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Abstract: Recent Ebola virus disease infections have been limited to human-to-human contact as well
as the intricate linkages between the habitat, people and socioeconomic variables. The mechanisms
of infection propagation can also occur as a consequence of variations in individual actions brought
on by dread. This work studies the evolution of the Ebola virus disease by combining fear and
environmental spread using a compartmental framework considering stochastic manipulation and a
newly defined non-local fractal-fractional (F-F) derivative depending on the generalized Mittag-Leffler
kernel. To determine the incidence of infection and person-to-person dissemination, we developed a
fear-dependent interaction rate function. We begin by outlining several fundamental characteristics
of the system, such as its fundamental reproducing value and equilibrium. Moreover, we examine
the existence-uniqueness of non-negative solutions for the given randomized process. The ergodicity
and stationary distribution of the infection are then demonstrated, along with the basic criteria for its
eradication. Additionally, it has been studied how the suggested framework behaves under the F-F
complexities of the Atangana-Baleanu derivative of fractional-order ρ and fractal-dimension τ. The
developed scheme has also undergone phenomenological research in addition to the combination of
nonlinear characterization by using the fixed point concept. The projected findings are demonstrated
through numerical simulations. This research is anticipated to substantially increase the scientific
underpinnings for understanding the patterns of infectious illnesses across the globe.
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1. Introduction

Ebola virus (EV) is a filovirus that is a member of the class Filoviridae in both humans and
nonhuman primates. People who are at threat of contamination can potentially catch EV disease from
their surroundings by interacting or getting into direct contact with items that are contaminated with
pathogens [1]. Once a person has contracted the sickness, it can take between 2 and 21 days for
symptoms to appear EV, the virus can persist for between 4 and 10 days [2]. Migraine, starvation,
fatigue, sore muscles or ligaments, respiration problems, nausea, dysentery, gastrointestinal
discomfort, unexplained hemorrhage or any unexpected unexplained mortality are common
indications of infection in people [3]. Afflicted individuals may either pass away right away or survive
the infection and recuperate with therapy, depending on the strength of their antibodies. People who
survive develop immunity to the viral genotype they contracted over a decade ago [4]. Nevertheless,
recombinant transcription polymerase chain response (RT-PCR) screening for the EV for more
than 36 weeks indicates that in a relatively small proportion of patients, certain bodily functions
(semen, ocular and neurological network secretions, foetal membranes, breastfeeding) may screen
positive [5].

Recently, a predictive SEIHR (susceptible-exposed-infected-hospitalized-recovered) framework
has been implemented in numerous numerical modeling experiments to explain the propagation and
prevention of EV disease [6], it distinguishes between elevated (such as healthcare personnel) and
minimal-risk populations. They determined the best propagation speed by using a simple
least-squares estimator and the successful interaction probability in an assessment of the reproductive
factor, R0. For logistic regression from the epidemic in the Congo and Uganda, SEIR mechanisms
have been applied in certain publications [7]. The framework in the cited source was expanded by [8]
to include two more categories for the untreated and un-buried EV victims. The impact of anti-EV
epidemic prevention strategies, including advertisements, increasing hospitalization, appropriate
interment of EV disease victims and the availability and implementation of preventative equipment in
residences, were taken into account in other research studies [9, 10]. For more information on
epidemics and related models [11, 12].

Residents of any afflicted region surely dread EV disease because of its significant mortality
incidence. According to a 2016 World Health Organization advisory, both EV patient contamination
and mortality have the potential to affect the diseased people and their associated relations [13].
Anxiety can cause locals to be extra conservative and take preventative precautions regarding the
infection, including preventing close interaction with contaminated people, consuming animal flesh
and attempting to avoid communal areas including markets, institutions, churches and cemeteries of
EV victims (see Figure 1). People-to-human pathogenic connection levels may decrease significantly
as a result of these behavioral changes brought on by EV disease concern. The preceding
mathematical frameworks and other earlier EV estimates did not take into consideration the important
implications this has on infection behavior and progression. Furthermore, most studies fail to consider
the polluted environment caused by pathogen-infested materials (for example, infected injections used
in outpatient clinics; bedsheets contaminated by infectious people’s faces, saliva, vomit or
perspiration) [14, 15]. Fractional calculus, which has a wide range of applications in molecular
responses, heat transfer, mechanical design, nanoscale evolution, laser scanning and architecture
classification, neuroscience, photoelectric operations, viscoelasticity, machine learning and many
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other domains [16–18], was recently developed as a result of research into Lévy inertia, chaotic
behavior and the financial sector. The conventional differential and integral formulations are unable to
capture heterogeneity. However, these fractional derivative/integral formulations have been
recognized as powerful computing tools. Additionally, it is noteworthy that when representing natural
and physical events, fractal-fractional (F-F) techniques preserve multiple kinds of variabilities and
behave in diverse ways. It seems that there are undoubtedly many real-world problems, but neither
fractal nor fractional approaches are able to accurately reproduce them on an interpersonal basis.
Researchers came to the conclusion that, in order to mimic extremely complicated formations, they
urgently needed novel computational procedures. Despite the assertion, including others, that there is
hardly anything at all novel or transformative, it is difficult to believe that the combination of two
existing concepts may produce an innovative technique. The first implementation of a revolutionary
differential formulation was designed in [19] in order to accommodate more complexity. This
scholastic statement might be understood as the outcome of the combination of the fractal
differentiation of a fractional derivative of a specific projection. Evidently, there are three potential
readings and it all depends on the operating system. The idea was contested and extended to a range
of issues, involving turbulent equilibria, outbreaks and propagation, among many others [20–22], and
the overwhelming proportion of the featured publications yielded extremely outstanding modeled
projections.

(a)

Figure 1. EV transmission cycle. [23]

In the past, numerical models for complicated processes in pharmaceutical, biological, mechanical
and data analysis were traditionally created by using the resolutions of integro, linear and nonlinear
differential equations (DEs). The underpinning for fidelity evaluation and further research into the
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pertinent dynamical systems is the predominance and specificity of mathematical methodologies. The
inquiry scope has also been extended to structurally intricate equations and time-latency systems [24]
that contain the hereditary trait of dynamic interplay in physics and technology. Around 1960, the
strategies of common Ito-Doob version randomized DEs [25], randomized partial DEs [26],
randomized fractional DEs [27] and randomized fractional PDEs [28] in esoteric settings were
defined as the cornerstone of Ito-Doob form stochastic integral equations. This was done for apparent
supercomputing reasons. The regulated effects of randomized environmental pressures are described
by the Wiener process [29]. This has been thoroughly investigated, utilizing local martingale
formulae [30]. Based on the aforementioned contextualized production of innovative model
development work and the implementation of multiple responsive and/or randomized perturbation
characteristics of interplay in the numerical prediction highlighted by DEs, We understand that
researchers are increasingly pursuing advances in fundamental constituent ideologies that devote an
initial estimate’s comprehension to its commensurately efficient numerical consideration.
Furthermore, a confluence of traditional analytical simulation and randomized methodologies was
subsequently used to construct randomized dynamic structures for monetary records in [31]. In an
effort to adapt this structure to quite enormously delicate strategies in the scientific world operating
under intangible responsive and external randomized intervention, we need to notify the evolving
computational algorithms by intentionally completing innovative, straightforwardly referenced
standards or attributes to design variables. Atangana and Araz [32] pioneered the utilization of
randomized and numerical methods to simulate and predict the transmission of COVID-19 across
Africa and Europe in 2021. Alkahtani and Alzaid [33] later considered the randomized quantitative
framework of chikungunya transmission, including the fractional calculus. Cui et al. [34] proposed a
novel concept of F-F and stochastic evaluation of norovirus spread and vaccination impacts.
Rashid et al. [35] performed a detailed assessment of the stochastic F-F tuberculosis model
considering the Mittag-Leffler kernel and random densities.

Numerous numerical simulations have successfully been implemented to research how to more
efficiently supervise interventions against re-emerging and developing serious infections, such as
quarantine and vaccination [36–40]. Implementation strategies primarily intend to reduce such
impacts by reducing spreading or lessening aggravation. Immunization and antigens have emerged as
the main methods for controlling several chronic illnesses. If there are vaccinations and monoclonal
antibodies for these infections, a category of vaccine recipients that is at best somewhat resistant
should be involved when developing the framework. However, confinement is the primary preventive
method for an outbreak of disease like the EV, in which no vaccine prevention is available. In the
particular instance of the EV pathogen, the scenario of the French caregiver who was diagnosed with
the disease is evidence of the potential of clinical assistance. However, this therapeutic care is not
accessible for the poor nations, including Sierra Leone, Liberia, and Guinea, which lack the potential
to safeguard individuals against the pathogen. Consequently, quarantine is a key strategy for reducing
infection within those underdeveloped nations.

This study constructs a generalized epizootic framework for EV that is represented by the
nonlinear system represented below in order to account for these mathematical and biological
concerns through the use of a novel approach known as the F-F derivative operator. For the sake of
clarity, the Atangana-Baleanu derivative notion is properly considered alongside the Brownian
motion. The deterministic and stochastic reproductive values of the model’s solutions were all
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identified and examined. The system’s research suggests that a stochastic threshold technique to
reduce the pandemic risk is needed. In the eradication of the virus, we additionally assess the
stochastic framework by applying ergodicity and stationary distribution. The numerical investigation
of the suggested system is evaluated by considering the F-F Atangana-Baleanu formulation featuring
white noise. To bolster our theoretical findings, we provide simulated outcomes. In a nutshell, we
provide various insights in the conclusion.

The remainder of this work is presented. Section 2 briefly discusses some of the attributes and
interpretations employed in this investigation. Section 3 describes the model’s conception and
representation using the F-F derivative. Also, Section 3 examines the solution’s well-posedness, and
equilibrium conditions for the F-F EV model. In Section 4, the qualitative aspects of the stochastic
model are investigated. In Section 5, the numerical scheme is derived. Furthermore, the numerical
simulation and graphical results are presented. Finally, the conclusion can be found in Section 6.

2. Preliminaries

Before advancing on to the formal description, it is imperative to study certain fundamental F-F
operator concepts. Take into account the parameters provided in [19] as well as the functional v(ζ),
which is continuous and fractal differentiable on [c, d] with fractal-dimension τ and fractional-order ρ.

Definition 2.1. [19] The F-F operator of v(ζ) involving the index law kernel from the perspective of
Riemann–Liouville (RL) can be described as follows for ζ ∈ [0, 1]:

FFPDρ,τ
0,ζ(v(ζ)) =

1
Γ(χ − ρ)

d
dζτ

ζ∫
0

(ζ − w)χ−ρ−1v(w)dw, (2.1)

where dv(w)
dwτ = lim

ζ 7→κ

v(ζ)−v(κ)
ζτ−κτ

and χ − 1 < ρ, τ ≤ χ ∈ N.

Definition 2.2. [19] The F-F operator of v(ζ) involving the exponential decay kernel in terms of RL
can be described as follows for ρ ∈ [0, 1]:

FFEDρ,τ
0,ζ(v(ζ)) =

M(ρ)
1 − ρ

d
dζτ

ζ∫
0

exp
(
−

ρ

1 − ρ
(ζ − κ)

)
v(κ)dκ, (2.2)

such thatM(0) = M(1) = 1, with ρ > 0, τ ≤ χ ∈ N.

Definition 2.3. [19] The F-F operator of v(ζ) involving the generalized Mittag-Leffler kernel from the
perspective of RL can be described as follows for ρ ∈ [0, 1]:

FFMDρ,τ
0,ζ(v(ζ)) =

ABC(ρ)
1 − ρ

d
dζτ

ζ∫
0

Eρ

(
−

ρ

1 − ρ
(ζ − κ)

)
v(κ)dκ, (2.3)

such that ABC(ρ) = 1 − ρ +
ρ

Γ(ρ) , with ρ > 0, τ ≤ 1 ∈ N.
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Definition 2.4. [19] The respective F-F integral formulae of (2.1) is described as:

FFPJρ0,ζ(v(ζ)) =
τ

Γ(ρ)

ζ∫
0

(ζ − κ)ρ−1κτ−1v(κ)dκ. (2.4)

Definition 2.5. [19] The respective F-F integral formulae of (2.2) be described as:

FFEJρ0,ζ(v(ζ)) =
ρτ

M(ρ)

ζ∫
0

κτ−1v(κ)dκ +
τ(1 − ρ)ζτ−1v(ζ)

M(ρ)
. (2.5)

Definition 2.6. [19] The respective F-F integral formulae of (2.3) is described as:

FFMJρ0,ζ(v(ζ)) =
ρτ

ABC(ρ)

ζ∫
0

κτ−1(ζ − κ)ρ−1v(κ)dκ +
℘(1 − ρ)ζ℘−1v(ζ)

ABC(ρ)
. (2.6)

Definition 2.7. [18] Let v ∈ H1(c,d), c < d and the Atangana-Baleanu fractional derivative operator
is described as:

ABC
c Dρ

ζ(v(ζ)) =
ABC(ρ)

1 − ρ

ζ∫
c

v′(κ)Eρ

(
−
ρ(ζ − κ)ρ

1 − ρ

)
dκ, ρ ∈ [0, 1], (2.7)

where ABC(ρ) represents the normalization function.

Definition 2.8. [41] The Gaussian hypergeometric function 2F1 is characterized as:

2F1(u1,u2; u3,u4) =
1

B(u2,u3 − u2)

1∫
1

ζu2−1(1 − ζ)u3−u2−1(1 − u4ζ)−u1dζ, (u3 > u2 > 0, |u1| < 1),(2.8)

where B(u1,u2) =
Γ(u1)Γ(u2)
Γ(u1+u2) and Γ(u1) =

∞∫
0

exp(−ζ)ζu1dζ is the gamma function.

3. Model conception and depiction

Here, we suggest a mathematical approach comprising six different cohorts, including a section
for environmental infections (P), susceptibility (S), infectious (I), hospitalized (H), restored (R)EV
deceased (D), respectively. People getting into contact with substances that are infected with the
infection are thought to be the two main ways that EV disease is spread (individual to individual
interaction or participant to infection interaction). It is believed that anxiety, which is equivalent to
the number of fatalities, will lower the risk of spread in the case of an EV spread in a population.
This presumption is based on the idea that people remain increasingly apprehensive when EV disease-
related mortality increases in a region. The communication ratio declined as a result of this. We use
the factor that estimates the effect of dread ε1 per the deceased to represent the sense of paranoia. The
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quantity ε1 > 0, where 0 < ε1 ≤ ε̃1 represents a complete lack of anxiety and ε1 = 0 displays escalating
amounts of dread up to a high of ε̃1. It is reasonable to assume that higher feelings of anxiety will cause
the meaningful interaction probability to decline, such that σ =

γ1P

κ+P
+
γ2(1+ϑ1H+ϑ2D)

1+ε1D
,where κ denotes the

virus intensity at which there is a 50% chance of transmission, also known as the 1/2-saturation factor.
So, b1 and b2 represent the actual interaction patterns that result in an outbreak between vulnerable
people and environmental infections between sensitive people and infectious people, respectively. A
steady stream of vulnerable individuals is recruited by conception or immigration π. The incidence of
EV pathogen infection in vulnerable people is σ. The contagious individuals can recover at the level
η1, be hospitalized at the level η2 or die at the level η3. We assume that people who are hospitalized
are similarly contagious but have significantly less pathogenicity ϑ1 than those who are dead and
contagious ϑ2 and thus have 0 < ϑ1 < 1. Hospitalized patients can either recover at a rate of ω1

or die from EV disease at a rate of ω2 and their corpses are disposed of at a rate of %. Additionally,
infections in the environment degrade at a rate of ν and contaminated people and the deceased corpses
of EV victims release infections into the culture at rates of δ1 and δ2, respectively. We presume that
individuals pass away naturally at a pace of ς. Figure 2 displays the schematic representation of the
system.

ωlH 

ω2H 

Figure 2. Schematic diagram for EV model.

The preceding auxiliary criteria are also predicated on the framework interpretation: the sentient
community is the primary recipient group taken into account in this approach. Wildlife is not seen as
a component of the ecosystem, which seems reinforced by the reality that various creatures, including
monkeys, chimpanzees and bonnet macaque, which seem to be pathogen carriers, reside in woods
farthest from domestic areas and have limited interactions with individuals. The atmosphere has a
holding capability because it is a solid object by necessity. The use of a dominating dynamical system
in the intensity of transmission results from applying the nonlinear and saturation nature of the growth
in the number of infections in the environment as the incidence of developing disease. The transfer of
contagious people from the pathogenic to the hospitalized section as well as from the inpatient to the
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deceased category is unaffected by dread.
This seems to be attributable to the fact that, regardless of their health, individuals constantly bring

ailing relatives to the clinic. Additionally, an EV diagnosis is typically made after a patient receives
a definitive clinical diagnosis in a laboratory. The individuals present are kept in secure settings and
cared for by experts wearing hazard gear designed for handling EV victims and the corpses of EV
victims. As a result, the treated patients’ nervousness about developing the infection seems to be very
weak and considered minimal. We suppose that the level at which sick people excrete germs into the
environment is insignificant because of their comparatively reduced infectiousness as well.

The succeeding framework of DEs results from the schematic flow and the system suppositions:

Ṡ(ζ) = π − (σ + ς)S(ζ),
İ(ζ) = σS − (ς + η1 + η2 + η3)I(ζ),
Ḣ(ζ) = η2I − (ς + ω1 + ω2)H(ζ),
Ḋ(ζ) = η3I + ω2H − %D(ζ),
Ṗ(ζ) = δ1I + δ2D− νP(ζ),

(3.1)

which are subject to the initial conditions (ICs) S(0) > 0, I(0) > 0, H(0) > 0, D(0) > 0, P(0) >
0 and ∀ ζ > 0 and the restored group is viewed as being unnecessary.

To the best of our knowledge, no comprehensive analyses have been conducted on the implications
of the F-F model of the EV. This operator has the ability to comprehend nature in a better way. In order
to comprehend the complexities of the model, we present the F-F version of the EV epidemic model,
which has not been studied yet. This is the main motivation for this study. Thus, in this article, we will
adhere to the methodology described in [42] and take into account the F-F framework of the EV in the
generalized Mittag-Leffler kernel context:

FF
0 Dρ,τ

ζ S(ζ) = π − (σ + ς)S,
FF
0 Dρ,τ

ζ I(ζ) = σS − (ς + η1 + η2 + η3)I,
FF
0 Dρ,τ

ζ H(ζ) = η2I − (ς + ω1 + ω2)H ,
FF
0 Dρ,τ

ζ D(ζ) = η3I + ω2H − %D,
FF
0 Dρ,τ

ζ P(ζ) = δ1I + δ2D− νP,

(3.2)

where the F-F operator is the convolution of the generalized Mittag-Leffler kernel and the fractal
derivative. The fractional-order ρ and the fractal-dimension τ are the orders of these operators. The
innovative operators’ objective is to seek out non-local challenges in nature that exhibit fractal
behavior. F-F derivatives are used to describe long-term relationships, macro- and microscaled
manifestations, discontinuous differential concerns and irregular physical phenomena. Atangana and
Qureshi [43] described a notion in which they predicted chaotic behavior of the modified Lu Chen
attractor, modified Chua chaotic attractor, Lu Chen attractor and Chen attractor using F-F operators.
Rashid et al. [44] expounded upon the F-F model for the prediction of the oscillatory and complex
behavior of the human liver with a non-singular kernel. For more details on the F-F operator,
see [42, 45].

In this research, we propose a stochastic viral mathematical framework for EV epidemics that is
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developed using the five stochastic DEs presented as follows:

dS(ζ) =
(
π − (σ + ς)S(ζ)

)
dζ + ℘1S(ζ)B1(ζ),

dI(ζ) =
(
σS − (ς + η1 + η2 + η3)I(ζ)

)
dζ + ℘2I(ζ)B2(ζ),

dH(ζ) =
(
η2I − (ς + ω1 + ω2)H(ζ)

)
dζ + ℘3H(ζ)B3(ζ),

dD(ζ) =
(
η3I + ω2H − %D(ζ)

)
dζ + ℘4D(ζ)B4(ζ),

dP(ζ) =
(
δ1I + δ2D− νP(ζ)

)
dζ + ℘5P(ζ)B5(ζ),

(3.3)

where B`, ` = 1, ..., 5 represents real-valued standard Brownian motion described on a complete
probability space (Ω,A, P) fulfilling the requirements specified in [46]; similarly, ℘`, ` = 1, ..., 5
represents the strengths of standard Gaussain white noises.

3.1. Properties of the deterministic case

To demonstrate that the EV model provided by (3.1) is epidemiologically meaningful, we must
demonstrate that the model’s corresponding state variables remain non-negative. It can also be said
that the EV model solution with non-negative initial conditions will stay non-negative for every time
greater than zero. We have the following lemma.

Lemma 3.1. Consider the initial data f(0) ≥ 0, where

f(ξ) =
(
S(ζ),I(ζ),H(ζ),D(ζ),P(ζ)

)
.

Then the solutions of the system presented by (3.1) are non-negative for every time ζ > 0. Further,

lim
ζ 7→∞
N(ζ) =

π

ς

with N(ζ) = S(ζ) + I(ζ) +H(ζ) +D(ζ) + P(ζ).

Proof. Consider ζ1 = sup
{
ζ > 0 : f(ζ) > 0

}
. So, ζ1 > 0. The first equation of the EV system (3.1)

leads to the following

dS
dζ

= π − (σ + ς)S, (3.4)

with θς = σ; then, (3.4) reduces to

dS
dζ

= π − θςS − ςS. (3.5)

Thus, (3.5) can be expressed further as follows:

d
dζ

{
S(ζ) exp

(
ςζ +

ζ∫
0

θς(φ)dφ
)}

= θς exp
(
ςζ +

ζ∫
0

θς(φ)dφ
)
.

Therefore, we have

S(ζ1) exp
(
ςζ1 +

ζ1∫
0

θς(φ)dφ
)
−U(0) = θς exp

(
ςy +

y∫
0

θς(ψ)dψ
)
dy.

It follows that
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S(ζ1) = S(0) exp
{
−

(
ςζ1 +

ζ1∫
0

θς(φ)dφ
)}

+ exp
{
−

(
ςζ1 +

ζ1∫
0

θς(φ)dφ
)}

×

ζ1∫
0

θς exp
(
ςy +

y∫
0

θς(ψ)dψ
)
dy > 0.

Similar steps can be followed for the rest of the equations of the EV system (3.1), i.e., f(ζ) > 0 for
every ζ > 0. Note that 0 < S(0) ≤ N(ζ), 0 < I(0) ≤ N(ζ), 0 < H(0) ≤ N(ζ), 0 < D(0) ≤ N(ζ) and
0 < P(0) ≤ N(ζ). Now, summing the EV model (3.1) compartments leads to the following:

dN
dζ

= π − ςN(ζ).

Thus,

lim
ζ 7→∞
N(ζ) ≤

π

ς
,

which is the required claim. �

3.2. Positivity of the proposed model

For the positivity of the model solution, let us use the following set R5
+:

R5
+ =

{
η ∈ R5 : η ≥ 0 and η(ζ) = (S(ζ),I(ζ),H(ζ),D(ζ),P(ζ))T

}
.

Theorem 3.1. Suppose that the solution η(ζ) of the proposed F-F EV model (3.2) exists and belongs
to R5

+. Moreover, the solution will be non-negative.

Proof. Taking into account (3.2), we observed that

FF
0 Dρ,τ

ζ S(ζ)
∣∣∣
S=0

= π ≥ 0,
FF
0 Dρ,τ

ζ I(ζ)
∣∣∣
I=0

= σS ≥ 0,
FF
0 Dρ,τ

ζ H(ζ)
∣∣∣
H=0

= η2I ≥ 0,
FF
0 Dρ,τ

ζ D(ζ)
∣∣∣
D=0

= η3I + ω2H ≥ 0,
FF
0 Dρ,τ

ζ P(ζ)
∣∣∣
P=0

= δ1I + δ2D ≥ 0.

(3.6)

As a result, we conclude that the solution will remain in R5
+ for all ζ ≥ 0. The aforesaid system of

equations given by (3.2) can be used to calculate the total dynamics of the individuals:

FF
0 Dρ,τ

ζ N(ζ) = π − ςN(ζ). (3.7)

Implementing the Laplace transform, we get

N(ζ) = Eρ,1(−ςζρ)N(0) + πΓ(p + 1)ζ p+ρ−1Eρ,p+ρ(−ςζρ), (3.8)
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where Eρ,ς is called the Mittag-Leffler function. In view of [28], Eρ,ς has asymptotic behavior, thus, we
have lim

ζ 7→∞
N(ζ) ≤ π

ς
. The feasible region for EV model (3.2) is structured as

Υ :=
{
(S,I,H ,D,P) ∈ R5

+ : 0 ≤ S + I +H +D + P ≤
π

ς

}
. (3.9)

�

3.3. Disease-free equilibrium

In this subsection, we elaborate the bounded region and the system’s equilbria provide us with useful
information about the model’s trajectory in time ζ. The system has two equlibria, i.e., the disease-free
equilibrium (DFE) and the endemic equilibrium (EE).

First, we need to analyze the existence of the equilibrium of (3.2). The interior and boundary of Υ in
R5

+ can be denoted as Υ0 and ∂Υ, respectively. The DFE appears when the number of infectious is zero
in (3.2). Regardless of any values of the parameters in (3.2), the DFE Φ0(S,I,H ,D,P) =

(
π
ς
, 0, 0, 0, 0

)
always exists.

Applying the next-generation matrix approach, we calculate the fundamental reproductive value RD
0

and the related Jacobian matrices F and V evaluated at the DFE are taken into account by taking into
consideration both the acquired pathogens and the transference matrices [47] as follows:

F =


πγ2
ς

πγ2ϑ1
ς

πγ2ϑ2
ς

πγ2
ςκ

0 0 0 0
0 0 0 0
0 0 0 0

 , V =


ς + η1 + η2 + η3 0 0 0

−η2 ς + ω1 + ω2 0 0
−η3 −ω2 % 0
−δ1 −δ2 −℘3 ν

 . (3.10)

The reproductive value is the spectral radius of the next generation matrix, i.e., FV−1; hence, we have

RD
0 =

π

ς

(
νκγ2(%(ς + ω1 + ω2) + %ϑ1η2 + ϑ2(ω2η2 + η3(ς + ω1 + ω2))) + γ1(δ2ω2η2 + (%δ2 + δ2η3)(ς + ω1 + ω2))

%(ς + ω1 + ω2)(ς + η1 + η2 + η3)

)
.

An EE Φ∗1 = (S∗,I∗,H∗,D∗,P∗) satisfies S∗,I∗,H∗,D∗,P∗ > 0. To obtain the EE
Φ∗1 = (S∗,I∗,H∗,D∗,P∗), we set the left hand side of System (3.2) equal to zero; then,

π − (σ + ς)S = 0,
σS − (ς + η1 + η2 + η3)I = 0,
η2I − (ς + ω1 + ω2)H = 0,
η3I + ω2H − %D = 0,
δ1I + δ2D− νP = 0.

(3.11)

From (3.11), we can deduce that a unique Φ∗1 exists with

S∗ =
(ς + η1 + η2 + η3)(1 + εθ2I

∗)(κ + I∗θ3)
γ2ψ(κ + θ3I

∗) + γ1θ3(1 + εI∗θ2)
,

I∗ =
−b1 ±

√
b2

1 − 4b2b0

2b2
,
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H∗ = θ1I
∗,

D∗ = θ2I
∗,

P∗ = θ3I
∗,

where

θ1 =
η2

ς + ω1 + ω2
, θ2 =

η3 + ω2θ1

%
, θ3 =

δ1 + δ2θ2

ν
, ψ = γ2(1 + ϑ1θ1 + ϑ2θ2).

Also, we have

b0 = κς(ς + η1 + η2 + η3)(1 − RD
0 ),

b1 = (ς + η1 + η2 + η3)
[
κγ2(1 + ϑ1θ1 + ϑ2θ2) + κες + (γ1 + ς)θ3

]
− π

[
γ2(1 + ϑ1θ1 + ϑ2θ2) + γ1εθ2

]
,

b2 = γ2θ3(ς + η1 + η2 + η3)(1 + ϑ1θ1 + ϑ2θ2) + ε(ς + η1 + η2 + η3)θ2θ3(ς + γ1) > 0.

Lemma 3.2. If there is an EE Φ1 is locally and globally asymptotically stable, then RD
0 < 1; otherwise,

it is unstable if RD
0 > 1.

Proof. We omitted the lemma’s explanation here because it is straightforward. �

4. Existence-uniqueness of non-negative solution

We propose the accompanying result to explain the existence-uniqueness of the stochastic
framework of (3.3).

Theorem 4.1. Suppose there is a unique solution of the stochastic model (3.3) for ζ ≥ 0 with ICs
(S(0),I(0),H(0),D(0),P(0)) ∈ R5

+. In addition, the solution will stay in R5
+ with a probability of 1,

i.e., (S(0),I(0),H(0),D(0),P(0)) ∈ R5
+∀ζ ≥ 0 almost surely (a. s).

Proof. The system’s coefficients supposed for the initial values settings
(S(ζ),I(ζ),H(ζ),D(ζ),P(ζ)) ∈ R5

+ are continuous and locally lipschtz. Consequently, the system
(S(ζ),I(ζ),H(ζ),D(ζ),P(ζ)) has only one solution for ζ ∈ [0, ϕε). For the explosive period ϕε is
thoroughly examined in [48]. In order to show the solution’s diverse nature, we must prove that
ϕε = ∞ (a.s). Assume that we do have a somewhat large positive number k0 such that every state’s ICs
fall inside the given interval

[
k0,

1
k0

]
. Choose k ≥ k0 as the terminal duration specification for each

non-negative integer:

ϕk = inf
{
ζ ∈ [0, ϕε) : min

{
S(ζ),I(ζ),H(ζ),D(ζ),P(ζ)

}
≤

1
k

or max
{
S(ζ),I(ζ),H(ζ),D(ζ),P(ζ)

}
≥ k

}
.

Throughout this investigation, we will employ inf φ = ∞, whilst φ refers to an empty set. The idea
of k compels us to claim that it increases as k approaches ∞. Fixing ϕ∞ = lim

k 7→∞
ϕε ≥ ϕ∞ (a.s). After

verifying that ϕ∞ = ∞ (a.s), we argue that ϕε = ∞ and thus (S(ζ),I(ζ),H(ζ),D(ζ),P(ζ)) stayed in R5
+

a.s. So, we will verify that ϕ∞ = ∞ (a.s). For this, we suppose two non-negative fixed values ε ∈ (0, 1)
and T must exist such that

P
{
T ≥ ϕ∞

}
> ε. (4.1)
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So, the integer k1 ≥ k0 exists in the subsequent version:

P
{
T ≥ ϕk

}
≥ ε, k1 ≤ k.

Thus, we shall investigate a mapping J : R5
+ 7→ R+ in the following manner:

J(S,I,H ,D,P) = S + I +H +D + P − 5 − (lnS + lnI + lnH + lnD + lnP). (4.2)

J is a positive function, which should be noticed and may be confirmed by the argument that 0 ≤
u1 − ln u1 − 1, ∀u1 > 0. Suppose the arbitrary terms k0 ≤ k and T > 0.

Employing Ito’s technique to (4.2) yields,

dJ(S,I,H ,D,P) = LJ(S,I,H ,D,P) + ℘1(S − 1)dB1(ζ) + ℘2(I − 1)dB2(ζ)
+ ℘3(H − 1)dB3(ζ) + ℘4(D− 1)dB4(ζ) + ℘5(P − 1)dB5(ζ). (4.3)

In view of (4.3), let us introduce the subsequent functional LJ : R5
+ 7→ R+ described as

LJ =
(
1 −

1
S

)(
π − (σ + ς)S

)
+
℘2

1

2
+

(
1 −

1
I

)(
σS − (ς + η1 + η2 + η3)I

)
+
℘2

2

2
+

(
1 −

1
H

)(
η2I − (ς + ω1 + ω2)H

)
+
℘2

3

2
+

(
1 −

1
D

)(
η3I + ω2H − %D

)
+
℘2

4

2
+

(
1 −

1
P

)(
δ1I + δ2D− νP

)
+
℘2

5

2
.

It follows that

LJ(S,I,H ,D,P) = π − d(S + I +H +D + P) + (σ + ς) +
π

S
+ σS − σ

S

I
+ (ς + η1 + η2 + η3)

+ η2I − η2
I

H
− (ς + ω1 + ω2) + η3I + ω2H − %D− η3

I

D
− ω2

H

D

− % + δ1I + δ2D− νP − δ1
I

P
− δ2
D

P
− ν +

℘2
1 + ℘2

2 + ℘2
3 + ℘2

4 + ℘2
5

2

≤ π + σ + ς + η1 + η2 + η3 − ω1 − ω2 − % − ν +
℘2

1 + ℘2
2 + ℘2

3 + ℘2
4 + ℘2

5

2
:= Ω.

Therefore, we have

U
[
J

(
S(ϕk ∧ T),I(ϕk ∧ T),H(ϕk ∧ T),D(ϕk ∧ T),P(ϕk ∧ T)

)]
≤J

(
S(0),I(0),H(0),D(0),P(0)

)
+U

{ ∫ ϕk∧T

0
Ωdζ

}
≤J

(
S(0),I(0),H(0),D(0),P(0)

)
+ ΩT. (4.4)

Let Ψk =
{
ϕk ≤ T

}
for k ≥ k1; (4.1) yields that P(ψκ) ≥ ε. Clearly, for every ω from Ωk there

exists at least one S(ϕk, ω),I(ϕk, ω),H(ϕk, ω),D(ϕk, ω) and P(ϕk, ω) that is equal to 1
k

or k. Hence,
J

(
S(ϕk),I(ϕk),H(ϕk),D(ϕk),P(ϕk)

)
is no less than ln k − 1 + 1

k
or k − 1 − ln k.
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Consequently,

J
(
S(ϕk),I(ϕk),H(ϕk),D(ϕk),P(ϕk)

)
≥

(
ln k − 1 +

1
k

)
∧U(k − 1 − ln k).

Using the fact of (4.1) and (4.4), we have

J
(
S(0),I(0),H(0),D(0),P(0)

)
+ kT ≥ U

[
1Ψ(ω)J

(
S(ϕk),I(ϕk),H(ϕk),D(ϕk),P(ϕk)

)]
≥ ε

{(
ln k − 1 +

1
k

)
∧ (k − 1 − ln k)

}
.

As seen, the indicator mapping of Ψ is 1Ψ(ω). Thus, applying limit k 7→ ∞ yields contradiction ∞ >

J
(
S(0),I(0),H(0),D(0),P(0)

)
+MT = ∞, showing that ϕ∞ = ∞ a.s. �

4.1. Basic reproduction number for stochastic model

Taking into account the infected cohort of (3.3), we find the fundamental reproductive value for the
stochastic scheme:

dI =
[
σS(ζ) − (ς + η1 + η2 + η3)I(ζ)

]
+ ℘2I(ζ)dB2(ζ).

Applying Ito’s formula with twice differentiablity, we can find the stochastic reproductive value. For
this let us choose, υ(ζ,I(ζ)) = ln(I(ζ)); then, the well-noted Taylor expansion gives

Υ(ζ,I(ζ)) =
∂Υ

∂ζ
dζ +

∂Υ

∂Iζ
dI(ζ) +

1
2

∂2Υ

∂I2(ζ)
(dI(ζ))2 +

∂2Υ

∂ζ∂I
dζdI +

1
2
∂2Υ

∂ζ2 (dζ)2, (4.5)

where ∂Υ
∂ζ

= 0, ∂Υ
∂Iζ

= 1
I(ζ) ,

∂2Υ
∂I2(ζ) = − 1

I2(ζ) ,
∂2Υ
∂ζ∂I

= 0 and ∂2Υ
∂ζ2 = 0.

Therefore, (4.5) reduces to

Υ(ζ,I(ζ)) =
1
I(ζ)

dI(ζ) −
1

2I2(t)
(dI(ζ))2

=
1
I(ζ)

[{
σS − (ς + η1 + η2 + η3)I

}
dζ + ℘2I(ζ)dB2(ζ)

]
−

1
2I2(ζ)

[{
σS − (ς + η1 + η2 + η3)I

}
dζ + ℘2I(ζ)dB2(ζ)

]2
.

Suppose K1 = σS(ζ) − (ς + η1 + η2 + η3)I(ζ) and K2 = ℘2I(ζ); then,

Υ(ζ,I(ζ)) =
(
σ
S

I
− (ς + η1 + η2 + η3)

)
dζ + ℘2dB2(ζ) −

1
2I2(ζ)

[
K1dζ +K2dB2(ζ)

]2

=
(
σ
S

I
− (ς + η1 + η2 + η3)

)
dζ + ℘2dB2(ζ)

−
1

2I2(ζ)
{
K2

1 d2ζ + 2K1K2dζdB2(ζ) +K2
2 d2
B2(ζ)

}
=

(
σ
S

I
− (ς + η1 + η2 + η3)

)
dζ + ℘2dB2(ζ) −

1
2I2(ζ)

K2
2 d2
B2(ζ).

AIMS Mathematics Volume 8, Issue 2, 3634–3675.



3648

Employing the chain rule, we have

dζ.dζ = 0,
dζ.dB(ζ) = 0,
dB(ζ).dB(ζ) = d2

B(ζ) = dζ.

Therefore, we have

Υ(ζ,I(ζ)) =
(
σ
S

I
− (ς + η1 + η2 + η3)

)
dζ + ℘2dB2(ζ) −

1
2I2(ζ)

℘2
2I

2(ζ)d2
B2(ζ)

=
(
σ
S

I
− (ς + η1 + η2 + η3)

)
dζ + ℘2dB2(ζ) −

1
2
℘2

2dζ

=
(
σ
S

I
−

1
2
℘2

2 − (ς + η1 + η2 + η3)
)
dζ + ℘2dB2(ζ).

By using the next generation matrix, let f1 = σS/I − 1
2℘

2
2 and υ = ς + η1 + η2 + η3.

Now f1 and υ at DFE reduces to f1 = σπ
ς
− 1

2℘
2
2 and υ−1 = 1

ς+η1+η2+η3
.

Therefore,

f1υ
−1 =

σπ
ς
− 1

2℘
2
2

ς + η1 + η2 + η3
.

Furthermore, the fundamental reproductive value for the stochastic system is

Rs
0 =

σπ
ς
− 1

2℘
2
2

ς + η1 + η2 + η3
.

4.2. Extinction

This subsection emphasizes the specifications for a disease’s systemic (3.3) eradication. Before
verifying the substantial discoveries, let us take a closer look at a vital concept.

Suppose

〈X(ζ)〉 =
1
ζ

ζ∫
0

x(r)dr. (4.6)

Lemma 4.1. [49] (Strong law of large number) Suppose there is a continuous and real-valued local
martingale W =

{
W

}
ζ≥0 that disappears at ζ = 0

lim
ζ 7→∞
〈W,W〉ζ = ∞, a.s., =⇒ lim

ζ 7→∞

〈Wζ〉

〈W,W〉ζ
= 0, a.s.,

and

lim
ζ 7→∞

sup
〈W,W〉ζ

ζ
< 0, a.s, =⇒ lim

ζ 7→∞

〈W〉ζ
ζ

= 0, a.s. (4.7)
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Lemma 4.2. Consider the given ICs
(
S(0),I(0),H(0),D(0),P(0)

)
∈ R5

+; then, the solution
(S(ζ),I(ζ),H(ζ),D(ζ),P(ζ)) for the model (3.3) has the subsequent characteristics:

lim
ζ 7→∞

S(ζ)
ζ

= 0,

lim
ζ 7→∞

I(ζ)
ζ

= 0,

lim
ζ 7→∞

H(ζ)
ζ

= 0,

lim
ζ 7→∞

D(ζ)
ζ

= 0,

lim
ζ 7→∞

P(ζ)
ζ

= 0. (4.8)

Moreover, when q̃ >
℘2

1∨℘
2
2∨℘

2
3∨℘

2
4∨℘

2
5

2 exists, then

lim
ζ 7→∞

1
ζ

ζ∫
0

S(r)dB1(r) = 0,

lim
ζ 7→∞

1
ζ

ζ∫
0

I(r)dB2(r) = 0,

lim
ζ 7→∞

1
ζ

ζ∫
0

H(r)dB3(r) = 0,

lim
ζ 7→∞

1
ζ

ζ∫
0

D(r)dB1(r) = 0,

lim
ζ 7→∞

1
ζ

ζ∫
0

P(r)dB5(r) = 0 a.s. (4.9)

Proof. We can obtain the proof of Lemma 4.2 by following the work of [50]. �

Theorem 4.2. For Rs
0 < 1 and q̃ >

℘2
1∨℘

2
2∨℘

2
3∨℘

2
4∨℘

2
5

2 , then the roots satisfying the framework (3.3) are
presented as follows

lim
ζ 7→∞

ln
(
σS(ζ) − (ς + η1 + η2 + η3)I(ζ)

)
ζ

≤
σ2 ℘

2
1

2 ∧ (ς + η1 + η2 + η3)℘
2
2

2

2(σ − (ς + η1 + η2 + η3))2 (Rs
0 − 1) < 0. (4.10)

Proof. Let us introduce a differentiable mapping Υ as

Υ = ln
(
σS(ζ) − (ς + η1 + η2 + η3)I(ζ)

)
. (4.11)
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Applying Ito’s technique and using the system (3.3), we have

dΥ =
{ σ(−(σ + ς))
σS(ζ) − (ς + η1 + η2 + η3)I(ζ)

−
σ2℘2

1S
2 − (ς + η1 + η2 + η3)I2℘2

2

2(σS(ζ) − (ς + η1 + η2 + η3)I(ζ))2

}
dζ

+
σ℘1S

σS(ζ) − (ς + η1 + η2 + η3)I(ζ)
dB1 −

(ς + η1 + η2 + η3)℘2I

σS(ζ) − (ς + η1 + η2 + η3)I(ζ)
dB2

≤
{ −σ(σ + ς)
σ − (ς + η1 + η2 + η3)

−
σ2 ℘

2
1

2 S
2 + (ς + η1 + η2 + η3)℘

2
2

2 I
2

2(σS(ζ) − (ς + η1 + η2 + η3)I(ζ))2

}
dt

+
σ℘1S

σS(ζ) − (ς + η1 + η2 + η3)I(ζ)
dB1 −

(ς + η1 + η2 + η3)℘2I

σS(ζ) − (ς + η1 + η2 + η3)I(ζ)
dB2

=
{ −σ(σ + ς)
σ − (ς + η1 + η2 + η3)

−
σ2 ℘

2
1

2 ∧ (ς + η1 + η2 + η3)℘
2
2

2

2(σ − (ς + η1 + η2 + η3))2

}
dt

+
σ℘1S

σS(ζ) − (ς + η1 + η2 + η3)I(ζ)
dB1 −

(ς + η1 + η2 + η3)℘2I

σS(ζ) − (ς + η1 + η2 + η3)I(ζ)
dB2. (4.12)

Now, by dividing (4.12) by ζ on both sides and integrating from 0 to ζ, we have

ln
(
σS(ζ) − (ς + η1 + η2 + η3)I(ζ)

)
ζ

≤
−σ(σ + ς)

σ − (ς + η1 + η2 + η3)

−
σ2 ℘

2
1

2 ∧ (ς + η1 + η2 + η3)℘
2
2

2

2(σ − (ς + η1 + η2 + η3))2

ln
(
σS(0) − (ς + η1 + η2 + η3)I(0)

)
ζ

+
σ℘1

ζ

ζ∫
0

S(r)
σS(r) − (ς + η1 + η2 + η3)I(r)

dB1

−
(ς + η1 + η2 + η3)℘2

ζ

ζ∫
0

I(r)
σS(r) − (ς + η1 + η2 + η3)I(r)

dB2.

(4.13)

In view of Lemma 4.1, we have

lim
ζ 7→∞

ln
(
σS(ζ) − (ς + η1 + η2 + η3)I(ζ)

)
ζ

≤
−σ(σ + ς)

σ − (ς + η1 + η2 + η3)
−
σ2 ℘

2
1

2 ∧ (ς + η1 + η2 + η3)℘
2
2

2

2(σ − (ς + η1 + η2 + η3))2 < 0

≤
σ2 ℘

2
1

2 ∧ (ς + η1 + η2 + η3)℘
2
2

2

2(σ − (ς + η1 + η2 + η3))2 (Rs
0 − 1) < 0, (a.s),

which shows that

lim
ζ 7→∞
〈I(ζ)〉 = 0,

lim
ζ 7→∞
〈H(ζ)〉 = 0,

lim
ζ 7→∞
〈D(ζ)〉 = 0,
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lim
ζ 7→∞
〈P(ζ)〉 = 0.

Also, on the first cohort of (3.3), performing integration from 0 to ζ we find

S(ζ) − S(0)
ζ

= π − (σ + ς)〈S〉 +
℘1

ζ

ζ∫
0

S(r)dB1(r).

By making the use of Lemma 4.1 and utilizing the expression σ∗ =
ψ

1+εI∗+θ2
+

γ1θ3
κ+I∗θ3

I∗, we have

lim
ζ 7→∞
〈I(ζ)〉 =

π

ς
= S0 (a.s).

Hence, the proof of Lemma 4.2 is completed. �

4.3. Ergodicity and stationary distribution

As we know, there is no EE in stochastic processes. The stability evaluation might therefore be
performed to inquire into the disease’s permanence. To combat infection prevalence, one should focus
on the availability and distinctness of concepts for the stationary distribution. For this purpose, we
shall employ Khasminskii acclaimed concept [51].

Suppose there is a regular Markov technique W1(ζ) in Cn
+ which is stated as

dW1(ζ) = b1(W1)dζ +
∑̀

s

λ`dB`(ζ).

Now, the diffusion matrix is defined as

A(W1) = [ai j(w)], ai j(w) =
∑̀
s=1

λi
s(w)λs

j(w).

Lemma 4.3. [48] Suppose there is a unique stationary distribution process W1(ζ). Also, assume that
a bounded region has a regular boundary such that V, V̄ ∈ CdV̄ closure V̄ ∈ Cd satisfies the following
(1) The lowest eigenvalue for A(ζ) is bounded away from (0, 0) for the open region V having its
neighborhood.
(2) For w ∈ CdV, the mean time is bounded and for every compact subset C ⊂ Cn i.e., sup

w∈C
Vwϕ < ∞.

When an integrable mapping f1(.) with the measure Θ, we have

P
(

lim
T7→∞

1
T

T∫
0

f1(Ww(ζ))dζ =

∫
Cd

f1(w)Θ(dw)
)

= 1, ∀w ∈ Cd. (4.14)

Theorem 4.3. Suppose that there is a model
(
S(ζ),I(ζ),H(ζ),D(ζ),P(ζ)

)
(3.3) that is ergodic with a

unique stationary distribution. Since Rs
0 > 1 and Θ(.) is utilized.
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Proof. In order to prove the second assumption of Lemma 4.3, we introduce a positive R2 mapping in
such that Z1 : R5

+ 7→ R+. For this, we have

Z1 = S + I +H +D + P − q1 lnS − q2 lnI − q3 lnH .

Consequently, it is necessary to determine the positive constants q1, q2 and q3. Using Ito’s technique
and the specified approach (3.3), we obtain the findings shown below

L(S + I +H +D + P) = Θ − d
(
S(ζ) + I(ζ) +H(ζ) +D(ζ) + P(ζ)

)
.

It follows that

L(− lnS) = −
π

S
+ (σ + ς) +

℘2
1

2
,

L(− lnI) = −
σ

I
+ (ς + η1 + η2 + η3) +

℘2
2

2
,

L(− lnH) = −
η2

H
+ (ς + ω1 + ω2) +

℘2
3

2
,

L(− lnD) = −η3
I

D
− ω2

H

D
+ % +

℘2
4

2
,

L(− lnP) = −δ1
I

P
− δ2
D

P
+ ν +

℘2
5

2
.

Now, we have

LZ1 = −d
(
S(ζ) + I(ζ) +H(ζ) +D(ζ) + P(ζ)

)
− q1

(
−
π

S
+ (σ + ς) +

℘2
1

2

)
− q2

(
−
σ

I
+ (ς + η1 + η2 + η3) +

℘2
2

2

)
− q3

(
−
η2

H
+ (ς + ω1 + ω2) +

℘2
3

2

)
.

This implies that

LZ1 ≤ −4
{
d
(
S(ζ) + I(ζ) +H(ζ) +D(ζ) + P(ζ)

)
×

q1π

S
×

q2σ

I
×
η2

H

}1/4

− q1

(
σ + ς +

℘2
1

2

)
− q2

(
(ς + η1 + η2 + η3) +

℘2
2

2

)
− q3

(
(ς + ω1 + ω2) +

℘2
3

2

)
.

Let

q1

(
σ + ς +

℘2
1

2

)
= q2

(
(ς + η1 + η2 + η3) +

℘2
2

2

)
= q3

(
(ς + ω1 + ω2) +

℘2
3

2

)
= ∇.

Namely

q1 =
∇

(σ + ς +
℘2

1
2

,

q2 =
∇

(ς + η1 + η2 + η3) +
℘2

2
2

,
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q3 =
∇

(ς + ω1 + ω2) +
℘2

3
2

.

Thus, we have

LZ1 ≤ −4
{(

∇4(
(σ + ς +

℘2
1

2

)(
(ς + η1 + η2 + η3) +

℘2
2

2

)(
(ς + ω1 + ω2) +

℘2
3

2

)) − Θ

}1/4

≤ −4∇
[
(CH

0 )1/4 − 1
]
.

Additionally, we find that

Z2 = q4
(
S + I +H +D + P − q1 lnS − q2I − q3H

)
− lnS − lnI − lnH + S(ζ) + I(ζ) +H(ζ) +D(ζ) + P(ζ)
= (q4 + 1)(S + I +H +D + P) − (q1q4 + 1) lnS − q2q4 lnI − q3q4 lnH − lnD− lnP.

Since q4 > 0 is a constant, it helps to give an explanation of that

lim
(S,I,H ,D,P)∈R5

+\Uk

inf Z2(S,I,H ,D,P) = +∞, as k 7→ ∞. (4.15)

Furthermore Uk =
( 1
k
, k

)
×

( 1
k
, k

)
×

( 1
k
, k

)
. The next process is to demonstrate that Z2(S,I,H ,D,P) has

one minimum value Z2(S0,I0,H0,D′,P0).
The partial derivatives of Z2(S,I,H ,D,P) with respect to S,I,H ,D and P presented as follows

∂Z2(S,I,H ,D,P)
∂S

= 1 + q4 −
1
S

(1 + q1q4),

∂Z2(S,I,H ,D,P)
∂I

= 1 + q4 −
1
I

q2q4,

∂Z2(S,I,H ,D,P)
∂H

= 1 + q4 −
1
H

q3q4,

∂Z2(S,I,H ,D,P)
∂D

= 1 + q4 −
1
D
,

∂Z2(S,I,H ,D,P)
∂P

= 1 + q4 −
1
P
.

It is simple to prove that Z2 has a distinctive stagnation point:

(
S(0),I(0),H(0),D(0),P(0)

)
=

(1 + q1q4

1 + q4
,

q2q4

1 + q4
,

q3q4

1 + q4
,

1
1 + q4

,
1

1 + q4

)
.

Also, the Hessian matrix of Z2(S,I,H ,D,P) at (S(0),I(0),H(0),D(0),P(0)) is

Q =



1+q1q4
S2(0) 0 0 0 0

0 q2q4
I2(0) 0 0 0

0 0 q3q4
H2(0) 0 0

0 0 0 1
D2(0) 0

0 0 0 0 1
P2(0)


.
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It is evident that the aforesaid matrix is positive definite. Ultimately, Z2(S,I,H ,D,P) has the least
value Z2(S(0),I(0),H(0),D(0),P(0)). From (4.15) and in connection with the persistence of
Z2(S,I,H ,D,P), we may suggest that Z2(S,I,H ,D,P) has a least value
Z2(S(0),I(0),H(0),D(0),P(0)) that stays in R5

+.

Again, we use a positive functional Z : R5
+ 7→ R+ as follows:

Z(S,I,H ,D,P) = Z2(S,I,H ,D,P) − Z2(S(0),I(0),H(0),D(0),P(0)).

Employing Ito’s technique, the suggested framework reduces to

LZ ≤ q4

{
− 4∇

[
(CH

0 )1/4 − 1
]
+ q1

π

S

}
−
π

S
+ (σ + ς) +

℘2
1

2
−
η2

H
+ (ς + ω1 + ω2) +

℘2
3

2
− η3

I

D

− ω2
H

D
+ % +

℘2
4

2
− d(S(ζ) + I(ζ) +H(ζ) +D(ζ) + P(ζ)).

Accordingly, it is necessary to derive the hypothesis stated above as follows:

LZ ≤ −q4q5 + (1 + q1q4)
π

S
−
π

S
+ (σ + ς) +

℘2
1

2
−
η2

H
+ (ς + ω1 + ω2) +

℘2
3

2
− η3

I

D

− ω2
H

D
+ % +

℘2
4

2
− d(S(ζ) + I(ζ) +H(ζ) +D(ζ) + P(ζ)), (4.16)

where q5 = 4∇
[
(CH

0 )1/4 − 1
]
> 0.

The next goal is to construct the set,

D =
{
S ∈ (ε1, 1/ε2),I ∈ (ε1, 1/ε2),H ∈ (ε1, 1/ε2),D ∈ (ε1, 1/ε2),P ∈ (ε1, 1/ε2)

}
,

where εi, i = 1, 2 is an arbitrary small constant. For the sake of simplicity, we will divide the full R5
+\D

into the aforementioned domain,

D1 =
{
(S,I,H ,D,P) ∈ R5

+,S ∈ (0, ε1]
}
,

D2 =
{
(S,I,H ,D,P) ∈ R5

+,I ∈ (0, ε2],S > ε2

}
,

D3 =
{
(S,I,H ,D,P) ∈ R5

+,H ∈ (0, ε1],I > ε2

}
,

D4 =
{
(S,I,H ,D,P) ∈ R5

+,D ∈ (0, ε1],H > ε2

}
,

D5 =
{
(S,I,H ,D,P) ∈ R5

+,P ∈ (0, ε1],D > ε2

}
,

D6 =
{
(S,I,H ,D,P) ∈ R5

+,S ≥
1
ε2

}
,

D7 =
{
(S,I,H ,D,P) ∈ R5

+,I ≥
1
ε2

}
,

D8 =
{
(S,I,H ,D,P) ∈ R5

+,H ≥
1
ε2

}
,

D9 =
{
(S,I,H ,D,P) ∈ R5

+,D ≥
1
ε2

}
,
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D10 =
{
(S,I,H ,D,P) ∈ R5

+,P ≥
1
ε2

}
.

We will now demonstrate that LZ(S,I,H ,D,P) < 0 on R5
+, which is equivalent to doing so for the

10 zones mentioned before.
Case I. For (S,I,H ,D,P) ∈ D1, using (4.16) yields,

LZ ≤ −q4q5 + (1 + q1q4)
π

S
−
π

S
+ (σ + ς) +

℘2
1

2
−
η2

H
+ (ς + ω1 + ω2) +

℘2
3

2
− η3

I

D

− ω2
H

D
+ % +

℘2
4

2
− dN

≤ (1 + q1q4)
π

ε1
−
π

ε1
+ (σ + ς) +

℘2
1

2
−
η2

H
+ (ς + ω1 + ω2) +

℘2
3

2
− η3

I

D

− ω2
H

D
+ % +

℘2
4

2
− dN .

Selecting ε1 > 0 produces LZ < −1, ∀(S,I,H ,D,P) ∈ D1.

Case II. For (S,I,H ,D,P) ∈ D2, using (4.16) yields,

LZ ≤ −q4q5 + (1 + q1q4)
π

S
−
π

S
+ (σ + ς) +

℘2
1

2
−
η2

H
+ (ς + ω1 + ω2) +

℘2
3

2
− η3

I

D

− ω2
H

D
+ % +

℘2
4

2
− dN

≤ −q4q5 + (1 + q1q4)
π

S
−
π

S
+ (σ + ς) +

℘2
1

2
−
η2

H
+ (ς + ω1 + ω2) +

℘2
3

2
− η3

I

D

− ω2
H

D
+ % +

℘2
4

2
− dε2.

Selecting ε2 > 0 produces LZ < −1, ∀(S,I,H ,D,P) ∈ D2.

Case III. For (S,I,H ,D,P) ∈ D3, using (4.16) yields,

LZ ≤ −q4q5 + (1 + q1q4)
π

S
−
π

S
+ (σ + ς) +

℘2
1

2
−
η2

H
+ (ς + ω1 + ω2) +

℘2
3

2
− η3

I

D

− ω2
H

D
+ % +

℘2
4

2
− dN

≤ (1 + q1q4)
π

S
−
π

S
+ (σ + ς) +

℘2
1

2
−
η2

H
+ (ς + ω1 + ω2) +

℘2
3

2
− η3

I

D

− ω2
H

D
+ % +

℘2
4

2
− d

ε2

ε1
.

Selecting ε1, ε2 > 0 produces LZ < −1, ∀(S,I,H ,D,P) ∈ D3.

Case IV. For (S,I,H ,D,P) ∈ D4, using (4.16) yields,
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LZ ≤ −q4q5 + (1 + q1q4)
π

S
−
π

S
+ (σ + ς) +

℘2
1

2
−
η2

H
+ (ς + ω1 + ω2) +

℘2
3

2
− η3

I

D

− ω2
H

D
+ % +

℘2
4

2
− dN

≤ (1 + q1q4)
π

S
−
π

S
+ (σ + ς) +

℘2
1

2
−
η2

H
+ (ς + ω1 + ω2) +

℘2
3

2
− η3

I

D

− ω2
H

D
+ % +

℘2
4

2
− dε1.

Selecting ε1 > 0 produces LZ < −1, ∀(S,I,H ,D,P) ∈ D4.

Case V. For (S,I,H ,D,P) ∈ D5, using (4.16) yields,

LZ ≤ −q4q5 + (1 + q1q4)
π

S
−
π

S
+ (σ + ς) +

℘2
1

2
−
η2

H
+ (ς + ω1 + ω2) +

℘2
3

2
− η3

I

D

− ω2
H

D
+ % +

℘2
4

2
− dN

≤ (1 + q1q4)
π

S
−
π

S
+ (σ + ς) +

℘2
1

2
−
η2

H
+ (ς + ω1 + ω2) +

℘2
3

2
− η3

I

D

− ω2
H

D
+ % +

℘2
4

2
− dε1.

Selecting ε1 > 0 produces LZ < −1, ∀(S,I,H ,D,P) ∈ D5.

Case VI. For (S,I,H ,D,P) ∈ D6, using (4.16) yields,

LZ ≤ −q4q5 + (1 + q1q4)
π

S
−
π

S
+ (σ + ς) +

℘2
1

2
−
η2

H
+ (ς + ω1 + ω2) +

℘2
3

2
− η3

I

D

− ω2
H

D
+ % +

℘2
4

2
− dN

≤ (1 + q1q4)
π

ε1
−
π

ε1
+ (σ + ς) +

℘2
1

2
−
η2

H
+ (ς + ω1 + ω2) +

℘2
3

2
− η3

I

D

− ω2
H

D
+ % +

℘2
4

2
−

d
ε2
.

Selecting ε1, ε2 > 0 produces LZ < −1, ∀(S,I,H ,D,P) ∈ D6.

Case VIII. For (S,I,H ,D,P) ∈ D8, using (4.16) yields,

LZ ≤ −q4q5 + (1 + q1q4)
π

S
−
π

S
+ (σ + ς) +

℘2
1

2
−
η2

H
+ (ς + ω1 + ω2) +

℘2
3

2
− η3

I

D

− ω2
H

D
+ % +

℘2
4

2
− dN

≤ (1 + q1q4)
π

ε1
−
π

ε1
+ (σ + ς) +

℘2
1

2
−
η2

H
+ (ς + ω1 + ω2) +

℘2
3

2
− η3

I

D

− ω2
H

D
+ % +

℘2
4

2
−

d
ε2
.
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Selecting ε2 > 0 produces LZ < −1, ∀(S,I,H ,D,P) ∈ D8.

Case IX. For (S,I,H ,D,P) ∈ D9, using (4.16) yields,

LZ ≤ −q4q5 + (1 + q1q4)
π

S
−
π

S
+ (σ + ς) +

℘2
1

2
−
η2

H
+ (ς + ω1 + ω2) +

℘2
3

2
− η3

I

D

− ω2
H

D
+ % +

℘2
4

2
− dN

≤ −q4q5 + (1 + q1q4)
π

ε1
−
π

ε1
+ (σ + ς) +

℘2
1

2
−
η2

H
+ (ς + ω1 + ω2) +

℘2
3

2
− η3

− ω2
ε1

ε2
+ % +

℘2
4

2
− dN .

Selecting ε1 > 0 produces LZ < −1, ∀(S,I,H ,D,P) ∈ D9.

Case IX. For (S,I,H ,D,P) ∈ D10, using (4.16) yields,

LZ ≤ −q4q5 + (1 + q1q4)
π

S
−
π

S
+ (σ + ς) +

℘2
1

2
−
η2

H
+ (ς + ω1 + ω2) +

℘2
3

2
− η3

I

D

− ω2
H

D
+ % +

℘2
4

2
− dN

≤ −q4q5 + (1 + q1q4)
π

ε1
−
π

ε1
+ (σ + ς) +

℘2
1

2
−
η2

H
+ (ς + ω1 + ω2) +

℘2
3

2
− η3

I

D

− ω2
ε1

ε2
+ % +

℘2
4

2
−

d
ε2
.

Selecting ε1 > 0 produces LZ < −1, ∀(S,I,H ,D,P) ∈ D10.

As a result, we prove that a constant Q > 0 is one that guarantees,

LZ1(S,I,H ,D,P) < −Q < 0 ∀(S,I,H ,D,P) ∈ R5
+ \ D.

Thus,

dZ(S,I,H ,D,P) < −Qdζ +
[
(q4 + 1)S − (1 + q1q4)℘1

]
dB1(ζ) +

[
(q4 + 1)I − q2q4℘2

]
dB2(ζ)

+
[
(q4 + 1)H − q3q4℘3

]
dB3(ζ) +

[
(q4 + 1)D− ℘4

]
dB5(ζ)

+
[
(q4 + 1)P − ℘5

]
dB5(ζ). (4.17)

Suppose that (S(0),I(0),H(0),D(0),P(0)) = (u1,u2,u3,u4,u5) = u ∈ R5
+ \ D and ϕu is the time

period for which a path beginning at u leads to the set D

ϕn = inf
{
ζ : |X(ζ)| = n

}
and ϕ(n)(ζ) = min

{
ϕu, ζ, ϕn

}
.

The subsequent result can be obtained by integrating both sides of the variant (4.17) from 0 to ϕ(n)(ζ),
attempting to take expectation and applying Dynkin’s computation:

EZ
(
S(ϕ(n)(ζ)),I(ϕ(n)(ζ)),H(ϕ(n)(ζ)),D(ϕ(n)(ζ)),P(ϕ(n)(ζ)

)
− Z(u))

= E

ϕ(n)(ζ)∫
0

LZ
(
S(u1),I(u1),H(u1),D(u1),P(u1)

)
du1 ≤ E

ϕ(n)(ζ)∫
0

−Qdu1 = −QEϕ(n)(ζ).
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Since Z(u) is a positive number,

Eϕ(n)(ζ) ≤
Z(u)
Q

.

Therefore, we have P{ϕε = ∞} as an immediate consequence of Theorem 4.3.
Conversely, the framework defined in (3.3) can be characterized as regular. In light of this, if we

choose ζ 7→ ∞ and n 7→ ∞, we will almost surely get ϕ(n)(ζ) 7→ ϕu.

Consequently, utilizing Fatou’s lemma, we achieve

Eϕ(n)(ζ) ≤
Z(u)
Q

< ∞.

Obviously, sup
u∈C
Eϕu < ∞; here, C ∈ R5

+ is a compact subset. It validates Assumption (2) of Lemma 4.3.

Moreover, the system (3.3) diffusion matrix is

Q =


℘2

1S
2 0 0 0 0

0 ℘2
2I

2 0 0 0
0 0 ℘2

3H
2 0 0

0 0 0 ℘2
4D

2 0
0 0 0 0 ℘2

5P
2


.

SelectingM = min(S,I,H ,D,P)∈D̄∈R5
+

{
℘2

1S
2, ℘2

2I
2, ℘2

3H
2, ℘2

4D
2, ℘2

5P
2}, we find that

5∑
ι,`=1

aι`(S,I,H ,D,P)dιd` = ℘2
1S

2d2
1 + ℘2

2I
2d2

2 + ℘2
3H

2d2
3 + ℘2

4D
2d2

4 + ℘2
5P

2d2
5

≥ M|d|2 ∀(S,I,H ,D,P) ∈ D̄,

where d = (d1, d2, d3, d4, d5) ∈ R5
+. This means that Assumption (1) of Lemma 4.3 is also valid.

According to the investigation that preceded before, Lemma 4.3 shows that the framework (3.3) is
ergodic and has a single stationary distribution. �

5. Numerical scheme of the proposed model

In what follows, fractional calculus may be applied to a wider range of diverse situations than
classical calculus, so it attracted the attention of many researchers. Fractional calculus has benefited
from the prevalence and effectiveness of design, including reminiscence effects [16–18]. We have
adapted the suggested EV disease framework to evaluate its sensitivity by using the
system-available (5.1) and collected information on fractional operators, drawing inspiration from the
research of Atangana and Araz [32]. We view the framework (3.3) as being of F-F derivative in the
Atangana-Baleanu-Caputo context. This is because fractional order derivatives have an additional
level of flexibility and many other traits responsible for the kernel utilized here, such as inheritance
and the ability to describe the previous and also the current state. This formulation is non-local and
involves the generalized Mittag-Leffler as a kernel. The accompanying F-F DEs illustrate the EV
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disease model: 

FFM
0 Dρ,τ

ζ S(ζ) =
(
π − (σ + ς)S

)
+ ℘1G1(ζ,S)B1(ζ),

FFM
0 Dρ,τ

ζ I(ζ) =
(
σS − (ς + η1 + η2 + η3)I

)
+ ℘2G2(ζ,I)B2(ζ),

FFM
0 Dρ,τ

ζ H(ζ) =
(
η2I − (ς + ω1 + ω2)H

)
+ ℘3G3(ζ,H)B3(ζ),

FFM
0 Dρ,τ

ζ D(ζ) =
(
η3I + ω2H − %D

)
+ ℘4G4(ζ,D)B4(ζ),

FFM
0 Dρ,τ

ζ P(ζ) =
(
δ1I + δ2D− νP

)
+ ℘5G5(ζ,P)B5(ζ).

(5.1)

For tn+1 = (n + 1)∆ζ, the scheme (5.1) can be described by the appropriate form by using the F-F
derivative operator in the Atangana-Baleanu-Caputo terminology:

Sn+1 = S0 +
(1 − ρ)

ABC(ρ)
τζτ−1
n+1


S∗

(
ζn+1,S

p
n+1

)
+℘1G1

(
ζn+1,S

p
n+1

)(
B1(ζn+2) −B1(ζn+1)

) 
+

ρτ

ABC(ρ)Γ(ρ)

n−1∑
`=0



S∗

(
ζ`+1,S`+1

)
J
ρ,τ
1,`

+
S∗
(
ζ`+1,S`+1

)
−S∗

(
ζ`,S`

)
~

J
ρ,τ
2,`

+
S∗
(
ζ`+1,S`+1

)
−2S∗

(
ζ`,S`

)
+S∗

(
ζ`−1,S`−1

)
~

J
ρ,τ
3,`



+
ρτ

ABC(ρ)Γ(ρ)

n−1∑
`=0





℘1G1
(
ζ`+1,S`+1

)(
B1(ζ`+1) −B1(ζ`)

)
J
ρ,τ
1,`

+

{
℘1G1

(
ζ`+1,S`+1

)(
B1(ζ`+1) −B1(ζ`)

)
−℘1G1

(
ζ`,S`

)(
B1(ζ`) −B1(ζ`−1)

)}
J
ρ,τ
2,`

+

{
℘1G1

(
ζ`+1,S`+1

)(
B1(ζ`+1)−B1(ζ`)

)
−2℘1G1

(
ζ`,S`

)(
B1(ζ`)−B1(ζ`−1)

)
~

−
℘1G1

(
ζ`−1,S`−1

)(
B1(ζ`−1)−B1(ζ`−2)

)
~

}
J
ρ,τ
3,`



+
ρτ

ABC(ρ)Γ(ρ)





S∗
(
ζn+1,S

p
n+1

)
J
ρ,τ
1,n

+S∗
(
ζn+1,S

p
n+1

)
J
ρ,τ
2,n

−S∗
(
ζn,Sn

)
J
ρ,τ
2,n

+

{
S∗
(
ζn+1,S

p
n+1

)
−2S∗

(
ζn,Sn

)
2~

}
J
ρ,τ
3,n

+
S∗
(
ζn−1,Sn−1

)
2~2 J

ρ,τ
3,n

+℘1G1
(
ζn+1,S

p1
n+1

)(
B1(ζn+1) −B1(ζn)

)
J
ρ,τ
1,n

+℘1G1
(
ζn+1,S

p1
n+1

)(
B1(ζn+1) −B1(ζn)

)
J
ρ,τ
2,n

−℘1G1
(
ζn,S

p1
n

)(
B1(ζn) −B1(ζn−1)

)
J
ρ,τ
2,n

+
℘1G1

(
ζn+1,S

p1
n+1

)(
B1(ζn+1)−B1(ζn)

)
2~ J

ρ,τ
3,n

−2℘1G1

(
ζn,S

p1
n

)(
B1(ζn)−B1(ζn−1)

)
2~ J

ρ,τ
3,n

+
℘1G1

(
ζn−1,S

p1
n−1

)(
B1(ζn−2)−B1(ζn−2)

)
2~ J

ρ,τ
3,n



, (5.2)
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In+1 = I0 +
(1 − ρ)

ABC(ρ)
τζτ−1
n+1


I∗

(
ζn+1,S

p
n+1,I

p
n+1

)
+℘2G2

(
ζn+1,I

p
n+1

)(
B2(ζn+2) −B2(ζn+1)

) 
+

ρτ

ABC(ρ)Γ(ρ)

n−1∑
`=0



I∗

(
ζ`+1,S`+1,I`+1

)
J
ρ,τ
1,`

+
I∗
(
ζ`+1,S`+1,I`+1

)
−I∗

(
ζ`,S`,I`

)
~

J
ρ,τ
2,`

+
I∗
(
ζ`+1,S`+1,I`+1

)
−2I∗

(
ζ`,S`,I`

)
+I∗

(
ζ`−1,S`−1,I`−1

)
~

J
ρ,τ
3,`



+
ρτ

ABC(ρ)Γ(ρ)

n−1∑
`=0





℘2G2
(
ζ`+1,I`+1

)(
B2(ζ`+1) −B2(ζ`)

)
J
ρ,τ
1,`

+

{
℘2G2

(
ζ`+1,I`+1

)(
B2(ζ`+1) −B2(ζ`)

)
−℘2G2

(
ζ`,I`

)(
B2(ζ`) −B2(ζ`−1)

)}
J
ρ,τ
2,`

+

{
℘2G2

(
ζ`+1,I`+1

)(
B2(ζ`+1)−B2(ζ`)

)
−2℘2G2

(
ζ`,I`

)(
B2(ζ`)−B2(ζ`−1)

)
~

−
℘2G2

(
ζ`−1,I`−1

)(
B2(ζ`−1)−B2(ζ`−2)

)
~

}
J
ρ,τ
3,`



+
ρτ

ABC(ρ)Γ(ρ)





I∗
(
ζn+1,S

p
n+1,I

p
n+1

)
J
ρ,τ
1,n

+I∗
(
ζn+1,S

p
n+1,I

p
n+1

)
J
ρ,τ
2,n

−I∗
(
ζn,Sn,In

)
J
ρ,τ
2,n

+

{
I∗
(
ζn+1,S

p
n+1,I

p
n+1

)
−2I∗

(
ζn,Sn,In

)
2~

}
J
ρ,τ
3,n

+
I∗
(
ζn−1,Sn−1,In−1

)
2~2 J

ρ,τ
3,n

+℘2G2
(
ζn+1,I

p1
n+1

)(
B2(ζn+1) −B2(ζn)

)
J
ρ,τ
1,n

+℘2G2
(
ζn+1,I

p1
n+1

)(
B2(ζn+1) −B2(ζn)

)
J
ρ,τ
2,n

−℘2G2
(
ζn,I

p1
n

)(
B2(ζn) −B2(ζn−1)

)
J
ρ,τ
2,n

+
℘2G2

(
ζn+1,I

p1
n+1

)(
B2(ζn+1)−B2(ζn)

)
2~ J

ρ,τ
3,n

−2℘2G2

(
ζn,I

p1
n

)(
B2(ζn)−B2(ζn−1)

)
2~ J

ρ,τ
3,n

+
℘2G2

(
ζn−1,I

p1
n−1

)(
B2(ζn−2)−B2(ζn−2)

)
2~ J

ρ,τ
3,n



, (5.3)
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Hn+1 = H0 +
(1 − ρ)

ABC(ρ)
τζτ−1
n+1


H∗

(
ζn+1,I

p
n+1,H

p
n+1

)
+℘3G4

(
ζn+1,H

p
n+1

)(
B3(ζn+2) −B3(ζn+1)

) 
+

ρτ

ABC(ρ)Γ(ρ)

n−1∑
`=0



H∗

(
ζ`+1,I`+1,H`+1

)
J
ρ,τ
1,`

+
H∗

(
ζ`+1,I`+1,H`+1

)
−H∗

(
ζ`,I`,H`

)
~

J
ρ,τ
2,`

+
H∗

(
ζ`+1,I`+1,H`+1

)
−2H∗

(
ζ`,I`,H`

)
+H∗

(
ζ`−1,I`−1,H`−1

)
~

J
ρ,τ
3,`



+
ρτ

ABC(ρ)Γ(ρ)

n−1∑
`=0





℘3G3
(
ζ`+1,H`+1

)(
B3(ζ`+1) −B3(ζ`)

)
J
ρ,τ
1,`

+

{
℘3G3

(
ζ`+1,H`+1

)(
B3(ζ`+1) −B3(ζ`)

)
−℘3G3

(
ζ`,H`

)(
B3(ζ`) −B3(ζ`−1)

)}
J
ρ,τ
2,`

+

{
℘3G3

(
ζ`+1,H`+1

)(
B3(ζ`+1)−B3(ζ`)

)
−2℘3G3

(
ζ`,H`

)(
B3(ζ`)−B3(ζ`−1)

)
~

−
℘3G3

(
ζ`−1,H`−1

)(
B3(ζ`−1)−B3(ζ`−2)

)
~

}
J
ρ,τ
3,`



+
ρτ

ABC(ρ)Γ(ρ)





H∗
(
ζn+1,I

p
n+1,H

p
n+1

)
J
ρ,τ
1,n

+H∗
(
ζn+1,I

p
n+1,H

p
n+1

)
J
ρ,τ
2,n

−H∗
(
ζn,In,Hn

)
J
ρ,τ
2,n

+

{
H∗

(
ζn+1,I

p
n+1,H

p
n+1

)
−2H∗

(
ζn,In,Hn

)
2~

}
J
ρ,τ
3,n

+
H∗

(
ζn−1,In−1,Hn−1

)
2~2 J

ρ,τ
3,n

+℘3G3
(
ζn+1,H

p1
n+1

)(
B3(ζn+1) −B3(ζn)

)
J
ρ,τ
1,n

+℘3G3
(
ζn+1,H

p1
n+1

)(
B3(ζn+1) −B3(ζn)

)
J
ρ,τ
2,n

−℘3G3
(
ζn,H

p1
n

)(
B3(ζn) −B3(ζn−1)

)
J
ρ,τ
2,n

+
℘3G3

(
ζn+1,H

p1
n+1

)(
B3(ζn+1)−B3(ζn)

)
2~ J

ρ,τ
3,n

−2℘3G3

(
ζn,H

p1
n

)(
B3(ζn)−B3(ζn−1)

)
2~ J

ρ,τ
3,n

+
℘3G3

(
ζn−1,H

p1
n−1

)(
B3(ζn−2)−B3(ζn−2)

)
2~ J

ρ,τ
3,n



, (5.4)
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Dn+1 = D0 +
(1 − ρ)

ABC(ρ)
τζτ−1
n+1


D∗

(
ζn+1,I

p
n+1,H

p
n+1,D

p
n+1

)
+℘4G4

(
ζn+1,D

p
n+1

)(
B4(ζn+2) −B4(ζn+1)

) 
+

ρτ

ABC(ρ)Γ(ρ)

n−1∑
`=0



D∗

(
ζ`+1,I`+1,H`+1,D`+1

)
J
ρ,τ
1,`

+
D∗

(
ζ`+1,I`+1,H`+1,D`+1

)
−D∗

(
ζ`,I`,H`,D`

)
~

J
ρ,τ
2,`

+
D∗

(
ζ`+1,I`+1,H`+1,D`+1

)
−2D∗

(
ζ`,I`,H`,D`

)
+D∗

(
ζ`−1,I`−1,H`−1,D`−1

)
~

J
ρ,τ
3,`



+
ρτ

ABC(ρ)Γ(ρ)

n−1∑
`=0





℘4G4
(
ζ`+1,D`+1

)(
B4(ζ`+1) −B4(ζ`)

)
J
ρ,τ
1,`

+

{
℘4G4

(
ζ`+1,D`+1

)(
B4(ζ`+1) −B4(ζ`)

)
−℘4G4

(
ζ`,D`

)(
B4(ζ`) −B4(ζ`−1)

)}
J
ρ,τ
2,`

+

{
℘4G4

(
ζ`+1,D`+1

)(
B4(ζ`+1)−B4(ζ`)

)
−2℘4G4

(
ζ`,D`
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, (5.5)
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
.(5.8)

5.1. Results and discussion

In this section, a series of experiments for the EV scheme (5.1) are carried out by utilizing the F-F
derivative operator. Taking into account the F-F Atangana-Baleanu-Caputo operator and white noise,
we employed the flawless revolutionary numerical scheme proposed by Atangana and Araz [32]. When
doing numerical simulations of a system, one cannot be assured of the attribute values to be selected.
Although considerable efforts are taken to reduce inaccuracies, the majority of evidence collection
techniques employed to select system parameter values do contain some inconsistencies. Table 1 lists
the specifications of parameters used in analytical simulation, with the distinguishing characteristics of
random densities ℘`, ` = 1, ..., 5 and ICs S = 98000, I = 1500, H = 1000, D = 300, P = 600.
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Table 1. List of parameters.

S ymbols Explanation Values

π Recruitment level 200
ε1 Rate of dread 0.35
ς Natural death rate 0.000296
η1 Rate of infection-related restoration 0.33
η2 Hospitalization rates for contagious diseases 0.019
η3 Mortality of the afflicted due to infection 0.5
ω1 Proportion of hospitalized patient’s restoration 0.85
ω2 Hospitalized patient’s deaths due to illness 0.25
% Rate at which bodies are disposed 0.0095
δ1 Disease excretion rate from affected patients 0.056
δ2 Rate of infection transmission by the deceased 0.045
ν Rate of virus elimination from the surroundings 0.016
κ Half saturation level 27
γ1 Efficacious rate of personal interaction 0.57
γ2 Efficient proportion of human-pathogen interaction 0.65
ϑ1 Infected people’s rate of infection 0.07
ϑ2 Continuity of the dead people’s infections 1.3

Figures 3–5 displays the associations connecting the main relevant characteristics and the
contaminated community. As the incidence of person-to-person interaction rises, we see an elevation
in the estimated prevalence in Figure 3(a). This is due to the ease at which EV disease can spread
from susceptible people to the infected given the random densities
℘1 = 0.06, ℘2 = 0.07, ℘3 = 0.08, ℘4 = 0.09 and ℘5 = 0.06, respectively. As shown in Figure 3(b),
anxiety is adversely connected to the community that is affected, but some preventive strategies,
including incarceration, interaction monitoring and media advertising, are sometimes necessary to
eradicate the EV. Figure 4(a) depicts the hospitalized class H(ζ) as increasing initially before
becoming stationary at various F-F orders. The pathogenic class P(ζ) manages the infection and
restores it to equilibrium.

Figures 6–8 show the dynamic behavior of the infections in the surroundings P(ζ) as a measure of
the characteristics % and ε1, which were significantly weakly connected to P(ζ), in Figures 3–5 when
random densities were ℘1 = 0.06, ℘2 = 0.07, ℘3 = 0.08, ℘4 = 0.09 and ℘5 = 0.06, respectively.
The graphs demonstrate that an improvement in the handling and removal of EV victims’ remains as
well as a high standard of death phobia will aid in reducing the number of viruses in the surroundings.
As a result, the risk of transmission may drop. Figure 7 depicts the asymptotic or hospitalized class
H(ζ), which exhibits a decline in behavior patterns similar to the susceptible class at different fractal
dimensions.
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Figure 3. Dynamical behavior of the stochastic F-F EV model (5.1) for susceptible
individuals S(ζ) and infectious people I(ζ) when ρ falls significantly and τ = 1.
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Figure 4. Dynamical behavior of the stochastic F-F EV model (5.1) for hospitalized
individualsH(ζ) and the deceasedD(ζ) when ρ falls significantly and τ = 1.

0 10 20 30 40 50 60 70

0

5

10

15

(a)

Figure 5. Dynamical behavior of the stochastic F-F EV model (5.1) for pathogens in the
surroundings P(ζ) when ρ falls significantly and τ = 1.

AIMS Mathematics Volume 8, Issue 2, 3634–3675.



3667

0 10 20 30 40 50 60 70

4

5

6

7

8

9

10

11

(a)

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

(b)

Figure 6. Dynamical behavior of the stochastic F-F EV model (5.1) for susceptible
individuals S(ζ) and infectious people I(ζ) when τ falls significantly and ρ = 1.

0 10 20 30 40 50 60 70

9

10

11

12

13

14

15

(a)

0 10 20 30 40 50 60 70

10

20

30

40

50

60

70

80

90

100

(b)

Figure 7. Dynamical behavior of the stochastic F-F EV model (5.1) for hospitalized
individualsH(ζ) and the deceasedD(ζ) when τ falls significantly and ρ = 1.
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Figure 8. Dynamical behavior of the stochastic F-F EV model (5.1) for the pathogen in the
surroundings P(ζ) when τ falls significantly and ρ = 1.
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By changing the intensity of dread while keeping the remaining factors fixed, the graphs
Figures 9–11 were created with the random densities ℘1 = 1.2, ℘2 = 1.4, ℘3 = 1.6, ℘4 = 1.8 and
℘5 = 1.9, respectively. The reductions in infectious cases, hospital admissions and fatalities that are
shown when the amount of anxiety rises demonstrates how the mechanisms of bacterial
contamination are impacted by the dread of EV disease mortality. As well, Figure 10(a) illustrates the
effect of dread on environmental infections. Figure 10(b) depicts the classification of deceased people
from the aforementioned pandemic at different fractional orders and fractal dimensions. As the sense
of anxiety rises, it demonstrates a diminution in the number of germs in the surroundings. This is
exacerbated by the fact that increased fear alters individual interactions, reducing the amount of
viruses, diseased people and dead people pollutants in the atmosphere.
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Figure 9. Dynamical behavior of the stochastic F-F EV model (5.1) for susceptible
individuals S(ζ) and infectious people I(ζ) when ρ increases and τ decreases significantly.
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Figure 10. Dynamical behavior of the stochastic F-F EV model (5.1) for hospitalized
individuals S(ζ) and the deceasedD(ζ) when ρ increases and τ decreases significantly.
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Figure 11. Dynamical behavior of the stochastic F-F EV model (5.1) for pathogens in the
surroundings P(ζ) when ρ increases and τ decreases significantly.

The reproduction number Rs
0 rises as the successful interaction levels do, as seen in Figures 12–14

when the random densities were ℘1 = 1.2, ℘2 = 1.4, ℘3 = 1.6, ℘4 = 1.8 and ℘5 = 1.9, respectively.
As a result, when acquaintance patterns have taken hold, transmissibility levels are also significant.
The infections in the atmosphere are shown to contribute to the spread of infection in Figure 12(b).
The identification of perished victims of the aforesaid outbreak at various fractional orders and fractal
dimensions is shown in Figure 13(b). Numerous victims get the infection, as evidenced by the fact that
the EV diseased and mortalities continue to release viruses into the environment.
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Figure 12. Dynamical behavior of the stochastic F-F EV model (5.1) for susceptible
individuals S(ζ) and infectious people I(ζ) when ρ decreases and τ increases significantly.
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Figure 13. Dynamical behavior of the stochastic F-F EV model (5.1) for hospitalized
individualsH(ζ) and the deceasedD(ζ) when ρ decreases and τ increases significantly.

0 10 20 30 40 50 60 70

0

2

4

6

8

10

12

14

16

18

(a)

Figure 14. Dynamical behavior of the stochastic F-F EV model (5.1) for pathogens in the
surroundings P(ζ) when ρ decreases and τ increases significantly.

In Figures 15–16, we estimated Rs
0 > 1 by using the stochastic system (3.3); the characteristic

variables are presented in Table 1, which guarantees that the EV sustained requirements have been
fulfilled. The contamination of the mechanism described (3.3) will stay in the population, as shown in
Figure 17, supporting the findings of Theorem 4.3. We tracked 5000 attempts at ζ = 400, and then
determined the mean and variance for normal distribution N(mean, variance). According to
Theorem 4.3, Figures 15–16 illustrates that the model (3.3) exhibits an ergodic stationary distribution.

As a consequence of these illustrated outcomes, we arrive at the conclusion that by using this novel
F-F formulation concept, it is important to investigate highly rigorous effects and convey a broader
awareness of the challenges that arise in scientific disciplines as well as in real life.
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(a) (b)

Figure 15. Dynamical behavior of the stochastic F-F EV model (5.1) for susceptible
individuals S(ζ) and infectious people I(ζ) when ρ = 1 = τ and there is the standard normal
distribution N(0, 1).

(a) (b)

Figure 16. Dynamical behavior of the stochastic F-F EV model (5.1) for hospitalized
individuals H(ζ) and the deceased D(ζ) when ρ = 1 = τ and there is the standard normal
distribution N(0, 1).

(a)

Figure 17. Dynamical behavior of the stochastic F-F EV model (5.1) for pathogens in the
surroundings P(ζ) when ρ = 1 = τ and there is the standard normal distribution N(0, 1).
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6. Conclusions

In this study, we proposed and investigated a six-cohort stochastic mathematical method that
incorporates stochastic modeling techniques to depict how the evolution of the EV virus affects the
mechanisms of the spread of infection while also accounting for environmental occurrences. Taking
into consideration the F-F derivative, having the generalized Mittag-Leffler kernel and environmental
noise were the key components of the system’s examination. According to the interpretation of the
stochastic Lyapunov candidate, a positive solution to the system was addressed. Furthermore, we
demonstrated that the model’s solution has an ergodic stationary distribution whenever Rs

0 > 1.
Additionally, our research indicates that the EV virus epidemic may become obsolete whenever
q̃ >

℘2
1∨℘

2
2∨℘

2
3∨℘

2
4∨℘

2
5

2 and RD
0 < 1. After conducting several experiments utilizing the stochastic F-F

derivative approach with a novel methodology to sustain the theoretical aspects, it was found that both
the eradication and consistency of pathogens are influenced by the level of white noise, with the
eradication of pathogens increasing as the level of white noise intensifies and the perseverance of
illnesses increasing as the level of white noise reduces. The system can be enhanced by taking into
account infection proliferation in the surroundings apart from the transmission patterns discussed in
this article. Even though the approach has several limitations, taking dread and environmental
propagation into account is crucial for the treatment and prevention of EV virus disease. In future
research, we can extend the model by incorporating Lévy noise and fractional calculus theory.
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