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Abstract: Anti-viral medication is comparably incredibly beneficial for individuals who are infected
with numerous viruses. Mathematical modeling is crucial for comprehending the various relationships
involving viruses, immune responses and health in general. This study concerns the implementation
of a continuous Galerkin-Petrov time discretization scheme with mathematical models that consist of
nonlinear ordinary differential equations for the hepatitis B virus, the Chen system and HIV infection.
For the Galerkin scheme, we have two unknowns on each time interval which have to be computed by
solving a 2×2 block system. The proposed method is accurate to order 3 in the whole time interval and
shows even super convergence of order 4 in the discrete time points. The study presents the accurate
solutions achieved by means of the aforementioned schemes, presented numerically and graphically.
Further, we implemented the classical fourth-order Runge-Kutta scheme accurately and performed
various numerical tests for assessing the efficiency and computational cost (in terms of time) of the
suggested schemes. The performances of the fourth order Runge-Kutta and the Galerkin-Petrov time
discretization approaches for solving nonlinear ordinary differential equations were compared, with
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applications towards certain mathematical models in epidemiology. Several simulations were carried
out with varying time step sizes, and the efficiency of the Galerkin and Runge Kutta schemes was
evaluated at various time points. A detailed analysis of the outcomes obtained by the Galerkin scheme
and the Runge-Kutta technique indicates that the results presented are in excellent agreement with
each other despite having distinct computational costs in terms of time. It is observed that the Galerkin
scheme is noticeably slower and requires more time in comparison to the Runge Kutta scheme. The
numerical computations demonstrate that the Galerkin scheme provides highly precise solutions at
relatively large time step sizes as compared to the Runge-Kutta scheme.

Keywords: HBV model; the cGP(2)-method; RK4-method; numerical comparison; efficiency of
methods
Mathematics Subject Classification: 34A12, 34K28

1. Introduction

Epidemiology is the foundation of public health and is defined as the study of the distribution and
determinants of diseases or disorders within groups of people, and the development of knowledge on
how to prevent and control them. Epidemiological research helps us understand not only who has a
disorder or disease but why and how it was brought to this individual or region. Nowadays,
epidemiologists use the insights gathered in their research to determine how illness within a
population affects our society and systems on a larger scale, and, in turn, they provide
recommendations for interventions. The hepatitis B virus (HBV) became widespread, and
epidemiologists around the world worked to control the spread. The epidemiology of HBV infection
is diverse, with population prevalence, age and mode of acquisition and likelihood of progression to
chronic infection mutually interdependent. Hepatitis B is a life-threatening liver disease caused by the
HBV [1, 2], which has a circular genome made of partly double-stranded DNA and is difficult to
eradicate after infection due to the development of cccDNA [1, 3]. HBV may induce both acute
sickness and chronic liver infection, with sustained blood levels of HBV surface antigen (HBsAg),
IgG anti-core antigen (anti-HBc), and HBV DNA [3]. Chronic infection may progress to cirrhosis or
liver cancer [4]. According to the World Health Organization, around 2 billion individuals worldwide
have been infected with the virus, with approximately 350 million having HBV. Each year, HBV
causes approximately 600,000 fatalities. Hepatitis B is prevalent in China, with an estimated 93
million people afflicted [5]. Due to the high risk of infection and the high number of fatalities
associated with HBV, it is critical to improve our knowledge of the dynamics of HBV illness. HBV is
spread by contact with the blood or other bodily fluids of the infected individuals [2]. Generally, the
average age at which people get affected is influenced by the population’s infection incidence [5].
Transmission from mother to baby occurs throughout pregnancy, delivery and the postpartum period.
Vaccination, including passive immunoprophylaxis and postnatal proactive vaccination, is effective in
protecting infants against contracting HBV during labor and delivery and in the postnatal period, but
it cannot halt HBV prenatal infection [6–11]. Mathematical models may assist us in gaining insight
into disease transmission, evaluating the success of different preventative methods, and ultimately
bringing the illness under control. Mathematical modeling of a dynamical system is an interesting
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study area that has grabbed the interest of a majority of researchers. Dynamical systems have a wide
range of applications, including population growth models, biomedical research, biological systems,
and engineering. Aniji et al. [12] established a mathematical model of hepatitis B virus infection for
antiviral treatment that depicts the probable interaction between HBV and target liver cells. Zada et
al. [13] evaluated and analyzed the hepatitis B epidemic model with optimal control. Zhao et al. [14]
designed a mathematical model of hepatitis B viral transmission and addressed its potential use in
China’s immunization plan. Means et al. [15] explored the Hepatitis B Virus’s geographical impacts
and potential function. Khatun et al. [16] explored viral dynamics, which aids in the understanding of
the dynamics of HIV, hepatitis B virus (HCB), hepatitis C virus (HCV), and many other viruses.
Additionally, they explored the hepatitis B virus model with Cytotoxic T Lymphocyte (CTL)
immunological responses. Zhang et al. [17] developed a mathematical model to explain how hepatitis
B spreads. The stability of equilibria and illness persistence are investigated. The study demonstrated
that the model’s dynamics are entirely determined by the basic reproductive number. Khan et al. [18]
reported a detailed analysis of the Hepatitis B model using the Caputo-Fabrizio fractional derivative.
The required findings are obtained by establishing the criteria for the existence and uniqueness of the
solution to the considered model using fixed point theory. The continuous Galerkin-Petrov (cGP)
discretization scheme is a very popular and powerful approach to handling complex dynamical
systems. Numerous researchers addressed so many interesting properties and some feasible practical
applications of the proposed scheme’s implementation. Attaullah and Sohaib [19] employed a
continuous Galerkin-Petrov (cGP) discretization scheme with a mathematical model of Human
Immunodeficiency Virus (HIV) infection, which contained a system of nonlinear differential
equations. They validated the results of the proposed scheme in comparison to other traditional
schemes. Hussain et al. [20] utilized the Galerkin method with the Chen model and performed a
comparison between the findings of the Galerkin technique and the fourth-order Runge-Kutta (RK4)
method for the presented problem. They concluded that the Galerkin scheme achieved more accurate
results at larger time step sizes than the RK4 method. Hussain [21] implemented a novel class of
higher-order Galerkin temporal discretization techniques for non-stationary incompressible flow
problems. Attaullah et al. [22] implemented the Galerkin time discretization scheme for the
transmission dynamics of HIV infection with nonlinear supply rate and discussed the impact of
different physical parameters on the population dynamics of healthy/infected cells and virus particles.
Schieweck [23] described A-stable discontinuous Galerkin-Petrov time discretization of higher-order.
For the heat equation, higher-order Galerkin temporal discretizations and fast multigrid solvers were
used by Hussain et al. [24]. For the non-stationary Stokes equations, Hussain et al. [25] demonstrated
an accurate and efficient higher-order Galerkin time-stepping approach. For nonlinear systems of
ordinary differential equations, higher-order variational time discretizations were utilized by Matthies
and Schieweck [25]. Attaullah et al. [26] numerically simulated the HIV model using a Galerkin
approach. To validate the numerical results, a detailed evaluation of the outcomes achieved by the
Galerkin scheme is contrasted with the findings of the RK4 technique. Various simulations were
carried out to evaluate the findings of the Galerkin and RK4 approach, demonstrating the credibility
of the cGP(2) technique. The comparison analysis and graphical plots illustrate that the Galerkin
scheme is more appropriate than the RK4 method for achieving high accuracy at larger step sizes. For
the approximate solution of the HIV model with a variable source term and full logistic proliferation,
Attaullah et al. [27] implemented the Galerkin-technique and compared the results with the findings
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of the RK4 method. Khan et al. [28] described a mathematical model for the transmission dynamics
of acute and chronic hepatitis B and developed an optimal control method for hepatitis B spread in a
community. Numerous models of HBV transmission dynamics have been developed to examine the
effect of preventative and control methods such as vaccination, antiviral therapy and the incidence
rate [29–32]. These models have provided valuable insight into the effectiveness of different control
strategies. However, the majority of these models have been studied primarily analytically. The
mathematical model proposed in the paper is the extension of the model presented by Khan et al. [28]
by including a non-linear saturated incidence rate [32] and investigated numerically. We carry out a
comprehensive investigation of the various influence of several clinical parameters. The main
contributions are as follows:

1. Implemented Galerkin scheme and the RK4 scheme correctly to the HBV model and presented
the solutions numerically and graphically.

2. The significant effects of the various physical parameters are visualized accurately.
3. To authenticate the validity and reliability of the suggested scheme, employed the proposed

schemes to other mathematical models (Chen System and the HIV infection model) existing in
the literature.

4. The comparative study is performed to validate the accuracy (adopting various step sizes) and
computational cost (in terms of time) of Galerkin and RK4-scheme.

5. Finally, invoked the methods to the problem having an exact solution and confirm the accuracy
and time consuming with different step sizes.

2. The mathematical model of Hepatitis B Virus

The mathematical model addressed here is as follows:

dS̃
dt

= e −
ηS̃ (t)Ĩ2(t)
1 + ξ1 Ĩ2

− (φ0 + λ)S̃ (t), (2.1)

dĨ1

dt
=
ηS̃ (t)Ĩ2(t)
1 + ξ1 Ĩ2

− (φ0 + ξ + ψ1)Ĩ1(t), (2.2)

dĨ2

dt
= ξ Ĩ1(t) − (φ0 + φ1 + ψ2)Ĩ2(t), (2.3)

dR̃
dt

= ψ1 Ĩ1(t) + ψ2 Ĩ2(t) + λS̃ (t) − φ0R̃(t). (2.4)

In the this model the population T̃ (t) is divided into four compartments: susceptible individuals S̃ (t),
infected individuals Ĩ1(t), infected individuals with chronic hepatitis B (CHB), Ĩ2(t) and recovered
individuals R̃(t). The initial conditions and the detailed information of all parameters included in the
model are presented in Table 1.
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Table 1. The description of variables, parameters, with their values involved in model
(unit=day−1mm−3) [28].

Variable Explanation Value
S̃ (0) Susceptible individuals 100
Ĩ1(0) Infected individuals with acute HBV 40
Ĩ2(0) Infected individuals with chronic HBV 20
R̃(0) Recovered individuals 5
e Birth rate 0.4
η The rate of moving from susceptible to infected with acute

hepatitis B
0.005

ξ The rate of moving from the acute stage to infected with
chronic hepatitis B.

0.01

ψ1 The rate of rehabilitation from the acute stage to the
recovered stage

0.05

ψ2 The rate of rehabilitation from the chronic stage to the
recovered stage

0.06

φ0 Natural death rate 0.003
φ1 Death rate happening due to hepatitis B 0.002
λ Vaccination rate of Hepatitis B 0.02
ξ1 Saturation constant 0.004

3. The numerical schemes

3.1. The continuous Galerkin-Petrov method

The Galerkin technique has been widely employed in recent years to handle a wide range of
nonlinear problems in science and engineering, such as [23–25, 33–35, 37, 43, 44]. In this paper, we
are using this approach for the models discussed in [19, 20, 27, 28, 38]. The system of ODEs for the
considered model can be written as follows:
Find ũ : [0, tmax]→ V = Rd such that

dtũ(t) = F(t, ũ(t)) ∀ t ∈ I,

ũ(0) = ũ0,
(3.1)

where dt shows the derivative of ũ(t) w.r.t. time, I=[0, T] is the time interval,
ũ(t) = (ũ1(t), ũ2(t), ũ3(t)) ∈ V ⇒ ũ(0) = (ũ1(0), ũ2(0), ũ3(0)) ∈ V are the initial values of ũ(t) at time
t = 0. We also assume that (ũ1(t), ũ2(t), ũ3(t)) = (T (t), I(t), V(t)), which implies that
(ũ1(0), ũ2(0), ũ3(0)) = (T (0), I(0),V(0)). The function F = ( f1, f2, f3) is nonlinear and is defined as F
: I × K → K.
The weak formulation of Problem (3.1) is: Find ũ ∈ X such that ũ(0) = ũ0 and∫

I
〈dtũ(t), v(t)〉 dt =

∫
I
〈F(t, ũ(t), v(t))〉 dt f or all v ∈ Y, (3.2)

where 〈·, ·〉 represents the usual inner product in L2(I,K), and X, Y represent the solution space and
test space, respectively. To explain the time discretization of variational type Problem(3.1).
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Characterize the function t → ũ(t), and we define the space C(I,K) = C0(I,K) as the space of
continuous functions ũ : I → K equipped with the norm

‖ũ‖C(I,K) = sup
t∈I
‖ũ‖K .

We will use the space L2(I,K) as the space of discontinuous functions, which is given by

L2(I,K) =

{
ũ : I → K : ‖ũ‖L2(I,K) =

( ∫
I
‖ũ‖2Kdt < ∞

)1/2}
.

In time discretization, we split the intervals I into N sub-intervals In = [tn−1, tn], where n = 1, · · · ,N
and 0 = t0 < t1 < t2 < · · · < tN−1 < tN = T . The symbol τ will indicate the time discretization
parameter, as well as the maximum time step size τ = max

1≤n≤N
τn, where τn = tn − tn−1, the length of nth

time interval In. The following set of time intervals Mτ = {Ī1, · · · , ĪN} will be called the time-mesh. We
find out the solution ũ : I → K on each time interval In by a function ũτ : I → K which is a piecewise
polynomial of some order l w.r.t time. The time-discrete solution space for ũτ is Xl

τ ⊂ X and is defined
by

Xl
τ = {ũ ∈ C(I,K) : ũ|In ∈ Pl(In,K) for all In ∈ Mτ}, (3.3)

where

Pl(In,K) = {ũ : In → K : ũ(t) =

l∑
s=0

U sts, f or all t ∈ In, U s ∈ K, ∀ s}.

The discrete test space for ũτ is Y l
τ ⊂ Y and is defined by

Yk
τ = {v ∈ L2(I,K) : v|In ∈ Pk−1(In,K) ∀ In ∈ Mτ}, (3.4)

which is composed of l− 1 piecewise polynomials and is discontinuous at the time step end nodes. We
multiply Eq (3.1) by the test function vτ ∈ Yk

τ and integrate it over the whole interval I. We get the
discrete-time problem: Find ũτ ∈ Xk

τ such that ũτ(0) = 0 and∫
I
〈ũ′τ(t), vτ(t)〉 dt =

∫
I
〈F(t, ũτ(t), vτ(t))〉 dt ∀ vτ ∈ Y l

τ, (3.5)

where 〈·, ·〉 represents the usual inner product in L2(I,K). This discretization is known as the exact
continuous Galerkin-Petrov method or briefly the “exact cGP(l)-method” of order k. The Galerkin-
Petrov name is due to the fact that the solution space Xl

τ is different from the test space Y l
τ. The

term “exact” denotes that the time integral on the right-hand side of the Eq (3.5) is determined exactly.
Because the discrete test space Y l

τ is discontinuous, Eq (3.5) can be solved in a time marching procedure
in which local problems on the time interval are handled successively. Therefore, we choose the test
function vτ(t) = vψ(t) with arbitrary time-independent v ∈ K and a scalar function ψ : I → R which is
zero on I|In and a polynomial of the order less than or equal to l − 1 on the time interval In = [tn−1, tn].
Then, we get from (3.5) the In-problem of the exact continuous Galerkin-Petrov method of order l:
Find ũτ|In ∈ Pl(In,K) such that∫

In

〈dtũτ(t), v〉ψ(t) dt =

∫
In

〈F(t, ũτ(t)), v〉ψ(t) dt ∀ v ∈ K ∀ψ ∈ Pl−1(In), (3.6)
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with the initial condition ũτ|In(tn−1) = ũτ|In−1(tn−1) for n ≥ 2 and ũτ|In(tn−1) = ũ0 for n = 1.
In the usual case of a nonlinear function F〈·, ·〉, (where 〈·, ·〉 denotes the usual inner product in L2

norm) we need to calculate the integrals numerically on the right hand side of the Eq (3.6). The (l + 1)-
point Gauss-Lobatto formula is exact if the function is to be integrated as a polynomial of degree less
than or equal to 2l − 1. As a result, this formula is applied to the integral on the left hand side of (3.6)
will give the exact value. Then, the “In-problem of the numerically integrated cGP(l) method” is: Find
ũτ|In ∈ Pl(In,K) such that ũτ(tn−1) = ũn−1,

l∑
s=0

ŵsdtũτ(tn,s)ψ(tn,s) =

k∑
s=0

ŵsF(tn,s, ũτ(tn,s))ψ(tn,s) ∀ ψ ∈ Pl−1(In), (3.7)

where ŵs are the weights and t̂ ∈ [−1, 1], s = 0, 1, 2, 3, . . . , l represent the nodes on the reference
interval. To find ũτ on each time interval In, we represent it by a polynomial ansatz

ũτ(t) =

k∑
s=0

U s
nφn,s(t) ∀ t ∈ In, (3.8)

where the coefficients U s
n are the components of K and the real-valued functions φn,s ∈ Pl(In) are the

Lagrange basis functions with respect to l + 1 suitable nodal points tn,s ∈ In satisfying conditions
mentioned below:

φn,s(tn,r) = δr,s, r, s = 0, 1, 2, . . . , l, (3.9)

where δr,s is the Kronecker delta that is defined as:

δr,s =

{
1 if r = s
0 if r , s

Like in [36], the tn,s have been defined as the quadrature points of (l + 1)-point Gauss-Lobatto formula
on the time interval In. For the selection of initial conditions we can set tn,0 = tn−1 which implies the
initial condition for (3.6)

U0
n = ũτ|In−1 if n ≥ 2,

for n = 1⇒ U0
n = ũ0.

(3.10)

We define the basis functions φn,s ∈ Pl(In) via the affine reference transformation T̄ : Î → In where
Î=[-1, 1] and

t = T̄ (t̂) =
tn + tn−1

2
+
τn

2
t̂ ∈ In ∀ t̂ ∈ In, n = 1, 2, 3 . . . ,N. (3.11)

Let φ̂s ∈ Pl(Î), s=0, 1, . . . , l, demonstrate the basis functions that meet the requirements

φ̂s(t̂r) = δr,s, r, s = 0, 1, . . . , l,

where t̂0 = −1 and t̂r, r = 1, 2, . . . , l, are the quadrature points for the reference interval Î. Then, we
define the basis functions on the original time interval In by the mapping

φn,s(t) = φ̂s(t̂) with t̂ = T̄−1
n (t) =

2
τn

(t +
tn−1 − tn

2
) ∈ Î. (3.12)
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Likewise, the test basis functions ψn,r are defined by the suitable reference basis functions ψ̂ ∈ Pl−1(Î),
i.e.,

ψn,r(t) = ψ̂r(T̄−1
n (t)) ∀ t ∈ In, r = 1, 2, . . . , l.

From the representation (3.8), we get for dtũτ

dtũτ(t) =

k∑
s=0

U s
nφ
′
n,s(t) ∀ t ∈ In. (3.13)

By putting (3.13) in (3.6), we get∫
In

〈dtũτ(t), v〉ψ(t) dt =

∫
In

〈 l∑
s=0

U s
n, v

〉
φ′s(t)ψ(t). (3.14)

The integral is now transformed into the reference interval hatI and computed using the (l + 1)-point
Gauss-Lobatto quadrature formula, which leads for each test basis function ψ ∈ Pl−1 and for all v ∈ K,∫

În

l∑
s=0

〈
U s

n, v
〉
φ̂′s(t̂)ψ̂(t̂)dt̂ =

∫
În

〈
F
(
ωn(t̂),

l∑
s=0

U s
n(t̂)

)
, v

〉
ψ̂(t̂)dt̂ ∀ v ∈ K,

⇒

l∑
µ=0

ŵµ

l∑
s=0

〈
U s

n, v
〉
φ̂′s(t̂µ)ψ̂(t̂µ) =

l∑
µ=0

ŵµ

〈
F
(
ωn(t̂µ),

l∑
s=0

U s
nφ̂s(t̂µ)

)
, v

〉
ψ̂(t̂µ),

(3.15)

where ŵµ are the weights and t̂µ ∈ [−1, 1] are the points of integration with t̂0 = −1 and t̂l = 1. If we
choose the test functions ψn,i ∈ Pl−1(In) such that

ψ̂(t̂µ) = (ŵ)−1δr,µ r, µ = 1, 2, . . . , l. (3.16)

Now find the coefficients that are unknown U s
n ∈ K for s = 1, . . . , l,

l∑
s=0

αr,sU s
n =

τn

2
{
F(tn,r,U s

n) + βrF(tn,0,U s
n)
}
∀ i = 1, 2, . . . , l, (3.17)

where U s
n = U s

n−1 for n > 1, U0
1 = ũ0 for n = 1 and

αr,s = φ̂′s(t̂r) + βrφ̂′s(t0), βr = ŵ0ψ̂r(t̂0).

We will discuss the cGP(k) method for the cases l = 1 and l = 2 in the following.

3.1.1. The cGP(1) method

We used the two point Gauss-Lobatto formula with tn,0 = tn−1, tn,1 = tn and weights ŵ0 = ŵ1 = 1,
which gives the well-known Trapezoidal rule. We obtain α1,0 = −1, α1,1 = 1 and β1 = 1. For the single
coefficient U1

n = ũτ(tn) ∈ K, the problem leads to the following block equation:

α1,1U1
n − αn,0U0

n =
τn

2
{
F(tn,U1

n) + F(tn−1,U0
n)
}
. (3.18)
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3.1.2. The cGP(2) method

The three-point Gauss-Lobatto formula (Simpson rule) is used to define the quadratic basis
functions with weights ŵ0 = ŵ2 = 1/3, ŵ1 = 4/3 and t̂0 = −1, t̂1 = 0, t̂2 = 1. Then, we get

αr,s =

(
−5

4 1 1
4

2 −4 2

)
, βr =

( 1
2
−1

)
, r = 1, 2, s = 0, 1, 2.

Thus, the system to be solved for U1
n,U2

n ∈ K from the known U0
n = U2

n−1 becomes:

α1,1U1
n + α1,2U2

n = −α1,0U0
n +

τn

2

{
F(tn,1,U1

n) + β1F(tn,0,U0
n)
}
, (3.19)

α2,1U1
n + α2,2U2

n = −α2,0U0
n +

τn

2

{
F(tn,2,U2

n) + β2F(tn,0,U0
n)
}
, (3.20)

where U0
n indicate the initial conditions at the current time interval. For the cGP(k)-method, the discrete

solution space consists of continuous piecewise polynomial functions in time of degree k > 1 and the
discrete test space of discontinuous Galerkin (dG) having polynomial functions of degree k−1 (see [33–
36] for more details). In the dG(k)-method, both the solution and test space are constructed by means of
discontinuous polynomial functions of degree k.With respect to the computational costs, which mainly
depend on the size of the resulting block system that has to be solved for each time interval, the cGP(k)-
method is comparable to the dG(k − 1)-method. However, concerning the discretization error in time,
the accuracy of the cGP(k)-method is one order higher than that of the dG(k−1)-method. Furthermore,
it is known that all cGP(k)-methods are A-stable, while all dG(k)-methods are even strongly A-stable
(or L-stable), i.e., the dG-methods have better damping properties with respect to high frequency error
components (see [33–36] for more details).

3.2. The Runge-Kutta method

This method is very well-known of order four established by Kutta [39] and extensively utilized for
initial value problems (see [40] for more details). The Runge-Kutta method of order four is used to
solve numerically the first order initial value problems. Let

ẏ = g(t, y), a ≤ t ≤ b, (3.21)

be the initial value problem with the initial condition y(a) = α, and let N > 0 be an integer and set
h = b−a

N is the step size. Partition the whole interval into N sub-intervals with mesh points ti = a + ih,
for i = 0, 1, 2, · · · ,N − 1. Then, the Runge-Kutta method of order four is described as

yi+1 = yi +
1
6
(
k1 + 2(k2 + k3) + k4

)
, for i = 0, 1, 2, · · · ,N − 1, (3.22)

where

k1 = hg(ti, yi),

k2 = hg(ti +
h
2
, yi +

k1

2
),

k3 = hg(ti +
h
2
, yi +

k2

2
),

k4 = hg(ti + h, yi + k3).

(3.23)
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The Runge Kutta method of order four (RK-4) agrees with the Taylor series method up to terms of
O(h4). This method can be extended to solve a system of n first-order differential equations. The
generalization of the method is as follows.
Let

dy1

dt
= g1(t, y1, y2, . . . , yn),

dy2

dt
= g2(t, y1, y2, . . . , yn),

...

dyn

dt
= gn(t, y1, y2, . . . , yn),

(3.24)

be the nth-order system of first-order initial value problems with the initial conditions

y1(a) = α1, y2(a) = α2, · · · , yn(a) = αn.

Use the notation y j
i , for each i = 0, 1, 2, · · · ,N and j = 1, 2, · · · , n, to denote an approximation to

y j(ti). That is, y j
i approximates the jth solution y(t) of (3.24) at the ith mesh points ti. For the initial

condition, set
y1

0 = α1, y2
0 = α2, · · · , yn

0 = αn.

Suppose that the values y1
i , y2

i , · · · , y
n
i have been computed. We obtain y1

i+1, y2
i+1, · · · , y

n
i+1 by first

calculating

k j
1 = hg j

(
ti, y1

i , y
2
i , . . . , y

n
i
)
, (3.25)

k j
2 = hg j

(
ti +

h
2
, y1

i +
k1

1

2
, y2

i +
k2

1

2
, . . . , yn

i +
kn

1

2
)
, (3.26)

k j
3 = hg j

(
ti +

h
2
, y1

i +
k1

2

2
, y2

i +
k2

2

2
, . . . , yn

i +
kn

2

2
)
, (3.27)

k j
4 = hg j

(
ti + h, y1

i + k1
3, y

2
i + k2

3, . . . , y
n
i + kn

3
)
, (3.28)

for each j = 1, 2, · · · , n; and then

y j
i+1 = y j

i +
1
6
(
k j

1 + 2(k j
2 + k j

3) + k j
4
)
, (3.29)

for each j = 1, 2, · · · , n. The values k1
1, k

2
1, · · · , k

n
1, must be computed before any of the terms of the

form k j
2 can be determined.

3.3. Numerical simulations and discussions

This section relates to the implementation of the cGP(2)-scheme and RK4 scheme for the model
presented and figure out the correct results. All the parameters, values are presented in Table 1. The
findings and absolute errors achieved utilizing cGP(2) scheme (at τ = 0.1) and RK4 method (at τ =

0.1) were compared and presented in Tables 2–5 and in Figure 2. The findings achieved utilizing
the presented approach are considerably comparable to those obtained using the RK4-method with
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differing computational time. From comparison one could see that the results are not precise but similar
up to nine digits approximately. The results demonstrated that the proposed methodologies yielded
reliable and precise solutions and that both results overlapped significantly during the stipulated time
period. We also solved the model using cGP(4) scheme (at τ = 0.2) and RK4 (at τ = 0.1) and found
the absolute errors between the findings. Comparing the absolute values of the errors presented in
Tables 6–9, we see that the higher order method cGP(4) achieves with a quite large time step size
higher accuracy than the lower order method cGP(2) with smaller time step displayed in Tables 2–
5. Moreover, the analysis of the numerical costs for different step sizes in terms of time show that
the cGP(2)-method is more time consuming as in comparison to RK4-method as presented in Table
10 and Figure 2e. Furthermore, Figure 1 depicts the influence of varying the parameters ξ1 and
ψ2 on the dynamical behavior of the state variables. By boosting the value of ξ1, we observed that
the population of susceptible individuals grows, and the population of infected individuals with acute
HBV, infected individuals with chronic HBV and recovered individuals declines. By increasing ψ2, the
concentration of susceptible and recovered people increases, whereas the population of acutely infected
and chronically infected individuals declines. Also, graphical visualizations of error solutions and
errors phase portraits using cGP(2)-scheme (at τ = 0.0005 where τ is the step size) and RK4-scheme
(at τ = 0.0005) are shown in Figure 3 for t ∈ [0, 10]. The findings demonstrate that the cGP(2) scheme
outperforms the RK4 scheme in terms of time step accuracy while incurring higher computational
costs.

Table 2. The comparative analysis of the outcomes of Galerkin and RK4 methods for S̃ (t).

|cGP(2)τ=0.1 − RK4τ=0.1|

ti cGP(2)-scheme RK4-scheme |cGP(2)-RK4|
0.0 100.000000000000 100.000000000000 0.00000000000000E-009
0.1 98.8923978777600 98.8923978779475 0.18746959540294E-009
0.2 97.8012267618895 97.8012267622551 0.36556002669386E-009
0.3 96.7261679090720 96.7261679096068 0.53472604122362E-009
0.4 95.6669105844358 95.6669105851311 0.69528027779597E-009
0.5 94.6231518165269 94.6231518173745 0.84763485119765E-009
0.6 93.5945961609257 93.5945961619179 0.99213082194183E-009
0.7 92.5809554721666 92.5809554732958 1.12910925054166E-009
0.8 91.5819486836314 91.5819486848903 1.25892540836503E-009
0.9 90.5973015951057 90.5973015964875 1.38184930165153E-009
1.0 89.6267466676998 89.6267466691980 1.49820778005960E-009
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Table 3. The comparative analysis of the results of Galerkin and RK4 methods for Ĩ1(t).

|cGP(2)τ=0.1 − RK4τ=0.1|

ti cGP(2)-scheme RK4-scheme |cGP(2)-RK4|
0.0 40.0000000000000 40.0000000000000 0.00000000000000E-009
0.1 40.6647754297249 40.6647754293823 0.34259528547409E-009
0.2 41.3115173101931 41.3115173095231 0.66994942926613E-009
0.3 41.9406193275814 41.9406193265987 0.98267349812886E-009
0.4 42.5524654340669 42.5524654327855 1.28134303167826E-009
0.5 43.1474301351317 43.1474301335651 1.56653356953029E-009
0.6 43.7258787669986 43.7258787651598 1.83877801873678E-009
0.7 44.2881677645815 44.2881677624830 2.09858086464010E-009
0.8 44.8346449203167 44.8346449179703 2.34645369801001E-009
0.9 45.3656496342260 45.3656496316431 2.58284416077004E-009
1.0 45.8815131555476 45.8815131527394 2.80822831655314E-009

Table 4. The comparative analysis of the results of Galerkin and RK4 methods for Ĩ2(t).

|cGP(2)τ=0.1 − RK4τ=0.1|

ti cGP(2)-scheme RK4-scheme |cGP(2)-RK4|
0.0 20.0000000000000 20.0000000000000 0.0000000000000E-10
0.1 19.9106250505375 19.9106250505917 0.5414690917860E-10
0.2 19.8224827434847 19.8224827435910 1.0622258628246E-10
0.3 19.7355473148203 19.7355473149766 1.5628387473043E-10
0.4 19.6497935549745 19.6497935551789 2.0440538150979E-10
0.5 19.5651967956791 19.5651967959298 2.5065105546673E-10
0.6 19.4817328971831 19.4817328974781 2.9508484544749E-10
0.7 19.3993782358234 19.3993782361612 3.3777070029828E-10
0.8 19.3181096919390 19.3181096923178 3.7876546343796E-10
0.9 19.2379046381163 19.2379046385345 4.1812242557171E-10
1.0 19.1587409277559 19.1587409282118 4.5589843011840E-10
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Table 5. The comparative analysis of the results of Galerkin and RK4 methods for R̃(t).

|cGP(2)τ=0.1 − RK4τ=0.1|

ti cGP(2)-scheme RK4-scheme |cGP(2)-RK4|
0.0 5.0000000000000 5.0000000000000 0.0000000000000E-10
0.1 5.5187126241351 5.5187126242367 1.0162182206841E-10
0.2 6.0378169434692 6.0378169436686 1.9942092421843E-10
0.3 6.5572635287196 6.5572635290131 2.9353230956985E-10
0.4 7.0770041268788 7.0770041272629 3.8408920488564E-10
0.5 7.5969916319757 7.5969916324469 4.7121240243087E-10
0.6 8.1171800566980 8.1171800572530 5.5502624718429E-10
0.7 8.6375245048468 8.6375245054825 6.3564797869731E-10
0.8 9.1579811445943 9.1579811453075 7.1318595473713E-10
0.9 9.6785071825168 9.6785071833045 7.8775030942779E-10
1.0 10.1990608383783 10.1990608392378 8.5944229510915E-10

Table 6. The comparative analysis of the outcomes of cGP(4) and RK4 methods for S̃ (t).

|cGP(4)τ=0.2 − RK4τ=0.1|

ti cGP(4)-scheme RK4-scheme |cGP(4)-RK4|
0.0 100.000000000000 100.000000000000 0.0000E-011
0.2 97.8012267622895 97.8012267622551 3.4404E-011
0.4 95.6669105851458 95.6669105851311 1.4694E-011
0.6 93.5945961618257 93.5945961619179 9.2200E-011
0.8 91.5819486848314 91.5819486848903 5.8904E-011
1.0 89.6267466691998 89.6267466691980 1.8048E-011

Table 7. The comparative analysis of the results of cGP(4) and RK4 methods for Ĩ1(t).

|cGP(4)τ=0.2 − RK4τ=0.1|

ti cGP(4)-scheme RK4-scheme |cGP(4)-RK4|
0.0 40.0000000000000 40.0000000000000 0.0000E-011
0.2 41.3115173095931 41.3115173095231 7.0003E-011
0.4 42.5524654327669 42.5524654327855 1.8602E-011
0.6 43.7258787651986 43.7258787651598 3.8803E-011
0.8 44.8346449179167 44.8346449179703 5.3603E-011
1.0 45.8815131527576 45.8815131527394 1.8197E-011
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Table 8. The comparative analysis of the results of cGP(4) and RK4 methods for Ĩ2(t).

|cGP(4)τ=0.2 − RK4τ=0.1|

ti cGP(4)-scheme RK4-scheme |cGP(4)-RK4|
0.0 20.0000000000000 20.0000000000000 0.0000E-12
0.2 19.8224827435947 19.8224827435910 3.7019E-12
0.4 19.6497935551745 19.6497935551789 4.3983E-12
0.6 19.4817328974731 19.4817328974781 4.9987E-12
0.8 19.3181096923190 19.3181096923178 1.1973E-12
1.0 19.1587409282159 19.1587409282118 4.0998E-12

Table 9. The comparative analysis of the results of cGP(4) and RK4 methods for R̃(t).

|cGP(4)τ=0.2 − RK4τ=0.1|

ti cGP(4)-scheme RK4-scheme |cGP(4)-RK4|
0.0 5.0000000000000 5.0000000000000 0.0000E-13
0.2 6.0378169436682 6.0378169436686 3.9968E-13
0.4 7.0770041272628 7.0770041272629 1.0036E-13
0.6 8.1171800572580 8.1171800572530 5.0004E-13
0.8 9.1579811453043 9.1579811453075 3.2010E-13
1.0 10.199060839238 10.199060839237 4.9916E-13

Table 10. The computational costs in terms of the CPU time (in seconds) for the Galerkin-
scheme and RK4 scheme t ∈ [0,1].

CPU time (in seconds)
1/τ Galerkin-scheme RK4-scheme
10 0.254317 0.054033
100 0.377437 0.042027
200 0.732050 0.065334
500 1.393989 0.117353
1000 2.039698 0.144833
1500 2.835332 0.151022
5000 5.925991 0.173021
10000 10.267904 0.243410
20000 20.300213 0.466144
100000 283.102165 5.214400
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1. The influence of changing ξ (left) and ψ (right) on the dynamics of S̃ (t), Ĩ1(t), Ĩ2(t)
and R̃(t) for t∈[0, 200].
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(a) (b)

(c) (d)

(e)

Figure 2. Graphical comparison using Galerkin-scheme (τ = 0.1) and RK4-scheme (τ = 0.1)
for S̃ (t), Ĩ1(t), Ĩ2(t) and R̃(t) for t∈[0, 1] and computational costs in terms of time for both
schemes.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. The geometrical representation of errors solutions and error phase portraits using
Galerkin-scheme (τ = 0.0005) and RK4-scheme (τ = 0.0005) for t ∈ [0,10].
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3.4. The Basic information of the computer used for simulations

• Windows: 8.1 single language
• Processor: Intel(R)Core(TM)i5-5200CPU@2.20GHz 2.20GHz
• Installed memory(RAM): 4.00GB
• System type: 64 bit Operating System, x64-based processor

4. Example 1: The Chen system

The Chen system was initially established in 1999 by Chen and Ueta [41] and described as follows:

dX(t)
dt

= α(Y(t) − X(t)) (4.1)

dY(t)
dt

= (γ − α)X(t) − X(t)Y(t) + γY(t) (4.2)

dZ(t)
dt

= X(t)Y(t) − βZ(t), (4.3)

where X(t), Y(t) and Z(t) are the dependent variables, and α, β and γ are positive constant parameters.
According to bifurcation analysis assuming the parameters α = 35 and γ = 28, system of Equations
4.1–4.3 shows non-chaotic and chaotic behaviour for β = 12 and β = 3, respectively [20].

For the Chen system solutions, Hussain et al. [20] employed and investigated the Galerkin-method
for the model of both non-chaotic behavior and chaotic behavior. They numerically compared the
Galerkin-method solutions to the classic RK4-method solutions and determined that the Galerkin
solutions with larger time steps achieved comparable accuracy to the RK4 solutions with significantly
smaller time steps. This opposed the claim that the findings of the Galerkin-method and RK4-method
are same.

4.1. Chen system with non chaotic behavior

Herein, we consider the Chen system with non-chaotic behavior and implement the proposed
methods for same and different step sizes to strengthen and confirm the claim that (1) the results of
Galerkin and RK4 are not equal, as could be seen from Tables 11–16. The computations are
conducted with several time step sizes, and the accuracy is assessed at various time intervals. It could
be observed that the results are not similar at τ = 0.01 while identical up to eight digit, when
τ = 0.0001. (2) Tables 17 and Figure 4(g) show the elapsed time of both schemes, and it may be
worthy to note that the RK4-scheme required less time as compared to the cGP(2)-scheme. In
addition, Figure 4 shows the differences between the outcomes obtained through the Galerkin and
RK4 methods for different values of τ in the non-chaotic case. This confirms that the RK4 technique
requires less computing cost than the Galerkin scheme.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4. Comparison of Galerkin-scheme (τ = 0.01) and RK4-scheme (τ = 0.01) (Left)
versus Galerkin-scheme (τ = 0.0001) and RK4-scheme (τ = 0.0001) (Right) for X(t), Y(t)
and Z(t) where t ∈ [0, 10] along with computational cost in terms of time.
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Table 11. Differences in Galerkin and RK4 outcomes for X(t).

|Galerkinτ=0.01 − RK4τ=0.01|

ti Galerkin-scheme RK4-scheme |Galerkin-RK4|
1 -27.048832665674844 -27.054660707952376 0.005828042277532
2 -24.121382804250171 -24.220203102041907 0.098820297791736
3 -17.595913326656611 -17.836012791172081 0.240099464515470
4 -9.479112397807544 -9.831210400585679 0.352098002778135
5 -1.519967659034344 -1.930913832633865 0.410946173599521
6 5.629377958266195 5.185500567394190 0.443877390872006
7 12.096029332377837 11.616145579345067 0.479883753032770
8 18.108332396521128 17.598089053219176 0.510243343301951
9 23.372140795726757 22.908872091375947 0.463268704350810
10 26.704118501387580 26.483143514708306 0.220974986679273

Table 12. Differences in Galerkin and RK4 solutions for Y(t).

|Galerkinτ=0.01 − RK4τ=0.01|

ti Galerkin-scheme RK4-scheme |Galerkin-RK4|
1 -25.757727035512879 -25.829785688541214 0.072058653028336
2 -15.733229367223030 -15.960756261129955 0.227526893906925
3 -4.687271172508644 -5.014096669129265 0.326825496620621
4 4.359806983134549 4.021272883035516 0.338534100099033
5 11.202102936238061 10.866833989119010 0.335268947119051
6 16.973500381147989 16.603394521003853 0.370105860144136
7 22.551140692377597 22.122303983970319 0.428836708407278
8 27.775451248198650 27.358265955699231 0.417185292499418
9 31.042892281454858 30.879307980173685 0.163584301281173
10 29.717909515486923 30.160333148606682 0.442423633119759

Table 13. Differences in cGP(2) and RK4 solutions for Z(t).

|Galerkinτ=0.01 − RK4τ=0.01|

ti Galerkin-scheme RK4-scheme |Galerkin-RK4|
1 37.235989947410992 37.195681864725273 0.040308082685719
2 38.702841501348885 38.727949536128541 0.025108034779656
3 34.855832136470781 35.030555096436252 0.174722959965472
4 28.471059015282727 28.746019629584858 0.274960614302131
5 22.625844253119464 22.890177162419192 0.264332909299728
6 18.991435889835248 19.140513211975794 0.149077322140545
7 18.286069422857828 18.221904191712490 0.064165231145338
8 20.890272803905422 20.521203756415815 0.369069047489607
9 26.631030747685497 25.950053980017987 0.680976767667509
10 33.728856634945707 32.981125844075343 0.747730790870364
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Table 14. Differences in cGP(2) and RK4 solutions for X(t).

|Galerkinτ=0.0001 − RK4τ=0.0001|

ti Galerkin-scheme RK4-scheme |Galerkin-RK4|
1 -27.047610303301788 -27.047610303357622 0.005583444817603E-008
2 -24.094604479340664 -24.094604480173757 0.083309359411032E-008
3 -17.530298570737838 -17.530298572724817 0.198697946984794E-008
4 -9.383231382528516 -9.383231385407889 0.287937318432796E-008
5 -1.408518132110425 -1.408518135446550 0.333612537595229E-008
6 5.749603796814950 5.749603793216482 0.359846730191293E-008
7 12.226070443083062 12.226070439194331 0.388873111489829E-008
8 18.246170817362785 18.246170813251055 0.411172962344608E-008
9 23.495090238172907 23.495090234528103 0.364480357006869E-008
10 26.756926094741043 26.756926093227204 0.151383972024632E-008

Table 15. Differences in Galerkin and RK4 outcomes for Y(t).

|Galerkinτ=0.0001 − RK4τ=0.0001|

ti Galerkin-scheme RK4-scheme |Galerkin-RK4|
1 -25.739166712238003 -25.739166712853841 0.061583804722432E-008
2 -15.671765498592148 -15.671765500480387 0.188823889857304E-008
3 -4.598724349917238 -4.598724352588283 0.267104471873836E-008
4 4.451217413219246 4.451217410479821 0.273942468709265E-008
5 11.292738780804578 11.292738778094927 0.270965117010746E-008
6 17.074033073890451 17.074033070883853 0.300659763752265E-008
7 22.667547308391388 22.667547304916646 0.347474227169187E-008
8 27.886618576432806 27.886618573137842 0.329496430140352E-008
9 31.079875020723971 31.079875019688370 0.103560182651563E-008
10 29.584671502608845 29.584671506692231 0.408338607371661E-008

Table 16. Differences in Galerkin and RK4 outcomes for Z(t).

|Galerkinτ=0.0001 − RK4τ=0.0001|

ti Galerkin-scheme RK4-scheme |Galerkin-RK4|
1 37.246938185955891 37.246938185624877 0.033101343888120E-008
2 38.695920712480053 38.695920712709558 0.022950530365051E-008
3 34.807827360519170 34.807827361976500 0.145733025647132E-008
4 28.396215621242757 28.396215623489454 0.224669705062297E-008
5 22.554831144255033 22.554831146374244 0.211921147297289E-008
6 18.952840363341220 18.952840364482952 0.114173204224244E-008
7 18.306723791470940 18.306723790831505 0.063943517147891E-008
8 20.994876585309012 20.994876582156568 0.315244363946476E-008
9 26.818990233189414 26.818990227565898 0.562351587518606E-008
10 33.927750982739248 33.927750976850653 0.588859450090240E-008
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Table 17. The computational costs in terms of the CPU-time (in seconds) for the Galerkin
and RK4 schemes for t ∈ [0,10].

CPU time (in seconds)
1/τ Galerkin-scheme RK4-scheme
10 0.351107 0.049666
100 1.395488 0.060902
200 1.805245 0.064809
500 2.922045 0.098383
1000 4.807289 0.133293
1500 6.021356 0.169597
5000 13.376732 0.411494
10000 26.135305 1.037192
20000 49.576749 1.942809
100000 386.666995 6.432528

5. Example 2: HIV infection model description

In the field of HIV infection of healthy T-cells, mathematical models have become indispensable
tools for better understanding the dynamical behaviour, transmission, disease progression, and
immunological interactions of HIV. In humans, the HIV virus mainly targets healthy T-cells.
Whenever HIV enters the body, it infects a significant number of healthy T-cells, causing their
depletion gradually. As a consequence, the body’s immune system is destroyed, weakening the host
immunological response to viral diseases and eventually leading to acquired immunodeficiency
syndrome (AIDS). The reduction in the number of these cells is used as a major indication to monitor
the development of HIV infection and the symptoms of AIDS. These cells proliferate at a steady rate
from bone marrow and thymus precursors. To characterize the dynamical behavior of HIV infection,
several mathematical models have been introduced. The model proposed by Attaullah et al. [19] is as
follows:

dT̃ (t)
dt

= s0 − µT̃ T̃ (t) + αT̃ (t)
(
1 −

T̃ (t) + Ĩ(t)
T̃max

)
− βṼ(t)T̃ (t), (5.1)

dĨ(t)
dt

= βṼ(t)T̃ (t) − Ĩ(t)µĨ , (5.2)

dṼ(t)
dt

= γµĨ Ĩ(t) − µṼ Ṽ(t). (5.3)

Herein, T̃ , Ĩ and Ṽ describe the densities of healthy/infected T-cells and virus respectively. The
explanation of parameters, along their values and initial condition for the state variables are illustrated
in Table 18.

The aforementioned model is considered as a model problem, and we implement the suggested
methods. Table 19 and Figure 5 show the numerical cost in terms of time, and for all other results the
readers are advised to see [19] for details. It is worth noting that the RK4 approach required very less
time than the cGP(2) approach (see Table 19 and Figure 5). This is further supported by the fact that
RK4 takes less time than cGP(2).
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Table 18. The description of variables and parameters with their values
(unit=day−1mm−3) [19].

Variable Explanation Value
T̃ (0) Density of healthy T-cells 0.1
Ĩ(0) Density of infected T-cells 0
Ṽ(0) Density of free HIV viruses 0.1
Parameters and constants

s0 The generation rate of healthy T-cells 0.1
α Proliferating of healthy T-cells 3
µT̃ Death rate healthy T-cells 0.02
µĨ Death rate infected T-cells 0.3
µṼ Death rate of free virus 2.4
β The infection rate 0.0027
T̃max Maximum number of healthy T-cells 1500
γ Production rate of virus by infected T-cells 10

Table 19. In terms of CPU time (in seconds), the computational costs for Galerkin and RK4
schemes t ∈ [0, 10].

CPU time (in seconds)
1/τ cGP(2)-Method RK4-Method
10 0.324928 0.061477
100 0.537519 0.062665
200 0.795505 0.073890
500 1.355163 0.105935
1000 2.381097 0.140199
1500 2.967904 0.154493
5000 6.112178 0.425491
10000 10.263549 0.852300
20000 19.683633 1.675098
100000 231.860883 6.786395
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Figure 5. Graphical comparison for time elapsed by cGP(2)-scheme and RK4-scheme for
different time step sizes.

6. Example 3: Model problem

In order to demonstrate that the provided temporal discretization technique is accurate and efficient
in terms of time, as a test problem with the prescribed exact solution, analyze the implementations of
the cGP(2) and RK4 approaches. The detail of the considered problem is given on page 332 of [42].
The problem consists of two differential equation as follows:

dU(t)
dt

= −4U + 3V + 6, (6.1)

dV(t)
dt

= −2.4U + 1.6V + 3.6, (6.2)

where the initial values are U(0) = 0 and V(0) = 0. The exact solution to the aforementioned model is

U(t) = −3.375 exp (−2t) + 1.875 exp (−0.4t) + 1.5, (6.3)
V(t) = −2.25 exp (−2t) + 2.25 exp (−0.4t). (6.4)

Performed different numerical tests to assess the accuracy of the suggested techniques utilized an
equidistant and unequal time step size τ = T/N for all tests, with T = 0.5. First, find out the solutions
using the cGP(2) and RK4 at τ = 0.1 and then using at τ = 0.00125 and τ = 0.000625, respectively.
To determine the numerical solution’s accuracy, the numerical solutions were compared with the
prescribed analytical exact solution presented in Tables 20 and 21. The computational results clearly
demonstrate that the Galerkin-scheme gives highly accurate results at relatively large time step sizes
as compared to RK4-scheme. For the same step size (τ = 0.1), the Galerkin-scheme gained the
accuracy of 10−5 while the RK4-method achieved the accuracy of 10−4. Further, RK4 achieved the
accuracy of 10−5 at τ = 0.000625, while the Galerkin-method can already reach the same precision
and accuracy with τ = 0.00125. This is a clear negation to the claim of [28] that Galerkin and RK4
have the same results. On the other hand, we find the order of convergence and compared the
experimental orders of convergence with the theoretical order of convergence. The cGP(2)-method is
of order 3 in the whole time interval and super-convergent of order 4 at the discrete time points. One
can see from Table 24 that the experimental orders of convergence for the cGP(2) method are much
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more visible. From Table 24, we observe that the EOC coincides with the theoretical orders of
convergence for corresponding time discretization schemes.

Moreover, we computed the required CPU-time in seconds at different time step sizes for the
mentioned above system, as given in Table 25 and plotted in Figure 6 for both methods. It can be seen
from Table 25 and Figure 6 that the RK4-scheme is much faster than the Galerkin-scheme. Hence,
these numerical tests show that the Galerkin approach is less efficient and takes more time as in
comparison to the RK4-method.

Table 20. Differences between the solutions of cGP(2)-scheme and exact solution for U(t)
and V(t).

cGP(2)-method cGP(2)-method Errors Errors

ti U(τ=0.1) V(τ=0.1) |UcGP(2) − Uexact | |VcGP(2) − Vexact |

0.0 0.000000000000000 0.000000000000000 0.000000000000000E-005 0.000000000000000E-005
0.1 0.538262676008231 0.319631223294469 0.123076418656609E-005 0.082037279897085E-005
0.2 0.968510978848033 0.568790332547925 0.201525662668622 E-005 0.134324181744194E-005
0.3 1.310734072202835 0.760743151897503 0.247482449533543E-005 0.164950454151214E-005
0.4 1.581281648929932 0.906331555404320 0.270148609193832E-005 0.180050590703473E-005
0.5 1.793524283491225 1.014413609321062 0.276457637293781E-005 0.184246865142512E-005

Table 21. Differences between the solutions of RK4-scheme and exact solution for U(t) and
V(t).

RK4-method RK4-method Errors Errors
ti U(τ=0.1) V(τ=0.1) |URK4 − Uexact| |VRK4 − Vexact|

0.0 0.0000000 0.0000000 0.00000E-004 0.00000E-004
0.1 0.5382550 0.3196263 0.08285E-004 0.05803E-004
0.2 0.9684983 0.5687817 0.15140E-004 0.09596E-004
0.3 1.3107170 0.7607328 0.19070E-004 0.12160E-004
0.4 1.5812630 0.9063208 0.20980E-004 0.13110E-004
0.5 1.7935050 1.0144020 0.21930E-004 0.12400E-004

Table 22. Differences between the solutions of Galerkin-scheme and exact solution for U(t)
and V(t).

Galerkin-scheme Galerkin-scheme Errors Errors

ti U(τ=0.00125) V(τ=0.00125) |UGalerkin − Uexact | |VGalerkin − Vexact |

0.0 0.000000000000000 0.000000000000000 0.000000000000000E-013 0.000000000000000E-013
0.1 0.538263906772387 0.319632043667248 0.303090885722668E-013 0.218631863105119E-013
0.2 0.968512994104611 0.568791675789710 0.487387907810444E-013 0.399721318314869E-013
0.3 1.310736547027270 0.760744801402005 0.608402217494586E-013 0.549991745625225E-013
0.4 1.581284350415960 0.906333355910185 0.630606677987089E-013 0.674950994505733E-013
0.5 1.793527048067532 1.014415451789671 0.659472476627343E-013 0.779111596277818E-013
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Table 23. Differences between the solutions of RK4-scheme and exact solution for U(t) and
V(t).

RK4-method RK4-method Errors Errors

ti U(τ=0.000625) V(τ=0.000625) |URK4 − Uexact | |VRK4 − Vexact |

0.0 0.000000000000000 0.000000000000000 0.000000000000000E-013 0.000000000000000E-013
0.1 0.538263906772406 0.319632043667260 0.113242748511766E-013 0.319632043667268E-013
0.2 0.968512994104641 0.568791675789730 0.185407245112401E-013 0.568791675789742E-013
0.3 1.310736547027307 0.760744801402030 0.233146835171283E-013 0.760744801402045E-013
0.4 1.581284350415998 0.906333355910211 0.255351295663786E-013 0.906333355910227E-013
0.5 1.793527048067573 1.014415451789698 0.255351295663786E-013 1.014415451789714E-013

Table 24. Comparative analysis of orders of convergence for U and V .

cGP(2)-Scheme
1
τ

‖U − Uτ‖ EOC ‖V − Vτ‖ EOC
20 1.38E-04 2.29 1.35E-03 0.84
40 1.03E-05 3.75 8.86E-05 3.93
80 6.88E-07 3.90 5.60E-06 3.98
160 4.39E-08 3.97 3.51E-07 4.00
320 2.75E-09 4.00 2.19E-08 4.00
640 1.71E-10 4.01 1.37E-09 4.01

Table 25. The computational costs in terms of CPU time (in seconds) for the Galerkin-
scheme and RK4 scheme t ∈ [0,0.5].

CPU time (in seconds)
1/τ Galerkin RK4-Method
10 0.277157 0.044306
100 0.479595 0.045998
200 0.577860 0.051233
500 0.925523 0.076149
1000 1.758500 0.090703
1500 2.478847 0.150593
5000 5.433901 0.341417
10000 8.990064 0.569608
20000 14.029849 1.242083
100000 144.766793 5.873934
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Figure 6. Graphical comparison for the time elapsed by Galerkin-scheme and RK4-scheme
for different time step sizes.

7. Conclusions and future recommendations

In this work, a higher-order Galerkin and a fourth order classical Runge Kutta scheme were
implemented. Various numerical tests were performed to determine the reliability and effectiveness of
the described schemes. In addition, the impacts of increasing the parameters ξ1 and ψ2 on the
dynamical behavior of the state variables were appropriately discussed. We noticed that increasing the
value of ξ1 increases the population of susceptible individuals while decreasing the population of
infected individuals with acute HBV, infected individuals with chronic HBV and recovered
individuals. By elevating ψ2, the concentration of susceptible and recovered individuals grows, while
the number of acutely and chronically infected people decreases. We executed many computational
tests and compared the results quantitatively. According to computational simulations, the
Galerkin-scheme provides much more accurate solutions at relatively high time step sizes than the
RK4-method. Afterwards, the accuracy of the cGP(2) technique confirm that it produces more
accurate results at relatively longer step sizes than the RK-4 scheme at a comparable numerical cost.
The results of numerical studies revealed that the explicit RK4-scheme used less CPU time in
comparison to the accuracy, but the implicit Galerkin-scheme required more CPU time. We proved
that cGP(2) works better on time steps than the RK4 method. The proposed scheme could be
applicable for solving complex real-world problems.

In the future, we plan to investigate the numerical and qualitative aspects of the present concept
using different fractional order derivatives. The concept of fractional analysis is well known, and it has
recently become a prominent study area. The utility of fractional calculus in modeling a wide range
of real-world phenomena has been demonstrated. Using fractional order derivatives and integrals,
researchers have researched infectious illnesses such as HIV, AIDS, and others.
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