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Abstract: Dams are water reservoirs that provide adequate freshwater to residential, industrial, and
mining sites. They are widely used to generate electricity, control flooding, and irrigate agricultural
lands. Due to recent urbanization trends, industrialization, and climatic changes, the construction of
dams is in dire need, which is planning intensive, quite expensive, and time-consuming. Moreover,
finding an appropriate site to construct dams is also considered a challenging task for decision-makers.
The dam site selection problem (DSSP) has already been considered a multi-criteria decision-making
(MCDM) problem under uncertain (fuzzy set) environments by several researchers. However, they
ignored some essential evaluating features (e.g., (a) fuzzy parameterized grades, which assess the
vague nature of parameters and sub-parameters, (b) the hypersoft setting, which provides multi-
argument-based domains for the approximation of alternatives, (c) the complex setting which tackles
the periodicity of data, and (d) the single-valued neutrosophic setting which facilitates the decision
makers to provide their opinions in three-dimensional aspects) that can be used in DSSP to make
it more reliable and trustworthy. Thus this study aims to employ a robust fuzzy parameterized
algebraic approach which starts with the characterization of a novel structure “fuzzy parameterized
single valued complex neutrosophic hypersoft set (λ̃-set)” that is competent to deal with the above-
mentioned features jointly. After that, it integrates the concept of fuzzy parameterization, decision-
makers opinions in terms of single-valued complex neutrosophic numbers, and the classical matrix
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theory to compute the score values for evaluating alternatives. Based on the stages of the proposed
approach, an algorithm is proposed, which is further explained by an illustrative example in which
DSSP is considered a multiple attributes decision-making (MADM) scenario. The computed score
values are then used to evaluate some suitable sites (regions) for dam construction. The computational
results of the proposed algorithm are found to be precise and consistent through their comparison with
some already developed approaches.

Keywords: dam construction; dam site selection problem; complex setting; hypersoft setting; single-
valued neutrosophic setting; fuzzy parameterization
Mathematics Subject Classification: 03B52, 03E72, 90B50

1. Introduction

The method used to find the most suitable entity from the set of objects under examination by
considering the appropriate multi attributes is known as multiple attributes decision making (MADM).
It may be taken as a form of multi-criteria decision-making (MCDM) due to the replacement of criteria
with attributes [1–6]. It is observed in several real-world problems that the decision-making methods,
as mentioned earlier or others, may have various types of information or data-based uncertainties.
Therefore, in this regard, many researchers have already attempted to tackle expected information-
based uncertainties in data by developing different algebraic models. The single-valued neutrosophic
set (svNS) [7] is one of them, which is an extension of fuzzy set-like models such as fuzzy set (FS) [8],
intuitionistic fuzzy set (IFS) [9], picture fuzzy set (PFS) [10], and neutrosophic set (NS) [11]. The
svNS provides a belonging mapping with a triad (truth, indeterminacy, falsity). Every triad component
lies within [0,1], so their sum should be within [0,3]. The svNS has been a subject of great interest for
several researchers. However, the research argumentations made by the researchers [12–18] are found
to be more prominent regarding the formulation of distance, similarity, and entropy measures and the
development of aggregation operators of svNS. Later, a need for developing a particular algebraic
model is felt, which may collectively tackle the periodic nature of data and uncertainties; thus, single-
valued complex neutrosophic set (svCNS) [19] is characterized as a general case of svNS. The svCNS
transforms the belonging mapping of svNS to complex-valued belonging mapping, i.e., the triad
components are complex-valued functions characterized by relevant amplitude and phase values. All
amplitudes values must lie within [0,1], and their sum must lie within [0,3]. Similarly, all phase values
must lie within [0, 2π]. Every triad component lies within [0,1], so their sum should be within [0,3].
The svCNS is the general case of a complex fuzzy set (CFS) [20], and a complex intuitionistic fuzzy set
(CIFS) [21]. Sometimes parameters are needed to evaluate objects under examination, which demands
a specific parameterization tool. Thus fulfilling this need, a soft set (SOS) [22] is conceptualized,
which provides the approximations of objects under examination concerning suitable parameters by
using soft approximate mapping. Zhan & Alcantud [23] integrated the concept of SOS and rough set
to develop soft-rough covering and discussed its application in multi-criteria group decision-making.
The single-valued neutrosophic soft set (svNSS) [24] is characterized by combining SOS with svNS.
It generalizes the concepts of the fuzzy soft set (FSS) [25], intuitionistic fuzzy soft set (IFSS) [26], and
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neutrosophic soft set (NSS) [27]. As an extension of a complex fuzzy soft set (CFSS) [28], and complex
intuitionistic fuzzy soft set (CIFSS) [29], complex neutrosophic soft set (CNSS) [30] is initiated, which
combines SOS with NS.

To tackle the uncertain nature of criteria (attributes) and sub-criteria (sub-attributes), an innovative
context of the study, fuzzy parameterization, is initiated. The fuzzy parameterized fuzzy soft set
(FpFSS) [31], fuzzy parameterized intuitionistic fuzzy soft set (FpIFSS) [32], and fuzzy parameterized
neutrosophic soft set (FpNSS) have been put forward by considering fuzzy parameters in the domain
of approximate mappings of FSS, IFSS, and NSS respectively. An emerging field of study, hypersoft
set (HSOS) [33], is presented as an extension of SOS to tackle decision-making situations where
parameters are likely to be categorized into disjoint sub-classes consisting of their corresponding
sub-parametric values. The HSOS considers a multi-argument domain for its approximate mapping,
which is the Cartesian product of such subclasses. The concepts of CFSS, CIFSS, and CNSS have
been modified for the HSOS environment [34]. Recently, researchers have applied the concept of
neutrosophic parameterization in various decision-making problems [35, 36].

1.1. Motivation

After analyzing the works of literature discussed earlier, we can observe that the existing fuzzy set
or neutrosophic set-like researches are not sufficient to cope with the following problems collectively
that may be faced by decision-makers (DMs):

(1) Fuzzy belonging grade base parameterization: it assists the DMs in monitoring the indecisive
nature of parameters and their related sub-parameters.

(2) Entitlement of amplitude and phase terms: it aims to deal with episodic trends of the raw data
collected through different sources.

(3) Deliberation of neutrosophic settings: it aims to make a flexible environment available to DMs to
provide expert opinions while approximating the objects under inspection.

(4) Consideration of hypersoft settings: it is aimed to provide a suitable approximate mapping that
may tackle multi-argument-based approximation of alternatives concerning parameters and the
respective sub-parameters.

Keeping in mind the above limitations of the research analyzed earlier; this study aims to
characterize the notions of a new mathematical model, i.e., fuzzy parameterized single valued complex
neutrosophic hypersoft set (λ̃-set), which is capable of addressing these limitations efficiently.

1.2. Significant contributions

Some significant contributions of the paper are highlighted as:

(1) With the aggregation operations of λ̃-set, a MADM-based algorithm is put forward, which assists
the decision-makers in finding an optimized region (site) for constructing a mini dam.

(2) An example is presented which explains the steps (input, construction, computation, and output)
of the proposed algorithm with self-explanatory calculations.

(3) Appropriate algebraic criteria are employed to transform the single-valued complex neutrosophic
numbers (svCNNs) and complex fuzzy numbers (CFNs) into reduced fuzzy values.
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(4) The fuzzy parameterized grades are determined to assess the imprecise depiction of input
variables (parameters or sub-parametric tuples). A straightforward mathematical criterion is used
in this regard.

The sectional structure of the remaining part of the paper is that the second section presents a
detailed review of relevant literature and describes common challenges that motivate the proposed
study. The third section recalls some necessary definitions to make the concept understandable to the
readers. The fourth section elaborates on the stages of the adopted methodology and compares the
proposed study with some relevant already-developed models. The last section summarizes the study
with a description of the limitations.

2. Relevant literature

With the rapid increase in human population and urbanization, different but rough water use
has been reported, creating many social and economic problems. The water resource management
problem is the most significant one in this regard. Much water is used in farming for cultivation,
construction projects, household consumption, and energy production. Farming for cultivation meets
the vegetational requirements of society through agricultural yields, construction projects fulfill
residential needs, household consumption is for domestic use like washing, bathing, etc., and energy
production is for fulfilling energy needs like electricity. One problem humans may encounter in the
forthcoming years is the water shortage problem (WSP). The infertile and semi-infertile areas covering
the central portion of any country will be affected by WSP. Several attempts have been made to
find appropriate solutions to tackle this problem. One of these solutions is to store water for future
use by constructing water reservoirs, i.e., dams. The selection of a location for the construction
of dams is another challenging task for policymakers [37]. Several factors (attributes) and sub-
factors (sub-attributes) are to be considered to locate appropriate areas for the construction of dams.
Thus, the dam site selection problem (DSSP) is the MADM problem that several researchers have
already discussed. In this regard, the argumentations made by researchers [38–40] are worth noting.
Moreover, due to the possibility of various expected uncertainties in selecting criteria (attributes) and
sub-criteria (sub-attributes), many scholars have discussed the DSSP as a fuzzy MADM problem.
Still, the contributions of Chien et al. [41], Esavi et al. [42], Narayanamoorthy et al. [43], Janjua &
Hassan [44], and Adeyanju & Adedeji [45] are worth noting in this regard. Recently Deveci et al. [46]
discussed the DSSP using modified LAAW and RAFSI techniques based on fuzzy rough numbers.
Ahmadi et al. [47], and Heidarimozaffar & Shahavand [48] presented fuzzy logic decision-making
models for DSSP. Haghshenas et al. [49], Jozaghi et al. [50], and Tufail et al. [51] conferred the DSSP
by using modified TOPSIS based on fuzzy settings. Akram et al. [52] characterized the notions of
m-polar fuzzy soft expert set (mFSES) and designed a multi-criteria group decision-making model for
DSSP. The state of the art review of relevant DSSP literature is presented in Table 1. The notations and
abbreviations used in Table 1 are explained below:
TOPSIS= technique for order preference by similarity to ideal solution; AHP= analytic hierarchy
process; FANP= fuzzy analytical network process; HFSDV-MOORA= hesitant fuzzy standard
deviation with multi-objective optimization method by ratio analysis; HFSDV-TOPSIS= hesitant
fuzzy standard deviation with technique, for order preference by similarity to an ideal solution;
HFSDV-VIKOR= hesitant fuzzy standard deviation with VIsekriterijumsko Kompromisno Rangiranje;
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MCDA= multi-criteria decision analysis; RAFSI= ranking of alternatives through functional mapping
of criterion subintervals into a single interval; LAAW = logarithmic additive assessment of the weight
coefficients; GIS= geospatial information system; MCGDM= multi-criteria group decision making;
FRNs= fuzzy rough numbers; TFNs = triangular fuzzy numbers and FNs= fuzzy numbers.

Table 1. Review of existing literature related DSSP.

Reference Fuzzy set-like
structure

Decision-making approach

Wang et al. [1] FS Fuzzy hierarchical TOPSIS with FNs based simplified
parameterized metric distance

Noori et al. [3] FS Fuzzy TOPSIS with TFNs based features
Chien et al. [41] FS FANP and TOPSIS with TFNs based features
Esavi et al. [42] FS AHP and fuzzy-AHP
Narayanamoorthy et al. [43] Hesitant FS HFSDV-MOORA, HFSDV-TOPSIS and HFSDV-

VIKOR
Janjua & Hassan [44] FS AHP-TOPSIS with TFNs based features
Adeyanju & Adedeji [45] FS MCDA-TOPSIS with TFNs based features
Deveci et al. [46] Fuzzy rough set LAAW and RAFSI with FRNs based features
Ahmadi et al. [47] FS Fuzzy ANP and Fuzzy VIKOR
Heidarimozaffar & Shahavand
[48]

FS Fuzzy logic and GIS

Haghshenas et al. [49] FS Fuzzy TOPSIS with risk analysis
Jozaghi et al. [50] FS AHP and TOPSIS using GIS
Tufail et al. [51] Bipolar soft

rough set
PROMETHEE and TOPSIS using covering based rough
sets

Akram et al. [52] mFSES Set operations based MCGDM

After integrating the analyses of literature provided in Section 1, the Subsection 1.1, and this section,
it is observed that the existing literature has ignored some challenges that may be encountered by DMs
while dealing with DSSP. These expected challenges are outlined below:

(1) How can the vague and uncertain aspects of criteria and sub-criteria be dealt with for
approximating the geographical regions scrutinized for dam construction?

(2) How can the information-based periodicity of opinions provided by decision-makers be tackled
to get a reliable and consistent evaluation of sites for dam construction?

(3) Suppose decision-makers demand a particular arrangement that facilitates them to provide their
opinions independently in terms of a triad (truth, indeterminacy, falsity) while approximating the
dam construction sites. How can such an arrangement be managed in DSSP?

(4) How can categorizing parameters into related sub-parametric non-overlapping classes be
managed in DSSP to have multi-argument-based domains?

The first challenge points out that a specific fuzzy grade is required to attach to each attribute or
sub-attribute to cope with its uncertain nature. It leads to the entitlement of fuzzy parameterization.
The second one indicates the use of complex plane setting for the approximation process. The third
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one is meant for the employment of single-valued neutrosophic settings, and the last one demands a
hypersoft setting.

This study aims to develop a MADM-based DSSP model using the notions of the fuzzy
parameterized single-valued complex neutrosophic hypersoft set (λ̃-set). The λ̃-set is a novel algebraic
structure capable of collectively coping with all the above challenges.

3. Basic definitions

The key purpose of this section is to review some definitions of elementary nature for a clear
understanding of the proposed approach.

An svNS is the generalization of NS, which makes the NS compatible with real-life applications. It
transforms ]−0, 3+[ to [0, 3] that can easily be interpreted.

Definition 3.1. [7] Let a mapping ζ̃ : f̃→ [0, 1]3 defined by a triad ζ̃(ñ) = 〈T̂ℵ̃(ñ), Îℵ̃(ñ), F̂ℵ̃(ñ)〉 for all
ñ ∈ f̃ such that all three components of triad T̂ℵ̃(ñ), Îℵ̃(ñ), F̂ℵ̃(ñ) ∈ [0, 1] with T̂ℵ̃(ñ) + Îℵ̃(ñ) + F̂ℵ̃(ñ) ∈
[0, 3]. The components T̂ℵ̃(ñ), Îℵ̃(ñ) and F̂ℵ̃(ñ) are named as true, indeterminate and false belonging
grades of ñ ∈ f̃. An svNS ℵ̃ on f̃ is stated as ℵ̃ =

{ (
ñ, 〈T̂ℵ̃(ñ), Îℵ̃(ñ), F̂ℵ̃(ñ)〉

)
: ñ ∈ f̃

}
. The symbol

Θ(ℵ̃) is regarded as family of svNSs on f̃.

As svNS cannot tackle information-based periodicity, this limitation is addressed by developing the
svCNS, which may manage this periodicity with the help of a complex-valued true-belonging function,
indeterminate-belonging function, and false belonging function having amplitude and phase values.

Definition 3.2. [19] A svCNS ℵ̃c is characterized by three complex valued belonging functions:
true-belonging function T̂ℵ̃c

, indeterminate-belonging function Îℵ̃c
and false belonging function F̂ℵ̃c

which are defined by αT̂ (ñ)Exp( jβT̂ (ñ)), αÎ(ñ)Exp( jβÎ(ñ)) and αF̂(ñ) Exp( jβF̂(ñ)) respectively such
that αT̂ (ñ)+αÎ(ñ)+αF̂(ñ) ∈ [0, 3] and βT̂ (ñ), βÎ(ñ), βF̂(ñ) ∈ [0, 2π] for all ñ ∈ f̃ and

√
j = −1. The values

αT̂ (ñ), αÎ(ñ) and αF̂(ñ) are named as amplitude values and the values βT̂ (ñ), βÎ(ñ) and βF̂(ñ) are named
as phase values of ℵ̃c. A svCNS ℵ̃c can be stated jointly as ℵ̃c =

{ (
ñ, 〈T̂ℵ̃c

(ñ), Îℵ̃c
(ñ), F̂ℵ̃c

(ñ)〉
)

: ñ ∈ f̃
}
.

The symbol Θ(ℵ̃c) is regarded as family of svCNSs on f̃.

The existing fuzzy set-like models are not projected to entitle parameterization tool, which is a
necessary mode for many decision-making situations; therefore, SOS is developed, which provides a
proper arrangement for the entitlement of such method in the form of approximate mapping.

Definition 3.3. [22] Let an approximate mapping π̃ : Λ̃1 → 2f̃ defined by π̃(ã) ⊆ f̃ for all ã ∈ Λ̃1

and Λ̃1 ⊆ Λ̃ where Λ̃ is a set of parameters and 2f̃ is the power set of f̃. A SOS <̃ on f̃ is stated as
<̃ =

{
(ã, π̃(ã)) : ã ∈ Λ̃1

}
where π̃(ã) is regarded as ã-approximate element of <̃.

It is a matter of common observation that only parameters are not sufficient for evaluating a
particular alternative; they need to be classified into respective non-overlapping classes consisting
of their sub-parametric values. This limitation of literature is addressed by the development of
HSOS, which employs multi-argument approximate mapping to tackle this sub-parametric valued
classification.

Definition 3.4. [11] Let an approximate mapping $̃ : Ξ̃ → 2f̃ defined by $̃(ẽ) ⊆ f̃ for all ẽ ∈ Ξ̃

and Ξ̃ =
n∏

i=1
Ξ̃i where Ξ̃i are non overlapping sets consisting of sub parametric values for all entries in
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Λ̃. A HSOS }̃ on f̃ is stated as }̃ =
{
(ẽ, $̃(ẽ)) : ẽ ∈ Ξ̃

}
where $̃(ẽ) is regarded as ẽ-multi approximate

element of }̃.

According to arguments provided in [11], a HSOS }̃ (as in Definition 3.4) is claimed to be
called svNHSOS (single-valued neutrosophic hypersoft set) and svCNHSOS (single-valued complex
neutrosophic hypersoft set) on f̃ if the mapping $̃ : Ξ̃ → 2f̃ is replaced with $̃ : Ξ̃ → Θ(ℵ̃) and
$̃ : Ξ̃→ Θ(ℵ̃c) respectively.

4. The proposed approach and its stages

This section briefly describes the various stages involved in the adopted methodology. Figure 1
presents a brief description of the steps involved in the adopted process.

Figure 1. Brief description of stages involved in adopted methodology.

4.1. Characterization of λ̃-set and its essential aggregation operations

In this part of the paper, the elementary notions of λ̃-set are characterized and explained with the
support of illustrative examples. Throughout the remaining paper, the symbol Ξ̃ will be used as it is
described in Definition 3.4.

Definition 4.1. Let Ξ̃ = {ẽ1, ẽ2, ..., ẽr} be a set and F̃ = {ẽ1/µ(ẽ1), ẽ2/µ(ẽ2), ..., ẽr/µ(ẽr)} be
a FS over Ξ̃ then a λ̃-set Ω̃ is stated as Ω̃ =

{(
ẽi/µ(ẽi), ψ̃(ẽi/µ(ẽi))

)
: ẽi/µ(ẽi) ∈ F̃

}
where

ψ̃ : F̃ → Θ(ℵ̃c) defined by ψ̃(ẽi/µ(ẽi)) = 〈T̂ℵ̃c
(ẽi/µ(ẽi)), Îℵ̃c

(ẽi/µ(ẽi)), F̂ℵ̃c
(ẽi/µ(ẽi))〉 with

T̂ℵ̃c
(ẽi/µ(ẽi)) = αT̂ (ẽi/µ(ẽi))Exp( jβT̂ (ẽi/µ(ẽi))), Îℵ̃c

(ẽi/µ(ẽi)) = αÎ(ẽi/µ(ẽi))Exp( jβÎ(ẽi/µ(ẽi)))
and F̂ℵ̃c

(ẽi/µ(ẽi)) = αF̂(ẽi/µ(ẽi))Exp( jβF̂(ẽi/µ(ẽi))) are complex valued true-belonging,
indeterminate-belonging and false-belonging grades for all ẽi/µ(ẽi) ∈ F̃ in Ω̃ provided that
αT̂ (ẽi/µ(ẽi)) + αÎ(ẽi/µ(ẽi)) + αF̂(ẽi/µ(ẽi)) ∈ [0, 3] and βT̂ (ẽi/µ(ẽi)), βÎ(ẽi/µ(ẽi)), βF̂(ẽi/µ(ẽi)) ∈ [0, 2π].
The λ̃-set Ω̃ can jointly be expressed as
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Ω̃ =


ẽi/µ(ẽi), ψ̃(ẽi/µ(ẽi)) =

〈 αT̂ (ẽi/µ(ẽi))Exp( jβT̂ (ẽi/µ(ẽi))),
αÎ(ẽi/µ(ẽi))Exp( jβÎ(ẽi/µ(ẽi))),
αF̂(ẽi/µ(ẽi))Exp( jβF̂(ẽi/µ(ẽi)))

〉 : ẽi/µ(ẽi) ∈ F̃

 . (4.1)

The family of λ̃-sets is abbreviated as Θ(Ω̃).

Example 4.1. Let f̃ = {ñ1, ñ2, ñ3, ñ4} be the collection of objects under observation as
initial universe and Ξ̃1 = {ẽ11, ẽ12}, Ξ̃2 = {ẽ21, ẽ22} and Ξ̃3 = {ẽ31, ẽ32} are sub parametric
valued non overlapping classes such that Ξ̃ = Ξ̃1 × Ξ̃2 × Ξ̃3 = {(ẽ11, ẽ21, ẽ31), (ẽ11, ẽ21, ẽ32),
(ẽ11, ẽ22, ẽ31), (ẽ11, ẽ22, ẽ32), (ẽ12, ẽ21, ẽ31), (ẽ12, ẽ21, ẽ32), (ẽ12, ẽ22, ẽ31), (ẽ12, ẽ22, ẽ32)} = {ẽ1, ẽ2,

ẽ3, ẽ4, ẽ5, ẽ6, ẽ7, ẽ8}. Take Ξ̃◦ = {ẽ2, ẽ4, ẽ6, ẽ8} ⊆ Ξ̃ with its related fuzzy set F̃ = {ẽ2/0.2,
ẽ4/0.4, ẽ6/0.6, ẽ8/0.8}. The decision makers provide their opinions in terms of single valued complex
neutrosophic numbers while approximating the alternatives based on fuzzy parameterized sub
parametric tuples ẽ2/0.2, ẽ4/0.4, ẽ6/0.6 and ẽ8/0.8. Therefore a λ̃-set Ω̃ can be constructed as

Ω̃ =



 ẽ2
0.2 ,

 ñ1
〈0.5Exp( j2π0.2),0.6Exp( j2π0.3),0.8Exp( j2π0.5)〉 ,

ñ2
〈0.9Exp( j2π0.6),0.7Exp( j2π0.4),0.6Exp( j2π0.4)〉 ,

ñ3
〈0.9Exp( j2π0.4),0.8Exp( j2π0.4),0.7Exp( j2π0.3)〉 ,

ñ4
〈0.6Exp( j2π0.2),0.5Exp( j2π0.1),0.4Exp( j2π0.1)〉

 ẽ4
0.4 ,

 ñ1
〈0.8Exp( j2π0.1),0.6Exp( j2π0.2),0.7Exp( j2π0.3)〉 ,

ñ2
〈0.7Exp( j2π0.2),0.5Exp( j2π0.3),0.6Exp( j2π0.4)〉 ,

ñ3
〈0.6Exp( j2π0.4),0.6Exp( j2π0.5),0.8Exp( j2π0.4)〉 ,

ñ4
〈0.5Exp( j2π0.1),0.9Exp( j2π0.4),0.8Exp( j2π0.2)〉

 ẽ6
0.6 ,

 ñ1
〈0.8Exp( j2π0.4),0.8Exp( j2π0.5),0.7Exp( j2π0.6)〉 ,

ñ2
〈0.6Exp( j2π0.4),0.6Exp( j2π0.4),0.7Exp( j2π0.5)〉 ,

ñ3
〈0.5Exp( j2π0.2),0.5Exp( j2π0.2),0.9Exp( j2π0.5)〉 ,

ñ4
〈0.7Exp( j2π0.1),0.7Exp( j2π0.1),0.9Exp( j2π0.6)〉

 ẽ8
0.8 ,

 ñ1
〈0.9Exp( j2π0.3),0.9Exp( j2π0.3),0.8Exp( j2π0.3)〉 ,

ñ2
〈0.7Exp( j2π0.7),0.8Exp( j2π0.6),0.8Exp( j2π0.5)〉 ,

ñ3
〈0.6Exp( j2π0.6),0.7Exp( j2π0.5),0.7Exp( j2π0.4)〉 ,

ñ4
〈0.5Exp( j2π0.5),0.6Exp( j2π0.2),0.9Exp( j2π0.2)〉




,

and its matrix representation is

Ω̃ =


Ξ̃ \ f̃ ñ1 ñ2 ñ3 ñ4

ẽ2
0.2 (0.5, 0.2) (0.6, 0.3) (0.8, 0.5) (0.9, 0.6) (0.7, 0.4) (0.6, 0.4) (0.9, 0.4) (0.8, 0.4) (0.7, 0.3) (0.6, 0.2) (0.5, 0.1) (0.4, 0.1)
ẽ4
0.4 (0.8, 0.1) (0.6, 0.2) (0.7, 0.3) (0.7, 0.2) (0.5, 0.3) (0.6, 0.4) (0.6, 0.4) (0.6, 0.5) (0.9, 0.5) (0.7, 0.1) (0.7, 0.1) (0.9, 0.6)
ẽ6
0.6 (0.8, 0.4) (0.8, 0.5) (0.7, 0.6) (0.6, 0.4) (0.6, 0.4) (0.7, 0.5) (0.5, 0.2) (0.5, 0.2) (0.7, 0.4) (0.5, 0.5) (0.6, 0.2) (0.9, 0.2)
ẽ8
0.8 (0.9, 0.3) (0.9, 0.3) (0.8, 0.3) (0.7, 0.7) (0.8, 0.6) (0.8, 0.5) (0.6, 0.6) (0.7, 0.5) (0.7, 0.4) (0.5, 0.5) (0.6, 0.2) (0.9, 0.2)

 .
The value 0.5Exp( j2π0.2) implies that the amplitude value 0.5 has period 2π0.2 i.e. the value 0.5

will be repeated after 2π0.2 = 2π/5 radians = 72◦ in complex plane with respect to fuzzy
parameterized sub parametric tuple ẽ2

0.2 .

4.1.1. Set theoretic operations of λ̃-set

In this part, some necessary set theoretic operations of λ̃-set are investigated. It is worth noting that
every operation generates another of λ̃-set.

Definition 4.2. Let Ω̃1 and Ω̃2 are λ̃-set with their representations as

Ω̃1 =


ẽi/µ1(ẽi), ψ̃1(ẽi/µ1(ẽi)) =

〈 α1
T̂
(ẽi/µ1(ẽi))Exp( jβ1

T̂
(ẽi/µ1(ẽi))),

α1
Î
(ẽi/µ1(ẽi))Exp( jβ1

Î
(ẽi/µ1(ẽi))),

α1
F̂
(ẽi/µ1(ẽi))Exp( jβ1

F̂
(ẽi/µ1(ẽi)))

〉 :

ẽi/µ1(ẽi) ∈ F̃1; ẽi ∈ Ξ̃
′

⊆ Ξ̃

 ,
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and

Ω̃2 =


ẽi/µ2(ẽi), ψ̃2(ẽi/µ2(ẽi)) =

〈 α2
T̂
(ẽi/µ2(ẽi))Exp( jβ2

T̂
(ẽi/µ2(ẽi))),

α2
Î
(ẽi/µ2(ẽi))Exp( jβ2

Î
(ẽi/µ2(ẽi))),

α2
F̂
(ẽi/µ2(ẽi))Exp( jβ2

F̂
(ẽi/µ2(ẽi)))

〉 :

ẽi/µ2(ẽi) ∈ F̃2; ẽi ∈ Ξ̃
′′

⊆ Ξ̃

 ,
then,

(1) for any ẽi ∈ Ξ̃, their union Ω̃1 ∪ Ω̃2 has multi argument approximate element ψ̃3(ẽi/µ3(ẽi)) which
can be determined as

ψ̃3(ẽi/µ3(ẽi)) =


ψ̃1(ẽi/µ1(ẽi))
ψ̃2(ẽi/µ2(ẽi))

ψ̃3(ẽi/µ
′

(ẽi)) = ψ̃1(ẽi/µ1(ẽi)) ∪ ψ̃2(ẽi/µ2(ẽi))

; ẽi ∈ Ξ̃
′

\ Ξ̃
′′

; ẽi ∈ Ξ̃
′′

\ Ξ̃
′

; ẽi ∈ Ξ̃
′

∩ Ξ̃
′′

where,

ψ̃3(ẽi/µ
′

(ẽi)) =

〈 max{α1
T̂
(ẽi/µ1(ẽi)), α2

T̂
(ẽi/µ2(ẽi))}Exp[ j max{β1

T̂
(ẽi/µ1(ẽi)), β2

T̂
(ẽi/µ2(ẽi))}],

min{α1
Î
(ẽi/µ1(ẽi)), α2

Î
(ẽi/µ2(ẽi))}Exp[ j max{β1

Î
(ẽi/µ1(ẽi)), β2

Î
(ẽi/µ2(ẽi))}],

min{α1
F̂
(ẽi/µ1(ẽi)), α2

F̂
(ẽi/µ2(ẽi))}Exp[ j max{β1

F̂
(ẽi/µ1(ẽi)), β2

F̂
(ẽi/µ2(ẽi))}],

〉
,

and µ
′

(ẽi) = max{µ1(ẽi), µ2(ẽi)}.
(2) Similarly, their intersection Ω̃1∩Ω̃2 has multi argument approximate element ψ̃4(ẽi/µ

′′

(ẽi)), which
can be determined as ψ̃4(ẽi/µ

′′

(ẽi)) = ψ̃1(ẽi/µ1(ẽi)) ∩ ψ̃2(ẽi/µ2(ẽi)) for all ẽi ∈ Ξ̃
′

∩ Ξ̃
′′

where,

ψ̃1(ẽi/µ1(ẽi)) ∩ ψ̃2(ẽi/µ2(ẽi))

=

〈 min{α1
T̂
(ẽi/µ1(ẽi)), α2

T̂
(ẽi/µ2(ẽi))}Exp[ j min{β1

T̂
(ẽi/µ1(ẽi)), β2

T̂
(ẽi/µ2(ẽi))}],

max{α1
Î
(ẽi/µ1(ẽi)), α2

Î
(ẽi/µ2(ẽi))}Exp[ j min{β1

Î
(ẽi/µ1(ẽi)), β2

Î
(ẽi/µ2(ẽi))}],

max{α1
F̂
(ẽi/µ1(ẽi)), α2

F̂
(ẽi/µ2(ẽi))}Exp[ j min{β1

F̂
(ẽi/µ1(ẽi)), β2

F̂
(ẽi/µ2(ẽi))}],

〉

and µ
′′

(ẽi) = min{µ1(ẽi), µ2(ẽi)}.

Example 4.2. After reassuming the data from Example 4.1, the matrix representations of Ω̃1 and Ω̃2

are given as

Ω̃1 =


Ξ̃ \ f̃ ñ1 ñ2 ñ3 ñ4

ẽ2
0.2 (0.7, 0.1) (0.8, 0.2) (0.9, 0.3) (0.5, 0.4) (0.6, 0.5) (0.7, 0.6) (0.8, 0.7) (0.9, 0.8) (0.5, 0.9) (0.6, 0.2) (0.7, 0.3) (0.8, 0.4)
ẽ4
0.4 (0.6, 0.2) (0.7, 0.3) (0.8, 0.4) (0.9, 0.5) (0.9, 0.6) (0.8, 0.7) (0.7, 0.8) (0.6, 0.7) (0.5, 0.6) (0.6, 0.5) (0.7, 0.4) (0.8, 0.3)
ẽ6
0.6 (0.6, 0.3) (0.7, 0.4) (0.8, 0.5) (0.9, 0.6) (0.8, 0.7) (0.7, 0.8) (0.6, 0.7) (0.5, 0.6) (0.4, 0.5) (0.3, 0.4) (0.9, 0.3) (0.8, 0.2)
ẽ8
0.8 (0.7, 0.4) (0.8, 0.5) (0.9, 0.6) (0.8, 0.7) (0.7, 0.8) (0.6, 0.7) (0.5, 0.6) (0.6, 0.5) (0.7, 0.4) (0.8, 0.3) (0.9, 0.2) (0.6, 0.1)

 ,
and

Ω̃2 =


Ξ̃ \ f̃ ñ1 ñ2 ñ3 ñ4

ẽ2
0.2 (0.6, 0.5) (0.7, 0.6) (0.7, 0.7) (0.8, 0.8) (0.9, 0.7) (0.8, 0.6) (0.7, 0.5) (0.6, 0.4) (0.5, 0.3) (0.9, 0.2) (0.7, 0.1) (0.6, 0.9)
ẽ4
0.4 (0.5, 0.6) (0.9, 0.7) (0.8, 0.8) (0.7, 0.9) (0.6, 0.1) (0.7, 0.2) (0.8, 0.3) (0.9, 0.4) (0.7, 0.5) (0.6, 0.6) (0.5, 0.7) (0.7, 0.8)
ẽ6
0.6 (0.6, 0.7) (0.7, 0.8) (0.7, 0.9) (0.6, 0.8) (0.5, 0.7) (0.6, 0.6) (0.7, 0.5) (0.8, 0.4) (0.9, 0.3) (0.8, 0.2) (0.7, 0.1) (0.6, 0.9)
ẽ8
0.8 (0.4, 0.8) (0.9, 0.9) (0.9, 0.1) (0.8, 0.2) (0.8, 0.3) (0.8, 0.4) (0.7, 0.5) (0.7, 0.6) (0.7, 0.7) (0.6, 0.8) (0.6, 0.9) (0.8, 0.1)

 .
Therefore,

Ω̃1 ∪ Ω̃2 =


Ξ̃ \ f̃ ñ1 ñ2 ñ3 ñ4

ẽ2
0.2 (0.7, 0.5) (0.7, 0.6) (0.7, 0.7) (0.8, 0.8) (0.6, 0.7) (0.7, 0.6) (0.8, 0.7) (0.6, 0.8) (0.5, 0.9) (0.9, 0.2) (0.7, 0.3) (0.6, 0.9)
ẽ4
0.4 (0.6, 0.6) (0.7, 0.7) (0.8, 0.8) (0.9, 0.9) (0.6, 0.6) (0.7, 0.7) (0.8, 0.8) (0.6, 0.7) (0.5, 0.6) (0.6, 0.6) (0.5, 0.7) (0.7, 0.8)
ẽ6
0.6 (0.6, 0.7) (0.7, 0.8) (0.7, 0.9) (0.9, 0.8) (0.5, 0.7) (0.6, 0.8) (0.7, 0.7) (0.5, 0.6) (0.4, 0.5) (0.8, 0.4) (0.7, 0.3) (0.6, 0.9)
ẽ8
0.8 (0.7, 0.8) (0.8, 0.9) (0.9, 0.6) (0.8, 0.7) (0.7, 0.8) (0.6, 0.7) (0.7, 0.6) (0.6, 0.6) (0.7, 0.7) (0.8, 0.8) (0.6, 0.9) (0.6, 0.1)

 ,
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and

Ω̃1 ∩ Ω̃2 =


Ξ̃ \ f̃ ñ1 ñ2 ñ3 ñ4

ẽ2
0.2 (0.6, 0.1) (0.8, 0.2) (0.9, 0.3) (0.5, 0.4) (0.9, 0.5) (0.8, 0.6) (0.7, 0.5) (0.9, 0.4) (0.5, 0.3) (0.6, 0.2) (0.7, 0.1) (0.8, 0.4)
ẽ4
0.4 (0.5, 0.2) (0.9, 0.3) (0.8, 0.4) (0.7, 0.5) (0.9, 0.1) (0.8, 0.2) (0.7, 0.3) (0.9, 0.4) (0.7, 0.5) (0.6, 0.5) (0.7, 0.4) (0.8, 0.3)
ẽ6
0.6 (0.6, 0.3) (0.7, 0.4) (0.8, 0.5) (0.6, 0.6) (0.8, 0.7) (0.7, 0.6) (0.6, 0.5) (0.8, 0.4) (0.9, 0.3) (0.3, 0.2) (0.9, 0.1) (0.8, 0.2)
ẽ8
0.8 (0.4, 0.4) (0.9, 0.5) (0.9, 0.1) (0.8, 0.2) (0.8, 0.3) (0.8, 0.4) (0.5, 0.5) (0.7, 0.5) (0.7, 0.4) (0.6, 0.3) (0.9, 0.2) (0.8, 0.1)

 .
4.2. Determination of fuzzy parameterized values

Let f̃ = {ñ1, ñ2, ñ3, ..., ñp} be an initial universe and F̃ = {ẽ1/µ(ẽ1), ẽ2/µ(ẽ2), ..., ẽr/µ(ẽr)} be a FS
over Ξ̃ = {ẽ1, ẽ2, ..., ẽr}. Let αi

T̂
(ẽ1/µ(ẽ1)), αi

Î
(ẽ1/µ(ẽ1)) and αi

F̂
(ẽ1/µ(ẽ1)) are amplitude values of ñi, i =

1, 2, ..., p in true-belonging, indeterminate-belonging and false-belonging components of svCNNs with
respect to ẽ1/µ(ẽ1). Similarly let βi

T̂
(ẽ1/µ(ẽ1)), βi

Î
(ẽ1/µ(ẽ1)) and βi

F̂
(ẽ1/µ(ẽ1)) are phase values of ñi in

true-belonging, indeterminate-belonging and false-belonging components of svCNNs with respect to
ẽ1/µ(ẽ1). Then fuzzy parameterized value µ(ẽ1) of ẽ1 can be computed as

µ(ẽ1) =
1
2


max{αi

T̂
(ẽ1)}+min{αi

Î
(ẽ1)}+min{αi

F̂
(ẽ1)}

3 +
max{βi

T̂
(ẽ1)}+min{βi

Î
(ẽ1)}+min{βi

F̂
(ẽ1)}

3

 . (4.2)

4.3. Transformation of svCNNs to CFNs and fuzzy values

If
〈
αT̂ (ẽ

′

i))Exp( jβT̂ (ẽ
′

i)), αÎ(ẽ
′

i)Exp( jβÎ(ẽ
′

i)), αF̂(ẽ
′

i)Exp( jβF̂(ẽ
′

i))
〉

be a svCNN for alternative ñ ∈ f̃
corresponding to fuzzy parameterized tuples ẽ

′

i ∈ F̃ then it can be transformed to CFN by the following
criterion:

ACFN =

〈
|αT̂ (ẽ

′

i)) − αÎ(ẽ
′

i) − αF̂(ẽ
′

i)|
3

,
βT̂ (ẽ

′

i) + βÎ(ẽ
′

i) + βF̂(ẽ
′

i)
6π

〉
. (4.3)

If ACFN = 〈η, τ〉 be a CFN then it can be transformed to fuzzy number (FN) by employing the following
criterion:

AFN =
|η − τ|

2
. (4.4)

4.4. The selection of criteria and sub-criteria along with their key roles

The attributes (criteria) and sub-attributes (sub-criteria) are the key factors that directly relate to
the MADM problem and may affect the decisions drastically. Therefore, it is advisable to adopt
an intelligent approach for selecting parameters and sub-parameters. Deeply analyzing existing
literature, conducting questionnaire-based surveys, and interviewing the individuals are considered
appropriate ways to collect information leading to selecting parameters and sub-parameters. However,
the parameters and sub-parameters compatible with the adopted algebraic model are likely to be
considered. Perusing the relevant literature and pursuing the proposed model, only those parameters
(criteria) are adopted, which are likely to be partitioned into disjoint sub-classes having sub-parametric
values (sub-criteria). Many approaches and criteria have already been discussed for the dam site
selection problem (already reviewed in Introduction 1); however, the criteria and sub-criteria discussed
in [51] are the most relevant to this study. Therefore these criteria, along with sub-criteria, are adopted
and modified to make them compatible with the proposed model λ̃-set. The modified parameters
and sub-parameters are presented in Figure 2. In order to have a brief description of the operational
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roles of these parameters and sub-parameters in the dam site selection problem, the research work of
Tufail et al. [51] can be consulted.

Figure 2. Criteria and sub criteria for dam site selection.

4.5. Decision makers and their responsibilities

In MADM practice, the most significant figures are the decision-makers responsible for
accomplishing the evaluation process. Their mutual conflicts of interest or related differences may lead
to biased decisions. Therefore, it is usual practice to hire experts from different sources (departments)
with multi-disciplinary areas of expertise. The following are some key responsibilities of decision-
makers in MADM:

(1) Analysis of raw information (data) collected through various sources.
(2) Statistical processing of analyzed data.
(3) Exploration of alternatives and parameters.
(4) Scrutiny of processed data based on parameters.
(5) Short-listing of suitable parameters for the evaluation of alternatives.
(6) Employment of a suitable algebraic model to provide opinions for the approximation of

alternatives on the basis of parameters.
(7) Ranking of alternatives.

As far as the present research is concerned, the site selection for dam construction is usually
endorsed and conferred by the Ministry of Water Resources (MOWR) and the Water and Power
Development Authority (WAPDA) jointly in most Asian countries like Pakistan. Therefore, it is
the responsibility of these departments to provide decision-makers for this task. Thus, officers like
the Project Manager (PM), Executive Engineer (XEN) from WAPDA, Deputy Chief Hydro Power
(Dy.CHP), and Deputy Chief Development (Dy.CD) from MOWR have been nominated as decision
makers as they have good profiles with rich, relevant expertise.

AIMS Mathematics Volume 8, Issue 2, 4907–4929.



4918

4.6. Proposal of MADM based algorithm by using aggregations of λ̃-set

This segment of the paper proposes an algorithm for choosing an appropriate site for the
construction of dam.

Algorithm 1. An optimised site selection for dam construction based on aggregations of λ̃-set.

(1) Assume the sets f̃ = {ñ1, ñ2, ñ3, ..., ñp}, Λ̃ = {ã1, ã2, ..., ãn} and D̃ = {d̃1, d̃2, d̃3, ..., d̃q} as a
set of initial universe consisting of sites under observation, a set of parameters (criteria) and
a set of decision makers deputed for the evaluation process respectively. Explore the sub
parametric values of each parameter ãε , ε = 1, 2, ..., n and enclosed them in non overlapping
sets Ξ̃ε . Determine Ξ̃ = Ξ̃1×Ξ̃2×...×Ξ̃n = {ẽ1, ẽ2, ..., ẽr}where r is the product of cardinalities
of Ξ̃ε .

(2) Collect the joint opinions of decision makers d̃ς, ς = 1, 2, ..., q for alternatives based on
sub parametric tuples ẽk, k = 1, 2, ..., r in terms of svCNNs and express them in matrix
Γ1 = [αi j]r×p where αi j denotes svCNN corresponding to ith row and jth column.

(3) Determine fuzzy parameterized values of each ẽk by using Eq (4.2) and then express λ̃-set
in matrix Γ2 = [βi j]r×p.

(4) Transform the entries i.e svCNNs of Γ2 to CFNs by using Eq (4.3) and obtain new matrix
Γ3 = [γi j]r×p. Again transform CFNs of Γ3 to fuzzy values by using Eq (4.4) and obtain
another matrix Γ4 = [θi j]r×p.

(5) Multiply each fuzzy parameterized value to each fuzzy value lying in its respective row of
matrix Γ4 = [θi j]r×p and obtain decision matrix ΓD = [ϑi j]r×p. Compute the score values
S(ñε), ε = 1, 2, ..., n of each alternative by adding respective fuzzy values in its column.
Select the alternative with maximum score as optimum selection.

Figure 3 represents the depiction of Algorithm 1.

Figure 3. Pictorial description of proposed algorithm.
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5. Illustrative example: a case study

This portion of the paper provides an explanation of various steps of the algorithm with a self-
explanatory example.

A dam is a constructed barrier that holds back water and raises its level. The important uses of
dams have made it a matter of great concern for human civilization. Some of its uses are water supply,
irrigation, electrical generation, flood control, water storage, mine tailings, debris control, navigation,
and recreation. With the increasing problems of urbanization and environmental variations, the need
for water storage for generating electricity, availability of water for irrigation through the net of canals,
and controlling of floods have increased to a great extent. These issues lead to the demand for dam
construction at the appropriate locations. In the following example, a case study is presented in which
an appropriate location is evaluated for the construction of the mini dam. This case study is based
on hypothetical data e.g. the opinions of experts are hypothetical. The data collection is performed
through the surveying process and literature review.

Example 5.1. In order to meet the water needs of a certain area, the administrations of MOWR
and WAPDA plan to initiate a joint project for the construction of a mini dam in the nearby area
of river “XAX” (a hypothetical name) that is flowing along the bottom areas of mountains. After
various surveys done by many survey teams of both concerned departments, the four most suitable
sites (regions) ñ1 = Reg 1, ñ2 = Reg 2, ñ3 = Reg 3 and ñ4 = Reg 4 have been scrutinized for further
evaluation to construct a mini dam there. These regions constitute an initial space of alternatives
f̃ = {Reg 1, Reg 2, Reg 3, Reg 4}. After mutual consultation, four experts (decision makers) have been
deputed from both departments for the evaluation of these four regions. The brief profiles of these
experts are presented in Table 2.

Table 2. Profiles of decision makers.

Experts Professional qualification Minimum
relevant
experience

Department

Project Manager (PM) M.Sc Business
Administration or Project
Management

10 years WAPDA

Executive Engineer (XEN) M.Sc engineering (preferable
civil)

15 years WAPDA

Deputy Chief Hydro Power
(Dy.CHP)

M.Sc hydro power
engineering

10 years MOWR

Deputy Chief Development
(Dy.CD)

M.Sc development studies 10 years MOWR

With mutual consensus, the parameters “ã1 =hydrological factors”, “ã2 =lateral impacts”,
“ã3 =damage-based factors” and “ã4 =health dam site” are finalized for the assessment of dam
sites. With keen analysis, the respective sub parametric values of these parameters are enclosed in
non overlapping classes,

Ξ̃1 = {ã11 = reservoir capacity, ã12 = maximum f lood prospect},
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Ξ̃2 = {ã21 = ecological impacts, ã22 = opinionated impacts},

Ξ̃3 = {ã31 = natural f actors},

Ξ̃4 = {ã41 = material f easibility}.

In order to cope with multi-argument parametric values, the set Ξ̃ = Ξ̃1 × Ξ̃2 × Ξ̃3 × Ξ̃4 =

{ẽ1 = (ã11, ã21, ã31, ã41), ẽ2 = (ã11, ã22, ã31, ã41), ẽ3 = (ã12, ã21, ã31, ã41), ẽ4 = (ã12, ã22, ã31, ã41)} is
determined which consists of 4-argument sub parametric valued tuples. Figure 4 presents the method
of determination of these multi argument tuples.

Figure 4. Determination of multi argument tuples.

Now decision-makers provide their opinions for approximations of alternatives (sites) by
considering these 4-argument sub-parametric valued tuples. The opinions are in terms of svCNNs
〈truth, indeterminacy, f alsity〉 with a description of their related amplitude and phase values. The
mean of their opinions are computed and the set “single-valued complex neutrosophic hypersoft set
(svCNHSOS)” is constructed and expressed in matrix notation Γ1 = [αi j]4×4 which is tabulated in
Table 3.

Table 3. Tabulation of matrix Γ1 = [αi j]4×4.
Γ1 Reg 1 Reg 2 Reg 3 Reg 4
ẽ1 (0.92, 0.5) (0.94, 0.4) (0.82, 0.3) (0.84, 0.2) (0.72, 0.1) (0.74, 0.8) (0.62, 0.7) (0.64, 0.6) (0.52, 0.5) (0.54, 0.4) (0.42, 0.3) (0.83, 0.2)

ẽ2 (0.83, 0.6) (0.95, 0.8) (0.86, 0.9) (0.75, 0.6) (0.96, 0.4) (0.87, 0.3) (0.78, 0.5) (0.96, 0.4) (0.73, 0.4) (0.65, 0.6) (0.73, 0.3) (0.84, 0.1)

ẽ3 (0.66, 0.7) (0.76, 0.5) (0.85, 0.3) (0.63, 0.1) (0.83, 0.8) (0.75, 0.5) (0.64, 0.2) (0.86, 0.6) (0.92, 0.3) (0.39, 0.1) (0.91, 0.4) (0.84, 0.6)

ẽ4 (0.49, 0.5) (0.91, 0.6) (0.91, 0.7) (0.89, 0.8) (0.87, 0.7) (0.85, 0.6) (0.59, 0.5) (0.71, 0.4) (0.75, 0.3) (0.68, 0.2) (0.92, 0.1) (0.81, 0.1)

Now fuzzy parameterized values of each ẽk are determined by using Eq (4.2) which are given in
Table 4, and then λ̃-set is constructed whose matrix notation Γ2 = [βi j]4×4 is tabulated in Table 5.
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Table 4. Fuzzy parameterized values of ẽk.

ẽk µ(ẽk) ẽk µ(ẽk)

ẽ1
1
2

{
0.92+0.42+0.52

3 + 0.7+0.1+0.2
3

}
= 0.475 ẽ3

1
2

{
0.66+0.76+0.75

3 + 0.7+0.4+0.3
3

}
= 0.595

ẽ2
1
2

{
0.83+0.73+0.73

3 + 0.6+0.3+0.1
3

}
= 0.548 ẽ4

1
2

{
0.89+0.71+0.75

3 + 0.8+0.1+0.1
3

}
= 0.558

Table 5. Tabulation of λ̃-set with matrix Γ2 = [βi j]4×4.
Γ2 Reg 1 Reg 2 Reg 3 Reg 4

ẽ1
0.475 (0.92, 0.5) (0.94, 0.4) (0.82, 0.3) (0.84, 0.2) (0.72, 0.1) (0.74, 0.8) (0.62, 0.7) (0.64, 0.6) (0.52, 0.5) (0.54, 0.4) (0.42, 0.3) (0.83, 0.2)

ẽ2
0.548 (0.83, 0.6) (0.95, 0.8) (0.86, 0.9) (0.75, 0.6) (0.96, 0.4) (0.87, 0.3) (0.78, 0.5) (0.96, 0.4) (0.73, 0.4) (0.65, 0.6) (0.73, 0.3) (0.84, 0.1)

ẽ3
0.595 (0.66, 0.7) (0.76, 0.5) (0.85, 0.3) (0.63, 0.1) (0.83, 0.8) (0.75, 0.5) (0.64, 0.2) (0.86, 0.6) (0.92, 0.3) (0.39, 0.1) (0.91, 0.4) (0.84, 0.6)

ẽ4
0.558 (0.49, 0.5) (0.91, 0.6) (0.91, 0.7) (0.89, 0.8) (0.87, 0.7) (0.85, 0.6) (0.59, 0.5) (0.71, 0.4) (0.75, 0.3) (0.68, 0.2) (0.92, 0.1) (0.81, 0.1)

Now the entries i.e svCNNs of Γ2 are transformed to CFNs by using Eq (4.3) and tabulated in Table 6
with matrix notation matrix Γ3 = [γi j]4×4 such that fuzzy parameterized values remain unchanged. The
entries i.e. CFNs of Γ3 are now reduced to fuzzy values by using Eq (4.4) and obtain another matrix
Γ4 = [θi j]4×4 which is tabulated in Table 7.

Table 6. Tabulation of matrix Γ3 = [γi j]4×4.

Γ3 Reg 1 Reg 2 Reg 3 Reg 4
ẽ1

0.475 (0.280, 0.400) (0.207, 0.367) (0.180, 0.600) (0.237, 0.333)

ẽ2
0.548 (0.327, 0.767) (0.360, 0.433) (0.303, 0.433) (0.307, 0.333)

ẽ3
0.595 (0.317, 0.500) (0.317, 0.467) (0.380, 0.367) (0.453, 0.367)

ẽ4
0.558 (0.443, 0.600) (0.277, 0.700) (0.290, 0.400) (0.350, 0.133)

Table 7. Tabulation of matrix Γ4 = [θi j]4×4.

Γ4 Reg 1 Reg 2 Reg 3 Reg 4
ẽ1

0.475 0.06 0.08 0.21 0.048

ẽ2
0.548 0.22 0.0365 0.065 0.013

ẽ3
0.595 0.0915 0.075 0.0065 0.043

ẽ4
0.558 0.0785 0.2115 0.055 0.1085

Each fuzzy parameterized value is multiplied to each fuzzy value lying in its respective row of
matrix Γ4 to construct decision matrix ΓD = [ϑi j]4×4 whose entries are tabulated in Table 8. The score
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values S(ñε), ε = 1, 2, ..., n of each alternative is computed by adding respective fuzzy values in its
column. The computed score values are presented in Table 9. According to Table 9 and Figure 5, the
maximum score 0.2473 is achieved by Reg 1 (ñ1) therefore it is recommended by the decision makers
for the construction of mini dam. The ranking of the sites is Reg 1(ñ1) > Reg 2(ñ2) > Reg 3(ñ3) >
Reg 4(ñ4).

Table 8. Tabulation of matrix ΓD = [ϑi j]4×4.

ΓD Reg 1 Reg 2 Reg 3 Reg 4
ẽ1 0.0285 0.0380 0.0998 0.0228

ẽ2 0.1206 0.0200 0.0356 0.0071

ẽ3 0.0544 0.0446 0.0039 0.0256

ẽ4 0.0438 0.1180 0.0307 0.0605

Table 9. Score values S(ñε), ε = 1, 2, ..., n of sites.

Sites Score values S(ñε)

Reg 1 (ñ1)
4∑

i=1
ϑi1 = 0.0285 + 0.1206 + 0.0544 + 0.0438 = 0.2473

Reg 2 (ñ2)
4∑

i=1
ϑi2 = 0.0380 + 0.0200 + 0.0446 + 0.1180 = 0.2206

Reg 3 (ñ3)
4∑

i=1
ϑi3 = 0.0998 + 0.0356 + 0.0039 + 0.0307 = 0.1700

Reg 4 (ñ4)
4∑

i=1
ϑi4 = 0.0228 + 0.0071 + 0.0256 + 0.0605 = 0.1160

Figure 5. Ranking of sites based on score values.
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6. Discussion and comparison

As the water demand has increased enormously due to the increased human population,
urbanization, industrialization, and the use of modern agricultural modes have led to the construction
of mini dams. However, finding an appropriate region/site for dam construction is a challenging
task because it involves various factors that may be political, environmental, social, and economic.
Also, it involves various kinds of ambiguities and uncertainties well. Many researchers have already
contributed their share in this regard by using different algebraic and non-algebraic approaches like
fuzzy hierarchical TOPSIS (Wang et al. [1], Noori et al. [3]), AHP and fuzzy-AHP (Esavi et al. [42]),
Fuzzy AHP-TOPSIS (Janjua & Hassan [44]) and Hybrid Fuzzy-TOPSIS (Adeyanju & Adedeji [45]).
Although these approaches are important in literature, there are some limitations concerning the dam
site selection problem. The consideration of parameterization mode, the independency of decision-
makers regarding the provision of their opinions in three-dimensional graded aspects like truth,
indeterminate, and falsity, the consideration of multi-argument domain and multi-argument function
for the approximation of sites, the consideration of amplitude and phase values to tackle the periodicity
of data involved in approximation and the entitlement of fuzzy parameterization to tackle vague attitude
of parameters and sub-parameters are those important features that play a vital role in every decision
making process in general and dam site selection problem in specific for having reliable and consistent
decisions. Nevertheless, the models mentioned above and other related models have ignored such
features. This study’s advantage is that all the above limitations of existing research have been
managed by introducing a novel algebraic model, i.e., λ̃-set which uses complex hypersoft, fuzzy
parameterized, and single-valued neutrosophic setting jointly for the accomplishing this challenge. As
the proposed “λ̃-set approach” is novel in literature, it cannot be compared comprehensively with other
similar algebraic models based on computational results. However, Table 10 presents its ranking-based
comparison with the most relevant approaches employed by Adeyanju & Adedeji [45], Tufail et al. [51]
and Akram et al. [52] As per computational rules, the smaller numerical values lead to more reliability,
preciseness, and accuracy of the concept because they reduce the chances of expected numerical errors.
After the analysis of computational results provided in Table 10, it is obvious and intelligible that the
computational score values of the proposed approach are more precise and consistent as compared to
other mentioned models due to smaller score values with fewer chances of computational errors.

In order to prove the claim of the flexibility and reliability of the proposed model, its structural
comparison is presented in Table 11, in which some most essential features like consideration of fuzzy
parameterization (COFP), management of information-based periodicity (MIBP), the entitlement of
three-dimensional membership function (ETDMF), the entitlement of multi argument-based opinions
(EMAO) and the consideration of parameterization mode (COPM) are considered. It can easily be
observed that the proposed model λ̃-set is tackling all such important features, whereas the mentioned
relevant models have some limitations for these features. The acronyms X and × are meant for “valid”
and “not valid” respectively.
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Table 10. Analysis of preferential aspects based on sites ranking.

References Score values achieved by sites Ranking of sites

Adeyanju & Adedeji [45]


Reg 1 = 0.547,
Reg 2 = 0.532,
Reg 3 = 0.469,
Reg 4 = 0.534

Reg 1 > Reg 4 > Reg 2 > Reg 3

Tufail et al. [51]


Reg 1 = 0.347,
Reg 2 = 0.319,
Reg 3 = 0.840,
Reg 4 = 0.577

Reg 3 > Reg 4 > Reg 1 > Reg 2

Akram et al. [52]


Reg 1 = 0.777,
Reg 2 = 0.975,
Reg 3 = 0.925,
Reg 4 = 0.725

Reg 2 > Reg 3 > Reg 1 > Reg 4

Proposed approach


Reg 1 = 0.2473,
Reg 2 = 0.2206,
Reg 3 = 0.1700,
Reg 4 = 0.1160

Reg 1 > Reg 2 > Reg 3 > Reg 4

Table 11. The flexibility of proposed model.

Authors Structure COFP MIBP ETDMF EMAO COPM

Thirunavukarasu et al. [28] CFSS × X × × X

Kumar et al. [29] CIFSS × X × × X

Smarandache et al. [30] CNSS × X X × X

Zhu & Zhan [31] FpFSS X X × × X

Sulukan et al. [32] FpIFSS X X × × X

Rahman et al. [34] CNHSS × X X X X

Proposed model λ̃-set X X X X X

6.1. The merits of the proposed model

The proposed model is more preferable and trustworthy due to the following aspects:

(1) The choice of parameters and their sub-parameters-based classification is not always definite for
decision-makers in numerous situations. They face various kinds of uncertainties in this regard.
The proposed model copes with such situations by applying the idea of fuzzy parameterization,
which assesses the uncertain behavior of parameters and their sub-parameters.

(2) The proposed model facilitates the decision makers to furnish their approximations in terms of
three-dimensional membership function, allowing them to be agreed with or indeterminate or
disagree with the approximations independently.

(3) It is commonly observed that the approximations of parameters and their sub-parameters may
have repeated values (periodicity) with the depiction of uncertainties; the proposed model tackles
such periodicity by considering complex valued three-dimensional membership function, which
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employs phase values to cope with such information-based repetitions.
(4) The provision of approximations based on a single parameter is a time-taking process. The

proposed model assists the decision makers in furnishing their approximations by observing multi
parameters collectively by considering hypersoft settings.

7. Conclusions

In the present study, the novel approach called the “λ̃-set approach” is employed to find the most
suitable region (site) for the construction of a mini dam which is initiated with the characterization
of an algebraic model “λ̃-set” and its essential aggregation operations. This model is flexible as it
can collectively cope with the periodicity of information, the entitlement of multi-argument mapping,
fuzzy parameterization mode, and single-valued neutrosophic setting. The input variables are those
parameters (criteria) that have appropriate sub-parameters (sub-criteria). A proper algebraic criterion
is utilized to find the fuzzy parameterized degrees of multi-argument tuples obtained through the
Cartesian product of sub-parametric non-overlapping classes. Based on the aggregation operations
of λ̃-set, a novel MADM algorithm is proposed which is further explained by discussing the problem
of dam site selection. In the proposed decision support framework, the decision makers are experienced
officers of relevant departments. They are free to assess the alternatives by considering fuzzy
parameterized multi-argument-based criteria, i.e., sub-parametric tuples capable of tackling their
expected uncertainties about selecting parameters and their sub-parameters. A flexible environment
is provided to independently record their expert opinions in the form of agree-based, disagree-based,
and indeterminate-based grades.

Moreover, it provides a specific setting known as a complex setting to manage the periodicity of
data after regular intervals of time by introducing amplitude and phase-graded values. The proposed
approach is a general framework that utilizes hypothetical data-based opinions of decision-makers. It
can easily be applied to all real-life situations by taking real data sets with the help of the proposed
algorithm. As in the proposed approach, the concept of fuzzy parameterization is utilized to assess
the parameters- based uncertainties, but it has limitations for those decision-making situations where
such parameters-based uncertainties are found in terms of intuitionistic fuzzy numbers, picture fuzzy
numbers, neutrosophic fuzzy numbers, and plithogenic numbers therefore as future task the concepts of
such parameterizations may be introduced which may further be integrated with complex, neutrosophic
and hypersoft settings to evaluate the sites for dam construction. Moreover, the proposed model may
also be utilized efficiently to resolve other decision-making problems like risk analysis projects or
investment selection, medical diagnosis, assessment of renewable energy resources, and many others.
Many algebraic structures, like topological spaces, metric spaces, vector spaces, etc., may also be
developed using the basic notions of λ̃-set.
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