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Abstract: In the present article, we consider the stochastic inventory model aiming at selecting a
subset of best policies with minimum total cost. When the computational budget is limited, then
the optimal computing budget allocation (OCBA) is used for allocating the available computational
budget to the different policies in order to correctly select the best policies. To measure the quality of
the selection, we use the expected opportunity cost (EOC) approach that measures the total difference
means between the actual best policies and the selected policies. The proposed algorithm OCBA based
on EOC is implemented on a stochastic inventory example. The results show that the EOC approaches
zero as the total number of computational budgets increases and that using the EOC measure gives
better results than using the probability of correct selection (PCS). Moreover, the numerical results
indicate that the proposed algorithm is robust.
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1. Introduction

Nowadays most business providers use inventory theory in order to provide their clients with the
goods they require while increasing their percentage of profit and increasing their customer base.
Inventory theory focuses on controlling inventory levels of commodities in order to satisfy consumer
demand. The majority of models have systems in place to look for answers to two key questions. The
first is the appropriate time to place an order that increases the inventory level, and the second is the
appropriate order quantity. The assumptions they make about cost structure, demand, and the physical
properties of the policy are what give them their complexity. Since each company’s circumstances are
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different and have specific characteristics and restrictions, there is no universal answer for all
inventory models, and there are a lot of different models that might be used. This is dependent on
several assumptions made about important factors including demand, costs, and the actual structure of
the policy.

In this paper, we consider the stochastic inventory model where demand is seen as stochastic. Our
aim is to select a set of m best policies with the minimum cost. The holding, ordering, and shortage
costs make up the total cost of the model. The complexity of this problem comes from the stochastic
nature of the problem which requires a huge amount of computer simulation to get estimates of the
average total cost. However, when the computational budget is limited, the available computation
needs to be distributed in a clever way in order to get the correct selection. Moreover, we are also
interested in measuring the final solution, thus the expected opportunity cost is used to assess the
quality of the solution obtained.

In order to solve this problem and find the optimal policy or a set of optimal policies in cases where
there is a limited computation budget is available to be distributed on different policies, then rather
than distributing the computations evenly, the optimal computing budget allocation procedure is used
to select a subset of optimal policies, Chen et al. [1, 2]. Therefore, the policies that have more impact
on the solution will be given more computation, but at the same time, we do not neglect the other
policies. Kim and Nelson [3], claim that stochastic simulation can be used for establishing the measure
of performance for every policy in simulation. The statistical selection methods are utilized to choose
the best possible policy or a set of the best policies out of a limited number of options. In order to
assess the selection quality, one needs to use some metrics because the simulation techniques being
employed have a chance to make an unsuitable selection. There are two measures:

(1) The probability of Correct selection, (P(CS )) in which correct selection signifies the best
possible simulated policy, selected out of a large but finite set of alternatives Chen et al. [1, 2].
However, this measure is not always appropriate because it computes the percentage of selecting
correct policies rather than their cost, so it deals with near-optimal solutions same as the worst policy.

(2) The second measure is the expected opportunity cost, (E(OC)) for a potentially incorrect
selection, opportunity cost here is the difference between the total cost of the actual best policy and
the total cost of the selected policy, Chick and Inoue [4, 5], Chick and Wu [6]. Therefore,
near-optimal solutions have a small impact on wrong selection and the measure is more realistic.

The aim of this study is to utilize the second measure which is the estimated opportunity cost as a
criterion for the quality of choosing the best m stochastic inventory policies. This aim is challenging
to achieve since only a small class of performance indicators can be numerically evaluated, and using
simulation to determine this value is expensive and consumes more time, particularly when considering
large number of policies. Gao and Chen [7] have put a framework for selection procedures based on the
expected opportunity cost, Gao et al. [8] have developed an approach to select the best out of a finite
set of alternatives based on the expected opportunity cost and compare the E(OC) with the P(S C) and
show that they are asymptotically equivalent. We will adapt the procedure of Gao et al. [8] and modify
it to solve the stochastic inventory problem and use it to select a subset of the best stochastic inventory
models on a finite horizon. Most of the previous procedures for selecting the best inventory model(s)
use the P(CS ) rather than E(OC). Gao et al. [9] have developed a subset selection using regression
metamodel. Almomani et al. [10, 11] proposed a combined statistical procedure measured by E(OC).
Almomani and Alrefaei [12] provide a sequential approach for choosing a subset which is comprised
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of efficient designs. The OCBA has gained attention recently, see Al-Salem et al. [13]. Almomani
et al. [14] studied stopping rules for selecting the optimal solution, Alrefaei et al. [15] provided an
approximation of the probability of correct selection. For a recent review of methods used for selecting
Xu et al. [16].

While more modern procedures help to minimize the E(OC) and have gained importance in many
applications, conventional selection approaches detect the best possible policy with higher probability
by maximizing P(CS ). The likelihood of making a bad choice will be reduced by these new selection
techniques. Our goal in this paper is to use statistical selection techniques to resolve the inventory
management issue. We provide a method for allocating the computing budget for choosing an adequate
m inventory policy and evaluating the effectiveness of the choice using the estimated opportunity cost
E(OC).

The rest of the paper is organized as follows: In Section 2, we formulate the stochastic inventory
problem, and details the background on the stochastic inventory models. In Section 3 we present
the method for selecting the best m policies using the optimal computing budget allocation approach
in terms of the expected opportunity cost. Section 4 contains a numerical example of a stochastic
inventory model. Finally, Section 5 concludes the study.

2. Problem formulation

In this section, we present the formulation of the problem that we consider in this paper which is
the stochastic inventory model (s, S ) with periodic review. We first introduce some used notations:
(s, S ) : is the stochastic inventory model;
I : the inventory level;
s : the inventory level at which and order is placed;
S : the largest inventory level;
OCBA : the optimal computing budget allocation;
OCBAm : the optimal computing budget allocation for selecting the best m policies;
EOC : the expected opportunity cost;
TC(i): the total cost for policy i;
Θ: the set of all policies;
k: the total number of policies;
T : the total number of simulation replications;
Yit: the output of the tth simulation replication for policy i;
Yi: the actual mean of policy i;
Ȳi: the sample mean of policy i;
σ2

i : the variance of policy i;
Ni: the number of simulation replications for policy i;
i∗: the true best policy;
b: the policy with smallest sample mean;
δi = Ȳi − c, where c is a constant between the best and the next best policy;
αi = δi/σi.

In the stochastic inventory model (s, S ), it is assumed that the demand is stochastic. When the
inventory level I is reduced below or equal to a reordering point s, an order of S − I is made, and
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the cost of doing so is known as the ordering cost. When a demand occurs and the level I reduces
to zero, a shortage occurs, and a cost is therefore imposed called the shortage cost. To reduce overall
costs, there must be a balance between the holding cost, the price of keeping a stocked inventory
and other costs. The resultant problem is a stochastic optimization problem and simulation is used
to determine the estimated total cost. The goals of the inventory management problem are to make it
more productive by making a balance between accomplishing things quickly but more expensively, and
slowly but cheaply. Such a plan would include the best inventory management practices, which would
lower the total cost of ordering, holding, and inventory shortage. The stochastic inventory problem
(s, S ) is written as:

min
i∈Θ

TC(i) (2.1)

where TC(i) is the total cost of policy i, and Θ is the set of all policies in (s, S ).
One of the most important elements in managing uncertainty in inventory is the demand. In case

the demand is random, but probability distribution is known for the demand, we may use basic
mathematical reasoning to derive the best distributional strategies. Finding the right probability
distribution of demand to suit the model is the most crucial phase in the process. There is a
widespread belief that distinct demand events take place separately. A Poisson distribution is the most
typical distribution for the magnitude of the demand over a certain length of time. The interval
between two successive requests may be distributed normally. For the time period of demand, other
distributions such as the uniform distribution and the exponential distribution may also be employed.
It is crucial to concentrate on how the starting inventory level and the amount of demand throughout a
given time relate to one another.

An excess occurs when there is still some inventory following a request because the demand is
lower than the quantity of supply. But if demand exceeds supply, there will be a stock shortfall,
leading to incomplete demand; this is referred to as a shortage. Uncertainty about demand will be taken
into account in stochastic inventory models. Continual or periodic review is used to divide stochastic
inventory models into two categories to restock the inventory the next time frame. It is decided how
much to order in the next period after determining its current inventory level after the conclusion of the
previous session.

Our focus will be on a single item that is subject to periodic review, complete backlog, and random
lead times, with K as the ordering cost for set-up and u for cost per item. Backlog is considered to have
a shortage cost of π per item per unit of time and a holding cost of one item per period of time is h. The
product has multi-modal distribution per demand, while the time in demand is independent, and λ rate
denotes the identically distributed exponential random variables. Initial inventory level I is where the
inventory level begins. According to the demand in the final period, inventories will gradually decrease
over time.

The inventory level is recalculated at the conclusion of each period to decide whether or not a fresh
order is required at the start of the subsequent period. When a certain demand arises, we compare the
demand values to the stock available during the time. If the demand value is greater than the stock
quantity, a defect or inventory shortage occurs. Otherwise, there is a surplus rather than a shortage. We
place an order at the conclusion of this period if I is below the necessary level; otherwise, there is no
need to do so. The inventory model (s, S ) is depicted in Figure 1, see Debadyuti [17].
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Figure 1. The (s, S ) inventory model.

The order quantity in mathematical terms is written as,

Z =
{

S − I if I < s
0 if I ≥ s

}
,

the inventory level during the start of the period is given by I.
The ordering, holding, and shortage costs are added together to get the total cost. The order cost

is K + uZ if Z items are ordered, here K defines the setup (fixed) cost that is constant and u is the
incremental cost per item. With π as shortage cost per period per item, the shortage cost is equal to
πĪ−, where the area under the curve of demand is given by Ī− when a shortage occurs divided by the
total period. hĪ+, is holding cost with h is the cost of holding one item in one period of time, Ī+ is
the area under the demand curve in normal mode (with items in inventory level) divided by the total
period. Thus, the total cost is estimated using the following expression:

TC = (K + uZ) + πĪ− + hĪ+. (2.2)

3. Selecting the best m stochastic inventory policies

In this section, we discuss how to select a subset of best m policies of the stochastic (s, S ) inventory
model. We first introduce the optimal Computing Budget Allocation (OCBAm) approach that will be
used to select the optimal subset. Then, we discuss the expected opportunity cost EOCm that will be
used as a quality measure of the selection. Then we present the algorithm that will be used for the
subset selection.

3.1. Optimal computing budget allocation

Consider a situation where a finite amount of computing resources must be divided across many
alternative strategies in order to assess each one’s performance and identify the one that performs the
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best. It is not a good idea to spend a lot of simulation time on particular policies since they often have
little effect on the final outcome. The optimum computing budget allocation method, put out by Chen
et al. [18], divides the available budget among the policies in accordance with how they would affect
the outcome. More examples of the proposed policies than the other policies will be provided. See
Chen [19], Banks [20], Pedrielli et al. [21] and Goodwin et al. [22].

Consider k stochastic policies with means Yi, i = 1, . . . , k, Chen et al.[1, 2] provided the OCBAm

approach for selecting the suitable m policy. It is assumed that T (the total computation) is known in
advance, they frame the problem to maximize P(CS m) subject to the total number of samples, where
CS m stands for the best m policies are selected. This problem is defined as follows Chen et al.[1, 2]:

max
N1,...,Nk

P(CS m),

s.t.
k∑

i=1

Ni = T,
(3.1)

where the total computational budget available is given by T , the number of competent policies is
k, and the number of simulation samples to policy i is given by Ni. For each policy i, Yit is the tth

simulation sample where t = 1, . . . ,Ni. To estimate the mean value Yi, let Ȳi =
1
Ni

∑Ni
j=1 Yit be the mean

estimate for policy i. Assume that the mean of {Ȳ1, Ȳ2, . . . , Ȳk} be ordered as Ȳi1 ≤ Ȳi2 ≤ . . . ≤ Ȳik .
Then, the subset S m = {i1, i2, . . . , im} will be selected. P(CS m) is the probability that S m is comprised
of best actual m policies, that is maxi∈S m Yi ≤ mini<S m Yi, with Yi defines the mean (unknown) of policy
i.

Alrefaei et al. [23] in their research have approximated ”The Asymptotic Probability of Correct
Selection”, APCS m and have shown that it is maximized if for every i, j policies with i , j,

Ni

σ2
i /δ

2
i

=
N j

σ2
j/δ

2
j

(3.2)

where δi = Ȳi − c and c is a constant between Yim and Yim+1 , we should mention also that the relation
between Ni and N j has been shown by Chen et al. [2]. Further it can be noted that, for a fixed s index,

we have Ns
σ2

s/δ
2
s
=

N j

σ2
j/δ

2
j
, ∀ j = 1, . . . , k. Hence we get, N j =

σ2
j

δ2j

δ2s
σ2

s
Ns =

α2
s
α2

j
Ns, recall that α j = δ j/σ j.

Therefore,
α2

i Ni = α
2
s Ns,∀i = 1, . . . k. (3.3)

As
∑

j∈Θ N j = T , we get
∑

j∈Θ
α2

s
α2

j
Ns = T.

For facilitating the computation, assume Ds =
∑

j∈Θ
α2

s
α2

j
and D j = α

2
s/α

2
j . Therefore, the number of

samples for each policy are given by

Ns = T/Ds

N j = D jNs, j ∈ Θ, j , s.
(3.4)

More details on the OCBAm approach can be found in Chen and Lee [24], Gao and Chen [7], Gao
et al. [8], Gao et al. [9], Lin et al. [25], Fu et al. [26] and Zhou et al. [27].
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3.2. The expected opportunity cost E(OC)

The E(OC) has grown in importance in several commercial and engineering applications, which has
resulted in a newly developed selection methodology in an effort to lower the opportunity cost (OC)
of a potentially inaccurate selection. In the presence of simulation, the OC represents the difference
between the mean of the actual best policy and the mean of the selected unknown policy. OC = Yb−Yi∗ ,
with b representing the policy with the smallest sample mean and i∗ is the actual best policy. In case
the best policy is selected correctly, the opportunity cost becomes zero. Therefore,

OC = Yb − Yi∗ =

{
= 0 ; b = i∗

≥ 0 ; b , i∗.

The expected opportunity cost, E(OC) is the expected value E(OC) = E(Yb − Yi∗). In general,
N1,N2, . . . ,Nn is chosen for minimizing the E(OC), given that the total budget of computing is
limited. It was also argued by He et al. [28] that computing E(OC) is expensive, but there is a need to
reduce the E(OC). This was also discussed in other studies by Gupta and Miescke [29], Chick and
Inoue [4], Chick and Inoue [5], Chick and Wu [6] and Xiao et al. [30] all covered a review on OC. We
may get the OC by utilizing the estimated values of the unknown means as it is the variance between
the unknown means. In our study, the OC was determined by taking the sample mean of the final
inventory policy costs once the simulation is completed.

3.3. The OCBAm algorithm for selecting the best m inventory policies

Algorithm (1) below uses the OCBAm based on E(OC) for selecting a set of m best stochastic
inventory policies.

4. Numerical example

To estimate E(OCm), we conducted an experiment on a generic example of the stochastic inventory
model with artificial data. In this experiment, an inventory model with various parameter values is
solved using the OCBAm technique. The stochastic inventory model with periodic review (s, S )
inventory model was employed in this experiment. When a single item is under a periodic review,
random lead and full backlog times (distributed uniformly between periods- 0.5 and 1.0), with
on-hand inventory ($1 per item per period), ordering cost (which includes $32 per order set-up cost
fixed and a $3 per item incremental cost), along with the backlog cost ($5 per item per period).
Demand items quantity in every demand is categorized as 1, 2, 3, and 4, with 1/6, 1/3, 1/3, and 1/6,
probabilities respectively, and the duration between demands is considered to be an identically
distributed, independent, exponential random variable.

Using Algorithm (1), the goal is to find the m inventory policies with the lowest overall cost in order
to choose the optimal inventory policies. The E(OCm) is what we use to gauge how well the algorithm
is working. Additionally, reducing E(OCm) is desirable. The algorithm is implemented under a specific
parameter setting. It is assumed that number of best selected inventory policies m = 3 and the number
of inventory policies n = 10 with policies: (si, S i) = {(20, 60), (40, 60), (30, 70), (40, 70), (20, 80),
(60, 80), (20, 90), (30, 90), (50, 90), (40, 100)}. First, a simulation is run for every policy. The actual
best policies are (20, 60), (30, 70), and (20, 80) for this experiment.
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Algorithm 1 (OCBAm Algorithm)
Require:

“The number of initial simulation samples t0 ≥ 5.
The number of samples to be distributed over the set of policies in each iteration ∆.
Let l = 0, where l represents iteration index.
Set R the size of the inner loop (the maximum number of replications of the OCBAm inside each
iteration), and let r = 0.
Determine the total available budget TT, let TT = 0.
Let N0

i = t0 for each i ∈ Θ,
let T =

∑
i∈Θ Nr

i .
for i ∈ Θ do

Take a random samples of t0 observations Yi j (1 ≤ j ≤ t0)
Compute Ȳi and s2

i as; Ȳi =
1

Nr
i

∑Nr
i

j=1 Yi j and s2
i =

1
Nr

i −1

∑Nr
i

j=1(Yi j − Ȳi)2

end for
while T < TT do

for i ∈ Θ do
Let T ←− T + ∆
Compute Nr+1

i using Equation(3.4) based on the new budget T.
Perform additional max{0,Nr+1

i − Nr
i } simulation samples for policy i.

Compute the new sample means and variances for policy i.
end for
let r ← r + 1
if r < R then

Take random samples of Nr
i observations Yi j (1 ≤ j ≤ Nr

i )
Compute the sample mean Ȳi and sample variance s2

i
end if

end while
Sort the policies in Θ based on their sample mean Ȳi and select the best m policies as the set
containing the best m policies.”

For this experiment, we utilized a total budget of T = 500, a simulated sample increment of ∆ = 10,
and the size of the initial sample t0 = 5. This experiment concluded with 10 replications for choosing
the top 3 inventory policies. The results are shown in Table 1. The “Best Policies” from the table
refer to three policies of the inventory which are chosen by the algorithm as the optimal option. With
“TCm” to be the mean total cost of the actual best policies which are (20, 60), (30, 70), and (20, 80).
The value “TCOCBAm” is the estimated mean average of the total cost of the three selected policies
by the proposed algorithm. Hence, E(OCm) = |TCm − TCOCBAm |. Here, we use the absolute value to
calculate the E(OCm) since our target is the difference between TCm and TCOCBAm not which one is the
largest; note that in some replications it can be that the TCOCBAm is larger than TCm and vice versa.
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Table 1. Numerical illustration for n = 10,m = 3, t0 = 5,∆ = 10,T = 500.

Best Policies TCm TCOCBAm E(OCm) P(CS m)

{(30, 70), (60, 80), (20, 80)} 224.6602761024 224.6602761118 9.4 × 10−9 0.33
{(20, 60), (30, 70), (20, 90)} 198.0321542458 198.0321542546 8.8 × 10−9 0.67
{(20, 60), (30, 70), (20, 80)} 196.9874251246 196.9874251246 0 1
{(20, 60), (30, 70), (40, 60)} 201.0655714875 201.0655714865 1.0 × 10−9 0.67
{(40, 60), (20, 90), (20, 80)} 212.5047481235 212.5047481242 7.0 × 10−10 0.33
{(20, 90), (20, 80), (30, 70)} 205.6635890148 205.6635890117 3.1 × 10−9 0.67
{(20, 60), (30, 70), (20, 80)} 197.4827540245 197.4827540245 0 1
{(20, 80), (30, 90), (40, 70)} 220.6321670147 220.6321670133 1.4 × 10−9 0.33
{(20, 60), (20, 80), (30, 70)} 196.1215874578 196.1215874578 0 1
{(20, 60), (30, 70), (40, 70)} 203.7655534821 203.7655534898 7.7 × 10−9 0.67

Average measure 3.21 × 10−9 0.67

From Table 1, in the first replication, the algorithm selects inventory policies (30,70), (60,80) and
(20,80), with the calculated average of the total cost for selected policies is 224.6602761118. It means
that we get the minimum total cost in this replication when the inventory policies are (si, S i) =
{(30,70),(60,80),(20,80)}, note that the policies (30,70) and (60,80) do not belong to the actual 3 best
inventory policies where the policy (20,80) belongs to the actual best subset of policies, therefore
using the probability of correct selection measure implies that P(CS m) = 0.33 which is too small.
However, the expected E(OCm) here is 9.4 × 10−9, obviously the average total cost for the three
policies chosen by Algorithm 1 is close to the average total cost for the best three policies. which
means that using the E(OCm) measure gives a better indication of the selected subset. The average
values of the estimated P(CS m) and E(OCm) over 10 replications are given in the last row. As seen in
this row the E(OCm) gives better indication about the elected subset than the P(CS m) measure. The
experiment given above is extended for hundred replications. The outcomes depict that on average the
opportunity cost expected for choosing three policies is E(OCm) = 3.5 × 10−9, which is close to 0.
Figure 2 demonstrates the E(OCm) values when the experiment is conducted with 100 replications.

Figure 2. The E(OCm) for 10 inventory policies to select 3 policies over 100 replications.
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As we examine the impact of the initial sample size t0 on Algorithm (1), it is important to keep in
mind that if t0 is too small, there is a risk of receiving inaccurate early estimates of the overall cost. If
the size is large, we can devote more computational time to unrelated policies, hence a balance value
of t0 should be considered for getting a better outcome. Algorithm 1 is implemented with ∆ = 10
on different values of t0 = 5, 10 and 20. The total budget, for t0 values over 100 replications for the
average E(OCm) over the 100 replications is shown in Figure 3. From the graph, it is clear that for any
value of t0 the algorithm performs well and gives a very small value of E(OCm) and for t0 = 20, the
E(OCm) is very close to zero.

Figure 3. The average E(OCm) and t0 for n = 10,m = 3,∆ = 10 over 100 replications.

If ∆ is large, then most of the computation time is lost on the sampling solution which does not affect
the best selection. To see the effect the value of ∆ on the performance of the algorithm we implement it
on several values including ∆ = 10, 20 and 40. The results are shown in Figure 4. It is obvious that the
algorithm performs well for all values of ∆ but gives some preferences to ∆ = 40 at which the E(OCm)
approaches zero.

Figure 4. The average of E(OCm) and ∆ for n = 10,m = 3, t0 = 10 over 100 replications.
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Now we increase the number of inventory policies to n = 40, these are: (si, S i) = {(20, 40),
(20, 50), (30, 50), (30, 60), (20, 70), (50, 70), (30, 80), (40, 80), (50, 80), (40, 90), (60, 90), (70, 90),
(20, 100), (30, 100), (50, 100), (60, 100), (70, 100), (80, 100), (20, 110), (30, 110), (40, 110), (50, 110),
(60, 110), (70, 110), (80, 110), (90, 110), (20, 120), (30, 120), (40, 120), (50, 120), (60, 120), (70, 120),
(80, 120), (90, 120), (100, 120), (20, 130), (30, 130), (40, 130), (50, 130), (60, 130)}. We seek to select
the subset of 5 best policies, m = 5. The actual best 5 policies for this experiment are:
(20, 40), (20, 50), (20, 70), (30, 50) and (30, 60). Apply Algorithm 1 to select the top 5 inventory
policies. We investigate how the algorithm’s performance is impacted by the simulation parameters,
including initial sample size t0 and the increase in simulation samples ∆. We assume the given budget
is T = 2500 that need to distributed among all the policies to select the best 5. We first run the
algorithm when ∆ = 20, and t0 = 10, Table 2 lists the experimental results, with 10 replicates for
selecting the top 5 inventory policies.

Table 2. Numerical illustration for n = 40,m = 5, t0 = 10,∆ = 20,T = 2500.

Best Policies TCm TCOCBAm E(OCm) P(CS m)

{(20, 40), (20, 50), (40, 80), (30, 50), (30, 60)} 173.532632 174.610776 1.078144 0.8
{(20, 40), (20, 50), (20, 70), (30, 50), (30, 60)} 168.687012 168.687012 0 1.0
{(20, 40), (20, 110), (20, 70), (30, 100), (30, 60)} 175.987590 175.103955 0.883635 0.6
{((20, 40), (20, 50), (20, 70), (30, 50), (30, 60)} 171.611012 171.611012 0 1.0
{(20, 40), (20, 50), (20, 70), (30, 50), (30, 60)} 166.978354 166.978354 0 1.0
{(50, 80), (40, 90), (50, 70), (30, 50), (30, 60)} 199.28564244 203.19795356 3.912311 0.4
{(20, 40), (20, 50), (40, 120), (30, 50), (30, 60)} 148.925846 148.462369 0.463477 0.8
{(20, 40), (20, 50), (20, 70), (30, 50), (30, 60)} 169.434658 169.434658 0 1.0
{(20, 40), (20, 50), (20, 70), (30, 50), (30, 60)} 173.625413 173.625413 0 1.0
{(20, 40), (20, 130), (20, 70), (60, 90), (30, 60)} 193.724587 195.343654 1.619067 0.6

Average measure 0.795663 0.82

As we have seen in the first example, the expected opportunity cost gives a better measure for the
selected subset than the probability of correct selection. The average over 10 replications is given
the in last row, E(OCm) = 0.795663 and P(CS m) = 0.82. We run the experiment for one hundred
replicates. The experimental outcomes reveal that the average value of the expected opportunity cost
for selecting 5 inventory policies is E(OCm) = 0.9420510355. Figure 5 shows E(OCm) values for the
100 replications.

To see the impact of the parameters t0 and ∆ on the algorithm, it is first conducted for several values
of t0 including t0 = 10, 20 and 40. Figure 6 displays the average value E(OCm) against the total budget
spent over the 100 replications. It is clear that the average value of E(OCm) approaches zero as the
number of computational budgets increases for all values of t0.

Now the algorithm is conducted using several values of ∆ including ∆ = 10, 20 and 40 for selecting
the best 5 inventory policies, and the results are shown in Figure 7. Again we see that the average
value E(OCm) approaches zero as the computational budget increases for all values of ∆. Therefore,
we conclude that the algorithm is robust.
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Figure 5. The average value of E(OCm) for selecting m = 5 policies from n = 40 inventory
policies over 100 replications.

Figure 6. The performance of the algorithm for several values of t0 where n = 40,m = 5,∆ =
20 over 100 replications.

Figure 7. The performance of the algorithm for several values of ∆where n = 40,m = 5, t0 =

20 over 100 replications.
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It is further noted that in the second experiment there were 40 policies, it was observed that the
performance of this method is comparatively worse as compared to the first experiment, 10-policies
from E(OCm) contexts of incorrect selection. It is because in the 40-policies experiment we use the
Algorithm (1) to select 5 inventory policies and if anyone from these 5 policies does not belong to
the actual best set of policies; (20, 40), (20, 50), (20, 70), (30, 50) and (30, 60), this means the selection
will be considered as an incorrect selection. However, from the two experiments, 10-policies and 40-
policies, it was observed that Algorithm (1) performed better in selecting the best m inventory policies
with minimum E(OCm), with the different parametric settings.

5. Conclusions

In this study, we discussed how to select a subset of the best policies with the minimum total cost
of a stochastic inventory management problem. The total costs includes the ordering, handling and
shortage cost. The optimal computing budget allocation OCBAm approach is used for selecting the best
m inventory policies in the context of the expected opportunity cost E(OCm) as a measure of quality.
The OCBAm is implemented on an inventory model using different parameter settings and compared
with the probability of correct selection P(CS m) measure. It is clear that the algorithm is robust as it
gives good solutions over a wide range of the initial sample size t0 and the increment in each step, ∆ ,
but of course, the selection of the initial sample size t0 is crucial because using a small value will not
give detailed information about the model, however, large values will consume more effort on irrelevant
solutions. Moreover, it also assumes that all details about the model are in hand. However, using the
E(OCm) gives better measurement than P(CS m) because even if the selected subset is not the actual
subset, the total costs of the selected policies are very close to that of the actual ones. Therefore, the
E(OCm) is very close to zero. However, using the P(CS m) gives that the probability of correct selection
is small. So we recommend using the expected opportunity cost as a measure of selection quality. In
the future, we are interested to extend the work for solving supply chain management problems.

We suggest for decision-makers and managers to use the expected opportunity cost as a measure of
performance for selecting the best policies rather than the probability of correct selection, the reason
for that they may need extensive simulation runs in order to increase the correct selection.
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