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Abstract: We focus on the two-stage stochastic programming (SP) with information update, and 
study how to evaluate and acquire information, especially when the information is imperfect. The 
scarce-data setting in which the probabilistic interdependent relationship within the updating process 
is unavailable, and thus, the classic Bayes’ theorem is inapplicable. To address this issue, a robust 
approach is proposed to identify the worst probabilistic relationship of information update within the 
two-stage SP, and the robust Expected Value of Imperfect Information (EVII) is evaluated by 
developing a scenario-based max-min-min model with the bi-level structure. Three ways are 
developed to find the optimal solution for different settings. Furthermore, we study a costly 
information acquisition game between a two-stage SP decision-maker and an exogenous information 
provider. A linear compensation contract is designed to realize the global optimum. Finally, the 
proposed approach is applied to address a two-stage production and shipment problem to validate the 
effectiveness of our work. This paper enriches the interactions between uncertain optimization and 
information management and enables decision-makers to evaluate and manage imperfect information 
in a scarce-data setting. 
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1. Introduction  

High-quality decisions rely on obtained information. When a decision-maker makes a so-called 
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here-and-now (HN) decision, it is necessary to consider the uncertain parameter that reveals in the 
future, such as market demand in the business setting, or the scale of the disaster in humanitarian 
relief. Stochastic programming (SP) is an often-used framework for addressing such problems. The 
distribution of the uncertainty considered by the decision-maker is an approximate representation of 
the true status. In this setting, to improve decision quality, a possible way is to acquire extra 
information. However, the information obtained is usually imperfect [1,2]. To evaluate the value of 
the information, a Bayesian calculation is usually required to assess posteriori probabilities of 
uncertainties [3–5]. 

In many applications, however, the probabilistic structure used in the Bayesian update might be 
unavailable due to the following two reasons.  

First, assessing likelihood functions is difficult and uncommon [6], as it requires abundant 
historical data [7]. However, data scarcity exists in a wide range of industries [8–11]. For example, 
during the design and production stage of a new product, information on future demand is usually 
unavailable. As a consequence, the planning decisions will be made based on limited data. Moreover, in 
the disaster setting, a serious natural disaster in a given area seldom actually happens in practice. For 
instance, only seven major earthquakes occurred in the Longmengshan Fault in China since 1933 [11]. 
As a result, the data that disaster preparedness depends on is also scarce. Consequently, many 
applications are facing the challenge of data scarcity, which makes the classical Bayesian approach 
inapplicable.  

Second, in the setting of exogenous information acquisition, information providers, e.g., 
consulting firms, may have rich information; while decision-makers, who are in an information 
disadvantage position, usually fail to get exact probabilistic interdependent relationships. 
Accordingly, it is a problematic and cumbersome task for decision-makers to evaluate the value of 
the additional information with the help of Bayes’ theorem in such a setting.  

Thus, it is necessary to consider the challenge of data scarcity in the interactions between 
stochastic optimization and information management. The question is how to evaluate and acquire 
imperfect information for decision-makers using SP in the scarce-data setting. 

In the stochastic environment, to evaluate the value of information, a classical way is to focus 
on the expected value of information (EVOI), which integrates all economic results under the 
possible final realizations of the uncertainties. As is described before, the posteriori probabilities of 
the realizations can be calculated by the Bayesian approach under the given likelihood functions. 
Then, the EVOI can be measured by the expected added value from the additional information, 
which is the difference between the benefits under the priori and posteriori probabilities. Given the 
fact that the information acquired may be either accurate or inaccurate, the EVOI is further referred 
to as the so-called Expected Value of Perfect Information (EVPI) or Expected Value of Imperfect 
Information (EVII), respectively. The former also provides an upper bound on how much a company 
could pay for any information acquisition activity [3,12,13]. The latter can be used to measure the 
value of imperfect information [1,14] and has drawn lots of research attention [15–17] in the 
Bayesian context. 

Unlike the aforementioned methods, the model established in this paper focuses on the 
scarce-data environment where the required probabilistic structure for the Bayesian model is 
unavailable. Moreover, the following approaches are taken to mitigate the negative influence of data 
scarcity on decision-making quality. 

First, add flexibility to decision-making procedures to improve decision-making outcomes. To 
be specific, the two-stage optimization approach is incorporated into our study, in which decisions 
are composed of HN and recourse actions. The former should be determined now, while the latter can be 
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given when uncertain parameters reveal their values. By doing so, much better results can be generated 
compared to the static decision-making way [18]. The two-stage SP model is thus adopted here. 

Moreover, acquiring exogenous information is another efficient way to meet the scarce-data 
challenge. In such a setting, an information acquisition game involving an information provider is 
designed. The problem is whether it is beneficial to motivate the provider to enhance information 
accuracy, especially when the enhancement is costly. Does an optimal coordination mechanism exist? 

Hence, this paper concentrates on the information evaluation and acquisition for 
decision-makers who adopt two-stage SP. The EVII evaluation and costly information acquisition 
game have been extensively studied in previous works, and most assume the probabilistic 
interdependent relationship is available. However, those studies have actually left the questions 
mentioned above unexplored. To fill this gap, we perform the following research. 

First, a robust way is proposed to identify the worst probabilistic structure. Specifically, to 
characterize the information imperfectness, a budget value is introduced, i.e., the information 
inaccuracy ratio (IIR), which can be easily obtained from limited historical observations. Then, under 
the ambiguity set constrained by the budget value, a robust way is adopted to replace the Bayesian 
calculation, and thus, the classic wait-and-see (WS) solution in two-stage SP is extended to the 
robust setting. The problem is formulated as a max-min-min model with a bi-level structure and three 
ways are developed to address the model optimally. Thus, the EVII can be measured by the 
difference between the value of the robust WS and the expected value with the priori distribution of 
underlying uncertainties only. Now that the EVII is calculated, when the imperfect additional 
information is worthless can also be identified. 

Second, a costly information acquisition game is studied, in which the decision-maker, who chooses 
the two-stage SP, can acquire an imperfect forecast from an exogenous information provider. To model 
this issue, a Stackelberg game is proposed and a linear compensation contract is designed to realize the 
global optimum. Finally, we show the application of our study in a two-stage shipment problem. 

As such, our study differs from the previous studies in both the problems addressed and the 
approach used. More specifically, this paper focuses on the two-stage SP with imperfect information 
update and the costly information acquisition cooperation in the scarce-data setting, which are 
involved in a broad family of uncertain optimization and decision-making problems. In terms of 
approach, the classical Bayesian structure is inapplicable due to the unavailability of likelihood 
functions. Thus, a novel and robust model is created in this paper and under the model, several 
approaches are proposed to evaluate the EVII by identifying the worst Bayesian structure.  

The remainder of the paper is organized as follows. Section 2 reviews the relevant literature and 
summarizes the contributions. Section 3 focuses on the EVII in the two-stage SP, including its 
assumption, definition, and computation. Then, the costly information acquisition game is studied in 
Section 4. Section 5 applies the proposed approach to a two-stage production and shipment problem. 
Finally, Section 6 contains some concluding remarks. All the proofs are provided in the appendix. 

2. Literature review 

This paper connects the studies on the EVOI and costly information acquisition game. In this 
section, we briefly discuss the literature related to these two streams. 

2.1. Evaluation of EVOI 

Here, we focus on the EVOI in terms of the economic consequences of decision-making. To 
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evaluate the EVOI, one of the most well-known metrics is EVPI, which measures the expected gain 
based on perfect information [13]. It has found widespread applications, e.g., in manufacturing [19], 
in supply chain risk mitigation [20], and in power planning [21]. 

Nevertheless, in practice, it is impossible to get perfect information [1,2]. Thus, an alternative 
metric, i.e., the EVII, is developed. Howard [3] is one of the pioneers who apply the Bayes-based 
approach in estimating the EVOI. The imperfectness of the information system can be captured by 
the likelihood functions between the state of nature and additional information. After that, existing 
works study the combination of decision analysis and EVII in various settings. A few papers focus on 
specific application areas, such as medical health [2], oil and gas [6], portfolio [22], and newsvendor 
problems [23]. In addition, some studies consider different problem settings, such as multiple 
information sources [14,24], and multicriteria analysis [15,16,25]. Furthermore, in a Bayesian update, 
the additional information can take the forms of point or probabilistic estimates [26], which also 
draws corresponding research [27,28]. These works incorporate the EVII into the decision analysis 
context and evaluate it by economic impacts. However, in the OR context, the literature is limited and 
some works incorporate Bayesian update into two-stage or multi-stage SP. For instance, Morton et al. [29] 
combine Bayesian prediction and two-stage SP to address uncertain up-times of manufacturing 
equipment and uncertain production rates in an employee scheduling problem. Dowson et al. [30] design 
a multi-stage SP formulation to incorporate belief states, which can be captured by a Bayesian update.  

Unlike the previous works, this paper focuses on the scarce-data challenge, in which the 
probabilistic structure used in information update might be unavailable. To address this issue, the point 
estimation way is applicable here and a robust approach is developed to handle the uncertain information 
update in the two-stage SP setting. Up to now, far too little attention has been paid to this issue. 

2.2. Costly information acquisition game 

Our work is also related to the costly information acquisition game, in which most studies focus 
on the applications for auction or supply chain problems.  

Regarding the auction, previous works consider that bidders have no or limited information 
about their valuations for items sold before the auction begins, and they can determine whether to 
implement costly information acquisition or not before or during the auction. For example, Compte 
and Jehiel [31] consider the costly information acquisition in an ascending price auction. The bidder 
acquires his valuation information during the auction at a known cost. Miettinen [32] studies a 
similar problem in a Dutch auction. Azevedo et al. [33] design a channel auction that combines 
English and Dutch auctions. It allows bidders to access the information by incurring a cost. Golrezaei 
and Nazerzadeh [34] design a two-stage mechanism in which the auctioneer can strategically control 
the information access based on a second-price auction. In these studies, the bidders can refine their 
valuations through information acquisition.  

Moreover, since information is a crucial driver of supply chain performance improvement, there 
has been a growing body of literature that quantifies the EVOI. Some of them take the costly 
information acquisition activity into account. For instance, Fu and Zhu [35] focus on a two-tier 
supply chain consisting of a supplier and a buyer with the consideration of quantity discount, 
buy-back, and revenue-sharing contracts. During the implementation of the contracts, the buyer can 
acquire endogenous demand information with a cost. Li et al. [36] concentrate on upstream firms’ 
information acquisition activities. Differing from these works, Fu et al. [37] focus on another market 
structure composed of two competing firms. Both firms can determine their production quantities with a 
costly forecast. These papers have all taken uncertain demand into account. Quality information, which 
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can influence market demand, has also drawn some research in recent years [38,39].  
In summary, the aforementioned works have studied the trade-off between the acquisition cost 

and the EVOI obtained within auction or supply chain operations, in which Bayesian calculations are 
performed based on the probabilistic structure of information. In other words, the challenge of data 
scarcity is ignored. In such a context, a two-stage decision-making way can bring better performance [18]. 
However, how to incorporate the two-stage way into the costly information acquisition game remains 
unexplored.  

2.3. Our contributions 

Based on the aforementioned literature review, the contribution of this paper is twofold.  
(i) Focus on a two-stage SP with imperfect information update and study the EVII in the 

scarce-data setting, which is ignored in previous works. We develop a novel and robust model to 
evaluate the WS value, utilizing only an IIR parameter instead of a complicated probabilistic 
structure. Three ways are taken to address the intractability of the proposed model, including 
numerical, analytical, and equivalent reformulation, which are suitable for different settings. 

(ii) Furthermore, optimization and information management are two significant challenges to 
many real-world problems. Our study takes the two-stage SP and information quality improvement 
into account and sheds light on their interactions by developing a costly information acquisition 
game. Moreover, a win-win coordination mechanism is designed for the game. To the best of our 
knowledge, no similar work has been done before. 

3. The EVII in two-stage SP 

This section first reviews the general formulation of the two-stage SP and the well-known EVPI 
concept. Second, the robust WS in the imperfect information setting is proposed and a bi-level model 
is developed to evaluate the robust WS value. Finally, three approaches are designed to calculate the 
model and then the EVII is obtained in a robust setting.  

Before that, the abbreviations, sets, parameters, and variables used in the model formulation, 
including the evaluation of the EVII and the costly information acquisition game, are given below 
(see Table 1).  

Table 1. Descriptions of abbreviations, sets, parameters, and variables in the model formulation. 

Symbols Description 
SP Stochastic programming 
HN Here-and-now 
WS Wait-and-see 
RP Recourse problem 
EVOI The expected value of information 
EVPI The expected value of perfect information 
EVII The expected value of imperfect information 
IIR Information inaccuracy ratio 
S, 𝑠 The set and indices of scenarios, 𝑠 ∈ 𝑆 
𝑠  The forecast scenario, 𝑠 ∈ 𝑆 
 Continued on next page 
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Symbols Description 
𝑠  The realization, 𝑠 ∈ 𝑆 
𝜆( | ) The conditional probability of the forecast scenario 𝑠  occurring given 

the realization 𝑠  
𝑝  The probability of scenario 𝑠  
Γ The IIR value 
𝑐 Cost coefficient associated with the HN decisions 
𝑞 Cost coefficient associated with the recourse decisions 
𝜏 Unit information quality cost associated with the existing Γ 
𝜏 , 𝜏  Unit information improvement cost associated with ∆Γ and ∆Γ  
𝜃 The payoff from the SP decision-maker to the information provider for 

her information with the IIR Γ 
𝑥, 𝑋 The HN decisions and the feasible space 
𝑦, 𝑌 The recourse decisions and the feasible space  
∆Γ The value of information quality improvement 
𝛼, 𝛽 The variables specify a linear compensation contract 

3.1. Basic concepts in the perfect information setting 

Consider a two-stage linear SP, in which HN decisions 𝑥(∈ ℝ  or ℤ ) should be determined 
before uncertain parameters reveal their values, while recourse decisions 𝑦(∈ ℝ  or ℤ ) are 
dependent on 𝑥 and the realization of the parameters. Let S be the set of scenarios describing the 
underlying uncertainties and 𝑠(∈ 𝑆) be one realization among the scenarios. 

Thus, the objective of the two-stage SP, a.k.a., recourse problem (RP), is to minimize the total 
cost of two stages, in which the second-stage recourse cost is an expected value under a set of 
discrete scenarios:  

RP = min
∈

𝑐 𝑥 + E min
( )∈ ( , )

𝑞(𝑠) 𝑦(𝑠) ,       (1) 

where 𝑋 is the feasible space of 𝑥, and 𝑌(𝑥, 𝑠) is the feasible space of 𝑦 defined by the given 𝑥 
and realization 𝑠. For 𝑦 and coefficient 𝑞 are scenario-dependent, denote them as 𝑦(𝑠) and 𝑞(𝑠), 
respectively. 𝑐 ∈ ℝ , 𝑞 ∈ ℝ . The RP value gives the expected performance without additional 
information. 

Moreover, Madansky [40] introduces WS value. It is an expected value that can be calculated 
by first acquiring the perfect information and then making the best decision: 

WS = E min
( )∈

𝑐 𝑥(𝑠) + min
( )∈ ( ( ), )

𝑞(𝑠) 𝑦(𝑠) ,     (2) 

where both the HN decisions and recourse decisions are given based on the perfect information 𝑠. 
Thus, the WS is an expected value of all possible 𝑠. 

Therefore, the EVPI is, by definition, the difference between the WS and RP, namely, 

EVPI = RP − WS.          (3) 

This metric also measures the upper bound of the cost of acquiring complete (and accurate) 
information [41]. 
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3.2. The WS value in the imperfect information setting 

In this section, the WS value is extended to the imperfect information setting and a robust 
formulation is developed to address data scarcity. 

3.2.1. The basic explanations 

Begin with the description of information inaccuracy. Specifically, consider that the 
decision-maker has knowledge about the distribution of scenarios, but is usually unsure which one 
will happen. The decision-maker can learn the future status by a forecast; however, the information 
obtained is usually inaccurate.  

To formulate the case, let 𝑠∗(∈ 𝑆) be the scenario that will happen in the future, but the point 
forecast is 𝑠 (∈ 𝑆). The probability of the corresponding misinformation is denoted as 𝜆 (∈ [0,1]), 
and thus, the total inaccurate probability is ∑ 𝜆∈ , ∗ . Define the IIR, denoted as Γ, which is the 

upper bound of the total inaccurate probability. The exact value of 𝜆  is hard to obtain. In this case, 
assume Γ is available to the decision-maker since historical inaccurate forecasts can be observed 
even the data is scarce. Estimate it by the proportion of the number of inaccurate forecasts to the total 
number of forecasts. Hence, we have:  

∑ 𝜆∈ = 1, ∑ 𝜆∈ , ∗ ≤ Γ < 1.       (4) 

Then, evaluate the EVII by estimating the expected gain of imperfect additional information. As 
is discussed before, the expected benefit without additional information is the RP shown in (1). Thus, 
the key is to give the WS value in the imperfect information setting.  

Obviously, in the perfect information setting, the benefit of the information can be evaluated by 
making the HN and recourse decisions based on the perfect information. The WS value in such a 
setting can be obtained by (2). However, when information is imperfect, the forecast and the final 
scenarios are usually different. In such a setting, decision-makers will of course adjust recourse 
decisions according to the realization. Thus, the WS value can be obtained by first making the 
optimal HN decisions with the forecasting scenario and then by making the best recourse decisions 
with the realization. In this context, the calculation of the two-stage decisions relies on two 
sequential optimization problems. Next, formulate the WS value and incorporate the information 
inaccuracy into the evaluation. 

3.2.2. Formulation 

Based on the above analysis, at first, focus on how to make the best decisions for the forecast. 
Specifically, with the forecast 𝑠 , the optimal HN decisions, denoted as 𝑥∗(𝑠 ), will be given by 
minimizing the two-stage cost as the following linear program: 

𝑥∗(𝑠 ) = argmin
( )∈

𝑐 𝑥(𝑠 ) + min
( )∈ ( ( ), )

𝑞(𝑠 ) 𝑦(𝑠 ) .    (5) 

It is worth noting that both the HN and recourse decisions are given based on the forecast scenario 𝑠 . 
Thus, the inner minimization problem in (5) is an estimation of the recourse cost under the forecast 
scenario 𝑠 . In this way, the value of this additional information can be captured. 

Next, the real scenario, denoted as 𝑠∗, is revealed. The decision-maker will certainly adjust the 
recourse decisions, denoted as 𝑦∗(𝑠 , 𝑠∗), to optimize the recourse cost under the given 𝑥∗(𝑠 ) and 𝑠∗. 
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As such, we have the following linear program: 

𝑦∗(𝑠 , 𝑠∗) = argmin
( , ∗)∈ ( ∗( ), ∗)

𝑞(𝑠∗) 𝑦(𝑠 , 𝑠∗),      (6) 

where the feasible space of 𝑦(𝑠 , 𝑠∗) is dominated by the HN decisions 𝑥∗(𝑠 ) and the realization 𝑠∗. 
Thus, in terms of the forecast scenario 𝑠  and the final realization 𝑠∗, the above two sequential 

optimization models make the two-stage decisions respectively. The WS value, denoted as 
WS(𝑠 , 𝑠∗), is the sum of the first-stage cost determined by 𝑥∗(𝑠 ) and the recourse cost based on 
𝑦∗(𝑠 , 𝑠∗). 

WS(𝑠 , 𝑠∗) = 𝑐 𝑥∗(𝑠 ) + 𝑞(𝑠∗) 𝑦∗(𝑠 , 𝑠∗). 

Moreover, since the final realization 𝑠∗ is unknown in the first stage, use 𝑠  to represent the 
realization and the following formula can be obtained: 

WS 𝑠 , 𝑠 = 𝑐 𝑥∗(𝑠 ) + 𝑞 𝑠 𝑦∗(𝑠 , 𝑠 ).       (7) 

Besides, the conditional probability 𝜆( | )  is introduced to indicate the probability of the 
forecast scenario 𝑠  occurring given the realization 𝑠 . Thus, for the given realization 𝑠 , the 
expected value of (7) can be expressed as ∑ 𝜆( | )WS 𝑠 , 𝑠∈  by considering all possible forecast 
scenario 𝑠 . Furthermore, after taking all possible realization 𝑠  into account, the final expected WS 
value can be written as: 

WS(𝝀) = ∑ 𝑝 ∑ 𝜆( | )WS 𝑠 , 𝑠∈∈ ,       (8) 

where 𝑝  is the probability associated with the scenario 𝑠 . 
As is mentioned before, this paper focuses on the scarce-data setting, in which the probabilistic 

interdependent relationship 𝜆( | ) is hard to give. To address this issue, a robust way is adopted to 

identify the worst probabilistic relationship. Then, the robust WS value under a given IIR Γ, denoted 
as WS (Γ), can be given as:  

WS (Γ) = max
𝝀

WS(𝝀) = max
𝝀

∑ 𝑝 ∑ 𝜆( | )WS 𝑠 , 𝑠∈∈ ,   (9a) 

s.t. 

(5)–(7) 

∑ 𝜆( | )∈ = 1, ∀𝑗,         (9b) 

∑ 𝜆( | )∈ , ≤ Γ, ∀𝑗,         (9c) 

𝜆( | ) ≥ 0,    ∀𝑖, 𝑗.          (9d) 

(9b) ensures that the sum of the conditional probabilities for each given realization is 1. (9c) specifies 
the limit of the IIR Γ. Thus, the ambiguity set defined by (9b) and (9c) characterizes all possible 
probabilistic structures, and the model identifies the worst case. 

Finally, two characteristics of model (9) are discussed below: 
At first, construct the ambiguity set (9b) and (9c) under the information imperfectness limit Γ 

to capture possible probabilistic relationships. Such ambiguity set constrained by a budget value is 
often used in robust optimization [42]. Thus, two benefits exist. One is that the exact probabilistic 
structure is not required here. The other one is that the price of information imperfectness can be 
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explored by varying the budget value, or by comparing various information sources with different 
information imperfectness limits.  

Furthermore, the model is essentially a max-min-min problem with a bi-level structure. The 
objective (9a) defines the upper-level problem to identify the worst information update structure. The 
lower-level is composed of two sequential optimization problems, i.e., (5) and (6), due to the 
two-stage decision-making structure. However, bi-level programs are intractable [43]. To further 
solve the problem, we explore three ways to find its optimal solution. 

3.3. The solving approaches and EVII  

In this section, three approaches are developed to address model (9) at first, and then, the EVII 
concept is discussed. 

3.3.1. The numerical approach 

First, consider a scenario pair 𝑠 , 𝑠  which is composed of the forecast scenario 𝑠  and the 
realization 𝑠 . The value of WS 𝑠 , 𝑠 , see (7), is irrelevant to 𝜆( | ). Thus, it can be given by 

solving (5) and (6) sequentially when 𝑖 ≠ 𝑗, or only by (5) when 𝑖 = 𝑗.  
All WS 𝑠 , 𝑠  can be obtained by enumerating each scenario pair 𝑠 , 𝑠 , which includes 

2|𝑆|(|𝑆| − 1) + |𝑆| = 2|𝑆| − |𝑆| 

linear programs. When all WS 𝑠 , 𝑠  is given, the solving of WS (Γ), see (9), is a linear program. In 
summary, solving problem (9) can be decomposed into a 2|𝑆| − |𝑆| + 1 small-sized linear programs. 

3.3.2. The analytical approach 

Furthermore, when all WS 𝑠 , 𝑠  is given, (9) can also be solved by the following analytical 
way. To be specific, for each j, denote 〈𝑖〉 = argmax

| |,
WS 𝑠 , 𝑠 . In other words, 𝑠〈 〉 is the worst 

forecast scenario for the realization 𝑠 .  
Thus, to maximize (9), set 𝜆(〈 〉| ) to be Γ, and 𝜆( | ) to be 1 − Γ in line with constraint (9b). 

As a result, the optimal solution and objective are as below: 
Proposition 1. Under (9) and the IIR Γ, the optimal 𝜆(Γ) and the corresponding WS (Γ) can be 
given below: 

𝜆∗(𝛤) = 𝜆 | |
∗ (𝛤): 𝜆 〈𝑖〉 𝑗 = 𝛤; 𝜆 𝑖 𝑗 = 0, 𝑖 ≠ 〈𝑖〉, 𝑖 ≠ 𝑗;  𝜆 𝑗 𝑗 = 1 − 𝛤 ,  (10) 

and 

𝑊𝑆 (𝛤) = ∑ 𝑝 𝛤𝑊𝑆 𝑠〈 〉, 𝑠 + (1 − 𝛤)𝑊𝑆 𝑠 , 𝑠∈ = ∑ 𝑝 𝑊𝑆 𝑠 , 𝑠 + 𝛤𝐺∈ ,  (11) 

where 𝐺 = WS 𝑠〈 〉, 𝑠 − WS 𝑠 , 𝑠 . □ 
The above proposition provides an analytical way to address problem (9) optimally. Thus, this 

way can be used in the costly information acquisition game study. Nevertheless, the pre-calculation 
of all WS 𝑠 , 𝑠  is still required. Next, a one-off way is presented. 
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3.3.3. The equivalent reformulation 

Finally, if the decisions of two-stage are linear, a robust counterpart of model (9) can be 
developed. To be specific, re-write problems (5) and (6) as their Karush-Kuhn-Tucker (KKT) 
conditions. For conciseness, introduce operator 𝐶𝑜𝑣 (min (. )), which is a set of equalities and 
inequalities, to represent the KKT conditions of the linear program min (. ). Thus, problems (5) and (6) 
can be equivalent reformulated as:  

𝐶𝑜𝑣 min
( )∈

𝑐 𝑥(𝑠 ) + min
( )∈ ( ( ), )

𝑞(𝑠 ) 𝑦(𝑠 ) ,   (12) 

and  

𝐶𝑜𝑣 min
( , )∈ ( ∗( ), )

𝑞 𝑠 𝑦(𝑠 , 𝑠 ) ,      (13) 

respectively. In (13), 𝑥∗(𝑠 ) is the optimal HN decision of (5), which can also be determined by (12). 
Then, the equivalence can be yielded: 

WS (Γ) = max
, ,

𝑝 𝜆( | )WS 𝑠 , 𝑠
∈∈

 

s.t. 

(7), (9b)–(9d), (12), (13). 

In the objective of this model, 𝜆( | )WS 𝑠 , 𝑠  is a bi-linear term, which makes the model 

intractable. Nevertheless, the following tractable equivalence can be given by introducing auxiliary 
variables and the detailed proof is presented in the appendix.  
Proposition 2. Model (9) can be equivalently reformulated as below:  

WS (Γ) = max
, , ,

∑ 𝑝 ∑ Γ𝜌∈∈ ,       (14a) 

s.t. 

∑ 𝛾∈ = 1,    ∀𝑗,         (14b) 

𝜌 ≤ WS 𝑠 , 𝑠 ,    ∀𝑖, 𝑗,        (14c) 

𝜌 ≤ 𝛾 𝑀,    ∀𝑖, 𝑗,         (14d) 

𝛾 ∈ {0,1},    ∀𝑖, 𝑗,         (14e) 

(7), (12), (13), 

where 𝛾  is the binary auxiliary variable, 𝜌  is the linear auxiliary variable, and M is a number 
big enough. □ 

Notice that it is unnecessary to calculate WS 𝑠 , 𝑠  in (14c) in advance, for the optimal 
decisions involved in WS 𝑠 , 𝑠  are directly given by (12) and (13). 

In summary, problem (9) can be optimally solved through the three approaches. Both the first 
and the second approach can address the problems with linear or integer decision variables, while the 
second one gives the closed-form solution. However, these two approaches can only be adopted to 
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solve a series of small-sized problems. The third approach provides a one-off way but can only 
address linear decision variables. 

3.3.4. The EVII 

The robust WS value can be given by the aforementioned approaches, while the RP can be 
given by (1). Thus: 

EVII = max{RP − WS (Γ), 0},       (15) 

which specifies the worst-expected gain that a decision-maker can obtain in the two-stage SP-based 
manner from an imperfect information source under the IIR Γ. 

Next, the following are discussed. 
At first, the perfect information setting is a special case in our study. To be specific, when Γ =

0, it is the perfect information setting. The robust WS value is given from (11), i.e., WS (Γ = 0), is 
equivalent to the WS value under the perfect information setting, i.e., (2). Then, EVII =  EVPI. In 
the perfect information setting, it is proved that EVPI = RP − WS since RP ≥ WS [40]. When 
imperfect information exists, however, it is evident that WS 𝑠 , 𝑠 ≥ WS 𝑠 , 𝑠 . Thus, 

WS(𝝀) = 𝑝 𝜆( | )WS 𝑠 , 𝑠
∈∈

≥ 𝑝 𝜆( | )WS 𝑠 , 𝑠
∈∈

= 𝑝 WS 𝑠 , 𝑠
∈

= WS 

Furthermore, from (9), with the increase of Γ, the feasible space enlarges. Thus, the WS  
value is non-decreasing, and then, the EVII value is non-increasing with Γ. It means that the 
information imperfectness can deteriorate the EVOI. Hence, a natural question is when the imperfect 
information is worthless. To answer this question, the following model is developed: 

min Γ,           (16a) 

s.t. 

RP ≤ WS (Γ).          (16b) 

This linear programming model can help to identify the minimal Γ, denoted as Γ∗, which 
makes the imperfect information useless. In other words, when the information imperfectness extent 
is bigger than Γ∗, the additional information is unnecessary, and thus, RP solution will be better. 

4. How to cooperate with an imperfect information provider 

In this section, a costly information acquisition game is designed between a decision-maker 
(hereafter “he”) and an imperfect information provider (hereafter “she”), and a dedicated cooperation 
mechanism is developed. 

Assume that the information provider, with the historical IIR Γ, provides information to the 
decision-maker, who adopts the two-stage SP. The latter applies a win-win mechanism to motivate 
the provider to improve her information quality to Γ − ∆Γ. We have Γ∗ > Γ ≥ ∆Γ ≥ 0. The first 
inequality holds because, by (16), one can assume that only when the provider’s IIR is better than Γ∗, 
the cooperation will be considered.  
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The cost of the provider has two parts: 𝜏(1 − Γ) (𝜏 > 0) and 𝜏 ∆Γ + 𝜏 ∆Γ  (𝜏 > 0, 𝜏 > 0). 
The first is the sunk cost associated with the existing IIR Γ. Because perfect information is hard to 
achieve, the closer to the perfectness of the information improvement is, the more cost is required. 
Thus, use the quadratic form to capture the increasing incremental cost property for every amount of 
information quality enhancement. In practical environments, e.g., demand forecast of new products, 
∆Γ can be estimated by the enlargement extent of the market survey scale. 

Thus, before the improvement practice, the EVII of the decision-maker dependent on SP is: 

EVII(Γ) = max{RP − WS (Γ), 0} = RP − WS (Γ). 

The first equality is given by (15), while the second one holds due to Γ∗ > Γ. Similarly, when the 
provider updates her IIR to Γ − ∆Γ, the corresponding EVII equals: 

EVII(Γ − ∆Γ) = max{RP − WS (Γ − ∆Γ), 0} = RP − WS (Γ − ∆Γ). 

Let 𝜋  and 𝜋  be the costs of the information provider and the decision-maker respectively, 
without the information quality improvement practice, 𝜋  and 𝜋  be the costs of two players 
respectively, with the implementation of the practice. Thus: 

𝜋 = 𝜏(1 − Γ) − 𝜃,

𝜋 = 𝜃 + WS (Γ) − RP,
        (17) 

where 𝜃(≤ EVII) is the payoff from the decision-maker to the provider for her information with the 
IIR Γ.  

𝜋 = 𝜏(1 − Γ)+𝜏 ∆Γ + 𝜏 ∆Γ − 𝜈,

𝜋 = 𝜈 + WS (Γ − ∆Γ) − RP,
       (18) 

where 𝜈 is the payment that the decision-maker offers to the provider for her IIR Γ − ∆Γ. 
Here, we focus on information quality improvement in the costly information acquisition game. 

The global optimum is derived first, and then, a mechanism is designed by specifying 𝜈 to realize 
the optimum.  

4.1. The global optimum 

In this section, the global optimum is figured out in the first place and it is then set as the 
benchmark. To get it, discard the payment 𝜈 and consider the centralized way. Thus, from (18), the 
global optimization problem can be written as:  

min
∆

𝜋 + 𝜋  

= min
∆

(𝜏(1 − Γ)+𝜏 ∆Γ + 𝜏 ∆Γ + WS (Γ − ∆Γ) − RP)     (19) 

= 𝜏(1 − Γ) − RP + min
∆

𝜏 ∆Γ + 𝜏 ∆Γ + max
𝝀∈𝚲( ∆ )

WS(𝝀) , 

where 𝚲(Γ − ∆Γ) = 𝜆: ∑ 𝜆( | ) = 1, ∑ 𝜆( | ) ≤ Γ − ∆Γ, ∀𝑗;  𝜆 ≽ 0;  𝜆 ∈ ℝ| |×| | . 

In the robust setting, (19) is a min-max-min-min problem. To be specific, the objective 
function is in the form of min-max, while the constraints involve two sequential minimization 
problems, i.e., (5) and (6). To address its intractability, use (11) in Proposition 1 to replace the 
inner maximization problem in (19). Thus, re-write (19) in the following equivalent way: 
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min
∆

𝜋 + 𝜋 = 

𝜏(1 − Γ) − RP + min
∆

𝜏 ∆Γ + 𝜏 ∆Γ + ∑ 𝑝 WS 𝑠 , 𝑠 + (Γ − ∆Γ)𝐺∈ .  (20) 

Thus, the optimal results of model (20) are given in the following proposition, and its proof is 
presented in the appendix.  
Proposition 3. The optimal solution to model (20), denoted as ∆Γ∗, should be: 

∆Γ∗ = min
∑ ∈

, Γ         (21) 

where 𝑎 = max {𝑎, 0}. □ 

Next, focus on the problem of when an information quality improvement practice is beneficial. 
To answer this question, we have: 
Corollary 1. Only when ∑ 𝑝 𝐺∈ > 𝜏 , the information quality improvement practice is beneficial. □ 

Its proof is given in the appendix. The result coincides with that in Proposition 3. Specifically, 
when ∑ 𝑝 𝐺∈ > 𝜏 , have ∆Γ∗ > 0, which means the provider will improve the information 

accuracy. Therefore, in the next section, only this case will be considered and the design of the 
coordination mechanism will be discussed. Furthermore, it is easy to give Corollary 2 to show how 
∆Γ∗ varies with 𝜏  and 𝜏 . 

4.2. Information quality improvement compensation mechanism 

In this section, an information quality improvement compensation mechanism is developed for 
the costly information acquisition game. The Stackelberg game is adopted. To be specific, the 
decision-maker depending on SP is the leader who specifies the payment 𝜈 as a linear contract, i.e., 
𝛼 + 𝛽∆Γ, 𝛽 > 0. Thus, the leader’s strategy is to determine 〈𝛼, 𝛽〉. The information provider is the 
follower who decides her information quality improvement, i.e., ∆Γ.  

The aim is to focus on the optimal design of the contract. Notice that (19) is a 
min-max-min-min problem, which is intractable. The mechanism design here is more complicated 
because the optimal decisions of the follower should be taken into account. However, by Proposition 1, 
the decision-maker’s problem can be formulated in the following relatively concise form: 

min
,

𝜋 (𝛼, 𝛽) = 

min
,

𝛼 + 𝛽∆Γ + ∑ 𝑝 WS 𝑠 , 𝑠 + (Γ − ∆Γ)𝐺∈ − RP ,    (22a) 

s.t. 

𝜋 (𝛼, 𝛽) ≤ 𝜋 ,          (22b) 

min
∆

𝜋 (∆Γ) ≤ 𝜋 .         (22c) 

(22b) and (22c) are the individual rationality constraints of the decision-maker and the 
information provider, respectively.  

Solve problem (22) by using backward induction. Start with the best response of the provider, 
denoted as ∆Γ . According to (18) and 𝜈 =  𝛼 + 𝛽∆Γ , one can obtain the objective of the 



4537 

AIMS Mathematics  Volume 8, Issue 2, 4524–4550. 

information provider: 

min
∆

𝜋 (∆Γ ) = min
∆

𝜏(1 − Γ)+𝜏 ∆Γ + 𝜏 ∆Γ − 𝛽∆Γ − 𝛼 . 

It is a quadratic function of ∆Γ . Similar to the proof of Proposition 3, her best response satisfies: 

∆Γ = min , Γ .         (23) 

Then, the optimal solution 〈𝛼∗, 𝛽∗〉  of the Stackelberg game can be given in the following 
proposition. The proof is presented in the appendix. 
Proposition 4. The optimal strategy and cost of decision-maker can be given as follows: 

〈𝛼∗, 𝛽∗〉 = 〈𝜃 − 𝜏 (∆Γ∗) , 2𝜏 ∆Γ∗ + 𝜏 〉,      (24) 

and  

𝜋 (𝛼∗, 𝛽∗) = 𝜃 + 𝜏 ∆Γ∗ + 𝜏 ∆Γ∗ + ∑ 𝑝 WS 𝑠 , 𝑠 + (Γ − ∆Γ∗)𝐺∈ − RP.  (25) 

□ 

From Propositions 3 and 4, re-write 𝛽∗ as: 

𝛽∗ = 2𝜏 ∆Γ∗ + 𝜏 = 2𝜏 min
∑ 𝑝 𝐺∈ − 𝜏

2𝜏
, Γ + 𝜏 . 

Thus, (23) yields  

∆Γ∗ = ∆Γ (𝛽∗) = min
𝛽∗ − 𝜏

2𝜏
, Γ  

= min

⎩
⎪
⎨

⎪
⎧

⎝

⎜⎜
⎛

2𝜏 min
∑ 𝑝 𝐺∈ − 𝜏

2𝜏
, Γ + 𝜏 − 𝜏

2𝜏

⎠

⎟⎟
⎞

, Γ

⎭
⎪
⎬

⎪
⎫

 

= min min
∑ 𝑝 𝐺∈ − 𝜏

2𝜏
, Γ , Γ = min min

∑ 𝑝 𝐺∈ − 𝜏

2𝜏
, Γ , Γ  

= min
∑ ∈

, Γ = ∆Γ∗.       (26) 

Hence, 〈𝛼∗, 𝛽∗〉 in (24) can induce the response of the information provider, i.e., ∆Γ∗, which is the 
same as ∆Γ∗ in the global optimum. In other words, the proposed linear contract can help to realize 
the global optimum. 

5. Application example 

In this section, a two-stage production and shipment planning problem is introduced to show the 
applicability of our study.  
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5.1. The two-stage production and shipment planning problem 

Suppose a decision-maker, who uses two-stage SP, has |𝑀| warehouses and |𝐷| demand 
points. The decisions occur in two stages. In the first stage, he decides 𝑥  (≥ 0) of units of product 
to produce and store at warehouse m (∈ 𝑀) at a unit cost of 𝑐 . Next, the sales season begins and a 
demand scenario 𝑠 is realized in which the demand of location d (∈ 𝐷) is denoted as 𝑛 . To satisfy 
𝑛 , he can ship 𝑦  (≥ 0) of units of product from warehouse m at a unit cost of 𝑐 . If a shortage 
occurs, he needs to place an additional order 𝑦  (≥ 0) of units of product to replenish the stock of 
warehouse m at a cost of 𝑐  (> 𝑐 ) per unit. Thus, the two-stage SP model considered by the 
decision-maker is given as: 

min 𝑧 = 𝑐 𝑥

∈

+ E min 𝑐 𝑦

∈

+ 𝑐 𝑦

∈∈

 

s.t. 

∑ 𝑦∈ ≥  𝑛 , ∀𝑑 ∈ 𝐷,         (27) 

𝑦

∈

 ≤  𝑥 + 𝑦 , ∀𝑚 ∈ 𝑀, 

𝑥 , 𝑦 , 𝑦 ≥ 0, ∀𝑚 ∈ 𝑀, ∀𝑑 ∈ 𝐷. 

Consider a case with |𝑀| = 3  and |𝐷| = 10 . The discrete priori demand scenarios and the 
shipment costs are given in Tables 2 and 3. Let 𝑐 =500 and 𝑐 =800. 

Table 2. Demand scenarios. 

 
Scenarios

Demand locations Priori 
probabilities 𝑑  𝑑  𝑑  𝑑  𝑑  𝑑  𝑑  𝑑  𝑑  𝑑  

𝒔𝟏 1025 1086 1408 2792 2798 2961 3174 3213 3777 4340 0.08 
𝒔𝟐 1241 1746 1815 2106 2544 2684 2878 3679 3807 4620 0.11 
𝒔𝟑 1259 1907 2048 2092 2662 2701 3234 3495 4766 4907 0.11 
𝒔𝟒 1049 1188 2417 2437 2788 3215 3744 3809 4879 5144 0.16 
𝒔𝟓 1916 2502 2890 2754 2890 2990 3131 3618 4568 4960 0.19 
𝒔𝟔 1564 1669 2492 2619 3521 3662 4138 4563 4899 5210 0.14 
𝒔𝟕 2204 2377 2954 3165 3676 3940 4374 4930 5034 5423 0.12 
𝒔𝟖 2334 2466 3215 3468 4122 4735 4923 5221 5378 5734 0.09 

Table 3. Unit shipment cost from the warehouses to the locations. 

 𝑑  𝑑  𝑑  𝑑  𝑑  𝑑  𝑑  𝑑  𝑑  𝑑  
𝑚  80 40 60 10 50 24 40 35 30 55 
𝑚  50 28 48 50 10 65 25 40 37 45 
𝑚  69 54 30 55 45 43 25 25 30 10 
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5.2. Computational results 

The models are optimally calculated on a notebook PC with a 2.3 GHz CPU and 8 GB memory, 
by using Python and Doc plex. 

5.2.1. The EVPI and EVII results 

(1)–(3) can deliver the results in the perfect information setting: WS=2349542.87, 
RP=2475020.77, and EVPI=125477.9. 

Next, consider the information imperfectness in the scarce-data setting. Assume that the 
decision-maker only has the priori distribution, not the probabilistic structure. By (5)–(7), all 
WS 𝑠 , 𝑠  is presented in Table 4, in which 𝑠 = 𝑠  represents the corresponding perfect 
information results.  

Table 4. The computational results of WS 𝑠 , 𝑠 . 

𝑠  
𝑠  

𝑠  𝑠  𝑠  𝑠  𝑠  𝑠  𝑠  𝑠  

𝑠  1895947 1982349 2178885 2330649 2516421 2714505 3115136 3474478 
𝑠  1923247 1956639 2162505 2314269 2500041 2698125 3098756 3458098 
𝑠  2020797 2054189 2103975 2257790 2441511 2639595 3040226 3399568 
𝑠  2100747 2134139 2183925 2207769 2395731 2591625 2992256 3351598 
𝑠  2178197 2211589 2261375 2286066 2347071 2545155 2945786 3305128 
𝑠  2283647 2317039 2366825 2390669 2452521 2481885 2882516 3241858 
𝑠  2471097 2504489 2554275 2578119 2639971 2669335 2770046 3129388 
𝑠  2647047 2680439 2730225 2754069 2815921 2845285 2945996 3023818 

Use the approaches proposed in Section 3.3, the WS (Γ) and the EVII under different Γ in 
Figure 1 can be obtained. Moreover, by model (16), Γ∗ (=0.242) can be identified, which makes the 
information worthless. 

 

Figure 1. The EVII under different Γ. 
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5.2.2. The coordination mechanism results 

This section focuses on the game setting based on the above example. 
a. The decentralized setting 

A dedicated coordination mechanism is required here. In the decentralized setting, the costs of 
the information provider and the decision-maker are given by (17), in which the transfer from the 
decision-maker to the provider is specified by 𝜃. It can be a fixed value that is irrelevant to the 
original information quality Γ. Nevertheless, a more reasonable way is to define 𝜃 based on the 
fixed ratio of the benefit-sharing. For example, define 𝜃 = 0.6 × EVII, which means that the 
decision-maker should pay the provider 60% of the benefits for her information.  

Obviously, if there is no extra compensation, the provider will not improve her information 
accuracy. Thus, in the information quality improvement setting, we still consider the fixed 
benefit-sharing way and study whether it works or not. Accordingly, the objectives of the two 
participants can be modified, i.e., (18), as below. 

𝜋 = 𝜏(1 − Γ)− 𝜃 + 𝜏 ∆Γ + 𝜏 ∆Γ ,

𝜋 =  𝜃 + WS (Γ − ∆Γ) − RP.
 

where 𝜃 = 0.6 × EVII = 0.6 × (RP − WS (Γ − ∆Γ)) is the fixed share of the gain of the improved 
information. Moreover, set 𝜏 = 2 × 10 ,  𝜏 = 3 × 10 , 𝜏 = 10  and Γ = 0.16 . The other 
parameters are set to be the values given in the last section. Then, give 𝜋 , 𝜋 , and the total cost 
under different ∆Γ is shown as below. 

Figure 2 indicates that the fixed benefit-sharing way cannot help to achieve the global optimum. 
To be specific, the optimal choice of the information provider is ∆Γ = 0.005, while the globally 
optimal ∆Γ should be 0.109. Thus, a dedicated coordination mechanism is required.  

 

Figure 2. The costs under different ∆Γ with the fixed benefit-sharing. 
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indicates the value of ∆Γ∗ w.r.t. 𝜏  and 𝜏  under different Γ. To be specific, the straight line 
specified by each Γ divides the figure into two parts. When (𝜏 , 𝜏 ) lies in the lower-left or 

upper-right area, ∆Γ∗ = Γ or 
∑ ∈

, respectively. In addition, it is found that the lower-left 

corner shrinks as Γ increases. It means that ∆Γ∗ can be Γ only when (𝜏 , 𝜏 ) is very small. This is 
because higher Γ means lower information quality, which brings more difficulties to realize the 
perfect information situation. 

In Figure 4, the black columns show the case ∆Γ∗ = Γ, which is the lower-left corner in Figure 3. 
When 𝜏  and 𝜏  become big, it is costly to improve the information quality. Thus, the upper extent of 
information quality improvement is becoming smaller. The changing trend can also be explained by 
Corollary 2. Moreover, the column under 𝜏 = 3 × 10  and 𝜏 = 10  has the corresponding ∆Γ∗ =

0.109. It is the improvement extent that makes the global optimum happen, as is shown in Figure 2. 
Thus, the proposed compensation mechanism can help to realize the global optimum. 
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Figure 3. The results of ∆Γ∗ w.r.t. 𝜏  and 𝜏  under different Γ. 
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Next, the focus is on the optimal compensation contract, i.e., 〈𝛼∗, 𝛽∗〉. First, from Propositions 3 
and 4, re-write 〈𝛼∗, 𝛽∗〉 as below: 

〈𝛼∗, 𝛽∗〉 =

⎩
⎨

⎧
〈𝜃 −

∑ 𝑝 𝐺∈ − 𝜏

4𝜏
, 𝑝 𝐺

∈
〉 , 0 <

∑ 𝑝 𝐺∈ − 𝜏

2𝜏
< Γ

〈𝜃 − 𝜏 Γ , 2𝜏 Γ + 𝜏 〉,                            otherwise.

 

The formulas show there are two cases for 𝛼∗ and 𝛽∗. The condition differentiating two cases 
coincides with that in Figure 3. In each case, 𝛼∗ and 𝛽∗ exhibit distinct changing trends as is 
shown in Figure 5, in which the first case is specified by the grey columns and the second one by the 
black area. 

 

(a) The results of 𝛼∗ 

 

(b) The results of 𝛽∗ 

Figure 5. The changing of 〈𝛼∗, 𝛽∗〉 under different 𝜏  and 𝜏  (Γ = 0.16). 
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It is found that, when both 𝜏  and 𝜏  are small, the compensation is mainly dominated by the 
fixed term of the contract, i.e., 𝛼∗. Then, with the increase of 𝜏  and 𝜏 , 𝛼∗ decreases linearly 
with 𝜏  but is irrelevant to 𝜏 , while 𝛽∗  increases linearly with 𝜏  and 𝜏 . Thus, 𝛽∗ , the 
parameter associated with ∆Γ, gradually dominates the contract. Furthermore, when both 𝜏  and 𝜏  
are big enough and lie in the grey area, the improvement activity requires more investments. Thus, 
𝛽∗ remains high, and 𝛼∗ gradually increases with 𝜏  and 𝜏  to strengthen the compensation. 

Finally, observe the objective values of the players. Since the information improvement cost of 
the provider can be compensated by the contract, we only focus on the benefit of the decision-maker, 
i.e., −𝜋 (𝛼∗, 𝛽∗), in Figure 6. It is found that, with the increase of 𝜏  and 𝜏 , his benefit will 
significantly decrease. It is because the improvement activity costs much more, and then, incurs 
higher compensation.  

 

Figure 6. The changing of −𝜋 (𝛼∗, 𝛽∗) under different 𝜏  and 𝜏  (Γ = 0.16). 

So far, we have shown how our study can be applied to a practical OR/MS problem. The whole 
process demonstrates how information quality influences the two-stage SP decision-making 
performance, and gives the boundary IIR value. Efforts have also been made to address the two-stage 
SP problem with exogenous costly information acquisition. Our study can be applied to general 
interactions between information management and stochastic decision-making.  

6. Conclusions and future directions 

In this study, a fundamental question is explored: that is to evaluate and acquire imperfect 
information in the two-stage SP setting with the challenge of data scarcity. To evaluate the EVII, we 
propose the robust WS concept, which is modeled by a max-min-min problem with the bi-level 
structure. To find the optimal solution, three ways are developed, including numerical, analytical, 
and equivalent reformulation, ensuring that the solution is suitable for different settings. Thus, the 
EVII can be obtained and when imperfect information is worthless can be identified. Furthermore, a 
Stackelberg game is modeled to study the coordination of the costly information acquisition process 
between decision-maker, who utilizes the two-stage SP, and the information provider. To realize the 
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the information provider’s efforts in information quality improvement. Finally, a two-stage 
production and shipment model is introduced and our study’s effectiveness is validated. Therefore, 
we provide a novel and unified model to study the interactions between information management and 
SP in the scarce-data setting. 

The following is suggested for future studies. First, in this paper, the budget value is used to 
capture the information imperfectness in the scarce-data setting. Although such a way is popular in 
robust optimization, e.g., Bertsimas and Sim [42], sometimes, it may lead to over-conservative 
results. Exploring new approaches is necessary for future studies. For example, the 
chance-constrained method can be used, and thus, the IIR constraint can be satisfied with a certain 
probabilistic level. However, the computationally tractable safe approximation of such a chance 
constraint is often expressed as the conic quadratic constraint [44]. Therefore, further study is needed 
to discuss how to combine it with both the max-min-min problem and the costly information 
acquisition game. Second, this paper focuses on imperfect information by considering the 
misinformation probabilities among scenarios. However, in the scenarios, the values associated with 
the uncertain parameters are ignored in this paper. Thus, a natural extension is to take both the 
misinformation probabilities and the values associated with the scenarios into account together in the 
future. Third, it is interesting to extend our study into the predictive context and discuss the value of 
forecasting methods. For example, the K-Nearest-Neighbor (KNN) technique can predict a set of 
scenarios. What is the value of this technique from the perspective of the decision-maker adopting 
SP? To answer this question, probabilistic estimation should be taken into account. This extension is 
worth conducting because it integrates the predictive decisions into the prescriptive ones in the 
imperfect information setting. Finally, given that many decision-makers are not risk-neutral, a 
possible future direction is to encompass non-linear risk preferences. Our study provides the 
complete analysis framework and solid research foundation for these directions. 
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Supplementary  

Proof of Proposition 2:  
At first, linearize the bi-linear terms, i.e., 𝜆( | )WS 𝑠 , 𝑠 , in the objective (9a). Re-call 

Proposition 1, the optimal value of 𝜆( | ) should be 0 or Γ and there is only one 𝜆( | ) = Γ for each 
𝑠 . Thus, introduce a binary variable 𝛾  and use Γ𝛾  to replace 𝜆( | ). Then: 

WS (Γ) = max
, ,

∑ 𝑝 ∑ Γ𝛾 WS 𝑠 , 𝑠∈∈       (A1) 

s.t. 

∑ 𝛾∈ = 1,    ∀𝑗         (A2) 

𝛾 ∈ {0,1},    ∀𝑖, 𝑗         (A3) 

(7), (12), (13). 

Then, a linear auxiliary variable 𝜌  is introduced to replace 𝛾 WS 𝑠 , 𝑠 . Therefore, the above 
model can be linearized as below: 

WS (Γ) = max
, , ,

∑ 𝑝 ∑ Γ𝜌∈∈        (A4) 

s.t. 

𝜌 ≤ WS 𝑠 , 𝑠 ,    ∀𝑖, 𝑗         (A5) 

𝜌 ≤ 𝛾 𝑀,    ∀𝑖, 𝑗          (A6) 

(A2), (A3), (7), (12), (13). 

where 𝑀 is a number big enough. Notice that WS 𝑠 , 𝑠 ≥ 0. Constraints (A4) and (A5) enforce 
𝜌 = 0 if 𝛾 = 0 and 𝜌 = WS 𝑠 , 𝑠  if 𝛾 = 1. Thus, Proposition 2 is obtained. 
Proof of Proposition 3:  

For the quadratic function (20), it is easy to get that the optimal ∆Γ, i.e., ∆Γ∗, should satisfy: 

∆Γ∗ =

⎩
⎪
⎨

⎪
⎧ 0, 𝑖𝑓 

∑ ∈
≤ 0,

∑ ∈
, 𝑖𝑓 0 <

∑ ∈
≤ Γ,

Γ, 𝑒𝑙𝑠𝑒.

     (A7) 

For succinctness, it could be re-written as  

∆Γ∗ = min
∑ ∈

, Γ ,        (A8) 

where 𝑎 = max {𝑎, 0}. This proves Proposition 3.  
Proof of Corollary 1:  

If the information quality improvement is beneficial, by (17) and (18), we have: 

0 > 𝜋 + 𝜋 − 𝜋 + 𝜋  

= (𝜏(1 − Γ)+𝜏 ∆Γ + 𝜏 ∆Γ + WS (Γ − ∆Γ) − RP) − (𝜏(1 − Γ) + WS (Γ) − RP) 
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= 𝜏 ∆Γ + 𝜏 ∆Γ + WS (Γ − ∆Γ) − WS (Γ) 

= ∆Γ 𝜏 + 𝜏 ∆Γ − ∑ 𝑝 𝐺∈ . 

Focus on ∆Γ > 0, 𝜏 > 0 and 𝜏 > 0, thus： 

∑ ∈
> ∆Γ > 0. 

As a result, it is obtained that ∑ 𝑝 𝐺∈ > 𝜏 . Then, Corollary 1 is proved. 

Proof of Proposition 4:  
First, re-write the best response of the information provider, i.e., (23) as below: 

∆Γ =

⎩
⎪
⎨

⎪
⎧ 0, 𝑖𝑓 < 0,

, 𝑖𝑓 0 ≤ < Γ,

Γ, 𝑖𝑓  Γ ≤ .

        (A9) 

Introduce the three ∆Γ  into the provider’s individual rationality constraint (22c), and have: 

⎩
⎪
⎨

⎪
⎧ 𝛼 ≥ 𝜃, 𝑖𝑓 < 0,

𝛼 +
( )

≥ 𝜃, 𝑖𝑓 0 ≤ < Γ,

𝛼 − 𝜏 Γ + (𝛽 − 𝜏 )Γ ≥ 𝜃, 𝑖𝑓  Γ ≤ .

    (A10) 

To ensure the satisfaction of the provider’s individual rationality constraint (22c), (A10) should 
hold. Notice that the focus is on the setting of the information quality improvement, in which ∆Γ >

0. Thus, only the last two cases in (A10) will be taken into account. Accordingly, problem (22) can 
be reformulated into the following two sub-models. 
Case 1: 

In this case, 0 ≤ < Γ and 𝛼 +
( )

≥ 𝜃 with the best response ∆Γ = . Thus, 

problem (22) can be reformulated as: 

min
,

𝜋 (𝛼, 𝛽) =         (A11) 

min
,

𝛼 +
( )

 + ∑ 𝑝 WS 𝑠 , 𝑠 + Γ − 𝐺∈ − RP , 

s.t. 

𝛼 +
( )

− ∑ 𝑝 𝐺∈ ≤ 𝜃, 

𝜏 ≤ 𝛽 < 2𝜏 Γ + 𝜏 , 

𝛼 ≥ 𝜃 −
( )

. 

Obviously, because the objective is linear w.r.t. 𝛼, from the last constraint, we have the optimal 

solution for above satisfies 𝛼∗ = 𝜃 −
( )

. Use it to replace 𝛼 in model (A11), then: 
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min
,

𝜋 (𝛼, 𝛽) = 

min 𝜃 + 𝛽 −
∑ ∈

𝛽 −  + ∑ 𝑝 WS 𝑠 , 𝑠 + Γ + 𝐺∈ − RP , 

s.t. 

𝛽 ≤ 2 ∑ 𝑝 𝐺∈ − 𝜏 , 

𝜏 ≤ 𝛽 ≤ 2𝜏 Γ + 𝜏 . 

Obviously, to ensure the existence of feasible solutions, it is required that 2 ∑ 𝑝 𝐺∈ − 𝜏 ≥ 𝜏 . 

Recall the setting of ∑ 𝑝 𝐺∈ > 𝜏  as given in COROLLARY 1, the optimal solution of (A11) 

exists. Moreover, since the objective is a quadratic function of 𝛽, it is easy to find the optimal 𝛽∗ 
satisfies: 

𝛽∗ =
𝑝 𝐺

∈
, 𝑖𝑓 𝜏 < 𝑝 𝐺

∈
≤ 2𝜏 Γ + 𝜏 ,

2𝜏 Γ + 𝜏 , 𝑒𝑙𝑠𝑒.

 

Thus, we have:  

〈𝛼∗, 𝛽∗〉 

= 〈𝜃 −
∑ ∈

, ∑ 𝑝 𝐺∈ 〉 , 𝑖𝑓 𝜏 < ∑ 𝑝 𝐺∈ ≤ 2𝜏 Γ + 𝜏

〈𝜃 − 𝜏 Γ , 2𝜏 Γ + 𝜏 〉, 𝑒𝑙𝑠𝑒,

   (A12) 

with the objective: 

𝜋 (𝛼∗, 𝛽∗) = 

𝜃 −
∑ ∈

 + ∑ 𝑝 WS 𝑠 , 𝑠 + Γ + 𝐺∈ − RP, 𝑖𝑓 𝜏 < ∑ 𝑝 𝐺∈ ≤ 2𝜏 Γ + 𝜏 ,

𝜃 + 𝜏 Γ + 𝜏 Γ + ∑ 𝑝 WS 𝑠 , 𝑠∈ − RP, 𝑒𝑙𝑠𝑒.

(A13) 

Case 2: 

Here, Γ ≤  and 𝛼 − 𝜏 Γ + (𝛽 − 𝜏 )Γ ≥ 𝜃 with the response ∆Γ = Γ. Thus, the variant of (22) 

can be given as below: 

min
,

𝜋 (𝛼, 𝛽) = min
,

𝛼 + 𝛽Γ + 𝑝 WS 𝑠 , 𝑠
∈

− RP  

s.t. 

𝛼 + 𝛽Γ + ∑ 𝑝 WS 𝑠 , 𝑠∈ ≤ 𝜃 + ∑ 𝑝 WS 𝑠 , 𝑠 + Γ𝐺∈ ,   (A14) 

𝛽 ≥ 2𝜏 Γ + 𝜏 , 

𝛼 + 𝛽Γ ≥ 𝜃 + 𝜏 Γ + 𝜏 Γ . 
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Obviously, form the last two constraints, the optimal solution of (A14) should satisfies 𝛽∗ =

2𝜏 Γ + 𝜏  and 𝛼∗ + 𝛽∗Γ = 𝜃 + 𝜏 Γ + 𝜏 Γ . Then, 𝛼∗ = 𝜃 − 𝜏 Γ . Accordingly, the first constraint 
can be re-written as: 

𝜏 Γ + 𝜏 Γ  ≤ Γ 𝑝 𝐺
∈

. 

Recall that when Γ > 0, 𝜏 + 𝜏 Γ ≤ ∑ 𝑝 𝐺∈ . When this inequality holds, the optimal solution of 

(A14) is  

〈𝛼∗, 𝛽∗〉 = 〈𝜃 − 𝜏 Γ , 2𝜏 Γ + 𝜏 〉,       (A15) 

with the objective  

𝜋 (𝛼∗, 𝛽∗) = 𝜃 + 𝜏 Γ + 𝜏 Γ + ∑ 𝑝 WS 𝑠 , 𝑠∈ − RP.   (A16) 

In summary, with the above two cases combined, the optimal solution of problem (22) satisfies: 

〈𝛼∗, 𝛽∗〉 = 

〈𝜃 −
∑ ∈

, ∑ 𝑝 𝐺∈ 〉 , 𝑖𝑓 𝜏 < ∑ 𝑝 𝐺∈ ≤ 2𝜏 Γ + 𝜏 ,

〈𝜃 − 𝜏 Γ , 2𝜏 Γ + 𝜏 〉, 𝑒𝑙𝑠𝑒,

  (A17) 

with the optimal value of the objective 

𝜋 (𝛼∗, 𝛽∗) = 

𝜃 −
∑ ∈

 + ∑ 𝑝 WS 𝑠 , 𝑠 + Γ + 𝐺∈ − RP, 𝑖𝑓 𝜏 < ∑ 𝑝 𝐺∈ ≤ 2𝜏 Γ + 𝜏 ,

𝜃 + 𝜏 Γ + 𝜏 Γ + ∑ 𝑝 WS 𝑠 , 𝑠∈ − RP, 𝑒𝑙𝑠𝑒.

 

(A18) 

Furthermore, recall (21), reformulate the optimal solution 〈𝛼∗, 𝛽∗〉 and the objective 𝜋 (𝛼∗, 𝛽∗) 
into the following succinct forms: 

〈𝛼∗, 𝛽∗〉 = 〈𝜃 − 𝜏 (∆Γ∗) , 2𝜏 ∆Γ∗ + 𝜏 〉,    ∑ 𝑝 𝐺∈ ≥ 𝜏 .    (A19) 

And 

𝜋 (𝛼∗, 𝛽∗) = 

𝜃 + 𝜏 ∆Γ∗ + 𝜏 ∆Γ∗ + ∑ 𝑝 WS 𝑠 , 𝑠 + (Γ − ∆Γ∗)𝐺∈ − RP,   (A20) 

∑ 𝑝 𝐺∈ ≥ 𝜏 . 

Thus, the proof of Proposition 4 is completed. 

© 2023 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


