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1. Introduction

Recently, the theory of nonlinear systems with time-delay has been a hot topic, due to its wide
application in practical problems, such as physical engineering, biological systems and economic
processes. Among these, the Lyapunov-Krasovskii methodology plays a crucial role in dealing with
time-delay systems. Based on the above method, Pepe [1] addressed the input state stability of
nonlinear systems with time-delay. Zhang [2] designed a stabilized controller for time-delay
feed-forward nonlinear systems to achieve system stability. In order to address the stabilization
problem of high-order nonlinear systems with time-delay, some researchers try to find new ways to
design corresponding controllers. Yang and Sun [3] investigated the state feedback stabilization
problem of controlled systems with high-order or/and time-delay via the homogeneous domination
idea. With the help of the saturation function technique, homogeneous domination idea and Lyapunov
approach, Song [4] studied the stabilization problem of high order feed-forward time-delay nonlinear
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systems. In addition to the above works, many results in [5-10] have established and improved the
concept framework of nonlinear systems with time-delay.

Ever since the stochastic stability theory was founded and enriched by Deng and Zhu [11, 12],
great progress has been made on the global stabilization of stochastic nonlinear systems [13—-16].
Subsequently, Florchinger [17] extended the theory of control with the Lyapunov-Krasovskii
functional. With the stochastic stability theory in mind, it is still important and meaningful to address
high-order stochastic nonlinear systems with time-delay. Zha [18] investigated the issue of output
feedback stabilization. Liu [19] studied the output feedback stabilization problem for time-delay
stochastic feed-forward systems. By using a power integrator approach, the work in [20-23] also
considered the state-feedback stabilization problems. However, the state feedback stabilization
problem for stochastic high-order and low-order nonlinear systems with time-delay has not been well
addressed, which leads us to take the interesting problem into account.

How to deal with the state feedback stabilization problem for high-order and low-order nonlinear
systems with time-delay? By using a power integrator approach, Liu & Sun [24] constructed a
time-delay independent controller for the aforementioned systems to relax the growth condition and
the power order limitations. However, to the best of our knowledge, research on the corresponding
stochastic version is limited with scarcely a few convincing results. The main difficulties are
explained from two aspects. On one hand, the /76 formula brings the gradient terms and the Hessian
terms in the Lyapunov analysis. On the other hand, the particularity of its structure has made many
traditional methods inapplicable. Therefore, we need to give a new way to consider stochastic
nonlinear systems. Inspired by a large number of results in [25-29], stochastic high-order and
low-order nonlinear systems with time-delay will be considered as follows:

dx(1) =x7 (Ddt + f(x(1), Xt — 1), )dt
+ gl (%), %i(t — 1), Hdw(?),

1.1
dx,(t) =uP"(t)dt + f,(x(t), x(t — 7), 1)dt (1)
+ gl (x(t), x(t — 1), Hdw(?),
where x(f) = [x:(1),..., x,(1)]T € R" is state, and u(f) € R is input; the nonnegative real number 7 is

the time-delay of the states. w(f) = [w(?), ..., w.(t)]T. The high-order can be revealed by p; € R;} g =
{L;Ip > g > 0 and p,q are odd integers). The drift terms f; : R x R' x R, — R and the diffusion
terms g; : R' X R" X R, — R, i = 1,...,n are considered as locally Lipschitz with £;(0,0,7) = 0 and
gi(0,0,1) = 0.

The contributions are highlighted in the following:

(i) Systems considered are more general. Systems in [24] only solve the control issues for
deterministic cases. It is more complex to consider the stochastic disturbance. By using the
homogeneous domination idea, one can give a novel perspective to generalize the control strategy for
deterministic systems to the corresponding stochastic cases.

(i) The result extends the works [30-32] by relaxing the growth condition and the power order
limitations. The low order of the nonlinear terms is successfully relaxed to the high-order and low-
order of the nonlinear terms. Based on the above situations, we use a proper Lyapunov-Krasovskii
functional to handle the stabilization problem under the weaker assumptions.

A

Notations: R,% {x]x > 0,x € R}, R"2 {x"|]x > 0}. For a given vector/matrix D, DT denotes its

transpose, Tr{D} is the trace when D is square, and the Euclidean norm of a vector |D|. C' is composed
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of continuous and ith partial derivable functions. K is composed of continuous functions and strictly
increasing; K, is composed of functions with K. One sometimes denotes X(¢) by X to simplify the
procedure.

2. Problem statement and preliminaries

2.1. Problem statement

Now, the time-delay stochastic nonlinear systems are addressed as follows:
dx(1) = f(%i(0), %t = 1), )t + &' (%(0), %i(t = 1), Ddw(D). (2.1)

{x(s): —d < s < 0}= ze Cl;0 ([-d, 0]; R") is an initial data, and w(f) denotes a Brownian motion with
dimension r defined on a complete probability space (Q, 7, {F;}rs0, P).
The following assumptions are needed:

Assumption 1. Fori=1,...,n, there exist two constants a; > 0 and a, > 0 such that

|fi(xi(D), Xi(t = 1), D] < a Z(Ixj(t)l% +|x;(t — T)l%)

j=1
i—1 ) .

ay Y (GO + (e = D) + ay ()] + bt = D),
j=1

gD 5t =TI < ax Y (O + el ) 2.2)

=1

i-1
1 1
+ay ) (O + [t = ) + (@) + xilt = D),
j=1

in which 6= = > 0, n is an odd integer, m is an even integer, and r;s have the following definitions:

ri-1 + 0
=l =" =23, n+l (2.3)
Pi-1
Remark 1. Assumption 1 encompasses and extends high-order andfor low-order results. We discuss
this point from two cases.

Case I: Condition (2.2), when T = 0 it reduces to high-order growth condition with 6 > 0,

ri+6

GO0 < a Y (017 + O+ anlx)l,
=1
IO < ax > (0l 7 + O] + aallx(o),

=1
and low-order growth condition with 6 = 0,

1

FGED,01 < ar ) GO +alx(@)
j=1
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1
llgi(xi(2), DIl < a» lx; (D151 + ap(|x;(2)].
=1

We further discuss its significance from value ranges of both low-order and high-order. From 0 €
,01, it is easy to see that 0 < "2 whlch implies that both low-order and high-order

Ty

(_p Pict =i p
J J
in Assumption 1 can take any value in (0, -], [ , +00), respectively.

Case II: When T # 0, several new results [ 1 8—22 ] have been achieved on feedback stabilization of
high-order nonlinear time-delay systems. The nonlinearities in [18-22] only have high-order terms.
The nonlinearities in [24] include linear and nonlinear parts, and their nonlinear parts only allow
low-order and high-order r’+9 with 6 > 0.

While in thls paper, (2.2) not only includes time-delays but relaxes the intervals of low-order and

high-order.

Remark 2. When p; = 1,i = 1,2,...,n— 1, and T = 0, equation (1) reduces to the well-known form,
for which the feedback control problem has been well developed in recent years [16, 24, 26].

Proposition 1. For ry,...,r, and o = p; ... parys1 having the following properties:
>1 >1 fou >1
* 1k €R ﬁ €R i T ERodd’ A € R

® 0 > maxi<k<p{ri + 6}.
o There hold

4<4- ! +TPe 40" — N1 Pk N 1 < 4o ;
Pl---Pi-1 TkPi=1---P1 YkPik=1---P1 P1---DPk-1  TkPk-1---D1
4<a- 1 N Ti+1 Dk 40 = rie1Pr . 1 B 4o

P1--.Pi-1 2rkpk—1---pl’zrkpk—l---pl 2pi ... Pk rkpk—l---pl.
e fori=1,...,k—1, one has

4rks1Pk - - - P1 4o < 4o

ripi-1...PD1 ’ riDi-1---P1 ripi—l---pl'

4 <
Remark 3. It is not difficult to see that system (1.1) is a class of high-order and low-order stochastic
nonlinear systems with time-delay satisfying Assumption 1. Compared with [30], it is significant to
point out that system (1.1) addressed here is more general. The systems can be composed by time-
delay and the coupling of the high-order and low-order terms. Moreover, if g = 0, Assumption 1 will
generate the same assumption as in [24]. When p; > 3, the state feedback stabilization problem under
constraint p; = p can give similar results as [19]. Under Assumption 1 with T = 0, we can obtain the
same results with [30], if there are no low-order nonlinearities.

Remark 4. For the case of T = 0 in system (1.1), with the help of adding a power integrator, fruitful
results have been achieved over the past years. However, for the case of T # 0, some essential
difficulties will inevitably be encountered in constructing the desired controller. For instance, the
time-delay effect will make the common assumption on the high-order system nonlinearities
infeasible, and what conditions should be placed to the nonlinearities remains unanswered. Second,
due to the higher power, time-delay and assumptions on the nonlinearities, it is more complicated to
find a Lyapunov-Krasovskii functional which can be behaved well in theoretical analysis.
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2.2. Useful definitions and lemmas

For ease of the controller design, some helpful definitions are presented.

Definition 1. [19] Consider the stochastic system dx(t) = f(x,)dt + g(x,t)dw. For any given C?
function V(x,t), the differential operator L is defined as follows:

ov adv 1 %
V=—+—f,t)+=Trig" —gl
LV= G ¥ g/ e+ 5T e
where %Tr{g”;T‘:g} is called the Hessian term of L.
Definition 2. [25] There exists coordinate (x1,...,x,) € R", h; >0, i = 1,...,n, for arbitrarily € > 0.
o The dilation A, (x) = (" xy,...,€"x,), and h; is referred to as the weights. And one defines

dilation weight as A = (hy, ..., h,).

e A function U € C(R",R) is considered as homogeneous of degree p, if u € R, then U(A.(x)) =
e*U(xy,...,xp), for arbitrarily x € R" \ {0}.

e A vector field f; € C(R",R) is considered as homogeneous of degree p, if u € R, then fi(A.(x)) =
i f(x), for arbitrarily x € R*\ {0}, i=1,...,n.

e A homogeneous y-norm is considered as ||x|l,, = (3, Ix,-lhli)%, for any x € R", where y > 1. We
use ||x||, or ||x||»2 to a exhibit 2-norm.

With the above definitions, we give some lemmas which will be crucial for controller design.

Lemmal. [I3] Form € Riﬂ}d, VYa € R and Vb € R, there hold

1 1 1 m-1 1
(lal + oD < lal= + |bl < 277 (laf + b)),

la = b™ < 2" Na™ - b™).

Lemma 2. [13] For given a,b > 0 and a given positive function f(x,y), there exists a positive function
g(x,y), such that

a

b a a+b
a.b < a+b g 20 a+b v R.
|f Ce, xy”l < g, X + = b((a " b)g(x’y))blf(x,y)l by, Vx, y €

Lemma 3. [13] For a continuous function g, if it is monotone, and g(s) = 0, then

If g()dx| < |g(®)] - |r = s1.

Lemma 4. [19] Givent; € R, i = 1,...,n satisfying 0 < 71 < ... < 1, and for given nonnegative
functions a;(x,y), i = 1,...,n, there holds

a1 (e, Y™ + a,Ce ™ < > ai(n ™ < (W7 + ™) Y a(63), Y,y € R,

J=1 J=1
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3. Design procedures

3.1. Control design procedures

Consider the stochastic high-order and low-order nonlinear systems with time-delay as follows:

{dx,- = (x;;, + fdt + gidw(t), i =1,. -1, G.1)
dx, = uPrdt.
Step 0: To begin with, introducing the complete form of the controller,

zi(t) = xPPe l(t) al' e 1(t) i=1,.

o) =~ @D +5, ¢ O, =1, n, (3:2)

u(t) = a/n(t).

The purpose of this work is to construct a state controller to render system (1.1) globally asymptotically
stable in probability. To achieve this goal, propositions are presented as follows.

Proposition 2. Forcy >0,¢,>0,i=1,...,n, there hold

ri+60

| fi(2, X:(2), Xi(t — 7)) <c; Z(|Z](t)|"l P A |z ()|

ri+6

+e Zuz,(r = DI + [zt = )T )

(3.3)
2ri+6
lg:(t, %(1), %t = D) <c2 Zaz,(r)vm T+ [ (0] T
2r;+6
e Z(lz,a — DI + Jgj(t = D)),
X X 40-ryp
Step 1. First, we will construct a Lyapunov-candidate-function V; = fo ' s3ds + fo s ds +
4(7‘
n f (z4(l) +z,' (D)dl. Along the solution of (3.1) , one has
4(r—r2pl
LV =5 + fi) +x, " +f1)+n(zl(t)+z (t))
40‘
—n(Z{(t — 1) + 7, (t=1)+Y,
where W, = 1Tr(g" ﬁ—:;gl}, which leads to
4o-ryp1 4o-rpyp|
LVi=(z+z, " ) -+ (g +z1 T
do-rap)
H@ g S+ 47 () 34)

40'

- n(z?(t T+z, (t-1)+ V.
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With Proposition 2, Lemma 1 and Lemma 2 in mind, one has

4o-rp|
rl

3 r 3
(zi+z, " )fh <caal + |Zl
+ 1zt =D+ |21 (2 - T)|T)

—ryp

2P1

g +IZ1| T z +IZ1|’1)

=2 2 e (= oA

n zllzl(t—T)|+IZ1| );

(3.5)

<ci(lzy|* + |Zl|

+6‘1(|Zl| |z1(z — 1) +|Z1| |Zl(l‘—T)| T +|Z1|

Ela

ry+6+3ry .
< |lz*% <z} + 2" when

with the help of Lemma 4, we can see it satisfies 2|1 z < |z
4<4+0< 2’?—:” +3< %’. Similarly, one can obtain
(3.6)

@4z, T Of B )+ @D+ - D),

20

4 2 4o—r’
where 8 = 4c¢; + 2c7 + T2 (2L ‘)4‘7 e c,” ™" . Now, one designs the virtual controller @, as
nr
3.7

nrl
gl

' (x) = =Cn+ )z +2," )= -0z + 2,

where o; > 1 is a positive constant. Noticing that
1+ do-rypy mnp]
-01z;, ' =0, —o1z; " <0,

and using (4.1) and (3.7) with (3.4) after complex calculations, one finally obtains

4o-rpyp|

m 1 _ D1
' - e (3.8)

40
LV <—n(Zf +2") + (g + 2
40'

—(n-DEt -1 +z, (t—1) + ¥

To complete the induction, at the kth step, we now define

Xk
_ 1
WLk — (SP1-~~Pk 1 aillpl 1) P1Pim] ds
k-1
Xk _,
W — P1---Pk-1 ]711 ro-prkJrlpk
= [ (orere = oyt g
k-1

40

!
Wpe=n—k+1) [ (@D +z""" (1)dl.
-7
Lyapunov function V; = Vi_; + Wy + Wy + Wy is C?, proper and positive definite. Moreover, for
k=1, Wii(+), Wii(+), Wpy(-) satisty

i=1,...,
1 4(r—rk Pk
oWk _ e Wi _ Zrk,,l..j,i._l (3.9)
8xk k ’ Bxk k ’
1 3= PLPic1 1’11 P1--Pk-1—1
)2 (P1-.-pr-1)x

f rac@zWLkOx,% =4-—-
P1--.Pi-1
Volume 8, Issue 2, 3185-3203.
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40Ty 1 Pk -1

FPWy 40 —riipr
— kP1-Pi-1 cPr—1—1
T — pr e pre)X P
X kD1 - .- Di-1
P1..-pi-1
ow, 1 Tk 1 O
ke e —) (sP1Pt = PPy hi T ds ekl
Ox; P1---DPi-1 Ja, Ox;

2 P1.--Pi-1 2 4o-rp 1P, pPi-. Pz
0" Wik 1 3-5—L— 0oy || 0" Wy 40 = Fipi Pi | sorelio1 0o
e & ox  oxx E

XX P1---Di1 X XX rP1 .- Pici (9Xi

wPi-1
GZWLk T 1 1 oa’!
k-1
= 4 - )3 - Y(sP1PRl — PP ) PP TP .ds(—)2
dx? P1--.Pi-1 P1 Pi-1 k=1 ox;
: s ... Pis ... Pi- ;
Xk 1 . 2a,.l71 -Pi-1
+f (4— —— (PPt — afl.i.pi-l)3—7,,],,.;,,-_1..,,;1_. ds(k—;)
@t Pi---Di1 ox;
P1---Pi-1
OWii = (—40- rk+1pk) (sm Pt g1 1),,?,,;"’;1[”" 1 saak—l
ox; rep1 - ox;
P1.--Pi-1
aZW Xk 40. —r 40- —r 4o—rp 1Pk 8&
Hk — ( k+1pk)( k+1Pk — 1)(SP1---I7k—| [7: ])rkpl -Pi-1 2 S(—gl )2
vp1...pPi-1 TgP1-..Pi-1 Xi
Q-1
2 Pl
4o, P, a Cy
k-1 2 :
- rkpl axi

(3.10)
Step k (k=2,3,...,n): Asin step k-1, there exists Lyapunov-candidate-function V,_;, implying

k=1 40
LV < <n—k+2>2<z P -k 1) 3 (@7 T (- 7))
i=1 3.11)

1 do-rgpr_1

+ (Zk P1Pk=2 +z fk lI’A 2--P1 )(xpk 1 Pk 1)+\Pk 1

where ¥;_= Tr{tpk | ‘3 Vk L -1}, Wie1 = (g1, - .8k—1). Hence, one will consider V; = Vi + Wy, +

War + Wpy and define an approprlate virtual controller a;. Similar to step 1, one can obtain
k-1

LVi<—(n— k+2)Z(z +z"’””‘)
i=1

k-1

—(n- k+1)Z(z (=) + 277 (1~ 1)

4o 1 do—rppr_1
+ (I’l —k+ 1)(Zk +Z]:klik 1 pl) + (Zk P1Pk—1 +Zrkﬁk 1Pl )(xfill _ a]lzk) (312)
4 1 4o—ripr—1 40—y
+ (Zk PLPi-l Zl;kﬂk—lwpl )a, + (Zk Py Pk Ly Z"kl’k 1-P1 )f
1 40Pk

4- P1Pr-2 rklkaPI DPk—-1 DPk—-1
+(Zk 1 T3 ™ -

— OWp GWHk
+Z(6- + ox, l+1+f)+‘Pk,

AIMS Mathematics Volume 8, Issue 2, 3185-3203.



3193

where ¥, = 1Tr{w,f‘9 Vi i), Wi = (g1, ..., gk). Obviously, the virtual controller a; is used to eliminate
the last three terms of (3 12). In light of (3.2) and Lemma 1, it yields that

i 1 | i
xik 1 a,fk 11 < |( Pt Pk—l)m _ (ail.lnpkfl)pl,..pk_zl < 23—p1,,,pk_2 A=

In the case of 40 — 6 < 40, by Lemma 2, one obtains that

4 1 4o -1y 1
Ly k— —
(Zk 11 Pk-2 +Zk 1Pk-2- Pl)(xgk 1 _a/sz
S N S 4oL a2/ S
< 2 P1~~!’k—2 |zx|P1-Pr-2 (|Zk R A R =T (3.13)
40 4o

<ﬁkl(Zk +Zkkpk 1~ pl) + (Zk q +Zrk 1Pg-2-P1 ,

where ) denotes a positive constant. On the basis of Proposition 2 and Lemma 3, one has

41 401 Pg-1
P1--Pk-2 fk ll’k 2Pl
(2 +2z )i
k=2 40

2@ EDRE (zk R
i=1

(3.14)
1

k—
7 S -0+ 2 — ) + -
i=1

40

+ Zk(t — 7-) rkl’k 1 P +ﬁk2(zk + Zm ,

where S, denotes a positive constant. In the sequel, one estimates the last term. With the help (3.2),
Lemmas 2 and 4, it is not hard to achieve

Xk

N _ 1
(sPr-Pt ak lpk 1) p- I’k Prerk-1 s < |Zk| PPl - xp — apeq] < 23 Pr-Pi-t |z (3.15)
-

Similarly, one can obtain

Xk —Tk+1Pk 40-0

4o 1
(sPrPrt a/kl Ph- l)m lds < 23 e |Zk|’k1’k—l<-»1’1_1. (3.16)

Q-1

On the basis of the previous inequality, one has

Wik aWHk
( axi + l+1 ﬁ
Pl Pk 1
<Ai(lzl + |Zk|’“’k = )| ey, + )

40

40 1
<dl + TkPk—1-+Pk—1 +z 11’1 Pj-1
(@ + g, 2(k 1)(§ (] )

1 4 40
+ Z_ Z’k 1P1--Pk=2
3k -1 )( et G

(3.17)

40

1 TjP1-Pj=1
* 5 1)Z(Z(t—7')+z (t-1),

AIMS Mathematics Volume 8, Issue 2, 3185-3203.
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in which d;; denotes a positive constant. Define 8; = Sy + Bia + Bis With Bi3 = Z, ) ! d,; and choose the
virtual controller «;, as

Tk+1Pk

oK) = —ena+ g ). ©.18)
By Lemma 2, one can arrive at
41 40Tk 1 Pk 40
(Zk PL-Pk=1 4 Z]:kl’k—lwl’l )a,llzk < —(2(1’1 —k+ 1) +:8k)(zi + Z]:kl’k—l»--Pl ) (319)

Substituting (3.13)—(3.18) into (3.12) yields

k 4o
~£Vk <- (Vl —k+ 1) Z(Z;‘ + Zi’iﬂi—l-upl)
i=1

40'
—(n=ky Z(Z (t=1) + 2" (1= 1)
i=1
1 40Tk 1 Pk

+ (Zk P (g = a) + Py

It is shown that the above formula holds for £ = n with virtual controllers (3.18). Similarly, we choose
V(%) = 20, (Wi(-) + Wyi(+) + Wpi(+)). There is an actual control law

1 'n+1 rn 1

u(x) _Qr,;l ~Pn (Zn + Zn )I’I -pn (320)
such that
n 40
LV <= ) (@ +7, (3.21)
i=1

Until now, the recursive design has been completed. Under the new coordinates

X; u?

Er=x, &= I’ yP = ot (3.22)
where k1 = 0, k; = p1+1 ,i=2,...,nand L > 1 is a constructed constant, system (1.1) can be rewritten
in the form

; fi() gi(*)
dé = L&V dr + —dt + = de(o), 523
cm:me+§0m+&0da)
By (3.18) and (3.20), the system (3.1) can be integrated into the complex format
dé = LR(E)dt + T(t,£,E(t = 0)dt + ' (1,€, (1 — 1)) dw(1), (3.24)

AIMS Mathematics Volume 8, Issue 2, 3185-3203.
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where é‘:_ (él’ .. é:n)T R(é:)_ (é:z [ é:n ’Vp)T T(t é‘: g(t - T)): (fl’ k2ot o )T
U(t, & E(t—1)= (g1, Lkz ey Lkn) Introducing the dllatlon weight A= (ry,12,...,1,), One gets

Us &'i x; 1
Vn(As(g)) = Zf (Sp1~~~pi—1 — glibi-1- Plaf7l1 P1—1)4_mds
i=1 V¢

-
-

Zn i 40Tkt 1 Pk
+ (Spl Pi-1 __ 8":1’1 1. Pla,Pl --Pi- l)rkpk 1P ds
i=1 Y€

iy

+(n—k+1) (Zk(s) + Z 5 " (s)ds (3.25)

:Zf (gripi—l---Pl(é’Pl---I’i 1’1 Pi- 1)) 71~ p, Prpiot gliPi-1- pld{
i=1 V-

n Srixi 4o,
z : : ) k+1Pk

+ f (spl-"pl—l — glipi-1- Plapl Pi- l)rkpk 1-p1 gliPi-1- pldé‘
i=1 Y-l

_  4do-0

- Vn('g:)’

where s is defined as s = r;{. With the help of the above formula and Definition 2, it can be concluded
that V,(¢) is homogeneous of degree 40 — 6.

3.2. Stability analysis
The main result of this manuscript will be stated as follows.

Theorem 1. Suppose Assumptions 1 apply to stochastic system (1), under the state feedback controller
u? = LMY and (3.20), then:

(i) There exists a unique solution on [—d, ©);

(ii) The equilibrium at the origin is globally asymptotically stable in probability.

Proof. Four steps are used to verify Theorem 1.
Step 1: By the definition of o > 0, we know that p;...p;_; —1 > 1, which implies that 4 —

a1l . . .
| e 2. Therefore, a9 o) is continuous, and u? = LF+1yP» is C. As is known to
all, the function is C. The closed-loop system satisfies the locally Lipschitz condition based on f; and
g: being locally Lipschitz.

Step 2: Consider the Lyapunov-candidate-function:

1 40 =1kt 1 Pk

V(€)= Vu(&) + W, (3.26)

where h; and h, are positive parameters. It is straightforward to prove that V(£) is C* on &. Since V,(€)
is continuous, positive definite and radially unbounded, from Lemma 1, one can have

ax () < V(§) < ax (€D, (3.27)
where a5y and a,; are K., functions. With the help of the homogeneous theory, one finally has
CollEllN < U@) < ¢ llélly (3.28)
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in which ¢q > 0, ¢, > 0, and U(£) denotes a positive definite function of the 40- homogeneous degree.

Hence, one has the formula

ax([€]) < U©) < an(lE).

(3.29) leads to

h+h (7 ("
11 2f |I§|Ii"dn36f an(l&Ddn
-7 -7 -7

0
<¢ f (€t + NG + )

T

< c sup axn(&(s+ 1))

—7<s<0

< an( sup |&(s + D),

—7<5<0

where n = s+1,¢ > 0, ¢ > 0 and a», is a class K, function. Since

€1 < Csup [£(s + D)), azlél < az( sup |6(s + 1))

—-7<s<0 —-7<5<0

Defining 8, = a»; + a2, by (3.26)-(3.30), one gets

Bi(€D) < V(€] < Bao( sup [€(s + D).

—-7<5<0

Step 3: With the help of Lemma 1 and (3.20), ¢, is a positive constant, and one has

V(&)
43

By Proposition 2 and L > 1, one can have

LR(é) < —co LIl

ri+6

|fi(ta &(1), & - T))| < glLl—yn(Z €@ T + Z |E(t — T)|%)
j=1 J=1

Lk

< SILTEDNT + 1l = DI,
in which 6,,6; > 0. With the help of Lemmas 1, 2 and (3.32), one can obtain

v,
O&(1)

<GpL' O IEOIE eI
i=1

| T(1,&(0),&(t = 1)

+ G = DI e - Il
j=1

<L @llE@IT + CollEDITNIEER — DI,
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where cg;, Cpz, Coz and yy = 1rn.in v are positive constants. Similar to (3.32), we use d, and y, < 1/2
<i<n
to show that

gi(t, &), E(t — 1))

B

2t

—Cz Z(|Zj(t)|2p| Pi-1 + |Zj(t)|2"”1 Pi- 1)

s

+ —C2C2 Z(Iz](t - T)|2p1 m 1+ |Z](l — T)|2r/pl iz 1)

< er(nf@n T 16 - Dl
< &L (EDN + llee - DI,

Using Lemma 1, Lemma 3, Lemma 4 and (3.34), one obtains

1
ST U £, £~ ) 52 (1, E0), £ - )
1
<5 Zl 2 S W (0. €00, €0 = D0, €0, £ = )
< el S IO x e - DI + oI 539
i,j=1

x (@I Ty £ = Il )
< G L (cosllEDNET + EosCosllEDILTNIEE — DI
< L'"(coallE@N + easllEDITNEE — DG,

in which ¥y = 1min {Yio +vjp} > 0, co3 > 0, Cop3 > 0 and ¢yp3 > 0 are constants. Based on L > 1, we
<i,j<n

have

V(E) < V(&) + Ll 70[ 5

By Definition 1, (3.26), (3.31), (3.33) and (3.34), one has

oV, n(f)
<= g

+ ETr{lﬁT(t, £(0),&(t -

T(1,&(0),&(t = 1)

a 7 Ut 00y, £ - 1)

. (3.35)
+ (hy + hp) L' - (l—llf(t)lli‘r — I = DI

h
< = L(cor — (co2 + co3 +

)L_y") €127
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which satisfies yo= min{yy, ¥o} < 1. Because cy; is a constant independent of cy,, co3, we choose

hy+hy
co2tco3+

L>L'= max{(T“y)%, 1}, and there exists a constant B = ¢¢; — (coa + o3 + %)L‘yo > 0, such
that

LV < —LBEY = —coléll.

With the help of the above formula and (3.28), one obtains
Co
LV(E®) < —(g)%zl(lf(l‘)l)-

Briefly, following Steps 1-3, the system has a unique solution on [—d, co], and &(¢) = 0 is globally
asymptotically stable in probability.

Step 4: Because (3.20) is an equivalent transformation, the system composed by (1) and u? = Lf1yP
is similar to the systems (3.20) and (3.22). O

Remark 5. Compared with [24], we construct a state-feedback controller independent of time delays
for the stochastic nonlinear system. Compared with [30], we use the methods of adding a power
integrator to relax the nonlinear growth condition to cover both high-order and low-order
nonlinearities. Not only does it not need to know anything information about the unknown function,
but also it can reduce burdensome computations.

Remark 6. The homogeneous domination method is used for the first time to solve the stabilization
problem of stochastic high-order and low-order nonlinear system (1.1) with time-delay.

Remark 7. In this paper, it is hard to adopt a Lyapunov-Krasovskii functional. In order to solve
the above the problem, a suitable Lyapunov-candidate-function is designed to guarantee good system
performance, and stabilization analysis is proposed to save better resources

Remark 8. The construction of the controller effectively keeps away from the zero-division problem
e

of 6% . It need be noted that the non-zero-division problem and the locally Lipschitz condition (see

Step 1 in the proof of Theorem 1) should to be guaranteed simultaneously, which will increase more

difficulties.

4. Simulation example

Consider the following stochastic high-order and low-order nonlinear systems with time-delay:

dx;(t) = [x () + x5(0)x, (¢t — 1)]dt + %xl(t) sin x; (t — 1dw(t),
dxy(1) = [ (1) + x5(t) cos x,(t — 1)]dt.

4.1

One can see that Assumption 1 is satisfied with p; = p, = 3,7 =1,C = 1,r, = 1,0 = % One can
easily get
1 1
L1l < (zil + [z1]5 + |21z = DI + [z1(2 = DI5)/5,

g1l < (zil +1ail¥ + 1zt = DI+ [zt = DI¥)/8,
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L 13 L 13 1
12l <(z1l3 + 12115 + |z2]F + |2l & + 212 = DI

13 1 13 (4.2)
+|z1(r = DIB + [z2(t = DS + [z2(2 = D¢)/5.

4o
In this simulation, we choose Vi(z1) = 1z + 15z]° + 2 ft t_l(z‘l1 +z," )dl. Several calculations lead to

LV <=2 +2]) - G- D+ 2 - D)

o 4 3 (4.3)
+ (21 + 7)) — ),
7
where a”' = —(2n + ﬁl)(zf +z;). By choosing V>(17,) = Vi(71) + Wi + Wi + Wiy, a direct calculation
leads to
4 52 4 260
LV, < +2))- (G +2,) ). (4.4)
From the previous manipulations, one obtains the following actual controller
13 13
u() = —0% (22 + 27 )= =306.771(z, + 27 (4.5)

The initial condition can be given as &(0) = [1,—1]". Figure 1 illustrates that the globally
asymptotically stable in probability has been achieved and the responses of (4.5) is given in Figure 2.

7X1
15 _Xzf

States
o

i i
0 0.5 1 15
Time(Sec)

Figure 1. The trajectories of x;(¢) and x,(%).

: | —

Control
w

1

) M
i I

0 0.5 1 15

Time(Sec)

Figure 2. The trajectories of u.
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5. Conclusions

In this technical note, we investigate the state feedback stabilization problem of stochastic high-
order and low-order nonlinear systems with time-delay successfully. According to the homogeneous
domination method and the design of integral Lyapunov functions, the control strategy is achieved with
the controller design. The above results indicate that the closed-loop system is globally asymptotically
stable in probability. There still remain problems to be investigated, such as how to take into account
output feedback control and how to extend our results under weaker conditions.
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Appendix

Proof of Proposition 2.

Proof. Obviously, the conclusion of i = 1 is easy to prove. When i > 1, according to (3.2) and
Lemma 1, one has the inequality

x(O)] <z @) +o/ " @) +o " e (O) AT

and the estimate for j = 2,3,...,i— 1,

TjPj-1

|x;(O)]"7 < e (@)t +ol"! 3 ey (@) +ol"! & Hejoa (@) mirrrit,
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in which 6 denotes ¢ or t — 7. Similarly, with the help of (3.2) and Lemma 1 again, one arrives at

ritw
ritw ritw ritw L

It -1 TPl 1
(@) 7 <max(1, 277 Yz @7 + 0 2y (§))

ritw

ritw

+ 0/ @),

where j =2,3,...,i. From Assumption 1 and Lemma 4, one obtains

1 ritw
PlPj- o1
c; =C + Cmax{20.""" + max{1,277i-1-" "}
1<j<i
Tit1Pi rtw

ripi_1--P —L— 1
+ ZQjJIJ 1-+P1 maX{1,2rj+lpj...pl }}’

and similarly we can get the parameters in g(-)

1

1 2ri+w
o _dite
¢y =C + sz_1x_{2Q;1 "¢ max(1, 2%m-rr )
1<j<i
_rpi o
" 2@;,P.,—1.44p| max{l, DX }}

A direct calculation leads to (3.4).
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