

AIMS Mathematics, 8(2): 4442–4466. DOI: 10.3934/math.2023221 Received: 27 July 2022 Revised: 13 November 2022 Accepted: 23 November 2022 Published: 05 December 2022

http://www.aimspress.com/journal/Math

Research article

A new spectral method with inertial technique for solving system of nonlinear monotone equations and applications

Sani Aji^{1,2}, Aliyu Muhammed Awwal^{1,2}, Ahmadu Bappah Muhammadu^{1,2}, Chainarong Khunpanuk^{3,*}, Nuttapol Pakkaranang³ and Bancha Panyanak^{4,5,*}

- ¹ Department of Mathematics, Faculty of Science, Gombe State University (GSU), Gombe, Nigeria
- ² GSU-Mathematics for Innovative Research Group, Gombe State University (GSU), Gombe, Nigeria
- ³ Mathematics and Computing Science Program, Faculty of Science and Technology, Phetchabun Rajabhat University, Phetchabun 67000, Thailand
- ⁴ Research Group in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- ⁵ Data Science Research Center, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- * **Correspondence:** Email: iprove2000ck@gmail.com, bancha.p@cmu.ac.th; Tel: +6656717100; Fax: +6656717110.

Abstract: Many problems arising from science and engineering are in the form of a system of nonlinear equations. In this work, a new derivative-free inertial-based spectral algorithm for solving the system is proposed. The search direction of the proposed algorithm is defined based on the convex combination of the modified long and short Barzilai and Borwein spectral parameters. Also, an inertial step is introduced into the search direction to enhance its efficiency. The global convergence of the proposed algorithm is described based on the assumption that the mapping under consideration is Lipschitz continuous and monotone. Numerical experiments are performed on some test problems to depict the efficiency of the proposed algorithm in comparison with some existing ones. Subsequently, the proposed algorithm is used on problems arising from robotic motion control.

Keywords: derivative-free method; spectral gradient method; inertial step; nonlinear monotone equations

Mathematics Subject Classification: 90C30, 90C06, 90C56

1. Introduction

Spectral gradient methods are among the widely known first-order methods for unconstrained optimization problems $\min_{m \in \mathbb{R}^n} f(m)$, where $f : \mathbb{R}^n \to \mathbb{R}$ is a smooth nonlinear function that is bounded below. These methods generate a sequence of approximations using the iterative formula:

$$m_{k+1} = m_k + \Lambda_k t_k, \tag{1.1}$$

where Λ_k is called the step size and is obtained using some line search procedures, and t_k is called a search direction, defined as

$$t_k := \begin{cases} -g_k, & \text{if } k = 0, \\ -\overline{\gamma}_k g_k, & \text{if } k \ge 1, \end{cases}$$
(1.2)

where $g_k := \nabla f(m_k)$, and the coefficient $\overline{\gamma}_k$ is a scalar known as the spectral parameter, which differentiates any two spectral gradient methods (see Barzilai and Borwein (BB) [1]). The classical forms of the parameter $\overline{\gamma}_k$ given in [1] are

$$\overline{\gamma}_{k}^{long} = \frac{\|m_{k+1} - m_{k}\|^{2}}{\langle g(m_{k+1}) - g(m_{k}), m_{k+1} - m_{k} \rangle},$$
(1.3)

$$\overline{\gamma}_{k}^{short} = \frac{\langle g(m_{k+1}) - g(m_{k}), m_{k+1} - m_{k} \rangle}{\|g(m_{k+1}) - g(m_{k})\|^{2}}.$$
(1.4)

Among the advantages of the spectral gradient method is its simplicity in implementation and low storage requirement; thus, it is suitable for large-scale problems. As a result, researchers have extended the spectral gradient method to solve systems of nonlinear equations (see, [2–4]). A system of nonlinear equations involves finding a vector *m* in a nonempty, closed and convex set $C \subset \mathbb{R}^n$ such that

$$\Gamma(m) = 0, \tag{1.5}$$

where $\Gamma : \mathbb{R}^n \to \mathbb{R}^n$ is continuous. When the mapping Γ is monotone, i.e.,

$$\langle \Gamma(m) - \Gamma(\overline{m}), m - \overline{m} \rangle \ge 0, \quad \forall m, \overline{m} \in \mathbb{R}^n,$$

Problem (1.5) becomes a system of nonlinear monotone equations. Many problems arising from science and engineering can be translated into the form of problem (1.5). For example, applications of system of nonlinear equations (1.5) have appeared in different fields [5–10]. In recent years, algorithms for solving systems of nonlinear monotone equations have been used in signal and image recovery, (see [11–17]).

Motivated by the hyperplane projection strategy of Solodov and Svaiter [18], spectral gradient-like methods for solving (1.5) have gained more attention. Zhang and Zhou [19] developed a spectral gradient projection method for unconstrained nonlinear equations based on the modified version of the $\overline{\gamma}_k^{long}$ (1.3). Later on, Yu et al. [20] extended the work in [19] to solve convex constrained nonlinear equations. In addition, Yu et al. [21] proposed another spectral method for solving a system of nonlinear equations. The search direction in their work uses a convex combination of the modified $\overline{\gamma}_k^{long}$ (1.3) and $\overline{\gamma}_k^{short}$ (1.4). Their work revealed that combining the modified BB parameters gives

better numerical performance than deploying them separately. This means that the efficiency of the convex combination of the $\overline{\gamma}_k^{long}$ (1.3) and $\overline{\gamma}_k^{short}$ (1.4) can be further explored.

Nowadays, there is a growing interest in incorporating the inertial technique into algorithms for solving systems of nonlinear equations (see, for example, [22, 23]). The inertial step defined as $i_{k+1} := m_{k+1} + \alpha_k(m_{k+1} - m_k)$, $\alpha_k \in (0, 1)$, was proposed by Polyak [24] in order to speed up the performance of iterative algorithms. It can be observed that the inertial technique is using two previous iterates to compute the current iterate. This has also been shown to accelerate the iteration process of algorithms for solving nonlinear problems such as the proximal point method [25, 26] and auxiliary problem principle [27].

Motivated by the contributions of the above-mentioned literature, this work seeks to explore the effect of the inertial technique on the convex combination of the $\overline{\gamma}_k^{long}$ and $\overline{\gamma}_k^{short}$ based on some modifications. This idea can be viewed as the modification of the work of Yu et al. [21]. Numerical experiments conducted in Section 3 reveal some level of improvement in numerical performance. Some of the notable contributions of this work include the following:

- A new spectral method for solving a system of nonlinear monotone equations based on the inertial technique is proposed.
- This work generalizes some existing algorithms in the literature.
- The global convergence of the proposed method is discussed under standard conditions.
- To depict the efficiency of the new method, a numerical experiment on a collection of test problems in comparison with some existing methods is presented.
- Subsequently, the proposed algorithm is applied to problems arising from robotic motion control.

In the remaining part of this work, the next section gives some definitions, details of the algorithms and global convergence. Section three gives some numerical experiments, while the application part is in Section four. In the final section, some concluding remarks are given.

2. Proposed algorithm and convergence analysis

We begin this section by recalling the definition of the projection operator as follows:

Definition 2.1. Suppose $C \subset \mathbb{R}^n$ is a convex, nonempty and closed set. Then, any point $m \in \mathbb{R}^n$ can be projected onto the set C using

$$P_C(m) = \arg\min\{||m - \overline{m}|| : \overline{m} \in C\}.$$
(2.1)

The relation (2.1) satisfies the following useful property:

$$\|P_C(m) - \overline{m}\| \le \|m - \overline{m}\|, \quad \forall \overline{m} \in C.$$
(2.2)

Definition 2.2. Any vector-valued map that satisfies

$$\|\Gamma(m) - \Gamma(\overline{m})\| \le L \|m - \overline{m}\|, \ \forall m, \overline{m} \in \mathbb{R}^n, \ L > 0,$$

is said to be Lipschitz continuous.

AIMS Mathematics

In what follows, we present the proposed algorithm and subsequently give some remarks.

Algorithm 1: Derivative-Free Spectral Method with Inertia (iSDFM).

Input : Choose m_{-1} , $m_0 \in C$, $0 < \eta < 2$, $\kappa > 0$, $\sigma, \mu, \varsigma, \alpha_k \in (0, 1)$, r > 0 and Tol > 0. **Step 0:** Set k = 0, compute $t_0 := -\Gamma(m_0)$ and $i_0 := m_0 + \alpha_0(m_0 - m_{-1})$. **Step 1:** If $\|\Gamma(m_k)\| \le Tol$, then terminate; else, continue with **Step 2**. **Step 2:** Set

$$p_k := m_k + \Lambda_k t_k, \quad \Lambda_k = \kappa \varsigma^J, \tag{2.3}$$

where j is the least non-negative integer such that

$$-\langle \Gamma(m_k + \kappa \varsigma^j t_k), t_k \rangle \ge \sigma \kappa \varsigma^j ||t_k||^2 \min\{1, ||\Gamma(m_k + \kappa \varsigma^j t_k)||^{\frac{1}{c}}\}, \ c \ge 1.$$
(2.4)

Step 3: If $||\Gamma(p_k)|| = 0$, stop. Else, compute

$$m_{k+1} := P_C \left[m_k - \eta \frac{\langle \Gamma(p_k), m_k - p_k \rangle}{\|\Gamma(p_k)\|^2} \Gamma(p_k) \right].$$
(2.5)

Step 4: Set k := k + 1 and redo the task from step 1, where the inertial step is updated as $i_{k+1} := m_{k+1} + \alpha_k(m_{k+1} - m_k)$ with the search direction as

$$t_k := -\gamma_k \Gamma(m_k), \tag{2.6}$$

where

$$\gamma_k = (1 - \theta_k)\overline{\beta}_k + \theta_k\overline{\beta}_k, \qquad (2.7)$$

$$\overline{\beta}_{k} = \frac{\|i_{k+1} - i_{k}\|^{2}}{\langle i_{k+1} - i_{k}, \ \Gamma(i_{k+1}) - \Gamma(i_{k}) + r(i_{k+1} - i_{k}) \rangle},$$
(2.8)

$$\widehat{\beta}_{k} = \frac{\langle i_{k+1} - i_{k}, \ \Gamma(i_{k+1}) - \Gamma(i_{k}) + r(i_{k+1} - i_{k}) \rangle}{\|\Gamma(i_{k+1}) - \Gamma(i_{k}) + r(i_{k+1} - i_{k})\|^{2}},$$
(2.9)

$$\theta_k = 1 - \mu \cdot \frac{\langle \Gamma(m_k), i_{k+1} - i_k \rangle^2}{\overline{\Gamma(m_k)}^2 ||i_{k+1} - i_k||^2},$$
(2.10)

$$\overline{\Gamma(m_k)} = \max\{\|\Gamma(m_{k-1})\|, \|\Gamma(m_k)\|\}.$$
(2.11)

Remark 2.3. The choice of the θ_k defined by (2.10) is prompted by the work of Awwal et al. [28]. Now, since $\max\{\|\Gamma(m_{k-1})\|, \|\Gamma(m_k)\|\} \ge \|\Gamma(m_k)\|$, then by the Cauchy-Schwarz inequality we have

$$0 \le \frac{\langle \Gamma(m_k), i_{k+1} - i_k \rangle^2}{\|\overline{\Gamma(m_k)}\|^2 \|i_{k+1} - i_k\|^2} \le \frac{\|\Gamma(m_k)\|^2 \|i_{k+1} - i_k\|^2}{\|\Gamma(m_k)\|^2 \|i_{k+1} - i_k\|^2} = 1,$$
(2.12)

and by the fact that $\mu \in (0, 1)$, we get

$$0 \le \theta_k \le 1. \tag{2.13}$$

Remark 2.4. We note that if for all k, $i_k = m_k$ (2.8) and (2.9) and $\theta_k \in [0, 1]$, then the search direction (2.6) reduces to that of Yu et al. [21]. Moreover, if for all k, $i_k = m_k$ in (2.8) and $\theta_k = 0$, then

AIMS Mathematics

the search direction (2.6) reduces to that of Yu et al. [20]. Furthermore, the new search direction (2.6) also reduces to DAIS1 and DAIS2 of Awwal et al. in [22] if $\theta_k = 1$ and $\theta_k = 0$, respectively. Hence, our proposed work is regarded as an extension of the algorithms proposed in [21, 22].

To show the global convergence of the proposed algorithms, we assumed the following:

- (A_1) The mapping Γ is monotone.
- (A_2) The mapping Γ is Lipschitz continuous.
- (A_3) The solution set of problem (1.5) is nonempty.

Lemma 2.5. Suppose that the assumptions (A_1) – (A_3) hold, and that $\{m_k\}$ and $\{i_k\}$ are produced by Algorithm 1. Then,

- (i) $\lim_{k \to \infty} ||m_k \widehat{m}||$ exists.
- (*ii*) $\{m_k\}, \{i_k\}$ and $\|\Gamma(m_k)\|$ are bounded.
- (iii) The search direction is bounded, i.e.,

$$||t_k|| \le c_1, \ c_1 > 0. \tag{2.14}$$

(iv) The search direction satisfies

$$\langle \Gamma(m_k), t_k \rangle \le -c_2 \|\Gamma(m_k)\|^2, \ c_2 > 0.$$
 (2.15)

(v)

$$\lim_{k \to \infty} \Lambda_k ||t_k|| = 0. \tag{2.16}$$

Proof. Let \widehat{m} be a solution of problem (1.5), and by the assumption (A₁), we have

$$\langle \Gamma(p_k), m_k - \widehat{m} \rangle = \langle \Gamma(p_k), m_k - p_k + p_k - \widehat{m} \rangle = \langle \Gamma(p_k), m_k - p_k \rangle + \langle \Gamma(p_k) - \Gamma(\widehat{m}), p_k - \widehat{m} \rangle \ge \langle \Gamma(p_k), m_k - p_k \rangle.$$
 (2.17)

Now, since $0 < \eta < 2$, from (2.2), (2.5) and (2.17) we have

$$\begin{split} \|m_{k+1} - \widehat{m}\|^{2} &= \left\| P_{C} \left[m_{k} - \eta \frac{\langle \Gamma(p_{k}), m_{k} - p_{k} \rangle}{\|\Gamma(p_{k})\|^{2}} \Gamma(p_{k}) \right] - \widehat{m} \right\|^{2} \\ &\leq \left\| m_{k} - \widehat{m} - \eta \frac{\langle \Gamma(p_{k}), m_{k} - p_{k} \rangle}{\|\Gamma(p_{k})\|^{2}} \Gamma(p_{k}) \right\|^{2} \\ &= \|m_{k} - \widehat{m}\|^{2} - 2\eta \frac{\langle \Gamma(p_{k}), m_{k} - p_{k} \rangle}{\|\Gamma(p_{k})\|^{2}} \langle \Gamma(p_{k}), m_{k} - \widehat{m} \rangle + \eta^{2} \frac{\langle \Gamma(p_{k}), m_{k} - p_{k} \rangle^{2}}{\|\Gamma(p_{k})\|^{2}} \\ &\leq \|m_{k} - \widehat{m}\|^{2} - 2\eta \frac{\langle \Gamma(p_{k}), m_{k} - p_{k} \rangle}{\|\Gamma(p_{k})\|^{2}} \langle \Gamma(p_{k}), m_{k} - p_{k} \rangle + \eta^{2} \frac{\langle \Gamma(p_{k}), m_{k} - p_{k} \rangle^{2}}{\|\Gamma(p_{k})\|^{2}} \\ &= \|m_{k} - \widehat{m}\|^{2} - \eta(2 - \eta) \frac{\langle \Gamma(p_{k}), m_{k} - p_{k} \rangle^{2}}{\|\Gamma(p_{k})\|^{2}} \end{split}$$
(2.18)

$$&\leq \|m_{k} - \widehat{m}\|^{2}. \end{split}$$

AIMS Mathematics

This means that $||m_k - \widehat{m}|| \le ||m_{k-1} - \widehat{m}|| \le \cdots \le ||m_0 - \widehat{m}||$, and thus $\lim_{k \to \infty} ||m_k - \widehat{m}||$ exists.

(ii) Since $\lim_{k\to\infty} ||m_k - \widehat{m}||$ exists, $\{m_k\}$ is bounded. Combined with the fact that $0 < \alpha_k < 1$, $\forall k$, this gives the boundedness of $\{i_k\}$.

In addition, since the mapping Γ is Lipschitz continuous and $\{m_k\}$ is bounded, we can find a positive constant $c_3 > 0$ such that

$$\|\Gamma(m_k)\| \le c_3. \tag{2.19}$$

(iii) To prove that the search direction defined by (2.6) is bounded, we need to show that the parameter γ_k (2.7) is bounded.

From assumption (*A*₁), the mapping Γ is monotone. This gives us $\langle \Gamma(i_{k+1}) - \Gamma(i_k), i_{k+1} - i_k \rangle \ge 0$, and thus

$$\langle \Gamma(i_{k+1}) - \Gamma(i_k) + r(i_{k+1} - i_k), \ i_{k+1} - i_k \rangle = \langle \Gamma(i_{k+1}) - \Gamma(i_k), \ i_{k+1} - i_k \rangle + r ||i_{k+1} - i_k||^2$$

$$\geq r ||i_{k+1} - i_k||^2.$$
(2.20)

Moreover, using the assumption that the mapping Γ is Lipschitz continuous, together with the Cauchy Schwarz inequality, we have

$$\langle \Gamma(i_{k+1}) - \Gamma(i_k) + r(i_{k+1} - i_k), \ i_{k+1} - i_k \rangle = \langle \Gamma(i_{k+1}) - \Gamma(i_k), \ i_{k+1} - i_k \rangle + r ||i_{k+1} - i_k||^2$$

$$\leq (L+r) ||i_{k+1} - i_k||^2.$$
 (2.21)

Thus, (2.20) and (2.21) imply

$$r\|i_{k+1} - i_k\|^2 \le \langle \Gamma(i_{k+1}) - \Gamma(i_k) + r(i_{k+1} - i_k), \ i_{k+1} - i_k \rangle \le (L+r)\|i_{k+1} - i_k\|^2,$$
(2.22)

and therefore

$$\frac{1}{L+r} \le \overline{\beta}_k \le \frac{1}{r}.$$
(2.23)

On the other hand,

$$\begin{aligned} \|\Gamma(i_{k+1}) - \Gamma(i_k) + r(i_{k+1} - i_k)\|^2 \\ &= \langle \Gamma(i_{k+1}) - \Gamma(i_k) + r(i_{k+1} - i_k), \Gamma(i_{k+1}) - \Gamma(i_k) + r(i_{k+1} - i_k) \rangle \\ &= \|\Gamma(i_{k+1}) - \Gamma(i_k)\|^2 + 2r\langle \Gamma(i_{k+1}) - \Gamma(i_k), i_{k+1} - i_k \rangle + r^2 \|i_{k+1} - i_k\|^2 \\ &\ge \|\Gamma(i_{k+1}) - \Gamma(i_k)\|^2 + r^2 \|i_{k+1} - i_k\|^2 \\ &\ge r^2 \|i_{k+1} - i_k\|^2. \end{aligned}$$
(2.24)

Using Lipschitz continuity, we have

$$\|\Gamma(i_{k+1}) - \Gamma(i_k) + r(i_{k+1} - i_k)\| \le (L+r)\|i_{k+1} - i_k\|.$$
(2.25)

Combining (2.24) and (2.25) gives

$$r^{2} \|i_{k+1} - i_{k}\|^{2} \leq \|\Gamma(i_{k+1}) - \Gamma(i_{k}) + r(i_{k+1} - i_{k})\|^{2} \leq (L+r)^{2} \|i_{k+1} - i_{k}\|^{2}.$$
(2.26)

Using (2.22) and (2.26), we have

$$\frac{r}{(L+r)^2} \le \widehat{\beta}_k \le \frac{(L+r)}{r^2}.$$
(2.27)

AIMS Mathematics

Therefore, setting $M = \frac{1}{r} + \frac{L+r}{r^2}$ yields

$$\overline{\beta}_k + \widehat{\beta}_k \le M. \tag{2.28}$$

Since $\forall k, \theta_k \leq 1$ (see Remark 1),

$$\gamma_k = (1 - \theta_k)\overline{\beta}_k + \theta_k\overline{\beta}_k \le \overline{\beta}_k + \overline{\beta}_k \le M.$$
(2.29)

Combining this with (2.19) gives (2.14) with $c_1 = Mc_3$.

(iv) By the definition of θ_k , we have three possibilities, and thus the parameter γ_k may take any of the three different following forms: $\gamma_k = \overline{\beta}_k$, $\gamma_k = \widehat{\beta}_k$ and $\gamma_k = (1 - \theta_k)\overline{\beta}_k + \theta_k\overline{\beta}_k$ for $\theta_k = 0$, $\theta_k = 1$ and $\theta_k \in (0, 1)$, respectively. Therefore, we divide this proof into three cases:

Case I: If $\theta = 0$, $\forall k$, then the search direction (2.6) reduces to $t_k = -\overline{\beta}_k \Gamma_k(m_k)$, and therefore, using (2.23) gives

$$\langle \Gamma(m_k), t_k \rangle = -\overline{\beta}_k \|\Gamma(m_k)\|^2 \le -\frac{1}{L+r} \|\Gamma(m_k)\|^2.$$
(2.30)

Case II: If $\theta = 1$, $\forall k$, then the search direction (2.6) becomes $t_k = -\widehat{\beta}_k \Gamma_k(m_k)$, and thus, using (2.27) yields

$$\langle \Gamma(m_k), t_k \rangle = -\widehat{\beta}_k \|\Gamma(m_k)\|^2 \le -\frac{r}{(L+r)^2} \|\Gamma(m_k)\|^2.$$
(2.31)

Case III: If $0 < \theta < 1$, $\forall k$, then we can find some constant $c_4 > 0$ such that $\theta_k > c_4$ and $(1 - \theta_k) > 0$. Therefore, from (2.7) and (2.27), we have

$$\gamma_k \ge \theta_k \widehat{\beta}_k \ge c_4 \frac{r}{(L+r)^2} := c_5.$$
(2.32)

Thus, from the search direction (2.6) and (2.32), it holds that

$$\langle \Gamma(m_k), t_k \rangle = -\gamma_k \|\Gamma(m_k)\|^2 \le -c_5 \|\Gamma(m_k)\|^2.$$
(2.33)

Hence, from the three cases above, we see that (2.15) holds.

(v) Using the boundedness of $\{m_k\}$, (2.14) and the definition of p_k in (2.3), $\{p_k\}$ is bounded. Also, using the assumption that Γ is Lipschitz continuous, we get

$$\|\Gamma(p_k)\| \le n_1, \ n_1 > 0. \tag{2.34}$$

Since min $\{1, \|\Gamma(m_k + \Lambda_k t_k)\|^{\frac{1}{c}}\} \le 1$, squaring from both sides of (2.4) yields

$$\sigma^2 \Lambda_k^4 \|t_k\|^4 \le \langle \Gamma(p_k), \ \Lambda_k t_k \rangle^2. \tag{2.35}$$

Furthermore, since $0 < \eta < 2$, from (2.18) we obtain

$$\langle \Gamma(p_k), m_k - p_k \rangle^2 \le \frac{\|\Gamma(p_k)\|^2 (\|m_k - \widehat{m}\|^2 - \|m_{k+1} - \widehat{m}\|^2)}{\eta(2 - \eta)}.$$
 (2.36)

This together with (2.35) gives

$$\sigma^{2} \Lambda_{k}^{4} \|t_{k}\|^{4} \leq \frac{\|\Gamma(p_{k})\|^{2} (\|m_{k} - \widehat{m}\|^{2} - \|m_{k+1} - \widehat{m}\|^{2})}{\eta(2 - \eta)}.$$
(2.37)

AIMS Mathematics

Recall that $\|\Gamma(p_k)\|$ is bounded by n_1 (see (2.34)), and we obtain

$$\sigma^{2} \Lambda_{k}^{4} \|t_{k}\|^{4} \leq \frac{\|\Gamma(p_{k})\|^{2} (\|m_{k} - \widehat{m}\|^{2} - \|m_{k+1} - \widehat{m}\|^{2})}{\eta(2 - \eta)} \leq \frac{n_{1}^{2} (\|m_{k} - \widehat{m}\|^{2} - \|m_{k+1} - \widehat{m}\|^{2})}{\eta(2 - \eta)}.$$
(2.38)

Since $\lim_{k \to \infty} ||m_k - \widehat{m}||$ exists, taking the limit as $k \to \infty$ on both sides of (2.38) gives

$$\sigma^2 \lim_{k \to \infty} \Lambda_k^4 ||t_k||^4 = 0,$$

which implies (2.16).

Lemma 2.6. Suppose that the Assumption (A_2) holds. Let the sequences $\{m_k\}$ and $\{p_k\}$ be generated by Algorithm 1. Then,

$$\Lambda_k \ge \max\left\{\kappa, \frac{c_2 \varsigma \|\Gamma(m_k)\|^2}{(L+\sigma)\|t_k\|^2}\right\}.$$
(2.39)

Proof. From (2.4), if $\Lambda_k \neq \kappa$, then $\tilde{\Lambda}_k = \Lambda_k \varsigma^{-1}$ violates (2.4), that is,

$$-\langle \Gamma(m_k + \tilde{\Lambda}_k t_k), t_k \rangle < \sigma ||t_k||^2 \tilde{\Lambda}_k \min\{1, ||\Gamma(m_k + \varsigma^j t_k)||^{\frac{1}{c}}\}$$

We know that $\min\{1, \|\Gamma(m_k + \varsigma^j t_k)\|^{\frac{1}{c}}\} \le 1$. Thus, from (2.15) and Assumption (A₂), we get

$$\begin{split} c_{2} \|\Gamma(m_{k})\|^{2} &\leq -\Gamma(m_{k})^{T} t_{k} \\ &= (\Gamma(m_{k} + \tilde{\Lambda}_{k} t_{k}) - \Gamma(m_{k}))^{T} t_{k} - \langle \Gamma(m_{k} + \tilde{\Lambda}_{k} t_{k}), t_{k} \rangle \\ &\leq \|\Gamma(m_{k} + \tilde{\Lambda}_{k} t_{k}) - \Gamma(m_{k})\|\|t_{k}\| - \langle \Gamma(m_{k} + \tilde{\Lambda}_{k} t_{k}), t_{k} \rangle \\ &\leq L \|m_{k} + \tilde{\Lambda}_{k} t_{k} - m_{k}\|\|t_{k}\| + \sigma \tilde{\Lambda}_{k} \|t_{k}\|^{2} \min\{1, \|\Gamma(m_{k} + \varsigma^{j} t_{k})\|^{\frac{1}{c}}\} \\ &\leq L \|m_{k} + \tilde{\Lambda}_{k} t_{k} - m_{k}\|\|t_{k}\| + \sigma \tilde{\Lambda}_{k} \|t_{k}\|^{2} \\ &\leq \tilde{\Lambda}_{k} L \|t_{k}\|^{2} + \sigma \tilde{\Lambda}_{k} \|t_{k}\|^{2} \\ &\leq \tilde{\Lambda}_{k} (L + \sigma) \|t_{k}\|^{2}. \end{split}$$

Therefore,

$$\tilde{\Lambda}_{k} \ge \frac{c_{2} \|\Gamma(m_{k})\|^{2}}{(L+\sigma) \|t_{k}\|^{2}}.$$
(2.40)

Substituting $\tilde{\Lambda}_k = \Lambda_k \varsigma^{-1}$ in (2.40) and solving for Λ_k , we get

$$\Lambda_k \ge \frac{c_2 \varsigma \|\Gamma(m_k)\|^2}{(L+\sigma)\|t_k\|^2}.$$
(2.41)

Thus, we have

$$\Lambda_k \ge \max\left\{\kappa, \frac{c_2 \varsigma \|\Gamma(m_k)\|^2}{(L+\sigma) \|t_k\|^2}\right\}.$$

Theorem 2.7. If the Assumptions $(A_1 - A_3)$ hold, and the sequence $\{m_k\}$ is produced by Algorithm 1, then

$$\liminf_{k \to \infty} \|\Gamma(m_k)\| = 0. \tag{2.42}$$

AIMS Mathematics

Proof. We show the proof by contradiction. Suppose (2.42) does not hold, and then there exists s > 0 such that $\forall k \ge 0$,

$$\|\Gamma(m_k)\| \ge s. \tag{2.43}$$

From Eqs (2.15) and (2.43), we get $\forall k \ge 0$,

$$\|t_k\| \ge sc_2. \tag{2.44}$$

Multiplying $||t_k||$ on both sides of (2.39), and using (2.14) and (2.43), we obtain

$$\begin{split} \Lambda_{k} \|t_{k}\| &\geq \max\left\{\kappa, \frac{c_{2}\varsigma \|\Gamma(m_{k})\|^{2}}{(L+\sigma)\|t_{k}\|^{2}}\right\} \|t_{k}\| \\ &\geq \max\left\{\kappa, \frac{c_{2}\varsigma c_{3}^{2}}{(L+\sigma)c_{2}^{2}}\right\} c_{2}s \\ &= \max\left\{\kappa c_{2}s, \frac{\varsigma c_{3}^{2}s}{(L+\sigma)}\right\}. \end{split}$$

$$(2.45)$$

Taking the limit as $k \to \infty$ on both sides gives

$$\lim_{k \to \infty} \Lambda_k ||t_k|| > 0, \tag{2.46}$$

which contradicts (2.16). Hence, $\liminf_{k \to \infty} ||\Gamma(m_k)|| = 0$.

3. Numerical experiments

In this section, we present the numerical experiments performed by solving a set of test problems taken from the literature. To depict the efficiency of the iSDFM algorithm, we perform numerical comparison with two other existing methods. The first one is the DAIS1 algorithm proposed in [22], which is an inertial-based algorithm for solving a system of nonlinear equations. The second algorithm is the MSGPALG proposed by Yu et al. in [21] based on the convex combination of the modified BB long and short parameters. As noted in Remark 2.4, both DAIS1 and MSGPALG can be viewed as special cases of the proposed iSDFM algorithm. We test the performances of all these three algorithms on seven test problems with eight different initial points (see Table 1) and five dimensions (1000, 5000, 10000, 50000, and 100000), thus making the total number of the test problems 280. These three algorithms are coded on MATLAB R2019b which runs on a PC of corei3-4005U processor with 4 GB RAM and 1.70 GHz CPU. The choice of parameters for MSGPALG and DAIS1 are maintained as reported in their respective references [21, 22]. In the iSDFM algorithm, we choose $\varsigma = 0.47$, $\alpha_k = 1/(k+1)^2$, $\eta = 1.79$, $\mu = 0.5$, $\sigma = 0.01$, r = 0.001, c = 2 and $\kappa = 1$. The stopping criterion is set to be $\|\Gamma(m_k)\| < 10^{-6}$.

AIMS Mathematics

Initial guess	Value
m_1	$(1, 1, 1, \dots, 1)^T$
m_2	$(0.1, 0.1, 0.1, \cdots, 0.1)^T$
m_3	$(rac{1}{2},rac{1}{2^2},rac{1}{2^3},\ldots,rac{1}{2^n})^T$
m_4	$(1 - \frac{1}{n}, 1 - \frac{2}{n}, 1 - \frac{3}{n}, \dots, 0)^T$
m_5	$(0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n})^T$
m_6	$(1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n})^T$
m_7	$\left(\frac{n-1}{n},\frac{n-2}{n},\frac{n-3}{n},\ldots,0\right)^T$
m_8	$(\frac{1}{n},\frac{2}{n},\frac{3}{n},\ldots,0)^T$

Table 1. Initial guesses used for the problems.

We consider the following test problems, where $\Gamma(m) = (g_1(m), g_2(m), \dots, g_n(m))^T$: **Problem 1.** [29]:

$$g_1(m) = e^{m_1} - 1$$
, $g_j(m) = e^{m_j} + m_j - 1$, for $j = 2, ..., n$, and $C = \mathbb{R}^n_+$.

Problem 2. [28] Modified logarithmic function:

_

$$g_j(m) = \ln(m_j + 1) - \frac{m_j}{n}$$
, for $j = 1, 2, 3, ..., n$,
and $C = \{m \in \mathbb{R}^n : \sum_{j=1}^n m_j \le n, m_j > -1, j = 1, 2, ..., n\}.$

Problem 3. [30] Nonsmooth function:

$$g_j(m) = 2m_j - \sin |m_j|, \ j = 1, 2, 3, ..., n,$$

and $C = \{m \in \mathbb{R}^n : \sum_{j=1}^n m_j \le n, \ m_j \ge 0, \ j = 1, 2, ..., n\}.$

Problem 4. [31] Strictly convex function:

$$g_j(m) = e^{m_j} - 1$$
, for $j = 1, 2, ..., n$, and $C = \mathbb{R}^n_+$.

Problem 5. [20] Nonsmooth function:

.

$$g_j(m) = m_j - \sin |m_j - 1|, \ j = 1, 2, 3, ..., n,$$

and $C = \{m \in \mathbb{R}^n : \sum_{j=1}^n m_i \le n, \ m_j \ge -1, \ j = 1, 2, ..., n\}.$

Problem 6. [29]:

$$g_j(m) = e^{m_j^2} + 1.5\sin(2m_j) - 1$$
, for $j = 1, 2, ..., n$, and $C = \mathbb{R}^n_+$.

AIMS Mathematics

Problem 7. [32]:

$$g_1(m) = \frac{5}{2}m_1 + m_2 - 1,$$

$$g_j(m) = m_{j-1} + \frac{5}{2}m_j + m_{j+1} - 1, \text{ for } j = 2, 3, ..., n - 1,$$

$$g_n(m) = m_{n-1} + \frac{5}{2}m_n - 1 \text{ and } C = \mathbb{R}^n_+.$$

Based on these settings, the results of the experiments are tabulated in Tables 2–8 with ITER, FVAL and TIME denoting the number of iterations, number of function evaluations and CPU time, respectively. Based on these metrics, it can be observed that the performances of the three algorithms varies in terms of the ITER, FVAL and TIME. However, taking the whole results of the experiment into consideration, it can be seen that the proposed iSDFM algorithm outperformed the DAIS1 and the MSGPALG algorithms in most instances. By outperforming we mean the new iSDFM recorded the least ITER, FVAL and TIME in most cases of the experiment.

With the help of the Dolan and Moré performance profile [33], we present the information in Tables 2–8 graphically for better and easier visualization of each algorithm's performance. These graphs are plotted in Figures 1–3. It can be clearly observed from Figure 1 that the iSDFM algorithm solved about 72% of the problems with the least ITER, as compared to the DAIS1 and MSGPALG with around 30% and 12%, respectively. Figure 2 shows that the iSDFM outperformed the other two methods by solving around 70% of the problems with the least FVAL. In terms of TIME, iSDFM algorithm competes favorably with the MSGPALG algorithm. In general, our proposed iSDFM algorithm shows better efficiency as compared to the DAIS1 and MSGPALG algorithms. This might not be unconnected with taking the convex combination of the BB-like parameters incorporated with the inertial technique.

Figure 1. Performance profile on number of iterations.

AIMS Mathematics

		•		CDEN:								CDALC	
			i	SDFM			1	JAIS1			MS	GPALG	
DIMENSION	INITIAL POINT	ITER	FVAL	TIME	NORM	ITER	FVAL	TIME	NORM	ITER	FVAL	TIME	NORM
	m_1	1	2	0.0747	0.00E+00	5	7	0.1166	9.24E-08	8	9	0.1666	2.76E-07
	m_2	1	2	0.0054	0.00E+00	5	7	0.0519	5.76E-08	7	8	0.0395	1.06E-07
	m_3	2	3	0.0186	9.93E-16	10	11	0.0344	8.05E-08	10	11	0.0240	2.07E-07
1000	m_4	2	3	0.0052	0.00E+00	6	8	0.0253	2.30E-07	8	9	0.0112	2.52E-07
1000	m_5	2	3	0.0078	0.00E+00	6	8	0.0385	1.10E-07	8	9	0.0213	2.46E-07
	m_6	3	4	0.0064	0.00E+00	9	11	0.0278	7.28E-08	9	10	0.0057	1.98E-07
	m_7	2	3	0.0064	0.00E+00	6	8	0.0118	2.30E-07	8	9	0.0094	2.52E-07
	<i>m</i> ₈	2	3	0.0041	0.00E+00	6	8	0.0101	1.11E-07	8	9	0.0100	2.47E-07
	m_1	1	2	0.1996	0.00E+00	5	7	0.2617	2.37E-07	8	9	0.0676	6.05E-07
	m_2	1	2	0.0113	0.00E+00	4	6	0.0242	8.65E-08	7	8	0.0182	1.65E-07
	m_3	2	3	0.0138	9.93E-16	10	11	0.0423	8.05E-08	10	11	0.0224	2.07E-07
5000	m_4	2	3	0.0145	0.00E+00	6	8	1.1522	2.91E-07	8	9	0.1283	5.54E-07
3000	m_5	2	3	0.0556	0.00E+00	6	8	0.0308	2.55E-07	8	9	0.0286	5.52E-07
	m_6	3	4	0.1059	0.00E+00	9	11	0.0446	7.33E-08	9	10	0.0253	1.95E-07
	m_7	2	3	0.2689	0.00E+00	6	8	0.0281	2.91E-07	8	9	0.0196	5.54E-07
	m_8	2	3	0.0683	0.00E+00	6	8	0.0291	2.55E-07	8	9	1.4239	5.52E-07
	m_1	1	2	0.0335	0.00E+00	5	7	0.9254	3.37E-07	8	9	0.0582	8.53E-07
	m_2	1	2	0.0139	0.00E+00	4	6	0.0311	1.06E-07	7	8	0.3954	2.21E-07
	m_3	2	3	1.7858	9.93E-16	10	11	0.1457	8.05E-08	10	11	0.1475	2.07E-07
10000	m_4	2	3	0.0597	0.00E+00	6	8	0.0676	3.85E-07	8	9	0.0401	7.82E-07
10000	m_5	2	3	0.0287	0.00E+00	6	8	0.0427	3.60E-07	8	9	0.0347	7.81E-07
	m_6	3	4	0.0428	0.00E+00	9	11	0.4798	7.33E-08	9	10	0.0475	1.94E-07
	m_7	2	3	0.0353	0.00E+00	6	8	0.0518	3.85E-07	8	9	0.1343	7.82E-07
	m_8	2	3	0.5467	0.00E+00	6	8	0.1948	3.61E-07	8	9	2.2142	7.81E-07
	m_1	1	2	0.1128	0.00E+00	5	7	0.2563	7.55E-07	9	10	0.2087	9.07E-08
	m_2	1	2	0.5707	0.00E+00	4	6	2.7546	1.93E-07	7	8	0.1446	4.74E-07
	m_3	2	3	0.1359	9.93E-16	10	11	1.7252	8.05E-08	10	11	0.1304	2.07E-07
	m_4	2	3	0.1764	0.00E+00	6	8	0.1702	8.17E-07	9	10	0.1625	8.32E-08
50000	m_5	2	3	0.0968	0.00E+00	6	8	0.5717	8.07E-07	9	10	1.3341	8.31E-08
	m_6	3	4	1.1641	0.00E+00	9	11	0.4882	7.34E-08	9	10	0.1229	1.94E-07
	m_7	2	3	0.1440	0.00E+00	6	8	0.2247	8.17E-07	9	10	0.1264	8.32E-08
	m_8	2	3	0.0931	0.00E+00	6	8	1.1037	8.07E-07	9	10	0.1459	8.31E-08
	m_1	1	2	0.1883	0.00E+00	6	8	0.4077	5.32E-09	9	10	0.9471	1.28E-07
	m_2	1	2	0.6308	0.00E+00	4	6	0.2373	2.65E-07	7	8	0.2009	6.66E-07
	m_3	2	3	0.2199	9.93E-16	10	11	4.2777	8.05E-08	10	11	0.2548	2.07E-07
	m_4	2	3	0.1781	0.00E+00	7	9	0.4334	5.71E-09	9	10	0.2946	1.18E-07
100000	m_5	2	3	0.8688	0.00E+00	7	9	1.8487	5.68E-09	9	10	0.2558	1.18E-07
	m_6	3	4	0.1510	0.00E+00	9	11	0.6243	7.34E-08	9	10	2.5348	1.94E-07
	m_7	2	3	0.3463	0.00E+00	7	9	0.3045	5.71E-09	9	10	0.2682	1.18E-07
	m_8	2	3	0.3872	0.00E+00	7	9	3.9198	5.68E-09	9	10	0.3627	1.18E-07

 Table 2. Numerical results of the three algorithms on Problem 1.

			iS	SDFM			I	DAIS1			MS	GPALG	
DIMENSION	INITIAL POINT	ITER	FVAL	TIME	NORM	ITER	FVAL	TIME	NORM	ITER	FVAL	TIME	NORM
	m_1	4	6	0.0300	2.13E-07	8	10	0.0332	6.00E-08	9	10	0.0283	3.85E-07
	m_2	19	21	0.0497	9.06E-07	4	6	0.0119	1.25E-07	6	7	0.0145	5.14E-07
	m_3	7	9	0.0239	4.09E-07	7	9	0.0146	2.78E-08	7	8	0.0096	5.83E-07
1000	m_4	7	9	0.0172	9.09E-07	8	10	0.0195	2.49E-07	9	10	0.0096	4.50E-07
	m_5	7	9	0.0333	9.09E-07	8	10	0.0177	2.49E-07	9	10	0.0115	4.50E-07
	m_6	8	10	0.0192	4.95E-08	8	10	0.0181	1.95E-08	7	8	0.0120	7.79E-07
	m_7	7	9	0.0145	9.09E-07	8	10	0.0181	2.49E-07	9	10	0.0185	4.50E-07
	m_8	7	9	0.0165	8.88E-07	8	10	0.0203	2.50E-07	9	10	0.0107	4.54E-07
	m_1	4	6	0.4667	9.03E-07	8	10	1.2040	1.34E-07	9	10	0.7974	8.59E-07
	m_2	23	25	3.0068	7.92E-07	4	6	0.8070	2.75E-07	7	8	0.4587	1.03E-07
1000	m_3	7	9	0.1027	4.14E-07	7	9	0.0807	2.75E-08	7	8	0.1973	5.62E-07
5000	m_4	10	12	0.0980	8.56E-07	8	10	2.7056	5.64E-07	10	11	0.1100	9.17E-08
5000	m_5	10	12	0.0644	8.56E-07	8	10	0.4899	5.64E-07	10	11	0.1570	9.17E-08
	m_6	8	10	0.0563	1.62E-07	8	10	0.0748	2.00E-08	7	8	0.0203	7.77E-07
	m_7	10	12	1.7635	8.56E-07	8	10	0.5620	5.64E-07	10	11	1.6032	9.17E-08
	m_8	10	12	2.0989	8.51E-07	8	10	0.3175	5.64E-07	10	11	0.0398	9.18E-08
	m_1	6	8	0.0674	8.99E-07	8	10	3.0765	1.90E-07	10	11	0.0635	1.10E-07
	m_2	24	26	4.3594	8.95E-07	4	6	0.8040	3.88E-07	7	8	0.4238	1.45E-07
	m_3	7	9	0.0568	4.14E-07	7	9	0.1828	2.75E-08	7	8	0.1624	5.59E-07
10000	m_4	11	13	0.1394	9.00E-07	8	10	0.2587	7.98E-07	10	11	1.5964	1.30E-07
10000	m_5	11	13	1.8668	9.00E-07	8	10	0.1017	7.98E-07	10	11	0.7227	1.30E-07
	m_6	8	10	0.0638	1.75E-07	8	10	0.1647	2.02E-08	7	8	0.0366	7.77E-07
	m_7	11	13	0.1010	9.00E-07	8	10	2.4034	7.98E-07	10	11	0.1130	1.30E-07
	m_8	11	13	0.7089	8.97E-07	8	10	0.2677	7.99E-07	10	11	0.0738	1.30E-07
	m_1	10	12	0.3468	8.09E-07	8	10	0.6028	4.24E-07	10	11	4.0162	2.47E-07
	m_2	27	29	2.2526	9.72E-07	4	6	2.6259	8.66E-07	7	8	0.3940	3.23E-07
	m_3	7	9	0.2112	4.15E-07	7	9	0.5050	2.75E-08	7	8	0.6980	5.57E-07
50000	m_4	14	16	1.2757	9.82E-07	9	11	1.2621	1.77E-08	10	11	0.2290	2.90E-07
50000	m_5	14	16	0.4675	9.82E-07	9	11	4.5622	1.77E-08	10	11	0.5405	2.90E-07
	m_6	8	10	1.9899	1.84E-07	8	10	1.0180	2.04E-08	7	8	0.3657	7.77E-07
	m_7	14	16	0.4672	9.82E-07	9	11	1.4871	1.77E-08	10	11	2.3145	2.90E-07
	m_8	14	16	1.4642	9.82E-07	9	11	0.8096	1.77E-08	10	11	1.8791	2.90E-07
	m_1	11	13	4.5167	9.03E-07	8	10	1.1287	5.99E-07	10	11	1.8709	3.49E-07
	m_2	29	31	2.7946	8.55E-07	5	7	0.3214	1.21E-08	7	8	0.3972	4.56E-07
	m_3	7	9	1.2771	4.15E-07	7	9	1.3914	2.75E-08	7	8	0.5613	5.57E-07
100000	m_4	16	18	2.8902	8.59E-07	9	11	0.8460	2.50E-08	10	11	1.2346	4.10E-07
100000	m_5	16	18	2.5125	8.59E-07	9	11	2.1172	2.50E-08	10	11	0.5491	4.10E-07
	m_6	8	10	1.8713	1.85E-07	8	10	0.5126	2.04E-08	7	8	0.4579	7.77E-07
	m_7	16	18	2.3005	8.59E-07	9	11	1.5732	2.50E-08	10	11	1.2220	4.10E-07
	m_8	16	18	2.3307	8.58E-07	9	11	1.8067	2.50E-08	10	11	0.5572	4.10E-07

Table 3. Numerical results of the three algorithms on Problem 2.

												CDALC	
			i	SDFM			L	DAIS1			MS	GPALG	
DIMENSION	INITIAL POINT	ITER	FVAL	TIME	NORM	ITER	FVAL	TIME	NORM	ITER	FVAL	TIME	NORM
	m_1	2	3	0.0489	0.00E+00	7	9	0.0312	2.58E-08	9	10	0.0271	2.19E-07
	m_2	2	3	0.0036	0.00E+00	5	7	0.0089	8.35E-07	7	8	0.0061	9.15E-07
	m_3	2	3	0.0068	0.00E+00	6	8	0.0109	1.27E-08	7	8	0.0068	2.49E-07
DIMENSION	m_4	2	3	0.0039	0.00E+00	6	8	0.0106	7.79E-07	9	10	0.0130	1.09E-07
1000	m_5	2	3	0.0046	0.00E+00	6	8	0.0139	7.79E-07	9	10	0.0106	1.09E-07
	m_6	2	3	0.0046	0.00E+00	6	8	0.0091	5.53E-08	8	9	0.0098	1.00E-07
	m_7	2	3	0.0047	0.00E+00	6	8	0.0115	7.79E-07	9	10	0.0087	1.09E-07
	<i>m</i> ₈	2	3	0.0041	0.00E+00	6	8	0.0122	7.78E-07	9	10	0.0075	1.10E-07
	m_1	2	3	0.6745	0.00E+00	7	9	0.0553	5.78E-08	9	10	0.5417	4.89E-07
	m_2	2	3	0.0132	0.00E+00	6	8	0.0326	1.85E-08	8	9	0.0784	1.86E-07
	m_3	2	3	0.0482	0.00E+00	6	8	0.0719	1.27E-08	7	8	1.2708	2.49E-07
5000	m_4	2	3	0.0132	0.00E+00	8	10	0.9730	5.57E-07	9	10	1.0767	2.45E-07
5000	m_5	2	3	0.0159	0.00E+00	8	10	0.2707	5.57E-07	9	10	0.0275	2.45E-07
	m_6	2	3	0.4898	0.00E+00	6	8	0.0905	5.53E-08	8	9	0.2965	1.00E-07
	m_7	2	3	0.0259	0.00E+00	8	10	0.2239	5.57E-07	9	10	0.0474	2.45E-07
	m_8	2	3	0.0089	0.00E+00	8	10	0.0748	5.57E-07	9	10	0.0289	2.45E-07
	m_1	2	3	0.6468	0.00E+00	7	9	0.0893	8.17E-08	9	10	1.1107	6.91E-07
	m_2	2	3	0.0174	0.00E+00	6	8	2.0953	2.61E-08	8	9	0.0422	2.63E-07
	m_3	2	3	0.0241	0.00E+00	6	8	0.1933	1.27E-08	7	8	0.0554	2.49E-07
10000	m_4	2	3	0.0180	0.00E+00	8	10	0.5469	7.88E-07	9	10	0.7111	3.46E-07
10000	m_5	2	3	1.5830	0.00E+00	8	10	2.3199	7.88E-07	9	10	0.0512	3.46E-07
	m_6	2	3	0.0905	0.00E+00	6	8	0.1884	5.53E-08	8	9	1.9455	1.00E-07
	m_7	2	3	0.0225	0.00E+00	8	10	0.0539	7.88E-07	9	10	0.0370	3.46E-07
	m_8	2	3	0.4293	0.00E+00	8	10	0.5833	7.88E-07	9	10	0.2404	3.47E-07
	m_1	2	3	0.1251	0.00E+00	7	9	0.2378	1.83E-07	10	11	0.1597	1.41E-07
	m_2	2	3	0.2099	0.00E+00	6	8	0.3338	5.84E-08	8	9	0.3668	5.88E-07
	m_3	2	3	0.2718	0.00E+00	6	8	0.1467	1.27E-08	7	8	0.1518	2.49E-07
50000	m_4	2	3	0.0892	0.00E+00	9	11	1.8976	1.74E-08	9	10	3.4018	7.75E-07
50000	m_5	2	3	0.0738	0.00E+00	9	11	0.8494	1.74E-08	9	10	0.5303	7.75E-07
	m_6	2	3	0.4336	0.00E+00	6	8	0.2686	5.53E-08	8	9	0.3395	1.00E-07
	m_7	2	3	0.1016	0.00E+00	9	11	3.6617	1.74E-08	9	10	0.1285	7.75E-07
	<i>m</i> ₈	2	3	0.4282	0.00E+00	9	11	0.2094	1.74E-08	9	10	0.3406	7.75E-07
	m_1	2	3	0.1608	0.00E+00	7	9	0.3985	2.58E-07	10	11	2.8327	1.99E-07
	m_2	2	3	0.4025	0.00E+00	6	8	2.4220	8.27E-08	8	9	0.5146	8.32E-07
	m_3	2	3	0.4997	0.00E+00	6	8	0.4001	1.27E-08	7	8	0.4550	2.49E-07
100000	m_4	2	3	0.2278	0.00E+00	9	11	1.2758	2.47E-08	10	11	0.6024	9.96E-08
100000	m_5	2	3	1.4800	0.00E+00	9	11	1.1169	2.47E-08	10	11	0.6103	9.96E-08
	m_6	2	3	0.1908	0.00E+00	6	8	1.1200	5.53E-08	8	9	0.3045	1.00E-07
	m_7	2	3	2.2168	0.00E+00	9	11	0.4203	2.47E-08	10	11	2.8192	9.96E-08
	m_8	2	3	0.5285	0.00E+00	9	11	1.6755	2.47E-08	10	11	0.5757	9.96E-08

Table 4. Numerical results of the three algorithms on Problem 3.

			i	SDFM			I	DAIS1			MS	SGPALG	
DIMENSION	INITIAL POINT	ITER	FVAL	TIME	NORM	ITER	FVAL	TIME	NORM	ITER	FVAL	TIME	NORM
	m_1	2	3	0.0296	0.00E+00	1	2	0.0073	0.00E+00	1	2	0.0291	0
	m_2	1	2	0.0027	0	1	2	0.0035	0.00E+00	1	2	0.0031	0
	m_3	2	3	0.0042	4.97E-16	1	2	0.0034	0.00E+00	1	2	0.0026	0.00E+00
	m_4	3	4	0.0049	0.00E+00	5	7	0.0093	2.75E-07	7	8	0.0060	6.10E-07
1000	m_5	3	4	0.0055	0.00E+00	5	7	0.0105	2.75E-07	7	8	0.0078	6.10E-07
	m_6	2	3	0.0034	0.00E+00	4	6	0.0067	1.70E-08	5	6	0.0046	2.61E-07
	m_7	3	4	0.0049	0.00E+00	5	7	0.0072	2.75E-07	7	8	0.0064	6.10E-07
	m_8	3	4	0.0071	0.00E+00	5	7	0.0083	2.84E-07	7	8	0.0056	6.18E-07
	m_1	2	3	0.0332	0.00E+00	1	2	0.0646	0.00E+00	1	2	0.0367	0
	m_2	1	2	0.0099	0	1	2	0.0213	0.00E+00	1	2	0.0174	0
	m_3	2	3	1.0121	4.97E-16	1	2	0.5463	0.00E+00	1	2	0.3020	0.00E+00
	m_4	3	4	0.0686	0.00E+00	5	7	0.6076	6.23E-07	8	9	0.2798	1.25E-07
5000	m_5	3	4	0.0281	0.00E+00	5	7	0.0214	6.23E-07	8	9	0.3643	1.25E-07
	m_6	2	3	0.0487	0.00E+00	4	6	0.9525	1.57E-08	5	6	0.1231	2.41E-07
	m_7	3	4	0.0160	0.00E+00	5	7	0.1311	6.23E-07	8	9	0.0235	1.25E-07
	m_8	3	4	0.3845	0.00E+00	5	7	0.0238	6.27E-07	8	9	0.0280	1.25E-07
	m_1	2	3	0.0432	0.00E+00	1	2	0.0152	0.00E+00	1	2	0.1671	0
	m_2	1	2	0.0130	0	1	2	0.6404	0.00E+00	1	2	0.2411	0
	m_3	2	3	0.3455	4.97E-16	1	2	0.1039	0.00E+00	1	2	0.0879	0.00E+00
	m_4	3	4	0.0962	0.00E+00	5	7	0.1264	8.83E-07	8	9	0.1373	1.76E-07
10000	m_5	3	4	0.0206	0.00E+00	5	7	0.0717	8.83E-07	8	9	0.0563	1.76E-07
	m_6	2	3	0.0129	0.00E+00	4	6	0.0410	1.56E-08	5	6	0.0300	2.39E-07
	m_7	3	4	2.1280	0.00E+00	5	7	2.0752	8.83E-07	8	9	0.0345	1.76E-07
	m_8	3	4	0.0435	0.00E+00	5	7	0.3836	8.85E-07	8	9	0.2295	1.77E-07
	m_1	2	3	0.1215	0.00E+00	1	2	0.0786	0.00E+00	1	2	0.2465	0
	m_2	1	2	0.9649	0	1	2	0.0727	0.00E+00	1	2	0.1039	0
	m_3	2	3	1.1914	4.97E-16	1	2	0.1050	0.00E+00	1	2	0.0993	0.00E+00
50000	m_4	3	4	0.0787	0.00E+00	6	8	0.4597	1.96E-08	8	9	0.9459	3.95E-07
50000	m_5	3	4	0.5360	0.00E+00	6	8	1.9008	1.96E-08	8	9	0.1311	3.95E-07
	m_6	2	3	0.0827	0.00E+00	4	6	1.4476	1.54E-08	5	6	1.6395	2.37E-07
	m_7	3	4	0.5580	0.00E+00	6	8	0.8577	1.96E-08	8	9	1.1280	3.95E-07
	m_8	3	4	0.1724	0.00E+00	6	8	0.1708	1.96E-08	8	9	0.1320	3.95E-07
	m_1	2	3	0.1040	0.00E+00	1	2	0.2292	0.00E+00	1	2	0.0971	0
	m_2	1	2	0.5020	0	1	2	0.3929	0.00E+00	1	2	0.0608	0
	m_3	2	3	0.6183	4.97E-16	1	2	0.5716	0.00E+00	1	2	1.2024	0.00E+00
100000	m_4	3	4	0.6508	0.00E+00	6	8	0.8017	2.77E-08	8	9	1.1241	5.58E-07
100000	m_5	3	4	2.7106	0.00E+00	6	8	0.2833	2.77E-08	8	9	0.5422	5.58E-07
	m_6	2	3	0.2422	0.00E+00	4	6	0.4995	1.54E-08	5	6	0.1569	2.37E-07
	<i>m</i> ₇	3	4	0.4045	0.00E+00	6	8	0.8315	2.77E-08	8	9	0.6378	5.58E-07
	m_8	3	4	1.2673	0.00E+00	6	8	0.2407	2.77E-08	8	9	2.2426	5.58E-07

 Table 5. Numerical results of the three algorithms on Problem 4.

			iS	SDFM			I	DAIS1			MS	GPALG	
DIMENSION	INITIAL POINT	ITER	FVAL	TIME	NORM	ITER	FVAL	TIME	NORM	ITER	FVAL	TIME	NORM
	m_1	24	26	0.0584	9.23E-07	4	6	0.0278	4.28E-07	6	7	0.0106	3.94E-07
	m_2	23	25	0.0523	9.30E-07	4	6	0.0085	2.03E-07	7	8	0.0083	3.89E-07
	$\overline{m_3}$	12	14	0.0252	5.60E-07	6	8	0.0112	1.37E-08	7	8	0.0103	5.04E-07
1000	m_4	12	14	0.0248	8.98E-07	7	9	0.0125	4.92E-08	8	9	0.0077	1.11E-07
	m_5	12	14	0.0275	8.98E-07	7	9	0.0142	4.92E-08	8	9	0.0118	1.11E-07
	m_6	19	21	0.0250	8.22E-07	8	10	0.0347	8.90E-09	8	9	0.0077	2.35E-07
	m_7	12	14	0.0258	8.98E-07	7	9	0.0133	4.92E-08	8	9	0.0090	1.11E-07
	m_8	12	14	0.0186	8.96E-07	7	9	0.0120	5.06E-08	8	9	0.0098	1.12E-07
	m_1	28	30	0.1528	8.04E-07	4	6	0.0764	9.58E-07	6	7	0.1398	8.81E-07
	m_2	27	29	0.6379	8.10E-07	4	6	0.3117	4.53E-07	7	8	0.4172	8.70E-07
5000	m_3	15	17	0.0647	5.18E-07	6	8	0.2211	1.30E-08	8	9	0.0829	5.70E-08
	m_4	16	18	0.1284	7.87E-07	7	9	0.0740	1.11E-07	8	9	0.1978	2.50E-07
5000	m_5	16	18	1.3222	7.87E-07	7	9	0.2236	1.11E-07	8	9	0.5069	2.50E-07
	m_6	15	17	0.0576	6.47E-07	7	9	0.7438	5.65E-07	8	9	0.9363	8.56E-07
	m_7	16	18	0.5002	7.87E-07	7	9	0.5365	1.11E-07	8	9	0.7172	2.50E-07
	m_8	16	18	0.2607	7.86E-07	7	9	0.0450	1.12E-07	8	9	0.0370	2.51E-07
	m_1	29	31	2.2261	9.03E-07	5	7	0.5164	7.20E-09	7	8	0.0696	6.32E-08
	m_2	28	30	0.1845	9.10E-07	4	6	0.2108	6.40E-07	8	9	0.3887	6.24E-08
	m_3	15	17	0.1033	6.58E-07	6	8	0.0598	1.23E-08	8	9	1.9183	8.06E-08
10000	m_4	17	19	1.0910	8.89E-07	7	9	1.2817	1.58E-07	8	9	0.0453	3.54E-07
10000	m_5	17	19	0.1082	8.89E-07	7	9	0.0601	1.58E-07	8	9	0.2457	3.54E-07
	m_6	15	17	0.4385	7.90E-07	8	10	0.2200	1.32E-08	9	10	0.4761	5.62E-08
	m_7	17	19	0.5594	8.89E-07	7	9	0.1719	1.58E-07	8	9	0.0590	3.54E-07
	m_8	17	19	2.5253	8.89E-07	7	9	0.0791	1.58E-07	8	9	0.4212	3.54E-07
	m_1	32	34	2.0660	9.88E-07	5	7	0.2138	1.61E-08	7	8	0.2570	1.41E-07
	m_2	31	33	1.7560	9.95E-07	5	7	1.2728	7.61E-09	8	9	0.3223	1.39E-07
	m_3	18	20	1.1115	9.18E-07	6	8	0.6486	1.15E-08	8	9	4.0013	1.80E-07
50000	m_4	20	22	1.9429	9.68E-07	7	9	0.4158	3.53E-07	8	9	0.3523	7.92E-07
50000	m_5	20	22	0.5584	9.68E-07	7	9	0.9673	3.53E-07	8	9	0.2946	7.92E-07
	m_6	17	19	1.4478	9.79E-07	8	10	0.2156	4.69E-08	9	10	0.2300	5.16E-08
	m_7	20	22	4.0180	9.68E-07	7	9	1.8746	3.53E-07	8	9	0.6637	7.92E-07
	m_8	20	22	0.6509	9.68E-07	7	9	0.2024	3.54E-07	8	9	0.1919	7.92E-07
	m_1	34	36	3.6145	8.70E-07	5	7	0.9745	2.28E-08	7	8	2.1130	2.00E-07
	m_2	33	35	2.2467	8.77E-07	5	7	2.2109	1.08E-08	8	9	1.3419	1.97E-07
	m_3	16	18	1.2758	1.67E-07	6	8	0.4651	1.13E-08	8	9	0.2564	2.55E-07
100000	m_4	22	24	2.1591	8.54E-07	7	9	0.8911	5.00E-07	9	10	0.7061	5.68E-08
100000	m_5	22	24	2.1281	8.54E-07	7	9	0.3940	5.00E-07	9	10	0.7502	5.68E-08
	m_6	21	23	1.4187	9.59E-07	8	10	2.1780	5.35E-08	8	9	0.2659	9.73E-07
	m_7	22	24	2.3113	8.54E-07	7	9	0.8201	5.00E-07	9	10	2.4092	5.68E-08
	m_8	22	24	1.9841	8.54E-07	7	9	0.5536	5.00E-07	9	10	0.7111	5.68E-08

Table 6. Numerical results of the three algorithms on Problem 5.

	iuoit						415						
			i	SDFM			Ι	DAIS1			MS	GPALG	
DIMENSION	INITIAL POINT	ITER	FVAL	TIME	NORM	ITER	FVAL	TIME	NORM	ITER	FVAL	TIME	NORM
	m_1	1	2	0.0438	0.00E+00	5	7	0.0154	3.13E-08	6	7	0.0362	5.08E-07
	m_2	2	3	0.0055	0.00E+00	4	6	0.0116	4.07E-09	6	7	0.0090	7.74E-08
	m_3	1	2	0.0059	3.14E-16	4	6	0.0074	1.95E-08	6	7	0.0126	1.35E-07
1000	m_4	2	3	0.0056	0.00E+00	10	12	0.0173	6.36E-08	9	10	0.0108	2.10E-08
1000	m_5	2	3	0.0070	0.00E+00	10	12	0.0204	6.36E-08	9	10	0.0153	2.10E-08
	m_6	2	3	0.0053	0.00E+00	6	8	0.0132	1.63E-08	8	9	0.0082	2.34E-07
	m_7	2	3	0.0056	0.00E+00	10	12	0.0232	6.36E-08	9	10	0.0091	2.10E-08
	m_8	2	3	0.0099	0.00E+00	10	12	0.0185	9.54E-08	9	10	0.0085	2.17E-08
	m_1	1	2	0.0374	0.00E+00	5	7	1.0327	7.00E-08	7	8	0.5082	2.23E-08
	m_2	2	3	0.0205	0.00E+00	4	6	0.0221	9.11E-09	6	7	1.3592	1.73E-07
	m_3	1	2	0.0747	3.14E-16	4	6	0.3235	1.95E-08	6	7	0.2540	1.35E-07
5000	m_4	2	3	0.5673	0.00E+00	11	13	0.3735	4.00E-09	9	10	0.0230	4.77E-08
5000	m_5	2	3	0.1877	0.00E+00	11	13	0.2003	4.00E-09	9	10	0.2913	4.77E-08
	m_6	2	3	0.0243	0.00E+00	6	8	0.5030	1.63E-08	8	9	0.0371	2.34E-07
	m_7	2	3	0.0166	0.00E+00	11	13	0.3037	4.00E-09	9	10	0.0259	4.77E-08
	m_8	2	3	0.1480	0.00E+00	11	13	0.7863	4.34E-09	9	10	1.1625	4.80E-08
	m_1	1	2	1.5394	0.00E+00	5	7	0.3123	9.90E-08	7	8	0.1095	3.15E-08
	m_2	2	3	0.3070	0.00E+00	4	6	0.7642	1.29E-08	6	7	0.0387	2.45E-07
	m_3	1	2	0.0315	3.14E-16	4	6	0.0600	1.95E-08	6	7	0.6297	1.35E-07
10000	m_4	2	3	0.2660	0.00E+00	11	13	0.4963	1.34E-08	9	10	2.2974	6.75E-08
10000	m_5	2	3	0.3858	0.00E+00	11	13	1.1199	1.34E-08	9	10	0.0373	6.75E-08
	m_6	2	3	0.1753	0.00E+00	6	8	0.2915	1.63E-08	8	9	2.9723	2.34E-07
	m_7	2	3	0.5146	0.00E+00	11	13	0.4325	1.34E-08	9	10	0.1870	6.75E-08
	m_8	2	3	0.2806	0.00E+00	11	13	0.1227	1.42E-08	9	10	0.0536	6.78E-08
	m_1	1	2	1.1916	0.00E+00	5	7	0.2469	2.21E-07	7	8	0.1870	7.04E-08
	m_2	2	3	0.9393	0.00E+00	4	6	1.1379	2.88E-08	6	7	1.6610	5.47E-07
	m_3	1	2	0.0926	3.14E-16	4	6	0.2889	1.95E-08	6	7	0.1471	1.35E-07
50000	m_4	2	3	1.2706	0.00E+00	11	13	1.1981	2.10E-07	9	10	1.4916	1.51E-07
50000	m_5	2	3	0.1308	0.00E+00	11	13	0.5316	2.10E-07	9	10	0.1756	1.51E-07
	m_6	2	3	0.8749	0.00E+00	6	8	0.7440	1.63E-08	8	9	2.3692	2.34E-07
	m_7	2	3	0.1153	0.00E+00	11	13	0.3875	2.10E-07	9	10	0.1597	1.51E-07
	m_8	2	3	1.6229	0.00E+00	11	13	1.9796	2.12E-07	9	10	0.2254	1.51E-07
	m_1	1	2	0.1545	0.00E+00	5	7	0.3623	3.13E-07	7	8	0.9581	9.96E-08
	m_2	2	3	0.5466	0.00E+00	4	6	0.3900	4.07E-08	6	7	0.2321	7.74E-07
	m_3	1	2	0.4549	3.14E-16	4	6	0.6795	1.95E-08	6	7	0.4348	1.35E-07
100000	m_4	2	3	1.1598	0.00E+00	11	13	0.5917	5.11E-07	9	10	0.9209	2.14E-07
100000	m_5	2	3	0.2296	0.00E+00	11	13	2.1472	5.11E-07	9	10	0.9297	2.14E-07
	m_6	2	3	0.5503	0.00E+00	6	8	0.3154	1.63E-08	8	9	1.7438	2.34E-07
	m_7	2	3	1.1678	0.00E+00	11	13	1.3542	5.11E-07	9	10	1.0237	2.14E-07
	m_8	2	3	0.2391	0.00E+00	11	13	0.6503	5.14E-07	9	10	0.3572	2.14E-07

Table 7. Numerical results of the three algorithms on Problem 6.

	Table	0. 141		-ui 103				Simili					
			iS	SDFM]	DAIS1			MS	GPALG	
DIMENSION	INITIAL POINT	ITER	FVAL	TIME	NORM	ITER	FVAL	TIME	NORM	ITER	FVAL	TIME	NORM
	m_1	19	21	0.0328	9.46E-07	67	69	0.1959	9.10E-07	67	68	0.0613	9.89E-07
	m_2	52	53	0.0584	9.20E-07	101	103	0.1120	9.84E-07	61	62	0.0533	9.84E-07
	m_3	57	59	0.0884	9.41E-07	76	78	0.1511	9.29E-07	87	88	0.0644	9.38E-07
1000	m_4	55	57	0.0840	6.99E-07	83	85	0.2007	9.36E-07	83	84	0.0643	8.91E-07
1000	m_5	56	58	0.0663	8.51E-07	81	83	0.1548	9.41E-07	83	84	0.0635	8.91E-07
	m_6	47	49	0.0655	9.14E-07	81	83	0.1694	9.87E-07	68	69	0.0403	8.99E-07
	m_7	55	57	0.0831	9.64E-07	85	87	0.1402	9.92E-07	83	84	0.0378	8.91E-07
	m_8	54	56	0.0986	8.26E-07	83	85	0.2083	8.98E-07	82	83	0.0417	9.64E-07
	m_1	44	46	0.4975	9.72E-07	101	103	4.4357	9.03E-07	47	48	3.9616	7.95E-07
	m_2	41	43	2.1529	9.63E-07	91	93	0.4886	9.98E-07	93	94	0.1564	9.74E-07
	m_3	50	52	0.1946	9.94E-07	94	96	1.1680	9.55E-07	80	81	0.4414	9.74E-07
5000	m_4	53	55	0.3218	8.21E-07	89	91	4.2258	8.31E-07	65	66	0.7041	9.19E-07
3000	m_5	51	53	0.3422	9.93E-07	90	92	0.5222	8.89E-07	65	66	0.5813	9.19E-07
	m_6	56	58	1.4298	9.63E-07	73	75	0.8748	9.42E-07	56	57	0.2107	9.25E-07
	m_7	54	56	0.2158	9.01E-07	96	98	1.8010	6.68E-07	65	66	4.0542	9.19E-07
	m_8	52	54	0.5704	8.94E-07	89	91	1.7997	9.43E-07	67	68	1.2837	9.44E-07
	m_1	49	51	3.5965	8.84E-07	106	108	2.0185	8.15E-07	52	53	0.2338	8.65E-07
	m_2	39	41	0.3701	8.64E-07	91	93	1.3319	9.24E-07	94	95	1.4506	9.72E-07
	m_3	54	56	1.3825	8.64E-07	95	97	1.5026	9.24E-07	70	71	0.6796	8.77E-07
10000	m_4	56	58	3.5432	6.98E-07	96	98	2.1861	9.18E-07	57	58	4.7632	8.81E-07
10000	m_5	52	54	0.9342	8.00E-07	97	99	1.6761	9.85E-07	57	58	0.4527	8.81E-07
	m_6	59	60	1.5782	8.65E-07	91	93	1.8383	9.48E-07	58	59	0.5386	7.32E-07
	m_7	57	59	0.4248	7.88E-07	103	105	1.7186	7.81E-07	57	58	0.4381	8.81E-07
	m_8	58	60	1.2930	9.43E-07	99	101	2.3954	9.07E-07	53	54	4.5234	6.99E-07
	m_1	46	48	5.1900	8.32E-07	74	76	5.7164	9.08E-07	36	37	0.6755	6.71E-07
	m_2	55	57	2.7338	9.19E-07	96	98	14.8517	9.62E-07	95	96	2.5677	9.62E-07
	m_3	62	64	2.8549	8.89E-07	101	103	7.6005	9.46E-07	88	89	2.2433	9.13E-07
50000	m_4	59	61	2.7944	7.58E-07	105	107	7.4685	9.10E-07	81	82	2.4065	9.25E-07
50000	m_5	61	63	2.9541	7.11E-07	103	105	5.6730	9.09E-07	81	82	2.6295	9.25E-07
	m_6	54	56	2.7075	9.94E-07	102	104	5.4700	9.54E-07	56	57	1.5636	8.15E-07
	m_7	63	65	3.1767	8.45E-07	101	103	5.2194	9.21E-07	81	82	2.1452	9.25E-07
	m_8	60	62	2.8825	9.99E-07	96	98	5.2916	9.82E-07	81	82	2.2370	9.30E-07
	m_1	35	36	3.2271	9.76E-07	110	112	11.6739	9.71E-07	50	51	2.3679	9.55E-07
	m_2	58	60	4.4230	9.75E-07	103	105	13.3138	8.57E-07	67	68	2.9833	7.51E-07
	m_3	57	59	5.5342	8.21E-07	80	82	10.3855	9.39E-07	72	73	3.3898	9.29E-07
100000	m_4	55	56	5.0986	9.16E-07	88	90	10.7673	7.47E-07	88	89	4.4502	9.38E-07
100000	m_5	55	57	5.3401	9.05E-07	99	101	9.7451	9.95E-07	88	89	4.9388	9.38E-07
	m_6	57	59	5.4860	9.28E-07	103	105	11.7762	7.17E-07	74	75	3.1878	9.23E-07
	m_7	59	60	5.4163	8.97E-07	88	90	9.7121	8.46E-07	88	89	3.9409	9.38E-07
	m_8	54	56	5.1927	9.03E-07	99	101	10.0416	9.68E-07	88	89	3.6687	9.40E-07

Table 8. Numerical results of the three algorithms on Problem 7.

Figure 2. Performance profile on function evaluations.

Figure 3. Performance profile on CPU time.

4. Application in motion control

In robotics, manipulators and effectors are the aspects in which some parts of the robots interact with other objects by performing different tasks such as picking from one point and placing on another. For stability and accuracy in the robots' movement, the characteristics of motor dynamics, which are contemporarily used as actuators in n-link and 1-link robot systems, need to be considered [34, 35]. This is a tracking control problem of a nonlinear system, and the motor dynamics are required to satisfy the condition that the actual output of the system can track the desired trajectory with least possible

AIMS Mathematics

error [36].

Some of the developed methods for tracking control problems of nonlinear systems include proportional-integral-derivative (PID) control [37, 38], feedback linearization [39, 40] and optimal output tracking control by using approximation approach [41].

We present an application of our proposed algorithm in motion control of two planar robotic manipulators. Consider the following model:

$$\min_{m \in \mathbb{R}^n} f(m), \tag{4.1}$$

where $f : \mathbb{R}^n \to \mathbb{R}$ is a smooth and convex function. In the case of motion control, the function in (4.1) has the form $f(v_k) := \frac{1}{2} ||v_k - y_{uk}||_2^2$. Subsequently, we minimize

$$\min_{\nu_k \in \mathbb{R}^2} \frac{1}{2} \|\nu_k - y_{uk}\|_2^2 \tag{4.2}$$

at each computational time interval $\tau_k \in [0, \tau_f]$.

As described in [42], the discrete-time kinematics equation of a two-joint planar robot manipulator at the position level is given as

$$\psi(\theta_k) = \upsilon_k. \tag{4.3}$$

The kinematics map $\psi(\cdot)$ is given as

$$\psi(\theta) = \begin{bmatrix} l_1 \cos(\theta_1) + l_2 \cos(\theta_1 + \theta_2) \\ l_1 \sin(\theta_1) + l_2 \sin(\theta_1 + \theta_2) \end{bmatrix},\tag{4.4}$$

where l_1 and l_2 are the lengths of the rod links, and $\theta_k \in \mathbb{R}^2$ is the joint angle vector.

From (4.2), the term v_k is controlled to track a Lissajous curve:

$$y_{uk} = \begin{bmatrix} \frac{3}{2} + \frac{1}{5}\sin(3\tau_k) \\ \frac{\sqrt{3}}{2} + \frac{1}{5}\sin(2\tau_k) \end{bmatrix}.$$
(4.5)

For our algorithm to fit (4.1), we present its slight modification as follows:

Algorithm 2: Modified iSDFM.

Input : Let $\alpha_k = 0$ for $k \ge 0$ in Algorithm 1. Consider the same inputs as in Algorithm 1, and let $\Gamma(m_k) = \nabla f(m_k)$. Replace Step 2 and Step 3 of the Algorithm 1 with the followings: **Step 2:** Compute $\Lambda_k = \kappa \varsigma^j$, where *j* is the smallest non–negative integer such that

$$f(m_k + \kappa \varsigma^j t_k) - f(m_k) \le \sigma \kappa \varsigma^j \Gamma(m_k)^T t_k.$$
(4.6)

Step 3: To update the next iterate, use

$$m_{k+1} := m_k + \Lambda_k t_k. \tag{4.7}$$

Remark 4.1. Assume that the solution to problem (4.1) exists and that the level set $\{m \in \mathbb{R}^n : f(m) \le f(m_0)\}$ is bounded. Using Assumption A_2 and Theorem 2 of [43], we conclude that Algorithm 2 converges, that is, $\liminf_{k \to \infty} ||\Gamma(m_k)|| = 0$ holds.

AIMS Mathematics

In this experiment, we chose initial joint angle vector $\theta_0 = [0, \frac{\pi}{3}]^T$, $l_1 = l_2 = 1$, $\varsigma = 0.2$ and $\sigma = 0.08$. The task duration [0, 20] is subdivided into 200 equal parts. The performance of Algorithm 2 in the motion control problem is shown in the Figure 4.

Figure 4(a) represents the robot trajectories synthesized by Algorithm 2. Figure 4(b) shows the end effector and the desired path. Figure 4(c,d) shows the performance errors on x and y axes, respectively. These figures indicate that Algorithm 2 efficiently performed the assignment with an error as low as 10^{-5} on both the x-axis and y-axis.

Figure 4. Performance generated by Algorithm 2: (a) robot trajectories; (b) end effector trajectory and desired path; (c) residual error on x-axis; (d) residual error on y-axis.

5. Conclusions

In conclusion, we have proposed an inertial-based spectral method for solving a system of nonlinear equations. The inertial-step introduced is believed to have enhanced the performance of the new method. We have discussed the global convergence of the proposed algorithm under the monotonicity and Lipschitz continuity assumptions. We have also presented some numerical experiments which depicted the efficiency of the proposed algorithm. The proposed algorithm is reported to have better numerical performance than the methods in [21, 22]. Subsequently, we have demonstrated the applicability of the new method in motion control problems arising from robotics. However, the numerical results showed that the proposed method won about 72% and 70% of the

experiments in terms of ITER and FVAL. Therefore, we recommend further research in order to improve its performance to the optimum.

Acknowledgments

The authors would like to thank the anonymous referees for their valuable comments and suggestions. The sixth author was funded by Chiang Mai University and the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation (grant number B05F640183).

Conflict of interest

The authors declare that they have no conflicts of interest.

References

- 1. J. Barzilai, J. M. Borwein, Two-point step size gradient methods, *IMA J. Numer. Anal.*, **8** (1988), 141–148. https://doi.org/10.1093/imanum/8.1.141
- 2. W. La Cruz, M. Raydan, Nonmonotone spectral methods for large-scale nonlinear systems, *Optim. Methods Software*, **18** (2002), 583–599. https://doi.org/10.1080/10556780310001610493
- 3. H. Mohammad, A. M. Awwal, Globally convergent diagonal Polak–Ribière–Polyak like algorithm for nonlinear equations, *Numer. Algor.*, **91** (2022), 1441–1460. https://doi.org/10.1007/s11075-022-01309-8
- 4. W. La Cruz, J. Martínez, M. Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, *Math. Comput.*, **75** (2006), 1429–1448. https://doi.org/10.1090/S0025-5718-06-01840-0
- 5. S. P. Dirkse, M. J. Ferris, A collection of nonlinear mixed complementarity problems, *Optim. Methods Soft.*, **5** (1995), 319–345. https://doi.org/10.1080/10556789508805619
- A. M. Awwal, P. Kumam, K. Sitthithakerngkiet, A. M. Bakoji, A. S. Halilu, I. M. Sulaiman, Derivative-free method based on DFP updating formula for solving convex constrained nonlinear monotone equations and application, *AIMS Math.*, 6 (2021), 8792–8814. https://doi.org/10.3934/math.2021510
- 7. A. J. Wood, B. F. Wollenberg, G. B. Sheblé, *Power generation, operation, and control*, John Wiley & Sons, 2013.
- 8. A. S. Halilu, A. Majumder, M. Y. Waziri, A. M. Awwal, K. Ahmed, On solving double direction methods for convex constrained monotone nonlinear equations with image restoration, *Comput. Appl. Math.*, **40** (2021), 239. https://doi.org/10.1007/s40314-021-01624-1
- 9. K. Meintjes, A. P. Morgan, A methodology for solving chemical equilibrium systems, *Appl. Math. Comput.*, **22** (1987), 333–361. https://doi.org/10.1016/0096-3003(87)90076-2
- I. M. Sulaiman, A. M. Awwal, M. Malik, N. Pakkaranang, B. Panyanak, A derivative-free MZPRP projection method for convex constrained nonlinear equations and its application in compressive sensing, *Mathematics*, **10** (2022), 2884. https://doi.org/10.3390/math10162884

- M. A. T. Figueiredo, R. D. Nowak, S. J. Wright, Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems, *IEEE J. Selected Topics Signal Process.*, 1 (2007), 586–597. https://doi.org/10.1109/JSTSP.2007.910281
- Y. Xiao, Q. Wang, Q. Hu, Non-smooth equations based method for l₁-norm problems with applications to compressed sensing, *Nonlinear Anal.: Theory Methods Appl.*, **74** (2011), 3570–3577. https://doi.org/10.1016/j.na.2011.02.040
- N. Pakkaranang, P. Kumam, V. Berinde, Y. I. Suleiman, Superiorization methodology and perturbation resilience of inertial proximal gradient algorithm with application to signal recovery, *J. Supercomput.*, **76** (2020), 9456–9477. https://doi.org/10.1007/s11227-020-03215-z
- 14. Y. Xiao, H. Zhu, A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing, *J. Math. Anal. Appl.*, **405** (2013), 310–319. https://doi.org/10.1016/j.jmaa.2013.04.017
- 15. S. Aji, P. Kumam, A. M. Awwal, M. M. Yahaya, K. Sitthithakerngkiet, An efficient DY-type spectral conjugate gradient method for system of nonlinear monotone equations with application in signal recovery, *AIMS Math.*, **6** (2021), 8078–8106. https://doi.org/10.3934/math.2021469
- A. B. Abubakar, P. Kumam, H. Mohammad, A. M. Awwal, A Barzilai-Borwein gradient projection method for sparse signal and blurred image restoration, *J. Franklin Inst.*, 357 (2020), 7266–7285. https://doi.org/10.1016/j.jfranklin.2020.04.022
- 17. A. M. Awwal, P. Kumam, H. Mohammad, W. Watthayu, A. B. Abubakar, A Perry-type derivative-free algorithm for solving nonlinear system of equations and minimizing ℓ_1 regularized problem, *Optimization*, **70** (2021), 1231–1259. https://doi.org/10.1080/02331934.2020.1808647
- M. V. Solodov, B. F. Svaiter, A globally convergent inexact Newton method for systems of monotone equations, In: M. Fukushima, L. Qi, *Reformulation: nonsmooth, piecewise smooth, semismooth and smoothing methods*, Springer, 22 (1998), 355–369. https://doi.org/10.1007/978-1-4757-6388-1_18
- L. Zhang, W. Zhou, Spectral gradient projection method for solving nonlinear monotone equations, J. Comput. Appl. Math., 196 (2006), 478–484. https://doi.org/10.1016/j.cam.2005.10.002
- Z. Yu, J. Lin, J. Sun, Y. Xiao, L. Liu, Z. Li, Spectral gradient projection method for monotone nonlinear equations with convex constraints, *Appl. Numer. Math.*, **59** (2009), 2416–2423. https://doi.org/10.1016/j.apnum.2009.04.004
- 21. Z. Yu, L. Li, P. Li, A family of modified spectral projection methods for nonlinear monotone equations with convex constraint, *Math. Probl. Eng.*, **2020** (2020), 2018243. https://doi.org/10.1155/2020/2018243
- 22. A. M. Awwal, P. Kumam, L. Wang, S. Huang, W. Kumam, Inertial-based derivative-free method for system of monotone nonlinear equations and application, *IEEE Access*, 8 (2020), 226921–226930. https://doi.org/10.1109/ACCESS.2020.3045493
- 23. S. Aji, P. Kumam, A. M. Awwal, M. M. Yahaya, W. Kumam, Two hybrid spectral methods with inertial effect for solving system of nonlinear monotone equations with application in robotics, *IEEE Access*, **9** (2021), 30918–30928. https://doi.org/10.1109/ACCESS.2021.3056567

- 24. B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4 (1964), 1–17. https://doi.org/10.1016/0041-5553(64)90137-5
- 25. A. Moudafi, Proximal point algorithm extended to equilibrium problems, *J. Nat. Geom.*, **15** (1999), 91–100.
- 26. N. Pakkaranang, P. Kumam, Y. I. Suleiman, B. Ali, Bounded perturbation resilience of viscosity proximal algorithm for solving split variational inclusion problems with applications to compressed sensing and image recovery, *Math. Methods Appl. Sci.*, 45 (2022), 4085–4107. https://doi.org/10.1002/mma.7023
- 27. G. Mastroeni, On auxiliary principle for equilibrium problems, In: P. Daniele, F. Giannessi, A. Maugeri, *Equilibrium problems and variational models*, Springer, 68 (2003), 289–298. https://doi.org/10.1007/978-1-4613-0239-1_15
- A. M. Awwal, P. Kumam, A. B. Abubakar, A modified conjugate gradient method for monotone nonlinear equations with convex constraints, *Appl. Numer. Math.*, 145 (2019), 507–520. https://doi.org/10.1016/j.apnum.2019.05.012
- A. M. Awwal, L. Wang, P. Kumam, H. Mohammad, W. Watthayu, A projection Hestenes–Stiefel method with spectral parameter for nonlinear monotone equations and signal processing, *Math. Comput. Appl.*, 25 (2020), 27. https://doi.org/10.3390/mca25020027
- 30. W. J. Zhou, D. H. Li, A globally convergent BFGS method for nonlinear monotone equations without any merit functions, *Math. Comput.*, 77 (2008), 2231–2240. https://doi.org/10.1090/S0025-5718-08-02121-2
- A. A. Muhammed, P. Kumam, A. B. Abubakar, A. Wakili, N. Pakkaranang, A new hybrid spectral gradient projection method for monotone system of nonlinear equations with convex constraints, *Thai J. Math.*, 16 (2018), 125–147.
- 32. J. Liu, Y. Feng, A derivative-free iterative method for nonlinear monotone equations with convex constraints, *Numer. Algor.*, **82** (2019) 245–262. https://doi.org/10.1007/s11075-018-0603-2
- 33. E. D. Dolan, J. J. Moré, Benchmarking optimization software with performance profiles, *Math. Program.*, **91** (2002), 201–213. https://doi.org/10.1007/s101070100263
- 34. Y. Qiang, F. Jing, J. Zeng, Z. Hou, Dynamic modeling and vibration mode analysis for an industrial robot with rigid links and flexible joints, 2012 24th Chinese Control and Decision Conference (CCDC), IEEE, 2012. https://doi.org/10.1109/CCDC.2012.6244526
- 35. Y. Zhang, W. Li, B. Qiu, Y. Ding, D. Zhang, Three-state space reformulation and control of md-included one-link robot system using direct-derivative and zhang-dynamics methods, 2017 29th Chinese Control and Decision Conference (CCDC), IEEE, 2017. https://doi.org/10.1109/CCDC.2017.7979152
- 36. G. Y. Tang, L. Sun, C. Li, M. Q. Fan, Successive approximation procedure of optimal tracking control for nonlinear similar composite systems, *Nonlinear Anal.: Theory Methods Appl.*, **70** (2009), 631–641. https://doi.org/10.1016/j.na.2008.01.021
- 37. E. M. Jafarov, M. N. A. Parlakci, Y. Istefanopulos, A new variable structure pidcontroller design for robot manipulators, *IEEE T. Control Syst. Technol.*, **13** (2004) 122–130. https://doi.org/10.1109/TCST.2004.838558

- V. Parra-Vega, S. Arimoto, Y. H. Liu, G. Hirzinger, P. Akella, Dynamic sliding pid control for tracking of robot manipulators: theory and experiments, *IEEE T. Robot. Autom.*, **19** (2003), 967– 976. https://doi.org/10.1109/TRA.2003.819600
- 39. J. Na, X. Ren, D. Zheng, Adaptive control for nonlinear pure-feedback systems with high-order sliding mode observer, *IEEE T. Neur. Net. Lear. Syst.*, **24** (2013), 370–382. https://doi.org/10.1109/TNNLS.2012.2225845
- 40. B. S. Chen, H. J. Uang, C. S. Tseng, Robust tracking enhancement of robot systems including motor dynamics: a fuzzy-based dynamic game approach, *IEEE T. Fuzzy Syst.*, **6** (1998), 538–552. https://doi.org/10.1109/91.728449
- 41. G. Y. Tang, Y. D. Zhao, B. L. Zhang, Optimal output tracking control for nonlinear systems via successive approximation approach, *Nonlinear Anal.: Theory Methods Appl.*, **66** (2007), 1365– 1377. https://doi.org/10.1016/j.na.2006.01.021
- 42. Y. Zhang, L. He, C. Hu, J. Guo, J. Li, Y. Shi, General four-step discrete-time zeroing and derivative dynamics applied to time-varying nonlinear optimization, *J. Comput. Appl. Math.*, **347** (2019), 314–329. https://doi.org/10.1016/j.cam.2018.08.017
- 43. M. Sun, J. Liu, Y. Wang, Two improved conjugate gradient methods with application in compressive sensing and motion control, *Math. Probl. Eng.*, **2020** (2020), 9175496. https://doi.org/10.1155/2020/9175496

© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)