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1. Introduction

Although the Black-Scholes-Merton (BS) model [1, 2] proposed in 1973 has attracted a lot of
attention from theoretical researchers and financial practitioners because of its simplicity and
tractability, the assumptions of this model are far away from reality. For example, the model assumes
that the volatility of the underlying asset price is constant, which is inconsistent with the fact that the
implied volatility extracted from real trading data often presents a “smile” or “smirk”. Therefore, a
number of researchers have improved the BS model by relaxing the model assumption that the
volatility is constant. Among them, the stochastic volatility model has received a lot of attention.

Hull and White [3] first proposed the concept of stochastic volatility and used the Taylor expansion
to obtain the pricing formula of European options. However, this model assumes a zero correlation
between the asset price and volatility process, which contradicts the “leverage effect” demonstrated
by Bakshi et al. [4]. Stein and Stein [5] derived an analytical pricing formula for European options by
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assuming that the underlying asset price follows the Ornstein-Uhlenbeck process. However, this model
produces negative volatility values, which is clearly contrary to reality. Heston [6] made a breakthrough
by proposing to use the Cox-Ingersoll-Ross (CIR) process to describe the dynamic process of the
volatility since it satisfies a series of properties, including the non-negativity and mean reversion. Under
this model, the analytical solution of European options can also be derived, so that model calibration
can be carried out at a reasonable speed.

Furthermore, Christoffersen et al. [7] proposed the double Heston model and their empirical results
demonstrated that the double Heston model was more flexible than the Heston model in establishing
the volatility term structure and could provide a better fit to market option data than the Heston model.
Moreover, the double Heston model, which consists of two unrelated processes, keeps the
characteristics of the Heston model that it is easy to calculate, and it is possible to get analytical or
semi-analytical solutions when pricing path-dependent options under the double Heston model.
However, it should be remarked that the square root process of the Heston model ignores the
nonlinear properties of option prices observed in the real market, which has prompted many
researchers to improve the Heston stochastic volatility model in recent years [8–10]. In particular,
Christoffersen et al. [11] and Chourdakis [12] found that the non-affine stochastic volatility model was
better than other stochastic volatility models (including the Heston model) in describing the nonlinear
characteristics observed from the trading data of the options market.

Motivated by the advantages of the non-affine stochastic volatility model as well as the double
Heston model, we propose a two-factor non-affine stochastic volatility model for the price process of
the underlying asset, and consider the pricing problem of European options under the newly proposed
model. Due to the complicated model dynamics, it is not possible to derive an analytical solution
to the characteristic function of the underlying log price, and we adopt the perturbation method to
approximate the characteristic function, so that European options can be analytically evaluated with
a Fourier cosine series through the COS method [13–17]. The economic implication of our proposed
two-factor non-affine stochastic volatility model can be illustrated from two aspects; a) volatility smile
or smirk can be better captured by multi-factor stochastic volatility models [7], and (b) non-affine
stochastic volatility is able to not only describe the mean reversion characteristics of the time series of
option price volatility, but also describe the nonlinear characteristics observed from the trading data of
the options market.

The rest of this paper is organized as follows. A two-factor non-affine stochastic volatility pricing
model is proposed in Section 2. In Section 3, an analytical pricing formula is derived using the Taylor
expansion and COS method which can reduce the computational complexity. In Section 4, Some
numerical examples and calibration analysis are provided to test our results, after which we conclude
the paper.

2. Model specification

Let {Ω,Ft,Q} be a complete probability space with a filtration continuous on the right, where Q is
a risk-neutral probability measure. The price process of the underlying asset, S t, and the processes of
the volatility, v1t and v2t, are specified under Q as follows

dS t

S t
= rdt +

√
v1tdW1s(t) +

√
v2tdW2s(t), (2.1)
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dv1t = κ1 (θ1 − v1t) dt + σ1v1tdW1v(t), (2.2)
dv2t = κ2 (θ2 − v2t) dt + σ2v2tdW2v(t), (2.3)

where Cov (dW1s(t), dW1v(t)) = ρ1dt and Cov (dW2s(t), dW2v(t)) = ρ2dt. The pairs of W1s(t) and W2s(t),
W1s(t) and W2v(t), as well as W2s(t) and W1v(t), are uncorrelated. k1, θ1, σ1 and k2, θ2, σ2 represent the
mean-reversion speed, long-term mean and instantaneous volatility of the volatility processes v1t and
v2t, respectively.

If we make the transformation of xt = ln(S t/K), Eqs (2.1)–(2.3) can be reformulated as

dxt = (r −
v1t + v2t

2
)dt +

√
v1tdW1s(t) +

√
v2tdW2s(t), (2.4)

dv1t = κ1 (θ1 − v1t) dt + σ1v1t

(
ρ1dW1s(t) +

√(
1 − ρ2

1

)
dW⊥

1v(t)
)
, (2.5)

dv2t = κ2 (θ2 − v2t) dt + σ2v2t

(
ρ2dW2s(t) +

√(
1 − ρ2

2

)
dW⊥

2v(t)
)
. (2.6)

3. The pricing of European options

In this section, we derive an approximation to the characteristic function of the underlying log-price,
based on which an analytical formula for European option prices with the COS method is obtained.

3.1. An approximate characteristic function

It is well-known that if we are able to derive the characteristic function of the underlying log price,
then it would be fairly straightforward to derive the European option pricing formula. With the
definition of the characteristic function as

Φ(x, v1, v2, τ; u) = EQ
[
eiuxT |xt = x, v1t = v1, v2t = v2

]
,

where T ≥ t, τ = T − t, i =
√
−1, its analytical approximation is presented in the following theorem.

Theorem 1. If we assume that the price process of the underlying asset and the volatility processes
satisfy Eqs (2.1)–(2.3), the characteristic function of xT can be approximated by

Φ(x, v1, v2, τ; u) = exp {iux + A(u, τ) + B1(u, τ)v1 + B2(u, τ)v2} , (3.1)

where

A (u, τ) = riuτ −
1
4

(iu + u2)(θ1 + θ2)τ −
α3

α2

[
β1τ + ln

(
−β2 + β1e−ατ

α

)]
−
ξ3

ξ2

[
η1τ + ln

(
−η2 + η1e−ξτ

ξ

)]
−

1
2

(B1(u, τ)θ1 + B2(u, τ)θ2) ,

B1 (u, τ) = α0
1 − e−ατ

−β2 + β1e−ατ
, B2 (u, τ) = α0

1 − e−ξτ

−η2 + η1e−ξτ
,
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with

α0 = −
1
2

(iu + u2), α1 =
3
2
θ

1
2
1σ1ρ1iu − κ1,

α2 = σ
2
1θ1, β1 =

α1 + α

2
, β2 =

α1 − α

2
, η2 =

ξ1 − ξ

2
,

α =
√
α2

1 − 4α0α2, ξ1 =
3
2
θ

1
2
2σ2ρ2iu − κ2, ξ2 = σ

2
2θ2, η1 =

ξ1 + ξ

2
,

ξ =
√
ξ2

1 − 4α0ξ2, α3 =
1
2
θ1κ1 +

1
4
σ1ρ1iuθ

3
2
1 , ξ3 =

1
2
θ2κ2 +

1
4
σ2ρ2iuθ

3
2
2 .

Proof. Applying the Feynman-Kac theorem yields the partial differential equation (PDE) governing
Φ(x, v1, v2, τ; u) as

−
∂Φ

∂τ
+

(
r −

v1 + v2

2

)
∂Φ

∂x
+

v1 + v2

2
∂2Φ

∂x2 +

2∑
j=1

(
κ j(θ j − v j)

∂Φ

∂v j

+
1
2
σ2

jv
2
j
∂Φ2

∂v2
j

+ v
3
2
j σ jρ j

∂2Φ

∂x∂v j

 = 0, (3.2)

with the boundary condition given by

Φ (x, v1, v2, 0; u) = eiux.

As the above PDE is clearly nonlinear, it does not admit a closed-form solution, and thus we try to
first linearize it. The idea is to approximate v

3
2 and v2 in the PDE using the Taylor expansion around

the long-term mean of the volatility as follows:

v2
j ≈ 2θ jv j − θ

2
j , (3.3)

v
3
2
j ≈

3
2
θ

1
2
j v j −

1
2
θ

3
2
j (3.4)

where j = 1, 2. Substituting Eqs (3.3) and (3.4) into (3.2) leads to

−
∂Φ

∂τ
+

(
r −

v1 + v2

2

)
∂Φ

∂x
+

v1 + v2

2
∂2Φ

∂x2 +

2∑
j=1

(
κ j(θ j − v j)

∂Φ

∂v j

+
1
2
σ2

j(2θ jv j − θ
2
j )
∂Φ2

∂v2
j

+
∂2Φ

∂x∂v j
(
3
2
θ

1
2
j v j −

1
2
θ

3
2
j )σ jρ j

 = 0. (3.5)

Following Duffie et al. [18], we now assume that the solution to PDE (3.5) takes the form of

Φ(x, v1, v2, τ; u) = exp {iux + A(u, τ) + B1(u, τ)v1 + B2(u, τ)v2} , (3.6)

with the boundary conditions
A(u, 0) = B1(u, 0) = B2(u, 0) = 0.

The substitution of Eq (3.6) into (3.5) yields
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−

(
∂A
∂τ
+
∂B1

∂τ
v1 +

∂B2

∂τ
v2

)
+

(
r −

v1 + v2

2

)
iu +

v1 + v2

2
(iu)2

+

2∑
j=1

(
κ j(θ j − v j)B j +

1
2
σ2

j(2θ jv j − θ
2
j )B

2
j + (

3
2
θ

1
2
j v j −

1
2
θ

3
2
j )σ jρ jiuB j

)
= 0. (3.7)

By matching the coefficients, we can derive the following three ordinary differential equations (ODEs)

∂B1

∂τ
= σ2

1θ1B2
1 +

(
3
2
σ1ρ1θ

1
2
1 iu − κ1

)
B1 −

1
2

(iu + u2), (3.8)

∂B2

∂τ
= σ2

2θ2B2
1 +

(
3
2
σ2ρ2θ

1
2
2 iu − κ2

)
B2 −

1
2

(iu + u2), (3.9)

∂A
∂τ

= riu +
2∑

j=1

[
κ jθ jB j −

1
2
σ2

jθ
2
j B

2
j −

1
2
σ jρ jθ

3
2
j iuB j

]
. (3.10)

ODEs (3.8) and (3.9) are clearly Riccati equations, whose solutions can be respectively written as

B1 (u, τ) = α0
1 − e−ατ

−β2 + β1e−ατ
,

B2 (u, τ) = α0
1 − e−ξτ

−η2 + η1e−ξτ
.

Multiplying θ1/2 and θ2/2 respectively on both sides of Eqs (3.8) and (3.9), and substituting them into
(3.10), we can obtain

∂A
∂τ
= riu +

2∑
j=1

(
(
1
2
θ jκ j +

1
4
σ jρ jiuθ

3
2
j )B j −

1
4

(iu + u2)θ j

)
−

1
2

(
∂B1

∂τ
θ1 +

∂B2

∂τ
θ2

)
,

integrating on both sides of which leads to the final expression of A (τ, u). This completes the proof.
It should be pointed that once the analytic expression of the characteristic function has been

obtained, the cumulants of lnS T can be computed, which will be used in the truncation of the
computational domain of option pricing [13]. In particular, the n-th cumulant of lnS T is given by

cn =
1
in

∂n (lnΦ(u))
∂un

∣∣∣∣∣
u=0

.

3.2. An analytical pricing formula

The risk-neutral pricing rule implies that European options can be evaluated through [19]

P (x, v1, v2, t0) = e−r∆t
∫ ∞

−∞

p(y,T ) f (y|x, v1, v2)dy, (3.11)

where x = ln (S 0/K), y = ln (S T/K), f (y|x, v1, v2) is the probability function of y given x, v1, v2, and
p(y,T ) is the payoff function of a European option at maturity given by

p(y,T ) = g(y) = [αK (ey − 1)]+ , α =

{
1, for a call
−1, for a put.
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Although the expression of f (y|x, v1, v2) is unknown, we can formulate it with a Fourier cosine
series [10] as

f (y|x, v1, v2) ≈
2

b − a

N−1∑′

k=0

Re
{
Φ

(
x, v1, v2, τ;

kπ
b − a

)
eikπ x−a

b−a

}
cos

(
kπ

y − a
b − a

)
(3.12)

where
∑′ means the first term of the summation is multiplied by 1/2, Re{·} denotes taking the real

part of a complex number, and Φ(x, v1, v2, τ; u) is the characteristic function of f (y|x, v1, v2). a, b are
respectively the lower and upper bounds used for the integration interval in the Fourier cosine method.

Substituting Eq (3.12) into (3.11) and interchanging integration and summation, the approximate
price of European options P (x, v1, v2, t0) can be derived as

P̂ (x, v1, v2, t0) = e−r∆t
N−1∑′

k=0

Re
{
Φ

(
x, v1, v2, τ;

kπ
b − a

)
eikπ x−a

b−a

}
Vk

where

Vk =
2

b − a

∫ b

a
p(y,T ) cos

(
kπ

y − a
b − a

)
dy.

This means that the remaining task is to calculate the coefficients Vk. For a European call option, we
denote

χk (x1, x2) =
∫ x2

x1

ex cos
(
kπ

x − a
b − a

)
dx

=
1

1 +
(

kπ
b−a

)2

[
cos

(
kπ

x2 − a
b − a

)
ex2 − cos

(
kπ

x1 − a
b − a

)
ex1

+
kπ

b − a
sin

(
kπ

x2 − a
b − a

)
ex2 +

kπ
b − a

sin
(
kπ

x1 − a
b − a

)
ex1

]
(3.13)

and

ψk (x1, x2) =
∫ x2

x1

cos
(
kπ

x − a
b − a

)
dx

=


b−a
kπ

[
sin

(
kπ x2−a

b−a

)
− sin

(
kπ x1−a

b−a

)]
, k , 0

x2 − x1, k = 0
,

(3.14)

so that Vk can be calculated as:

Vcall
k =

2
b − a

∫ b

0
K (ey − 1) cos

(
kπ

y − a
b − a

)
dy

=
2

b − a
K (χk(0, b) − ψk(0, b)) .
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Similarly, the European put option price can be derived as:

V put
k =

2
b − a

∫ b

0
K (ey − 1) cos

(
kπ

y − a
b − a

)
dy

=
2

b − a
K (−χk(a, 0) + ψk(a, 0)) .

4. Numerical analysis

4.1. Accurate tests

In this subsection, some numerical examples are performed to show the accuracy of the newly
derived formula by comparing the results produced from the formula and those obtained from Monte
Carlo simulation. Without loss of generality, European call options will be used as an example to
demonstrate this, and the integration interval [a, b] is chosen as [13]

[a, b] =
[
c1 + a0 − L

√
c2 +

√
c4, c1 + a0 + L

√
c2 +

√
c4

]
with a0 = ln S 0, L = 10 and cn being the n-th cumulant of lnS T . The number of the sample paths and
time steps for Monte Carlo simulation is 100, 000 and 200, respectively, and N = 210. The default
parameter values are listed in Table 1 for all our numerical examples. The computer used in the
experiments equips an Intel Core i5 CPU with a 1.6+2.1 GHz processor. All of our numerical examples
were performed with Matlab 2020a.

Tables 2 and 3 indicate that the approximation formula is fairly accurate, with the absolute relative
error (Abs R.E.) between European option prices obtained from our formula and those from the Monte
Carlo (MC) simulation across a wide range of strike prices and different maturities being less than
0.7%. On the other hand, one can clearly observe that our approach is significantly faster than the MC
simulation. These demonstrate the accuracy and efficiency of our proposed approach.

Table 1. Parameter values for the numerical experiments.

Parameter r θ1 θ2 ρ1 ρ2 S 0 σ1 σ2 v20 v10

value 0.05 0.05 0.08 -0.5 -0.5 100 0.09 0.09 0.02 0.05
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Table 2. Our price vs. Monte Carlo price when κ1 = 12, κ2 = 16.

T K FC method MC simulation Abs R.E.
90 12.1669 12.2143 0.39%
95 8.6172 8.6609 0.50%

1/6 100 5.7773 5.8104 0.57%
105 3.6629 3.6830 0.55%
110 2.1979 2.2092 0.51%

Time(sec.) 0.935 3.311
90 13.4270 13.4877 0.45%
95 10.1043 10.1586 0.53%

1/4 100 7.3614 7.4044 0.58%
105 5.1948 5.2250 0.58%
110 3.5547 3.5744 0.55%

Time(sec.) 1.092 2.968
90 16.6070 16.6933 0.52%
95 13.6062 13.6841 0.57%

1/2 100 11.0102 11.0760 0.59%
105 8.8058 8.8598 0.61%
110 6.9664 7.0081 0.59%

Time(sec.) 1.076 2.788
90 21.4996 21.6192 0.55%
95 18.7751 18.8837 0.58%

1 100 16.3295 16.4282 0.60%
105 14.1503 14.2381 0.62%
110 12.2214 12.2968 0.61%

Time(sec.) 1.093 2.772
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Table 3. Our price vs. Monte Carlo price when κ1 = 2, κ2 = 3.
T K FC method MC simulation Abs R.E.

90 11.7335 11.7755 0.36%
95 8.0186 8.0582 0.49%

1/6 100 5.0906 5.1190 0.55%
105 2.9922 3.0061 0.46%
110 1.6279 1.6341 0.38%

Time(sec.) 1.638 4.443
90 12.8147 12.8671 0.41%
95 9.3383 9.3862 0.51%

1/4 100 6.5101 6.5461 0.55%
105 4.3404 4.3605 0.46%
110 2.7700 2.7818 0.42%

Time(sec.) 1.581 4.648
90 15.8152 15.8931 0.49%
95 12.7023 12.7719 0.54%

1/2 100 10.0342 10.0906 0.56%
105 7.8015 7.8421 0.52%
110 5.9750 6.0040 0.48%

Time(sec.) 1.613 4.613
90 20.7803 20.8963 0.56%
95 17.9864 18.0928 0.59%

1 100 15.4882 15.5807 0.59%
105 13.2740 13.3527 0.59%
110 11.3273 11.3926 0.57%

Time(sec.) 1.970 4.637

4.2. Sensitivity analysis

In this subsection, we will assess the effect of the following parameters on the prices of European
call options: (i) the underlying asset price S 0 and time to maturity T with t = 0), (ii) correlation
coefficients ρ1 and ρ2, (iii) the long-term mean level θ1 and θ2.

Figure 1 shows the variation of European call option prices with respect to the underlying asset
prices S 0 and time to maturity T − t. Clearly, both a higher S 0 and a higher option remaining time
result in a higher European call price, which is expected since the final return of the European call
option increases with the increase of S 0, and the time value of the option increases with time.

Figure 2 displays the effects of ρ1 and ρ2 on call option prices, and one can clearly observe that
option prices increase with either ρ1 or ρ2, which is as expected since a higher correlation between the
underlying and volatility implies that a positive increase in the volatility will result in a greater climb
in the underlying price, leading to a higher option premium. On the other hand, depicted in Figure 3
is the sensitivity of call option prices with respect to the long-term mean of the volatility θ1 and θ2. It
is not difficult to find that an increase in the long-term mean typically contributes to higher option, and
this can be understood from the fact that increasing the level of the long-term mean is equivalent to
raising the level of volatility in the long run, which implies higher risk and in turn leads call options to
be more expensive.

AIMS Mathematics Volume 8, Issue 2, 4875–4891.
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(a) κ1 = 12, κ2 = 16.

(b) κ1 = 2, κ2 = 3.

Figure 1. European option prices for different S 0 and T .
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(a) κ1 = 12, κ2 = 16.

(b) κ1 = 2, κ2 = 3.

Figure 2. European option prices for different ρ1 and ρ2.
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(a) κ1 = 12, κ2 = 16.

(b) κ1 = 2, κ2 = 3.

Figure 3. European option prices for different θ1 and θ2.

To further investigate the effect of the initial price of the underlying asset and the time to expiry

AIMS Mathematics Volume 8, Issue 2, 4875–4891.
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on the option price, we make S 0 vary between 90 and 115 with other parameters kept unchanged to
produce Figure 4(a,b) is plotted by assuming that the maturity time T changes between 0.1 and 1.
One can observe that our price is larger than the single-factor model price under the current parameter
settings. Of course, the comparison made between our model and the single-factor model in this section
is based on the fact that the corresponding parameters in both models are kept the same, which is not
the case in practice where models need to be calibrated so that model parameters can be determined
from market data. Thus, we are still not sure about the performance of our model in real markets, and
this will be discussed in the next subsection.

(a) T = 0.6.

(b) S 0 = 100.

Figure 4. Our price vs single-factor model price with respect to different S 0 and T .
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4.3. Model calibration

In this subsection, we use the SSE 50ETF option trading data to calibrate the proposed model. We
define the relative mean error sum of squares (RMSE) loss function as follows:

RMS E =
1

NT × NK

NT∑
t=1

NK∑
k=1

(
PΘtk − Ptk

)2
/Ptk

where PΘtk and Ptk means the tth option prices obtained from the model and market with maturity time
T (t) and strike price K(k), respectively. NT is the number of strike prices, and NK is the number of
maturity times. Hence, the parameters can be estimated by solving the following nonlinear
optimization problem:

Θ∗ = arg min RMS E,

where Θ∗ is the optimal parameter vector. The risk-free interest rate is set to be 0.15. We choose the
SSE 50ETF options as of 2 January 2020 for the calibration of the two-factor non-affine stochastic
volatility model and the single-factor one, the estimated parameters for which are listed in Table 4.

Table 4. Parameter values of the two-factor non-affine stochastic volatility model and the
single-factor model calibrated to SSE 50ETF options as of 2 January 2020.

Parameter value Single-factor model Two-factor model

κ1 0.0846 0.0219
θ1 0.261 0.9842
σ1 0.1432 0.0127
ρ1 −0.9974 −0.9840
v10 0.0246 0.0012
κ2 0.0106
θ2 0.0286
σ2 0.2455
ρ2 −0.2183
v20 0.0236

To test the performance of the proposed model, we give the following two measures, i.e., the
relative mean absolute error (RAE) and the relative mean squared error (RSE), which are respectively
defined as

RAE =
1
N

N∑
k=1

∣∣∣PΘk − Pk

∣∣∣
Pk

,

RS E =
1
N

N∑
k=1

(
PΘk − Pk

)2

Pk
,
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where Pk and PΘk denote the kth market price and model price, respectively, and N means the number of
options used in calibration. We compute the above three errors of the two-factor non-affine stochastic
volatility model and those of the single factor one using the obtained calibrated parameters listed in
Table 4, the results of which are provided in Table 5. We can easily observe that our two-factor
non-affine stochastic volatility model provides better performance when pricing European options,
compared with the single-factor model.

Table 5. Comparison of the RAE and RSE between the two-factor non-affine stochastic
volatility model and the single factor one for pricing SSE 50ETF options as of 2 January
2020.

RAE RSE
In-sample Out-of-sample In-sample Out-of-sample

One-factor model 0.0328 0.0405 0.1067 0.1116
Two-factor model 0.0326 0.0400 0.1066 0.1113

5. Conclusions

Motivated by the nonlinear characteristics of the volatility as well as the advantages of multi-factor
stochastic volatility models, this paper proposes a two-factor non-affine stochastic volatility model for
option pricing. Based on the Taylor expansion and COS method, we derive an analytical approximation
formula for European option prices, after the characteristic function of the underlying log price is
successfully derived. Through numerical experiments, we verify our formula by comparing it against
Monte Carlo simulation, and the influence of main model parameters on option prices under the newly
proposed model is also shown. We also show through some empirical analysis that our two-factor
non-affine stochastic volatility model performs better than the single-factor model does for the pricing
of European options.
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