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Abstract: This paper is presented to investigate the exact solutions to the modified Zakharov-
Kuznetsov equation that have a critical role to play in mathematical physics. The tan (¢ () /2)-
expansion, (m + G'({)/G({))-expansion and He exponential function methods are used to reveal
various analytical solutions of the model. The equation regulates the treatment of weakly nonlinear
ion-acoustic waves in a plasma consisting of cold ions and hot isothermal electrons throughout the
existence of a uniform magnetic field. Solutions in forms of W-shaped, singular, periodic-bright and
bright are constructed.
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1. Introduction

Nonlinear partial differential equations (NLPDESs) depict a wide range of phenomena not only in
physics but also in other fields in science such as chemistry, biology, and engineering. Physical
phenomena involving nonlinear waves play an important role in research on NLPDEs. In previous
decades, several strong numerical and analytical methods have been introduced for formulating
explicit solutions for several NLPDEs in physics and mathematics, for instance, shooting techniques
with 4th-order Runge-Kutta method [1-4], the homotopy analysis scheme [5], the modified Rusanov
scheme [6], the homotopy perturbation scheme [7, 8], the finite forward difference scheme [9, 10], the
Adomian decomposition method [11,12], the extension exponential rational function method [13], the
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modified exponential function method [14], the sine-Gordon expansion method [15, 16], the
(m +¢ /G) expansion method [17, 18], the sinh-Gordon expansion method [19-21], the extended
auxiliary equation mapping method [22, 23], the Bernoulli sub-equation function method [24,25], the
improved Bernoulli sub-equation function method [26-28], the modified Jacobi elliptic function
expansion method [29], the modified auxiliary expansion method [30], the Hirota bilinear
method [31], the improved tan (¢ (£) /2)-expansion method [32], the improved generalized Riccati
equation mapping method [33,34], the F-expansion method [35-37], and the Riccati equation rational
expansion method [38].

Munro and Parkes introduced the new Zakharov-Kuznetsov (ZK) in 1999 [39], they viewed the
most realistic state if particles are non-isothermal. With the correctly modified form of the electron
number density proposed by Schamel, it has been said that the reductive disturbance procedure tends
to result in the modified ZK equation. Several reports have been presented to find the analytical
solutions to the nonlinear modified ZK equation, such as, the extended tanh method [40], the Hirota
method [41], the sine-cosine method [42], the extended direct algebraic method [43], fractional
sub-equation technique [44], and the homogeneous balance technique [45].

One form of the envelope that is particularly interesting is the W-shaped soliton, which was first
described in optical fiber mediums with higher-order effects [46], and afterward achieved in a variety
of higher-order NLSEs [47-49]. More specifically, there are two valleys on the sides of one hump
of this pulse shape. A soliton of this kind is relatively rare in nonlinear science compared to the
fundamental bright and dark soliton.

According to our understanding, the features of nonlinearly W-shaped soliton pulses propagating
in magnetized plasmas have not been previously studied. Three novel forms of W-shaped soliton
solutions are presented in this research, apart from the one previously reported in magnetized plasmas
applications. In this research paper, we utilize the tan (¢ ({) /2)-expansion [S0], (m + G'({)/G({))-
expansion [17] and He exponential function [51] methods to formulate novel solutions to the modified
ZK equation. Assume the following nonlinear modified ZK equation in three dimensions [52]:

0 0 e, o (8 b
( ¢ ¢)+30¢26_i+67(f+6_x(0_yz+3_z2)¢:0’ (1.1)
where the constant ¢ > 0.

This is how the paper is arranged. The instructions of the methods that use to solve the modified
ZK equation of ion-acoustic waves in a magnetized plasma will be presented in Section 2. Last
section presents some exact solutions to the nonlinear differential equation that governs the amplitude
dynamics of fields based on the traveling wave method. These solutions include W-shaped soliton
solutions. In Section 4, we present the results and discuss the gained solutions. Section 5 of the paper
offers a conclusion.

2. Instructions of the methods

2.1. The tan (¢ ({) /2)-expansion method
Suppose a NPDE follows the following form:

P(p, s bty Pryy ...) =0, 2.1)
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where ¢ = (x,y, z, 1) and it can be transformed into an ODE
O (u,ku’ ,wu' ,kwu”, ...) = 0. (2.2)

By using the wave transformation ¢ = u({) and { = kx + ly + pz — wt. Consider the following as an
expression for the traveling wave solution of Eq (2.2)

k
(W) , 0<k<m (2.3)

w@Q=Ww) =) a

k=0

where the constants a; # 0 to be evaluated later and satisfies the ODE

¥’ (0) = Asin( () + Beos (¥ () + C. 2.4)

Where & = A% + B? — C?, here are a class of solutions to Eq (2.4):
Family 1: In case ¢ < 0 and B — C # 0, the solution is

i VEE (VE
=2tan”! —~ t :
v () an(B_C 5| ~5¢
Family 2: In case £ > 0 and B — C # 0, the solution become
A VE G
=2tan” tanh|—=¢|].
v Q) an(B_C+B_Can(2§
Family 3: In case ¢ > 0, B # 0 and C = 0, the solution is
B2 _ A2 BZ _ AZ
0= T R )
Family 4: In case € < 0, C # 0 and B = 0, the solution become
A NC?-A? VC? - A?
W () =2tan™! (_E+ C tan[ 5 (J)

Family 5: Incase ¢ > 0, B— C # 0 and A = 0, the solution is
B+C. h( VB2 _ng)J

= 2tan”!
v () tan ( E_C an 7
Family 6: In case A = 0 and C = 0, the solution is

el — 1 2%
2Bl 4+ 17 280 4 1)

¥ (¢) = tan™ (

Family 7: In case B = C = 0, the solution is

246 M
e+ 17 e+ 1)

¥ (¢) = tan™ (
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Family 8: In case A% + B? = C2, the solution is

AL +2 )
B-0)¢)

W () = 2tan™! (
Family 9: In case A = B = C = kA, the solution is
Y () =2tan”! (- 1).
Family 10: In case A = C = kA and B = —kA, the solution is
» AL
lﬂ({) = —2tan (m) .

Family 11: In case C = A, the solution is

(A+B)eP — 1)

_ _ -1
w“”‘””(@?ﬁﬁii

Family 12: In case A = C, the solution is

(B+A)e3§+1)
(B-A)eB—1)°

¥ ({) = 2tan_1(

Family 13: In case C = —A, the solution is

B—A+635)

_ -1
w@—mm(jgjzﬂ

Family 14: In case B = —C, the solution is

o At
l//((:) = 2tan ! (1——6‘614[) .

Family 15: In case B = 0 and A = C, the solution is

C§+2)

_ -1
W () =—-2tan ( cC

Family 16: In case A = 0 while B = C, the solution is

W () =2tan™" (CY).

Family 17: In case A = 0 while B = —C, the solution is

W () =—2tan™! (Ci{) .

Family 18: In case A = B = 0, the solution is
Y =Cl+e.
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Family 19: In case B = C, the solution is

AL _
v = 2tan_1(e i C).

Here the constants A, B and C will be determined later. The value of m will found by using the
balance principle. Inserting Eq (2.3) into Eq (2.2) and collecting the -coefficients of
tan (¢/2)",(m = 1,2,3,...), then the zeroing out of each coefficient, one can obtain a set of equations
that are over-determined for A, B, C, a,,,(m = 1,2, .., k) and w. Mathematica Package has been used to
perform symbolic computations.

2.2. The He Exp-function method

Consider the following as an expression for the traveling wave solution of Eq (2.2)
u(@) = 54—, (2.5)

where a, and b,, are unidentified constants, while i, j, g and h are positive integers that need to be
found later. We match the highest order linear term in Eq (2.6) with the highest order nonlinear term
to reach the values of i and g. Collecting the coefficients of exponential function with the same power
then the zeroing out of each coefficient, we can obtain a set of equations that are over-determined
for a,,b, (n = 0,%1,F2,...), k,[,p and w. Mathematica Package has been used to perform symbolic
computations.

2.3. The (m+ %)-expansion method
Let’s assume that the following equation satisfies Eq (2.2):

n

u(l) = Z am+ @) = a_,(m+¢) ™"+ ...

i=—n

+a_1(m+(p)_l+a0+ agm+@)+...+a,(m+ @),

(2.6)

where a;, i = 0, 1, ..., £n, are scalars and the constant m # 0. We determine the value of “n” while
keeping in mind the rules of balance. In this research paper, we let

Gl
$=G 2.7)
where G ({) verify G” + (4 + 2mu) G’ + uG = 0. Putting Eq. (2.7) into Eq. (2.2) with using Eq (2.8)
and zeroing out all terms that have the same power of the (m + ¢)", the system of algebraic equations
for w,a,, n = 0, 1, ..., n, 4 and u will be obtained. Solving the system, one can evaluate a,, n =
0,1, ..., n, k,I,p and w. Using these numbers and put a general solution of the LODE Eq (2.8) into
equation Eq (2.7), we can find the precise solution of Eq (1.1).
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3. On solving the (3+1)-dimensional modified ZK

3.1. Application on the tan (¢ ({) /2)-expansion method

Consider the following traveling wave solution
o=u(l)), and {=kx+1ly+pz—wt. (3.1)
Where k, [, p are wave numbers and w is a frequency. By using Eq (3.1) into Eq (1.1), we get
16 (=w — ke) u' +30uzu + (k> + ki + kp*)u”" + ey = 0. (3.2)
Integrate Eq (3.2) with the constant of integration is e;, we have
16 (=w — ke) u +20u? + (K + k> + kp®) u” + &1 = 0. (3.3)
By taking ur = v, Eq (3.3) can be rewrite as
16 (—w = ke)v> +20v° + 2 (I + kI* + kp?) (v + ") + ¢, = 0. (3.4)

Taking the balance between the nonlinear term vv” and the highest order derivative v* in Eq (3.4), gives
m=2. Therefore Eq (2.3) becomes

v({)=ap+a (3.5)

tan@ @) , tan® (¢ (£))
1 2 2 4 :

A system of equations is derived by inserting Eq (3.5) into Eq (3.4). Solution of this system provides
the following class of solutions:

(242-B2+C?)e, /3
2 %/AT(—(A2+B2—CZ)3k

3(B-C)’e,1/3
3 3 1/3 9
2 VA(~(a2+52-C2)'k)

3A(B-C)e; '3
%(—(A2+32—c2)3k

Case 1. In case qy = —

)1/3» ai )1/3’ aj

3(A2+B2—C?)e, 113
1/3
2 %/Z(—(A2+BZ—C2)31<)

c=- — £, the outcomes solutions are:

3
Solution 1: When —A% — B> + C* > 0 and —(A2 + B - C2) k # 0 then according to family 1, we
gain periodic-singular solution as seen in Figure 1.

(42 + B2 = C?) e,25(=2 + cos (V=AZ = B2 + C2 (kx + Iy + pz — 1))
BV~ + B2 - %) 3.6)

1 4
sec(i V-A?2 - B2 + C? (kx + Iy + pz — wt)) .

¢ (x,y,2,1) =
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(xy)

Figure 1. 3-D surface, and 2-D graph of Eq (3.6) are drawn in case u = 0.3,¢c = 0.4,w =
2, =2k=3,p=3,1=4,A=5,B=15.C=lLz=11=1.

3
Solution 2: When A? + B> — C? > 0 and —(A2 +B>-C 2) k # 0 then according to family 2, we gain
w-shaped solution as presented in Figure 2.

Jer? (A2 + B2 = €2 = 3Atank’ (VAT + B2 = C2 (kx + Iy + 2p — 1))
¢ (x,y,2,1) =

XS
8V2(~(42 + B - 2)’k)”

(%)
~

@(xy)

-05

10
10 0
y -10 20

Figure 2. 3D surface and 2D graph of Eq (3.7) are drawn in case u = 0.3,¢ = 0.4,w =
2,6y =2k=-3p=31=1,A=5B=1,C=01z=1r=1

Solution 3: When (A2 + Bz) k # 0 then according to family 3, we gain w-shaped solution as shown
in Figure 3.

5y, ap o Ner B 3 (A% B b (3 VA4 B (ot y e o)) (3.8)
X, ¥,3,1) = . ‘
8\75(—(142 " Bz)3k)2/3

AIMS Mathematics
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B(xy)

Figure 3. 3D surface and 2D graph of Eq (3.8) are drawn in case u = 0.3,¢
2,y =2k=-3,p=3,1=1,A=1,B=1,C=0,z=11=1.

Solution 4: When C?>—A? > 0 and k # 0 then according to family 4, we gain bright-singular solution
2
(C12 - A12)2e12/3(—2 + cos ( VC 2 —AZkx+1ly+zp — tw)))
¢(x’y’z’t): 2/3
3 2 2\?
332(-(ci? - 47%) k)

4 1 2 2
sec (5 \CIZ - A (kx+ly+zp—tw)).

Solution 5: When B> — C?> > 0 and k # 0 then according to family 5, we get w-shaped soliton
solution as seen in Figure 4.

(3.9)

2
(B -c2) \3/61222/3(—1 +3tanh (1 VBT = C2 (kx + Iy + pz - wt))z)
¢ (x,y,2,1) =

. (3.10)
8V2(~(B - 2)’k)”

B(xy)
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Solution 6: When A # 0 and k # O then according to family 10, one can construct singular solution
as seen in Figure 5.

( ) A% e k42 + cosh (Ak (kx + Iy + pz — wi))) csch( LAk (kx + Iy + pz - wt))4
o (x,y,2,1) =

. (3.1
8V2(-A%k7)*? G-I

#lxy)

Figure 5. 3D surface and 2D graph of Eq (3.11) are drawn in case u = 0.3,¢c = 0.4, w =
2,e1 =2,k = —%,p = %,/l = %,A =1,z=1,r=1.

Solution 7: When B # 0 and k # 0 then according to family 11, we gain singular solution

B4(1 + (A — B) eBlthypz-wn) (4 +(A - B) eB(kx+ly+pz—wz)))2 \3/61_2
¢ (x,y,2,1) =

2 : (3.12)
2V2(1 + (=A + B) eBlvtl+p—wny}(_ Bogy*?

Solution 8: When B # 0 and k # 0 then according to family 12, we gain singular solution

B* flelz(l + (B _ C) eB(kx+ly+pz—wt) (4 + (B _ C) eB(kx+ly+pz—wt)))2
¢ (x,y,2,1) =

. 3.13
23V2(1 + (=B + C) eBlkv+lyp-wny*(_ Bog)2 (3.13)

Solution 9: When B # 0 and k # 0 then according to family 13, we gain singular solution

B 3/—612(( A+ B) +4(A + B) eBlrlyp-on 4 e2B(kx+ly+pz—wt))2
¢ (x,y,2,0) =

. 3.14
2\3/5(,4 + B - eB(kx+ly+pz—wt))4(_ B k)2/3 ( )

Solution 10: When A # 0 and k # 0 then according to family 14, we gain singular solution

A4 e l2(1 4 CeAlkrty+pz—wn (4 n CeA(kx+ly+pz—wt)))2
¢ (X, y’ <, t) =

. 1
2 \3/5(_ 1+ CeA(kx+ly+pz—a)t))4(_ A6 k)z/ 3 3.15)
AIMS Mathematics
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Solution 11: When C # 0 and k # O then according to family 18, we gain bright-singular solution

2
c* \3/e1222/3(1 + 3tan (%C (kx+ Iy + pz — a)t))z)

er(2412-B12+C12 e1(B— —C)* e
Case 2: In case qp = — 5/7( . 3 )1/3,01 = 3 4 Y8 C)3 75, A2 = 3 e ﬁ} 173 2
2«/1(—(A2+32—c2) k) \/Z(—(A2+BZ—C2) k) \/Z(—(A2+BZ—C2) k)

(B—C)2 _k2+$_12

(—(A2+BZ—C2)31<)1/3 3 Q/a(—(A2+BZ—C2)3k)2/3 . . .
p= ,w=—ck+ > >—, we gain the following solutions:
V(B-C)? 2V4(A2+B2-C?)

Solution 1: When ¢ < 0 and k # O then according to family 1, we have periodic-singular solution
as shown in Figure 6.

W(A + 3Atan? (% V=A (kx + ly + pz — wt)))2
8¥2(~(a)k)" '

¢(x,y,2,1) = (3.17)

Figure 6. 3D surface and 2D graph of Eq (3.17) are drawn in case u = 0.3,¢ = 04,w =

2,e1=2,k= 2,,0 ,/l 1A—llo,B 110,C—1z—1t—1

Solution 2: When & > 0 and £ # O then according to family 2, we gain

f/e?(A — 3Atanh’ (% VE(kx + 1y +zp — fw)))2
8V3(~@k)" |

¢ (x,y,2,1) = (3.18)

This solution is a W-shaped solution as presented in Figure 7.

AIMS Mathematics Volume 8, Issue 2, 4467-4486.
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B(xy)

Figure 7. 3D surface and 2D graph of Eq. (3.18) are drawn in case u = 0.3,¢c = 0.4, w =
1

_ _ _3 1 1 1 _ _ 1 _ —
2> €1 —2,k——5,p— 5,/1— g,A— g,B— g,C——E,Z— 1,r=1.

Solution 3: When A% + B? # 0 and k # 0 then according to family 3, we gain W-shaped solution

Vel (a2 + B = 3(4% + B) tanh’ (3§ VAZ + B2 (kx + Iy + 2 — i) (3.19)
8V2(—(42 + BYK) " : .

¢(‘x7y7z7t) =

Solution 4: When C?—~A? > 0 and k # 0 then according to family 4, we gain bright-singular solution

¢ (x,y,2.1) = Jerl(42 = € +3(C? - A?)tan? (4 VCT = A2 (kx + Iy + pz — wn))

. (3.20)
8¥2(~(42 - ¢2)’k)”

Solution 5: When B> — C? > 0 and k # 0 then according to family 5, we gain W-shaped solution

(B2 - C2)2 W(l — 3tanh? (% VB2 — C2 (kx + ly + pz — wt)))2 321
8\3/5(—(32 B C2)3k)2/3 : .

¢(x5y’zﬂt) =

Solution 6: When A # 0 and k # O then according to family 10, we gain singular solution

2
A4k4 3/612(1 + 4eAk(kx+ly+pz—wt) + eZAk(kx+ly+pz—wt))

(%320 = 2V2(-1 + eAk(kx+ly+pz—wt))4(_ A6 k7)2/ 3 ’ (3:22)

This is singular solution as shown in Figure 8.

AIMS Mathematics Volume 8, Issue 2, 4467-4486.
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B(xy)

Figure 8. 3D surface and 2D graph of Eq (3.19) are drawn in case u = 0.3,¢
2,e1 =2,k = —%,p = %,/l = é,A = %O,Z =1,r=1.

=04, w =
Solution 7: When B # 0 and k # 0 then according to family 11, we gain W-shaped solution

B4 3/612(1 + (A _ B) eB(kx+ly+pz—wt) (4 + (A _ B) eB(kx+ly+pz—wt)))2
¢ (x,y,2,1) =

3 . (3.23)
2V2(1 + (=A + B) eBlvtl+p—wny}(_ Bog)y*>
Solution 8: When B # 0 and k # 0 then according to family 12, we gain singular solution

B*e 12(1 + (B = C) eBkxtly+pz=wn) (4 +(B-0C) eB(kx+ly+pz—wt)))2
¢ (X, ya e t) =

- : (3.24)
2V2(1 + (=B + C) eBkrrlysp-wn)y}(— Bof)*3
Solution 9: When B # 0 and k # O then according to family 13, we gain singular solution

B4 3’612((14 + B)2 + 4(A + B) eB(kx+ly+pz—wt) + eZB(kx+ly+pz—wt))2
¢(x,y,2,0) =

. 3.25
2\3/§(A + B - eB(kX+ly+pZ—wl))4(_B6k)2/3 ( )
Solution 10: When A # 0 and k # 0 then according to family 14, we gain singular solution

A4 3/612(1 + CeA(kx+ly+pz—wt) (4 + CeA(kx+ly+pz—wt)))2
¢ (x,y,2,0) =

. 3.26
2\3/5(_1 + CeA(kx+ly+pz—wt))4(_ A6 k)2/3 (3.26)
Solution 11: When C # 0 and k # O then according to family 18, we gain singular solution

C*fer(1 + 3tan? (3C Gk + Iy + 20~ wt)))z

8\3/§(C6k)2/3 . (3.27)
3.2. Application on the He Exp-function method

¢(X,y,z,t) =

This method is extremely easy to use and is based on the premise in Eq (2.5). Suppose that the
formula for the solution to Eq (3.4) is

) = a;e +---+a_je (328)
ul6) = beesé + -+ + b_je '

AIMS Mathematics
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Taking the balance of the linear term of the highest order in Eq (3.4) with the highest order nonlinear
term. Calculating simply, we get

P A ST P CAE Tl

W= 2838 + -« + dyehE (3.29)

and
0363+ dye P 4 oK

= C4e3g§ I d4e—3hg“ - C4€5g§ 4o d4€_5h-(

(3.30)

By taking the balance between the highest order of Exp-function in Eqs (3.29) and (3.30), in a
simplified form we get

g=1 and h=j (3.31)

Taking only consider the simplest case i = j = 1 and as aresult g = h = 1. Now the ansatz (3.28) can
be rewrite as:

a,é’ +ay+a_e’
ble»f + bo + b_le‘éw

V() =

(3.32)

Substituting Eq (3.32) into Eq (3.4), collecting the coefficients of exponential function that have the
same power to zero, we have the following case

2 Vzao—bo k2+p2
Case: Whena_, = 0,a; = 0,b; = 2| = V2ao-bo(k2+0%) c= 4 _ @

- 4b_1 » v \/bT) s - 2b0 k° e], a I'eSult 1S

2a—bg (k2 +p?
kx+pz+ 00()y+wt]

bo

2
166102b%1€ [

1
ZaO—bo(k2+p2)
kx+pz+ | ———2
[b()e e bo Y 4 2b_ev!

¢(x,y,2,1) = (3.33)

This solution is a bright soliton as seen in Figure 9.

X 200 20

Figure 9. 3D surface and 2D graph of Eq (3.33) are drawn in case ¢ = 0.4,w = -2,¢; =
0,k = —%,p = %,l =1,b.y=1,a0=1,bp=1,z=1,t=1.

AIMS Mathematics Volume 8, Issue 2, 4467-4486.
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Consider Eq (3.4) and balance the linear term of the highest order in Eq (2.5) with the highest order
nonlinear term. By using balance principle and simple calculation, we get n = 2. Now the ansatz (2.6)
can be rewrite as:

v(() =a(m+ (,0)_2 +a_(m+ go)_1 +ag+a(m+ @) +a(m+ 90)2.

Substituting Eq (3.34) into Eq (3.4), collecting the coefficients of (m + ¢)', i
same power to zero, we have the following cases:

(3.34)

= 0,1, ... that have the
Case 1: When a_y = 0,a = 0, a9 = m(m+ ) =) (KR +P+p?). ay = k> = P - p?, a; =
-1 (kz +P+ pz), c=1 ((2m + )% - 4,u) (k2 +12+ pz) — 2 ¢, we obtain the following solutions:

Y(A2 - ALY (K + 2+ p?)
¢ (x,y,2,1) = 7 (3.35)
16(A2 cosh (4 vy (kx + Iy + zp = tw)) + Ay sinh (§ vy (kx + Iy + zp — tw)
provided that y = (2m + A)* — 4u > 0. When y < 0, the solution is
¢ (x,y,2,1) =

y2(A12 + A22)2(1<2 + P +p2)2

4
16(A2 cos (% \V=-ykx+1ly+zp0— tw)) + Aj sin (% V=-ykx+1ly+z0 - ta)))
In case y = 0, the solution is

(3.36)
A24(k2 +P+ p2)2
(x,y,2,1) = . 3.37
plxy (A1 + Ay (kx + Iy + zp — tw))* (37
These provided solutions are singular as shown in Figures 10-12.
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Figure 10. 3D surface and 2D graph of Eq (3.35) are drawn in case ¢ = 04,1 = 1,m =
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Figure 11. 3D surface and 2D graph of Eq (3.36) are drawn in case ¢ = 0.4,1 = %,m =
Ou=1lw=2,60=0,k= %,p = %,Al =1,A,=1,a, = —%,z =1,r=1.
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Figure 12. 3D surface and 2D graph of Eq (3.37) are drawn in case ¢ = 0.4,1 = 1,m =
O,u= %,w =2, =0,k = %,p = %,Al =1,A,=2,a,=-1,z=1,tr=1.

Case 2: When a_y = A(m(m+ ) — ) (K + P+ p?). ay = —(u—m(m+ 1)’ (k% + P+ p?), ap =
(mm+ ) =) (K +P+p).ay=0,a1 =0,c=4(@m+ 27 - 4u) (K + P +p?) - £, ¢, = 0, one can
offer the below solutions:

V(A1 = AP (AL + A = m G + DP( + P+ p7)

¢ (x,y,2,0) = 7
((Az/l - A \/7) (cosh (% \Vy kx + 1y +zp — ta))) — sinh (% \Vy kx + 1y + zp — tw))))
(3.38)
provided that y > 0. When y < 0, the solution is
(A2 + A2) Y2 = mm + D2 (R + P+ p2)
¢ (x,y,2,1) = 7 (3.39)

(Agxl - A \/—_y) cos (% =y kx + Iy + zp — ta))) +
(A12+ A, v=y)sin (% V=y (kx + Iy + zp — tw))
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In case y = 0, the solution is

ALK+ P+ )
(Al + Ay 2 + kx + Iy + zp — tw))*

¢ (x,y,2,1) = (3.40)

These provided solutions are singular.
4. Results and discussion

Three powerful methods are used to study the considered equation. In this paper, we present
W-shaped soliton solutions, in comparison with the solutions reported in Refs. [36—42]. This pulse
propagation is new and can be constructed rarely in nonlinear science. From the results obtained, we
can conclude that the tan (¢ ({) /2)-expansion method provides more novel and different types of
solutions in comparison with solutions constructed via other suggested methods.

5. Conclusions

In the current research paper, we have constructed some novel analytical solutions to the (3+1)-
dimensional modified Zakharov-Kuznetsov equation. This equation presents the ion-acoustic waves in
a magnetized plasma. Three methods namely; the tan (¢ ({) /2)-expansion, (m+G’({)/G({))-expansion
and He exponential function methods are used to offer different solutions for this model. Various soliton
solutions are constructed such as W-shaped, singular, bright and periodic bright-singular. To verify the
existence of the solutions, we have inserted them into Eq (1.1) and they satisfy it.
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