation. We prove the existence, uniqueness and regularity properties of the solution under some
conditions on the non-linear function F and the initial condition.
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