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1. Introduction

The FitzHugh-Nagumo equation ut = uxx + f (u) − n,

nt = b(u − γn),

where the nonlinearity f (u) = u(u−a)(1−u), 0 < a < 1
2 , γ > 0, and 0 < b � 1, was originally proposed

as a simplification of the Hodgkin-Huxley model of nerve axon dynamics [8,24]. It has been the subject
of a number of papers as a model of nerve conduction in recent years [1–6,9–11,13–17,20,23–25]. The
FitzHugh-Nagumo equation has been used not only as a set of equations for the qualitative description
of nerve axon behavior, but also for excitable media in general [12, 26]. Traveling wave solutions are
of special interest.
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There are two main trends of research of traveling wave solutions in FitzHugh-Nagumo equation.
In the concept based on the geometric singular perturbation theory [4,5,19,20], the presence of a small
parameter in the right side of the kinetic equation is essentially used. In another approach based on the
phase diagram analysis [16,17], the phase trajectories of a dynamical system associated with the initial
system of PDEs are considered, and their dependence on the parameters of the system are studied.

Recently, Deng [7] has derived a mathematical model for neuron by imposing only a principle of
symmetry that two modelers must obtain the same model when one models the conductances of ion
channels and the other models the channels’ resistances. This model is called neuron model with
conductance-resistance symmetry, denoted by acronym CRS neuron model. It has many advantages.
Firstly, the model gives an explanation to the leak current discovered by Hodgkin-Huxley [18].
Secondly, the model has a better fit to the experimental data than the Hodgkin-Huxley model does.
Thirdly, how such N-shaped nonliearity arises in neuroscience has always been a puzzle [8,21] but for
this model it is a simple consequence to the underlining bias-free symmetries. In addition, the model
can be reduced to a two-dimensional model similar to the FitzHugh-Nagumo equation.

In this paper, we are interested in the existence of solitary wave solution for a two-dimensional
reduction model ut = uxx − 35n(u +

1
26

) + g(u),

nt = b
√

(n + ε)/(ψK(u) + ε) (ψK(u) − n) ,
(1.1)

of the CRS neuron model in a propagated action potential. See Section 2 for the detailed expression
of (1.1).

System (1.1) have some apparent similarities to the FitzHugh-Nagumo equation. Both of these
traveling wave equations have the N-shaped nonliearity structure, and the origin is their equilibrium
point. However, there is much less known about qualitative properties of the system (1.1) than to the
FitzHugh-Nagumo equation, due to structural differences between (1.1) and the FitzHugh-Nagumo
equation. For instance, for b = 0, the fast front and the fast back of the traveling wave equations of the
FitzHugh-Nagumo equation can be calculated precisely by taking the appropriate wave velocities c and
appropriate n [23], while such fast orbits of the Eq (1.1) is very difficult to calculate. Therefore, it is
difficult to obtain the existence of solitary wave solution only by using geometric singular perturbation
theory and exchange lemma. As a consequence, we use phase diagram analysis to avoid this problem
directly.

To the best of our knowledge, the traveling wave solutions of the neural model with conduction-
resistance symmetry and its reduction model have not been considered in the literature. Our work may
be the first.

In Section 2, we will give the derivation of the conductance-resistance symmetry neuron model
from Deng [7] to the system (1.1). In Section 3, we investigate the neuron model (1.1). The existence
of a traveling pulse solution is proved.

2. Neuron model with conductance-resistance symmetry

In this section, we shall briefly sketch propagation of the excitation along the nerve axon following
Deng [7]. Then, we will reduce this neuron model to the 2-dimensional system (1.1).
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2.1. List of symbols

I = the total membrane current (µa/cm2),
IL = the leak current (µa/cm2),
V = the intracellular membrance valtage (mv),
C = membrance capacitance = 1µf/cm2,

E = the Nernst or reversal potential of the ion channel (mv),
n = potassium conductance (dimensionless, varying between 0 and 1),
m = sodium conductance (dimensionless, varying between 0 and 1),
h = gating conductance (dimensionless, varying between 0 and 1),
V̇ = dV/dt, t = time in msec.

EK = −60.0mv, ENa = 75.0mv, EG = −55.0mv,

ḡK = 35.0m.mho/cm2, ḡNa = 37.0m.mho/cm2, ḡG = 2.0m.mho/cm2,

QK = −53.0mv, QNa = −53.0mv, QG = 75.0mv,

ηK = 0.03/mv, ηNa = 0.015/mv, ηG = −0.03/mv,

0 < εK , εNa, εG � 1,

φX(V) = I[0,+∞)(sign(ηX)(V−QX)) tanh2(
|ηX |

2
(V − QX)),where X = K, Na or G.

2.2. Neuron model with CR-symmetry

This is the neuron model with conductance-resistance symmetry [7]:

I = CVt + [ḡKn(V − EK) + ḡNam(V − ENa) + ḡGh(V − EG) + IL],

nt = αK

√
(n + εK)/(φK(V) + εK) (φK(V) − n) ,

mt = αNa

√
(m + εNa)/(φNa(V) + εNa) (φNa(V) − m) ,

ht = αG

√
(h + εG)/(φG(V) + εG) (φG(V) − h) .

(2.1)

where IL = εK ḡK(V − EK) + εNaḡNa(V − ENa) + εGḡG(V − EG), which can be interpreted as the leak
current discovered by Hodgkin-Huxley [18].

The fact that the local circuit currents have to be provided by the net membrane current leads to the
well-known relation [18]:

i =
1

r1 + r2

∂2V
∂x̄2 ,

where i is the membrane current per unit length, r1 and r2 are the external and internal resistances per
unit length, and x̄ is distance along the fibre. For an axon surrounded by a large volume of conducting
fluid, r1 is negligible compared with r2. Hence, we have

i =
1
r2

∂2V
∂x̄2 ,
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or

I =
a

2R2

∂2V
∂x̄2 ,

where I is the membrane current density, a is the radius of the fibre and R2 is the specific resistance of
the axoplasm. Inserting this relation in Eq (2.1) and rescale the spacial variable x̄ = x

√
a

2R2
, we have:

CVt = Vxx − [ḡKn(V − EK) + ḡNam(V − ENa) + ḡGh(V − EG) + IL],

nt = αK

√
(n + εK)/(φK(V) + εK) (φK(V) − n) ,

mt = αNa

√
(m + εNa)/(φNa(V) + εNa) (φNa(V) − m) ,

ht = αG

√
(h + εG)/(φG(V) + εG) (φG(V) − h) .

(2.2)

This basic model can be simplified further in three aspects by Deng [7]. Firstly, the above
model can afford to drop the small leak current IL without affecting the qualitative properties of
the system. Secondly, since gated protein current is generated by sodium pore deformation caused
by depolarization or hyperpolarization voltage, we can assume that the rate constant αG approaches
infinity, that is, the time evolution from h to φG instantaneously. Finally, among the rate parameters
αK and αNa, the former needs to be at least one order of magnitude smaller than the latter. This
indicates that sodium kinetics is faster than potassium kinetics. So we can assume that sodium kinetics
is instantaneous with αNa = ∞. As a result, the 4-dimensional model (2.2) is reduced to the following 2-
dimensional systemCVt = Vxx −

[
ḡKn(V − EK) + ḡNaφNa(V)(V − ENa) + ḡGφG(V)(V − EG)

]
,

nt = αK

√
(n + ε)/(φK(V) + ε) (φK(V) − n) .

(2.3)

Using the data show in the list:Vt = Vxx −
[
35n(V + 60) + 37φNa(V)(V − 75) + 2φG(V)(V + 55)

]
,

nt = αK

√
(n + ε)/(φK(V) + ε) (φK(V) − n) .

Let us normalize this equations, that is, let u = V+55
130 , then the equations becomesut = uxx − 35n(u +

1
26

) + g(u),

nt = αK

√
(n + ε)/(ψK(u) + ε) (ψK(u) − n) ,

(2.4)

where

ψK(u) = φK(130u − 55) = I[0,+∞)(65u − 1) tanh2(0.015(130u − 2)),
ψNa(u) = φNa(130u − 55) = I[0,+∞)(65u − 1) tanh2(0.0075(130u − 2)),
ψG(u) = φG(130u − 55) = I[0,+∞)(1 − u) tanh2(1.95(1 − u)),
g(u) = −37ψNa(u)(u − 1) − 2ψG(u)u.

ψK(u) and ψNa(u) are increasing functions for u ≥ 1/65 and zero for u ≤ 1/65, ψG(u) is a decreasing
function for u ≤ 1 and zero for u ≥ 1. ψX : R → [0, 1), X = K, Na, G. g is a decreasing function
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for (−∞, 0] ∪ [1,+∞). g tends to positive infinity as u tends to negative infinity and tends to negative
infinity as u tends to positive infinity. Further, g(0) = g(1) = 0 and g′(0) = g′(1) < 0. However,
because of the complexity of the g expression, it is difficult to get the exact monotonicity of g in
the interval (0, 1). It is clear that g is continuous, whose figure can be well depicted by numerical
simulation, where g( 1

65 ) = − 1
65ψG( 1

65 ) < 0 (see Figure 1). Based on the above analysis, g(u) has N-
shaped nonliearity which is combined with the sodium and the gating characteristic curves. And g(u)
has three zeros: u = 0, a, and 1, where 1

65 < a < 1
2 is a fixed constant.

1/65
0.2 0.4 0.6 0.8 1.0

-0.2

0.2

0.4

0.6

0.8

1.0

(a)

-0.2 0.2 0.4 0.6 0.8 1.0

-1

1

2

3

(b)

Figure 1. (a) The graphs of ψK(u), ψNa(u) and ψG(u); (b) the graph of g(u) which has three
zeros: 0, a, and 1, where 1

65 < a < 1
2 .

For readability, we replace the parameter αK with b, and then get the system (1.1). In this paper, we
mainly prove the existence of the solitary wave solution for (1.1).

3. Existence of solitary wave solutions

In this section, we aim to establish the existence of solitary wave solutions for Eq (1.1). As a result,
we consider the traveling wave solutions u(t, x) = u(ξ), n(t, x) = n(ξ), ξ = x + ct, where c > 0 is the
wave velocity. Finding such solutions to (1.1) is equivalent to finding solutions of the following system
of ODEs: 

u′ = v,

v′ = cv + 35n(u +
1

26
) − g(u),

n′ =
b
c

√
(n + ε)/(ψK(u) + ε) (ψK(u) − n) .

(3.1)

The origin O(0, 0, 0) is the unique equilibrium point of the system. Note that the homoclinic orbit of
system (3.1) corresponds to the solitary wave solution of (1.1). So we only need to prove the existence
of homoclinic orbit in system (3.1).

Because the vector field of the system is relatively complex, the nullcline of the system (3.1) on
the (u, n)-plane is graphically represented for the convenience of readers’ subsequent reading and
understanding, see Figure 2.
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Figure 2. Nullclines of system (3.1) on the (u, n)-plane.

3.1. Local invariant manifolds of the origin

If the system (3.1) is linearized around the rest point O(0, 0, 0), then linearization matrix takes the
form

A =


0 1 0

2ψG(0) c 35/26
0 0 −b/c

 .
The characteristic equation of the matrix A is as follows:

∆(λ) = (λ +
b
c

)(λ2 − cλ − 2ψG(0)) = 0

It is easy to verify that ∆(λ) has one positive real root λ1 and two negative real roots λ2,3, where

λ1 =
c +

√
c2 + 8ψG(0)

2
, λ2 =

c −
√

c2 + 8ψG(0)
2

, λ3 = −
b
c
,

and the eigenvectors corresponding to λi take the form Yi = (1, λi, 0) where i = 1, 2, and the eigenvector
corresponding to λ3 takes the form Y3 =

(
1,−b

c , η
)
, where η = 26

35 (b + b2

c2 − 2ψG(0)). Thus, there exists a
one-dimensional local invariant unstable manifold Wu

loc tangent to the eigenvector Y1 at the origin and
a two-dimensional local invariant stable manifold W s

loc tangent to the plane spanned by the vectors Y2,
Y3.

3.2. Behavior of saddle separatrices in case b = 0

In this section, we consider the condition b = 0, allowing to separate the first two equations from
the third one, having the trivial solution n = const. In particular, let’s consider the case n = 0. The
remaining system then takes the form  u′ = v,

v′ = cv − g(u).
(3.2)

For any c > 0, it is obvious that this system has three equilibrium points (0, 0), (a, 0) and (1, 0). The
points (0, 0) and (1, 0) are saddle points, while (a, 0) is either an unstable node or an unstable focus.
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The unstable manifolds at (0, 0) and (1, 0) have positive slopes. For c = 0, the above system can be
presented in the Hamiltonian form with the Hamiltonian function

H(u, v) =
1
2

v2 +

∫ u

0
g(s)ds.

from which and easy analysis of phase space, we get the following:

Proposition 1. If c = 0, then in the (u, v) phase plane, system (3.2) has a nonconstant solution π = (u, v)
such that π(±∞) = (0, 0). Also, the trajectories all lie on curves of the form H(u, v) = constant. (see
Figure 3).

Figure 3. The phase orbits of system (3.2) with c = 0.

Proof. Since

H′ =
∂H
∂u

u′ +
∂H
∂v

v′ = 0,

H is constant along every solution of system (3.2). This means that the solutions of system lie on the
level sets of H. All we need to do is figure out the directions of the solutions curves on these level sets,
which is easy since we have the vector field. �

Let Lu
c denotes the branch of the unstable manifold at (0, 0) which points into the first quartile, and

Lu
c consists of an orbit. We denote by πc = (uc, vc), the corresponding solution with uc(0) = a, vc(0) > 0.

Using the comparison principle [22], it is easy to arrive at the following:

Proposition 2. There exists a unique speed c̄ > 0 such that the orbit πc(ξ) satisfies the following
properties:

(i) For c = c̄, πc(ξ) is a heteroclinic orbit from (0, 0) to (1, 0).
(ii) For 0 < c < c̄, πc(ξ) intersects the horizontal axis at u∗ such that a < u∗ < 1, then enters the fourth

quadrant and its coordinate v(ξ) remains negative. In particular, limξ→+∞ πc(ξ) = (−∞,−∞).
(iii) For c > c̄, πc(ξ) always stays in the first quadrant and limξ→+∞ πc(ξ) = (+∞,+∞).
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3.3. Behavior of solutions in case b > 0

In this section, we consider the behavior of solutions for system (3.1) in case b > 0, and establish
the following results.

Lemma 3.1. Suppose that π(ξ) = (u(ξ), v(ξ), n(ξ)) is a solution of the dynamical system (3.1). For any
c > 0, the following statements are true:

(a) π(ξ) cannot meet n = ψK(u) at the point (u(ξ0), v(ξ0), n(ξ0)) with v(ξ0) > 0, if there exists some
δ > 0, such that 0 < n(ξ) < ψK(u(ξ)) for ξ ∈ (ξ0 − δ, ξ0).

(b) The sets

Q+ =
{
(u, v, n) : u ≥ 1, v ≥ 0

}
,

Q− =
{
(u, v, n) : u ≤ −

1
26
, v ≤ 0

}
,

are positively invariant.

Proof. (a) Suppose 0 < n(ξ) < ψK(u(ξ)) for ξ ∈ (ξ0 − δ, ξ0), then u(ξ) > 1
65 , ψK(u(ξ)) − n(ξ) > 0 for

ξ ∈ (ξ0 − δ, ξ0). We also have u(ξ0) > 1
65 because u′(ξ0) = v(ξ0) > 0 from (3.1). If π(ξ) meets n = ψK(u)

at ξ0, then (ψK(u(ξ)) − n(ξ))′|ξ=ξ0
=

∂ψK
∂u (u(ξ0))v(ξ0) ≤ 0 contradicts with u(ξ0) > 1

65 , v(ξ0) > 0 and ψK(u)
being increasing in the range u > 1

65 . So π(ξ) cannot meet n = ψK(u) at the point (u(ξ0), v(ξ0), n(ξ0)),
where v(ξ0) > 0 if there exists some δ > 0, such that 0 < n(ξ) < ψK(u(ξ)) for ξ ∈ (ξ0 − δ, ξ0).
(b) It is worth underlining that n varies between zero and one. So we can get v′=cv+35n(u+ 1

26 )−g(u)> 0
on the set Q+ except at the point (1, 0, 0). v′ = 0, v′′ = cv′ + 35n′(u + 1

26 ) + 35nv − ∂g(u)
∂u v′ > 0 at the

point (1, 0, 0). The relation v = u′ imply u(ξ) and v(ξ) are strictly monotonically increasing in Q+. It
turns out that the solution π(ξ) will enter the region Q+ = {(u, v, n) : u ≥ 1, v ≥ 0} without leaving, i.e.,
Q+ is positively invariant. The positive invariance of the set Q− can be achieved by v′ < 0 on u ≤ − 1

26 ,
v ≤ 0. �

According to the above proof, we can get the following conclusions:

Corollary 1. The sets

Q̃+ =
{
(u, v, n) : u > 1, v > 0

}
,

Q̃− =
{
(u, v, n) : u < −

1
26
, v < 0

}
are positively invariant. Moreover, if there exists some ξ0 such that π(ξ0) ∈ Q±, then π(ξ) ∈ Q̃± for all
ξ > ξ0 and limξ→+∞(u(ξ), v(ξ)) = (±∞,±∞).

Proof. We only prove that if there exists some ξ0 such that π(ξ0) ∈ Q̃± then

lim
ξ→+∞

(u(ξ), v(ξ)) = (±∞,±∞).

And the other conclusions are obviously followed by the proof of Lemma 3.1. According to the first
two equations of system (3.1), u′ = v > 0 and v′ ≥ −g(u) > 0 on Q̃+. If there exists some ξ0 such
that π(ξ0) ∈ Q̃+, then both u(ξ) and v(ξ) are monotonically increasing and tend to positive infinity.
Similarly, the case of Q̃− can be proved. �
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Corollary 2. If π(ξ) = (u(ξ), v(ξ), n(ξ)) is a bounded solution of (3.1) on [0,+∞), then π(ξ) will enter
the region {(u, v, n) : − 1

26 < u < 1}, and stay in this region.

Proof. Assume that the orbit π(ξ) is bounded, it is clear that π(ξ) will neither enter the region Q+ nor
enter the region Q− by Lemma 3.1 and Corollary 1. Furthermore, if the orbit π(ξ) goes into the region
{(u, v, n) : − 1

26 < u < 1} at some time, it can’t meet the half plane {(u, v, n) : u = − 1
26 , v > 0} and

{(u, v, n) : u = 1, v < 0} because u′ = v. Thus, if the orbit π(ξ) goes into the region {(u, v, n) : − 1
26 <

u < 1} at some time, it will remain in the region thereafter. Now it is necessary to show that the orbit
will enter region {(u, v, n) : − 1

26 < u < 1} in finite time.
Without loss of generality, assume that π(0) belongs to the region

Θ := {(u, v, n) : u ≤ −
1
26
, v > 0} ∪ {(u, v, n) : u ≥ 1, v < 0}.

According to the proof of Lemma 3.1, we know that v′ < 0 on the sets {(u, v, n) : u ≤ − 1
26 , v = 0},

v′ > 0 on the sets {(u, v, n) : u > 1, v = 0}, v′ = 0 and v′′ > 0 at the point (1, 0, 0). Therefore, π(ξ) will
leave Θ after a finite time. However, due to the boundedness of π(ξ), π(ξ) will neither enter Q+ nor Q−,
so it will enter the region {(u, v, n) : − 1

26 < u < 1}. �

Moreover, we can get the following conclusion:

Proposition 3. If π(ξ) is a bounded solution on [0,+∞) such that u(ξ) < a for all large ξ, then
limξ→+∞ π(ξ) = (0, 0, 0).

Proof. From Corollary 2 and the above conditions it follows that − 1
26 < u(ξ) < a for all large ξ.

Without loss of generality, we assume that − 1
26 < u(ξ) < a on [0,+∞). To keep the proof covenient,

let’s make the following notations

A := {(u, v, n) : 0 < u < a, v ≥ 0}, B := {(u, v, n) : 0 ≤ u < a, v < 0},

C := {(u, v, n) : −
1

26
< u < 0, v ≤ 0}, D := {(u, v, n) : −

1
26

< u ≤ 0, v > 0}.

Notice that v = u′ and v′ is always positive in the set A. If the orbit π(ξ) enters the region A, then it
will intersect with u = a, which contradicts with − 1

26 < u(ξ) < a on [0,+∞). So π(ξ) will not enter the
region A. In addition, π(ξ) does not tend to the half-plane {(u, v, n) : 0 < u < a, v = 0} as ξ tends to
infinity, because v′ > 0 in this half-plane. Therefore, there are only three possibilities for the solution
π(ξ):

(i) π(ξ)→ (0, 0, 0);
(ii) The orbit π(ξ) = (u(ξ), v(ξ), n(ξ)) tends to the half-plane {(u, v, n) : − 1

26 < u < 0, v = 0} as ξ tends
to infinity. Since ψK(·) is equal to zero on the set (−∞, 1

65 ],

n′ = −
bn
c

√
n + ε

ε
< 0 on C.

Thus, n(ξ) tends to 0 and (u(ξ), v(ξ)) tends to the point (u0, 0) as ξ tends to infinity, where
u0 ∈ (− 1

26 , 0). But it is impossible because the point (u0, 0, 0) is not the equilibrium point of
the system (3.1).
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(iii) The orbit π(ξ) goes back and forth between the region C and the region D. Without loss of
generality, let’s assume that the orbit goes into the region D and after that it enters the region C.
In this case, the orbit π(ξ) = (u(ξ), v(ξ), n(ξ)) must satisfies − 1

26 < u(ξ) < 0, v(ξ) = 0 and v′(ξ) ≤ 0
at a certain moment ξ = ξ0. In addition, note that

v′′ = cv′ −
35b

c
n

√
n + ε

ε
(u +

1
26

) + 35nv − g′(u)v ≤ 0 on C.

Hence, we have v′(ξ) ≤ 0 on ξ ≥ ξ0. That is to say, v(ξ) is nonincreasing and π(ξ) ∈ C on the
interval [ξ0,+∞). But this is impossible since the orbit goes back and forth between the region C
and the region D.

In summary, π(ξ) can only tend to the origin as ξ tends to positive infinity. �

It follows from Proposition 3 that we need to find the parameters b and c that can make the unstable
invariant manifold of the origin conform to the conditions of Proposition 3. In the next section, we
study asymptotic behavior of the unstable invariant manifold at the origin.

3.4. Asymptotic behavior of the unstable invariant manifold in case b > 0

Notice that when u ≤ 1
65 , ψK(u) ≡ 0, then system (3.1) becomes

u′ = v,

v′ = cv + 35n(u +
1

26
) − g(u),

n′ = −
b

c
√
ε

n
√

n + ε.

(3.3)

Now the set {(u, v, n) : n = 0} is an invariant set. Assume that πu
c,b(ξ) = (uu

c,b(ξ), vu
c,b(ξ), nu

c,b(ξ)) is
the unstable invariant manifold of the stationary point (0, 0, 0) corresponding to the given parameters
c, b, pointing into the region {(u, v, n) : u > 0, v > 0}. For simplicity, from now on we will
omit the superscript. Since the eigenvector of the positive eigenvalue λ1 is (1, λ1, 0), πc,b(ξ) =

(uc,b(ξ), vc,b(ξ), nc,b(ξ)) satisfies

lim
ξ→−∞

(uc,b(ξ), vc,b(ξ), nc,b(ξ)) = (0+, 0+, 0).

Clearly, v′ > 0 at least until u = a, since g(u) < 0 on 0 < u < a and n ≥ 0. Further n′ > 0
when u > 1

65 and n = 0. So πc,b(ξ) will enter the region {0 < n < ψK(u)} at u = 1
65 . Combine with

Lemma 3.1(a), we have 0 < n < ψK(u) on 1
65 < u ≤ a. Without loss of generality, we will also assume

that uc,b(0) = a, 0 < nc,b(0) < ψK(a) and vc,b(ξ) > 0, v′c,b(ξ) > 0, 0 ≤ nc,b(ξ) ≤ ψK(uc,b(ξ)) when ξ ≤ 0.
Let us define the following subsets of the set Ω = {(c, b) : c > 0, b > 0}:

Ω1 =
{
(c, b) ∈ Ω : πc,b(ξ) is bounded

}
,

Ω2 =
{
(c, b) ∈ Ω : lim

ξ→+∞
(uc,b(ξ), vc,b(ξ)) = (+∞,+∞)

}
,

Ω3 =
{
(c, b) ∈ Ω : lim

ξ→+∞
(uc,b(ξ), vc,b(ξ)) = (−∞,−∞)

}
.

We will show that there is no other possible behavior of the trajectory πc,b(ξ) different from these
presented above.
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Lemma 3.2. The following statements are true:

(a) Ω = Ω1 ∪Ω2 ∪Ω3.
(b) Ω2 and Ω3 are relatively open in Ω.

Proof. According to the Corollary 1, we have

Ω2 =
{
(c, b) ∈ Ω : πc,b(ξ) enters Q̃+ in finite time

}
,

Ω3 =
{
(c, b) ∈ Ω : πc,b(ξ) enters Q̃− in finite time

}
.

Notice that 0 ≤ n < 1. Assume that the orbit π(ξ) is unbounded, then π(ξ) will enter either Q̃+ or Q̃−

by the relationship u′ = v. Thus the statement (a) is true. The statement (b) appears from the fact that
the sets Q̃+ and Q̃− are open and positively invariance, while the solutions of system (3.1) continuously
depend on the parameters. �

Proposition 4. There exists values c∗ > 0 and b∗ > 0 such that:{
(c, b) : c > c∗ or b > b∗

}
⊂ Ω2.

Proof. Without loss of generality, we will assume that u(0) = a, 0 < n(0) < ψK(a) and v(ξ) > 0,
v′(ξ) > 0, 0 ≤ n(ξ) ≤ ψK(u(ξ)) when ξ ≤ 0. As long as u(ξ) is an increasing function, v and n can be
expressed as functions of u:

v(ξ) = V(u(ξ)), n(ξ) = N(u(ξ)).

Differentiating and using (3.1) gives
dV
du

= c +
35N(u + 1

26 ) − g(u)
V

,

dN
du

=
b
c
×

√
(N + ε)/(ψK(u) + ε)(ψK(u) − N)

V
.

(3.4)

Let gmax = supu∈[0,1]g(u) = supu∈[a,1]g(u) > 0. If V > gmax/c and u > − 1
26 , then

dV
du
≥ c −

gmax

V
> 0.

Thus, suppose that V[(u(0)] = V(a) > gmax/c, then V(u) is growing as u > a, and πc,b(ξ) attains the set
Q+. According to the Corollary 1, we have limξ→+∞(uc,b(ξ), vc,b(ξ)) = (+∞,+∞). Now it is necessary
to find the conditions assuring that the inequality V(a) > gmax/c.

First, let’s estimate b∗ by contradiction. Assume V(a) ≤ gmax/c, then the inequality

dN
du
≥

b
gmax

√
(N + ε)/(ψK(u) + ε)(ψK(u) − N),

≥
b

gmax
(ψK(u) − N),

holds on the interval u ∈ ( 1
65 , a). ψK(u) is identical to zero on the interval [0, 1

65 ] and is a strictly convex
function on the interval ( 1

65 , a). Take u0 ∈ ( 1
65 , a), then

ψK(u) >
ψK(u0)

u0
× u := ku, ∀u ∈ (u0, a).
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From this we get the inequality

dN
du

>
b

gmax
(ku − N), ∀u ∈ (u0, a).

Applying the substitution N(u) = W(u)e−ρu, ρ = b
gmax

> 0, we get the inequality

W ′(u) > ρkueρu

which, after the integration w.r.t. u on the interval (u0, a), takes the form

W(a) > W(u0) +
k
ρ

[
(ρa − 1)eρa − (ρu0 − 1)eρu0

]
.

From this we get the inequality

N(a) >
k
ρ

[(ρa − 1) − (ρu0 − 1)e−ρ(a−u0)]

=
k
ρ

[e−ρ(a−u0) + ρ(a − u0) − 1 + ρu0(1 − e−ρ(a−u0))]

≥
k
ρ

[e−ρ(a−u0) + ρ(a − u0) − 1]

=
1
2

kµρ(a − u0)2

=
µψK(u0)b(a − u0)2

−2u0gmax
,

where 0 < µ < 1. So if b > b∗ := 2ψK (a)u0gmax
µψK (u0)(a−u0)2 , then N(a) > ψK(a), which contradicts Lemma 3.1(a).

Next, let us estimate c∗. The first equation of system (3.4) can be rewritten in the following form

1
2

d
du

V2(u) = cV + 35N(u +
1
26

) − g(u)

from which appears the inequality

V(a) ≥ H(a) :=
[
−2

∫ a

0
g(u)du

]1/2

. (3.5)

Suppose that c > gmax/H(a), then cV(a) > gmax. To complete the proof, we just need to show that the
inequality c > gmax/H(a). So take c∗ =

gmax√
−2

∫ a
0 g(u)du

, the statement is completely proved. �

The analysis made in Section 3.2 about the case b = 0 and the continuous dependence of the
solution of system (3.1) on parameters show that Ω3 contains an open connected set which takes I =

{(c, b) : 0 < c < c̄, b = 0} as the boundary. It is seen from the geometry of the open sets Ω2 and Ω3

adjacent to the horizontal axis (see Figure 4 (a)), that there should exist one subsets of the set Ω1 lying
between them.

Let h(u) := g(u)/35(u + 1
26 ). Next define the “L-shaped” region consisting of the unoin of two

orthogonal half-planes as follows:

Σ = {(u, v, n) : u ≥ umin, v = 0, or u = umin, v < 0} ,
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where umin is the point in (0, 1) where h(u) has a local minimum. Also, we introduce the following
additional subset of the (c, b)-plane:

Λ =
{
(c, b) ∈ Ω : solution πc,b(ξ) intersects Σ exactly two times
and after that does not intersect the region u ≥ umin

}
.

From the definition of Λ and Ω2 is open, we can obtain the following conclusion.

Proposition 5. Ω2 ∩ Λ̄ = ∅, where Λ̄ is the closure of Λ in Ω.

Now we are going to prove the following:

Proposition 6. Ω3 ∩ ∂Λ = ∅, where ∂Λ is the boundary of Λ in Ω.

Proof. The proof of this theorem is based on ideas underlying the proof of the Lemma 9 of the
paper [17], so we try to adhere to some notations that were adopted in this paper.

Let us suppose the opposite, namely, that there exists a point (c, b) belongs to the set Ω3 ∩ ∂Λ,
corresponding the orbit πc,b(ξ) with the following properties:

• The orbit πb,c(ξ) starts from the origin and points to the first octant as ξ � −1. Without loss of
generality, we can assume that u′(ξ) and v′(ξ) are positive on the interval (−∞, 0) and u(0) = a;
• At some time of the argument, says ξ = s− > 0, the orbit crosses the set Σ for the first time,

intersecting it at a point belonging to the plane u > umin, v = 0, and next, at ξ = š > s−, intersects
Σ for the second time at a point belonging to the plane u = umin, v < 0;
• Before crossing the plane u = 0 and going to infinity (suppose that such intersection take place at
ξ = s1), the orbit must touch the set Σ, at ξ = s0 > š (otherwise it does not belong to the set ∂Λ).
Analysis of the first equation of system (3.1) tells us that the touch point must be located at the
intersection of planes {u = umin, v ≤ 0} and {u ≥ umin, v = 0}.

Projection of an orbit πc,b(ξ) on the plane (u, v) is schematically represented in Figure 4(b). It is
obviously that, since the orbit πb,c(ξ) is tangent to the set Σ, then there exists a number δ such that
v(ξ) > 0 at (s0 − δ, s0), v(ξ) < 0 at (s0, s0 + δ) and v(s0) = 0. Looking at the second equation of
system (3.1), we easily conclude that

n(s0) ≤ h(umin) < 0,

which contradicts the non-negativity of n. �
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Ω3

Ω2

c

b

b
*

c
*

(a) (b)

Figure 4. (a) The geometry of sets Ω2 Ω3; (b) the projection of the phase trajectory πc,b(ξ),
(c, b) ∈ ∂Λ onto the plane (u,v).

3.5. Solitary wave solution for CRS neuron model

In this section, we establish the existence of solitary wave solutions for system (1.1). That is, the
main result of this paper:

Theorem 3.1. For sufficiently small b > 0, there exist a positive number c(b) such that Eq (2.3) has a
solitary wave solution in the sense that the equivalent solitary wave Eq (3.1) has a homoclinic orbit.
Moreover,

lim
b→0

c(b) = c̄.

Proof. From Propositions 5 and 6, it follows that the point (c, b) ∈ Ω which belongs to ∂Λ must be an
element of the set Ω1, and uc,b(ξ) ≤ umin < a for all large ξ. Assume (c, b) ∈ Ω ∩ ∂Λ, the solitary wave
Eq (3.1) has a homoclinic orbit by Proposition 3. Notice that Λ ∩ Ω3 is a nonempty open connected
subset from Proposition 2 and the continuous dependence of the solution of system (3.1) on parameters.
For sufficiently small positive b the half-line Lb intersects Ω∩∂Λ at least once. Thus the above theorem
is proved. �

Remark 1. For sufficiently small b > 0, the homoclinic orbit above falls in the region {(u, v, n) : u ≥ 0}
from the definition of Λ and the proof of Propositions 3.
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