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Abstract: This research fundamentally aims at providing a generalized framework to assist the launch 

of paired comparison models while dealing with discrete binary choices. The purpose is served by 

exploiting the fundaments of the exponential family of distributions. The proposed generalization is 

proved to cater to seven paired comparison models as members of this newly developed mechanism. 

The legitimacy of the devised scheme is demonstrated through rigorous simulation-based investigation 

as well as keenly persuaded empirical evaluations. A detailed analysis, covering a wide range of 

parametric settings, through the launch of Gibbs Sampler—a notable extension of Markov Chain 

Monte Carlo methods, is conducted under the Bayesian paradigm. The outcomes of this research 

substantiate the legitimacy of the devised general structure by not only successfully retaining the 

preference ordering but also by staying consistent with the established theoretical framework of 

comparative models. 
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1. Introduction 

The utility of paired comparison (PC) models in analyzing choice behaviors is well appreciated 

in various fields of research. For example, [1,2] demonstrated the applicability of PC schemes in health 

surveillance. Similarly, [3,4] applied PC methods to study food preferences and quality characteristics. 

Further, [5,6] persuaded the PC approach in the exploring the socio-political behaviors of the voters. 

Moreover, [7,8] employed PC models to conduct sports analysis. Recently, [9,10] elucidated the 

applicability of PC models in public health administration while facilitating the arduous task of project 

prioritization. For the account of more applications, one may see [11,12] in field of sensory analysis, 

[13,14] in engineering and reliability and [15,16] for measurement systems.  

The PC models usually arise by considering a latent point-scoring process while conducting a 

pair-wise comparison among streams of objects, strategies or treatments [17]. Avoiding the literary 

jargon, a selector is requested to answer a simple query in “yes” or “no” fashion “do you prefer item 𝑖 

over item 𝑗?” while pairwise comparing a string of competing items. Table 1 below summarizes the 

hypothetical choice matrix comprehending the binary responses of a single selector resulting from the 

above inquiry while comparing 𝑚 rival items. Each cell of the table documents the comparative choice 

of the decision maker while comparing a pair of objects specified by a certain row and column of the 

table. The choice strings then follow Binomial distribution where the likelihood of preferences remains 

estimable as a function of worth parameters defining the relative utility of competing objects. 

Table 1. Choice matrix involving single decision maker and m competing items, Y = yes and N = No. 

Items 1 2 3 4 5 - 𝑚 

1 - Y Y Y N - Y 

2  - N N N - N 

3   - N Y - Y 

4    - Y - Y 

5     - - N 

-      - - 

𝑚       - 

It is trivial to extend the afore-mentioned scenario for 𝑘 selectors or judges. Despite the simplistic 

formation, the capability of above documented contingency in facilitating the optimization of complex 

decision making by inter-relating non-linear functionals is well established [10,18–20]. 

Inspired by the subtle nature of the pre-describe design, this research aims at the proposition of a 

generalized framework encapsulating a broad range of choice or comparative models in a single 

comprehensive expression. The devised generalization is argued to be advantageous especially due to 

its capability to entertain various probabilistic structures governing the utility functionals as latent 

phenomena. The objectives are achieved by exploiting the fundaments of the exponential family of 

distributions. The choice of the exponential family of distribution in this regard is mainly motivated 

by three facts. Firstly, the family of distributions provides the fundaments of linear models and 

generalized linear models [21] and therefore is anticipated to offer natural support to the modeling of 

the binary choice data [22]. Secondly, the ability of the exponential family in encompassing of complex 

linear and non-linear functions is well cherished [23,24]. Lastly, the involvement of the exponential 

function in the estimation procedure usually results in more precise estimates [25]. The legitimacy of 

the proposed scheme is established through meticulously launched methodological and simulation-

based operations using the Bayesian paradigm. Moreover, the inferential aspects of the suggested 
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generalization are explored in order to derive a statistically sound and mathematically workable line 

of actions to attain an optimal decision-making strategy. Furthermore, the applicability of the targeted 

generalization is advocated by studying the water brand choice data.  

This article is mainly divided into five parts. Section 2 delineates the mathematical foundations 

of the proposed generalization whereas section 3 reports simulation-based outcomes advocating the 

legitimacy of the devised scheme. Section 4 is dedicated to the empirical evaluation and lastly, section 

5 summarizes the main findings in a compact manner. 

2. Materials and methods 

2.1. Proposed generalization 

Let us say that a pairwise comparison is persuaded among 𝑚 objects by 𝑛 judges, where the pair 

of stimuli elicits a continuous discriminal process. The latent preferences of competing object 𝑖 and 

object 𝑗 are then thought to follow exponential family of distributions over the consistent support in 

the population, such as; 

f(xi; θi) = a(θi)b(xi)eg(xi)h(θi), c < xi < d, 

and 

f(xj; θj) = a(θj)b(xj)eg(xj)h(θj),   c < xj < d, 

where, 𝜃𝑖 and 𝜃𝑗  are worth parameters highlighting the utility associated with respective objects. The 

interest lies in the deduction of precipitated preferences, such as 𝑝𝑖𝑗 = 𝑃(𝑋𝑖 > 𝑋𝑗)  and 𝑝𝑗𝑖 =

𝑃(𝑋𝑗 > 𝑋𝑖), as a function of estimated worth parameters. We proceed by defining a general functional 

facilitating the estimation of preference probabilities such as; 

P(Xi > Xj) = ∫ ∫ f(xj; θj)
d

xj

d

c
 f(xi; θi)dxidxj,      (1) 

where, ∫ 𝑓(𝑥𝑖; 𝜃𝑖)𝑑𝑥𝑖 = 𝐹(𝑑; 𝜃𝑖) − 𝐹(𝑥𝑗; 𝜃𝑖)
𝑑

𝑥𝑗
. By using this expression in Eq (1), we obtained: 

P(Xi > Xj) = ∫ f(xj; θj)
d

c
F(d; θi)dxj − ∫ f(xj; θj)

d

c
F(xj; θi)dxj.  (2) 

For further simplification, let us denote,  

A = ∫ f(xj; θj)
d

c
F(d; θi)dxj, 

and 

B = ∫ f(xj; θj)
d

c
F(xj; θi)dxj. 

It remain verifiable that on solving, we get  

A = F(d; θi)[F(d; θj) − F(c; θj)]. 

B = F(d; θi) F(d; θj) − F(d; θi) F(c; θj) − [F(d; θi) − F(c; θi)][F(d; θj) − F(c; θj)]. 

The Eq (2) now becomes, 

P(Xi > Xj) =  F(d; θi)[F(d; θj) − F(c; θj)] − F(d; θi) F(d; θj) + F(d; θi) F(c; θj) +

                                            [F(d; θi) − F(c; θi)][F(d; θj) − F(c; θj)], 
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which on further simplification reduces to,  

P(Xi > Xj) =  F(d; θi)F(d; θj) − F(d; θi)F(c; θj) −  F(c; θi)F(d; θj) + F(c; θi)F(c; θj), 

where, 𝐹(𝑑; 𝜃𝑖) = [1 − 𝐹(𝑐; 𝜃𝑖)]  and 𝐹(𝑑; 𝜃𝑗) = [1 − 𝐹(𝑐; 𝜃𝑗)] . Using these specifications, we 

finally achieve the general expression confirming the preference of object 𝑖 over object 𝑗, as under 

P(Xi > Xj) = 1 − 2F(c; θi) − 2F(c; θj) + 4 F(c; θi)F(c; θj).    (3) 

The two features of the devised generalized formation given in Eq (3) remain immediately 

noticeable. Firstly, it remains verifiable that for any permissible value of lower limit of the support, 𝑐, 

the above given functional reduces to 1, ensuring the ability of the general scheme in establishing the 

true preferences. Secondly, the preference probabilities remain estimable as a function of worth 

parameters ensuring the desirable character of decision making that is utility based choices. Both 

realizations are consistent with classic and eminent luce’s choice axiom. One may also notice that the 

above given functional can also be derived for P(Xj > Xi). Table 2, presents seven PC models based 

on more prominent exponential family of distributions’ member which stay as special cases of 

aforementioned general scheme. It is to be noted that we are only considering these seven cases for 

demonstration purposes, in fact every PC model which arises due to the assumption that latent point 

process follows exponential family of distributions can be easily seen as sub-case of the proposition. 

Table 2. Some of the members of proposed generalization. 

Model p.d.f. 
Exponential family 

f(x;  θ) =  a(θ)b(x)eg(x)h(θ) 
Preference probability (pij) 

Beta 
f(x;  θ) =

xθ−1(1−x)

B(θ,   2)
, 

 0 < x < 1 

a(θ) = θ(θ + 1), b(x) = (1 − x),  

g(x) = lnx, h(θ) = (θ − 1) 
pij =

θi(1 + θi)(2 + θi + 3θj)

(θi + θj)(1 + θi + θj)(2 + θi + θj)
 

 

Power 

f(x;  θ) = θxθ−1,  

0 < x < 1 

a(θ) = θ, b(x) = 1, 

 g(x) = lnx, h(θ) = (θ − 1) 

pij =
θi

θi + θj
 

 

Exponential 

f(x;  θ) =
1

θ
e−

x

θ,  

0 < x < ∞ 

a(θ) =
1

θ
, b(x) = 1,  

g(x) = x, h(θ) =
1

θ
 

pij =
θi

θi + θj
 

 

Gamma 

f(x;  θ) =
θ

1
2

Γ (
1
2

)
x

1
2

−1e−θx, 

 0 < x < ∞ 

a(θ) = √θ, b(x) =
1

Γ (
1
2

) √x
, 

 g(x) = −x, h(θ) = θ 

pij =
2

π
tan−1√

θi

θj
 

 

Maxwell 

f(x;  θ) = √
2

π

x2

θ3
e

−
x2

2θ2 , 

 0 < x < ∞ 

a(θ) =
1

θ3 , b(x) = √
2

π
x2,  

g(x) = −
x2

2
, h(θ) =

1

θ2
 

pij = 1 +
2

π
{

θi
3θj−θiθj

3

(θi
2 + θj

2)2
− tan−1 (

θj

θi
)} 

 

Rayleigh 

f(x;  θ) =
x

θ2 e−
x2

2θ2,  

0 < x < ∞ 

a(θ) =
1

θ2 , b(x) = x, 

 g(x) = −
x2

2
, h(θ) =

1

θ2 

pij =
θi

2

θi
2 + θj

2 

 

Weibull 

f(x;  θ) =
3x2

θ3 e−
x3

θ3,  

0 < x < ∞ 

a(θ) =
1

θ3
, b(x) = 3x2,  

g(x) = −x3, h(θ) =
1

θ3 

pij =
θi

3

θi
3 + θj

3 
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The likelihood function, where 𝑛 judges are deemed to pairwise comparison of 𝑚 objects, is 

written by denoting 𝑛𝑖𝑗 as the total number of times object 𝑖 and object 𝑗 are pairwise compared. Also, 

let us represent, 𝑟 = (𝑟𝑖𝑗, 𝑟𝑗𝑖) as a vector comprises of the observed preference data in 𝑘′𝑡ℎ repetition, 

when 𝑖 ≠ 𝑗, 𝑖 ≥ 1 and 𝑗 ≤ 𝑚. Based on these specifications, the likelihood function encompassing the 

preferences of 𝑛 judges pairwise comparing 𝑚 objects, is written as under: 

l(r, θ) = ∏
nij!

rij!(nij−rij)!

m
i<j=1 p

ij

rij  p
ji

nij−rij
,       (4) 

where, 𝑝𝑗𝑖 = 1 − 𝑝𝑖𝑗 and r represents the preference vector along with θ denoting the vector of worth 

parameters. As a fact, the number of worth parameters stays equal to the number of objects to be 

compared, such that ∑ 𝜃𝑖
𝑚
𝑖=1 = 1. The imposed condition resolves the issue of non-identifiability. 

2.2. Estimation of worth parameters 

The estimation of worth parameters is persuaded under the Bayesian paradigm – well cherished 

to channelize the historic information in order to enrich the analytical environment and thus assists the 

estimation procedure. For demonstration purposes, we consider two prior distributions, that is Jeffreys 

Prior and Uniform Prior. 

2.2.1. The Posterior Distribution under the Jeffreys Prior 

The kernel of Jeffreys prior for 𝜃; (𝜃1, 𝜃2, 𝜃3, … . , 𝜃𝑚) is written as follows: 

pJ(θ1, θ2, θ3, … . , θm) ∝ √det [I(θ1, θ2, θ3, … . , θm)],  0 < θ < 1. 

where, det [I(θ)] = (−1)m−1

|

|

E [
∂2 ln L(.)

∂θ1
2 ] E [

∂2 ln L(.)

∂θ1 ∂θ2
] … E [

∂2 ln L(.)

∂θ1 ∂θm−1
]

E [
∂2 ln L(.)

∂θ2 ∂θ1
] E[

∂2 ln L(.)

∂θ2
2 ] … E [

∂2 ln L(.)

∂θ2 ∂θm−1
]

⋮ ⋮ ⋮

E [
∂2 ln L(.)

∂θm−1 ∂θ1
] E [

∂2 ln L(.)

∂θm−1 ∂θ2
] … E [

∂2 ln L(.)

∂θm−1
2 ]

|

|

. The estimability of the 

worth parameter associated with 𝑚′𝑡ℎ object is conferred by ensuring that 𝜃𝑚 = 1 − 𝜃1 − 𝜃2 … −
𝜃𝑚−1. The joint posterior distribution for θ1, θ2, … , θm is then written as: 

pJ(θ1, θ2, … , θm|𝐫) =
1

𝑘
∏ pJ(𝜃1, 𝜃2, 𝜃3, … . , 𝜃𝑚)p

ij

rij p
ji

nij−rijm
i<j=1 .   (5) 

Here, 𝑘 = ∫ ∫ … ∫ pJ(𝜃1, 𝜃2, 𝜃3, … . , 𝜃𝑚)p
ij

rij  p
ji

nij−rij𝑑𝜃𝑚−1 … 𝑑𝜃2𝑑𝜃1
1−𝜃1…−𝜃𝑚−1

0

1−𝜃1

0

1

0
 and is 

known as normalizing constant while obliging the above given constraint, such as 𝜃𝑚 = 1 − ∑ 𝜃𝑖
𝑚−1
𝑖=1 . 

Also, 𝑛𝑖𝑗 represents the frequency of pair-wise comparisons by selectors and 𝑟𝑖𝑗 denotes the frequency 

of referring object 𝑖 over object 𝑗. The joint posterior distribution of Eq (5) is not of closed form, 

therefore Bayes estimates are attained by employing Gibbs sampler – a well cherished procedure of 

MCMC methods [26- 28]. The marginal posterior distributions (MPDs) of parameters determining the 

comparative worth of each object are achieved by iteratively conditioning on interim value in a 

continuous cycle. Let 𝑝𝐽(𝜃; 𝑟) be the joint posterior density, where 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑚), then the 

conditional densities are given by, 𝑝𝐽(𝜃1I𝜃2, 𝜃3 … , 𝜃𝑚) , 𝑝𝐽(𝜃2I𝜃1, 𝜃3 … , 𝜃𝑚) 

… 𝑝𝐽(𝜃𝑚I𝜃1, 𝜃2 … , 𝜃𝑚−1) . According to the Gibbs sampler, we assume initial values such as 
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(𝜃2
(0)

, 𝜃3
(0)

, … , 𝜃𝑚
(0)

)  and pursue the conditional distribution of 𝜃1  such that 

𝑝𝐽(𝜃1
(1)I𝜃2

(0), 𝜃3
(0), … , 𝜃𝑚

(0)). The iterative procedure will continue until it converges. Here, for 

demonstration purposes, we provide the expression of MPD of 𝜃𝑚, as follows,  

p(θm|r) =
1

𝑘
∫ … ∫ ∏ p

J
(𝜃1, 𝜃2, 𝜃3, … . , 𝜃𝑚)m−1

i<j=1 dθm−1 … dθ1
1−∑ θi−θm

m−2
i=1

θm=0

1−θm

θ1=0
,  (6) 

0 < θm < 1 

The MPDs of other parameters remain deductible in similar fashion. 

2.2.2. The Posterior Distribution under the Uniform Prior 

The Uniform prior for 𝜃; (𝜃1, 𝜃2, 𝜃3, … . , 𝜃𝑚), is given as, 

pU(θ1, θ2, … , θm) ∝ 1, θ > 0 

The joint posterior distribution given the preference data is now determined as, 

pU(θ1, θ2, … , θm|r) =
1

𝑘
∏ p

ij

rij p
ji

nij−rijm
i<j=1 .      (7) 

Here, the normalizing constant under the estimability condition of 𝜃𝑚 = 1 − ∑ 𝜃𝑖
𝑚−1
𝑖=1  takes the 

form such as  𝑘 = ∫ ∫ … ∫ ∏ 𝑝
𝑖𝑗

𝑟𝑖𝑗  𝑝
𝑗𝑖

𝑛𝑖𝑗−𝑟𝑖𝑗𝑚
𝑖<𝑗=1 𝑑𝜃𝑚−1 … 𝑑𝜃2𝑑𝜃1

1−𝜃1…−𝜃𝑚−1

0

1−𝜃1

0

1

0
. Next phase 

provides the expression of MPD for 𝜃𝑚 using the above mentioned method of Gibbs sampler. The 

MPD is given as, 

pU(θm|r) =
1

K
∫ … ∫ ∏ p

ij

rij  p
ji

nij−rijm−2
i<j=1 dθm−1 … dθ1

1−∑ θi−θm
m−2
i=1

θm=0

1−θm

θ1=0
, 0 < θm < 1.  (8) 

3. Simulation-based evaluation 

We now explore the authenticity of the proposed generalization with respect to above documented 

seven sub-cases. The objective is persuaded through rigorous simulation investigation mimicking wide 

range of experimental states. Artificial comparative data sets of two sizes 𝑛 = 15 and 50  are 

generated comparing three objects, that is 𝑖 = 1,2 and 3. The worth parameters are pre-set as 𝜃1 = 0.5, 

𝜃2 = 0.3 and 𝜃3 = 0.2. This setting is considered for demonstration purposes only, one can use other 

settings also. Table 3, presents the data under afore-mentioned settings. The Bayes estimates of worth 

parameters, estimated preference probabilities and Bayes factor are provided under both priors and for 

all considered sub-cases of the devised generalization. A detail account of the findings is documented 

in upcoming sections. 

Table 3. Artificial data sets generated under above documented specifications. 

 
(i, j) 

𝑛𝑖𝑗 = 15 𝑛𝑖𝑗 = 50 

𝑟𝑖𝑗 𝑟𝑗𝑖 𝑟𝑖𝑗 𝑟𝑗𝑖 

(1, 2) 10 5 32 18 

(1, 3) 9 6 38 12 

(2, 3) 11 4 28 22 
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3.1. Discussion of MPDs 

Figure 1 (a–n) presents the graphical display of the MPDs of worth parameters through side-by-

side box plots. The behavior is depicted for both priors, that is Jefferys prior and Uniform priors, while 

covering sample of sizes 𝑛 = 15 and 𝑛 = 50. The delicacies of displayed outcomes are read with 

respect to different resultant sub-cases of the proposed family and both sample sizes. Firstly, through 

side-by-side box plots, it is observed that as the sample size increases more compact behavior of MPDs 

is observed. This is seen regardless of the considered prior distribution and sub-cases of the proposed 

family. Furthermore, Uniform prior is found to stand out in terms of the generation of the number of 

outliers. In most cases, the Uniform prior is noticed to produce a lesser extent of outliers as compared 

to contemporary prior model of Jefferys. It is thought that the tendency of Uniform prior to outperform 

Jefferys prior on this front lies in its capability of deducing the same amount of information from the 

data but through a more parsimonious layout. 
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Figure 1. Display of MPDs of worth parameters under both priors and for both sample 

sizes. Here J(θi)  and U(θi)  represent MPDs under Jeffery’s prior and MPDs under 

Uniform prior, respectively. 
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3.2. Estimation of worth parameters 

The estimation of worth parameters defining the utility of competing objects is facilitated by 

providing the posterior means of the MPDs. Table 4 comprehends the outcomes of the estimation 

efforts along with associated absolute differences. One may notice some interesting patterns revealed 

in the table. Firstly, regardless of the prior distribution, increased sample size produces more close 

estimates of the utility. It is important to note that the estimation performance, however, remains 

subject to the sub-cases of the proposed family. Moreover, the estimated worth parameters for each 

member remain robust towards the change in the prior distribution. This outcome remains arguable as 

both considered priors are non-informative and thus provide equally enriched estimation environment. 

As long as, model-wise estimation performance is concerned, the PC model produces the most prolific 

estimates and therefore is argued to be most capable in using the comparative information more 

rigorously. From Table 2, one may notice that the Gamma model is attributed with a more vibrant and 

rich utility function estimating the preference behaviors by not only involving contemporary worth 

parameters but also employing geometric functions. The next in line remains Exponential and Power 

models with equal elegancy. This outcome in fact verify the simplifications provided in the Table 2. 

The characterization is thought to be a result of tendency of these models to entertain the comparative 

behaviors by exploiting linear, product and ratio formation of the associated worth parameters through 

more simple manner. The Beta model is ranked third in this comparative evaluation along with 

Maxwell model holding the forth level in the hierarchy. Whereas, Rayleigh model and Weibull model 

are placed at fifth and sixth position as contestant models.  

Table 4. Estimates of worth parameters and associated absolute errors.  

Models Estimators 
𝑛𝑖𝑗 =15 𝑛𝑖𝑗 =50 

Jeffreys Uniform Jeffreys Uniform 

Beta 

𝜃1̂ 0.4424 0.4424 0.5205 0.5205 

𝜃2̂ 0.3477 0.3477 0.2783 0.2783 

𝜃3̂ 0.2099 0.2099 0.2012 0.2012 

|𝜃1̂ − 𝜃1| 0.0576 0.0576 0.0205 0.0205 

|𝜃2̂ − 𝜃2| 0.0477 0.0477 0.0217 0.0217 

|𝜃3̂ − 𝜃3| 0.0099 0.0099 0.0012 0.0012 

Exponential 

𝜃1̂ 0.4615 0.4465 0.5376 0.5302 

𝜃2̂ 0.3434 0.3472 0.2710 0.2738 

𝜃3̂ 0.1952 0.2063 0.1914 0.1960 

|𝜃1̂ − 𝜃1| 0.0385 0.0535 0.0376 0.0302 

|𝜃2̂ − 𝜃2| 0.0434 0.0472 0.0290 0.0262 

|𝜃3̂ − 𝜃3| 0.0048 0.0063 0.0086 0.0040 

Power 

𝜃1̂ 0.4615 0.4465 0.5376 0.5302 

𝜃2̂ 0.3434 0.3472 0.2710 0.2738 

𝜃3̂ 0.1952 0.2063 0.1914 0.1960 

|𝜃1̂ − 𝜃1| 0.0385 0.0535 0.0376 0.0302 

|𝜃2̂ − 𝜃2| 0.0434 0.0472 0.0290 0.0262 

|𝜃3̂ − 𝜃3| 0.0048 0.0063 0.0086 0.0040 

Continued on next page 
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Models Estimators 
𝑛𝑖𝑗 =15 𝑛𝑖𝑗 =50 

Jeffreys Uniform Jeffreys Uniform 
 

Gamma 

𝜃1̂ 0.4872 0.4872 0.6260 0.6260 

𝜃2̂ 0.3470 0.3470 0.2340 0.2340 

𝜃3̂ 0.1658 0.1658 0.1400 0.1400 

|𝜃1̂ − 𝜃1| 0.0128 0.0128 0.1260 0.1260 

|𝜃2̂ − 𝜃2| 0.0470 0.0470 0.0660 0.0660 

|𝜃3̂ − 𝜃3| 0.0342 0.0342 0.0600 0.0600 

Maxwell 

𝜃1̂ 0.4287 0.4287 0.6294 0.6294 

𝜃2̂ 0.3748 0.3748 0.2334 0.2334 

𝜃3̂ 0.1966 0.1966 0.1372 0.1372 

|𝜃1̂ − 𝜃1| 0.0713 0.0713 0.1294 0.1294 

|𝜃2̂ − 𝜃2| 0.0748 0.0748 0.0666 0.0666 

|𝜃3̂ − 𝜃3| 0.0034 0.0034 0.0628 0.0628 

Rayleigh 

𝜃1̂ 0.3972 0.3962 0.4336 0.4332 

𝜃2̂ 0.3432 0.3442 0.3074 0.3076 

𝜃3̂ 0.2597 0.2596 0.2591 0.2592 

|𝜃1̂ − 𝜃1| 0.1028 0.1038 0.0664 0.0668 

|𝜃2̂ − 𝜃2| 0.0432 0.0442 0.0074 0.0076 

|𝜃3̂ − 𝜃3| 0.0597 0.0596 0.0591 0.0592 

Weibull 

𝜃1̂ 0.3756 0.3761 0.3992 0.3996 

𝜃2̂ 0.3411 0.3417 0.3174 0.3176 

𝜃3̂ 0.2834 0.2822 0.2834 0.2829 

|𝜃1̂ − 𝜃1| 0.1244 0.1239 0.1008 0.1004 

|𝜃2̂ − 𝜃2| 0.0411 0.0417 0.0174 0.0176 

|𝜃3̂ − 𝜃3| 0.0834 0.0822 0.0834 0.0829 

3.3. Estimation of preference probabilities  

The estimated preference probabilities highlighting the degree of prevailed utility of competing 

objects are compiled in Table 5. The estimates verify the preference norms established through the 

observed magnitude of the worth parameters. It is witnessed without exception that object 1 coined 

with the worth value of 𝜃1 = 0.5, is overwhelmingly preferred over the objects characterized with 

𝜃2 = 0.3 and 𝜃3 = 0.2. Similarly, the second item nominated with 𝜃2 = 0.3 worth of the parameter 

value is preferred over the third available option. Also, the extent of preferences can be seen 

consistent with the magnitude of worth parameters. The larger the difference in the associated worth 

(utility) of the objects, the clearer will be the choices. Moreover, these realizations are seen 

regardless of the priors and sample sizes. It is to be noted, that all the findings verify that our 

proposed scheme successfully maintain the common rationale underlying the PC methods along with 

offering a general device capable of generating various PC models through the exponential family 

of distributions. 
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Table 5. The estimates of preference probabilities. 

 

Models 

 

Preferences 

𝑛𝑖𝑗 =15 𝑛𝑖𝑗 =50 

Jeffreys Uniform Jeffreys Uniform 

 

Beta 

𝑝12̂ 0.5636 0.5636 0.6603 0.6603 

𝑝13̂ 0.6858 0.6858 0.7311 0.7311 

𝑝23̂ 0.6281 0.6281 0.5829 0.5829 

Exponential 

𝑝12̂ 0.5734 0.5626 0.6649 0.6595 

𝑝13̂ 0.7028 0.6840 0.7374 0.7301 

𝑝23̂ 0.6376 0.6273 0.5861 0.5828 

Power 

𝑝12̂ 0.5734 0.5626 0.6649 0.6595 

𝑝13̂ 0.7028 0.6840 0.7374 0.7301 

𝑝23̂ 0.6376 0.6273 0.5861 0.5828 

 

Gamma 

𝑝12̂ 0.5535 0.5535 0.6504 0.6504 

𝑝13̂ 0.6635 0.6635 0.7185 0.7185 

𝑝23̂ 0.6147 0.6147 0.5806 0.5806 

 

Maxwell 

𝑝12̂ 0.5849 0.5849 0.9313 0.9313 

𝑝13̂ 0.8837 0.8837 0.9838 0.9838 

𝑝23̂ 0.8414 0.8414 0.7970 0.7970 

 

Rayleigh 

𝑝12̂ 0.5725 0.5699 0.6655 0.6648 

𝑝13̂ 0.7005 0.6996 0.7369 0.7364 

𝑝23̂ 0.6359 0.6374 0.5846 0.5848 

 

Weibull 

𝑝12̂ 0.5718 0.5714 0.6655 0.6657 

𝑝13̂ 0.6995 0.7030 0.7365 0.7381 

𝑝23̂ 0.6355 0.6397 0.5842 0.5859 

3.4. Inferential aspects 

This sub-section is dedicated to delineate the attainment of rational decision making through 

inferentially workable scheme by the launch of sound utility theory. We proceed by drawing conjoint 

posterior samples of worth parameters, that is 𝜃𝑖′𝑠  and 𝜃𝑗′𝑠 , using Eqs (5) and (7). The exercise is 

conducted under both priors, both samples and with respect to all sub-cases. Table 6 reports the respective 

hypothesis and their posterior probabilities. Furthermore, the extent of the significance of the dis-agreement 

between the worth parameters is quantified through the Bayes factor (BF). We decide between the 

hypothesis, 𝐻𝑖𝑗: 𝜃𝑖 ≥ 𝜃𝑗  vs 𝐻𝑗𝑖: 𝜃𝑖 < 𝜃𝑗  by calculating the posterior probabilities, such as: 

pij = ∫ ∫ p(ζ, η|ω)
(1+ζ) 2⁄

η=ζ
dηdζ

1

ζ=0
, 

where, posterior probability of 𝐻𝑗𝑖  will be 𝑝𝑗𝑖 = 1 − 𝑝𝑖𝑗 . Moreover, 𝜂  represents worth parameter, 

such as 𝜃𝑖 and 𝜁 denotes the difference of utility associated with comparative strategies, such as, 𝜁 =
𝜃𝑖 − 𝜃𝑗 . The BF is then remains quantifiable as a ratio of the above given posterior probabilities that 

is, 𝐵𝐹 = 𝑝𝑖𝑗 𝑝𝑗𝑖⁄  through well known criteria highlighting the degree of dis-agreement between 

hypotheses as: 

𝐵𝐹 ≥ 1,      support 𝐻𝑖𝑗 

10−0.5 ≤ 𝐵𝐹 ≤ 1,         minimal evidence against 𝐻𝑖𝑗 



3094 

AIMS Mathematics  Volume 8, Issue 2, 3083–3100. 

10−1 ≤ 𝐵𝐹 ≤ 10−0.5,    substantial evidence against 𝐻𝑖𝑗 

10−2 ≤ 𝐵𝐹 ≤ 10−1,             strong evidence against 𝐻𝑖𝑗 

𝐵𝐹 ≤ 10−2,           decisive evidence against 𝐻𝑖𝑗. 

Through Table 6, we observe that, the pre-fix preference ordering, that is 𝜃1 > 𝜃2 > 𝜃3, remains 

maintained with overwhelming statistical evidences. This outcome is vividly observable through the 

table, regardless of priors and for both sample sizes with respect to all sub-cases. Moreover, as the 

mutual difference of the worth parameters increases, the evidence of choice ordering moves from being 

substantial to decisive. These findings are consistent with usual PC theory and thus validate the 

legitimacy of the proposed strategy. 

Table 6. Posterior probabilities of hypotheses and associated Bayes factor. 

 

Models 

 

Hypotheses 

𝑛𝑖𝑗 =15 𝑛𝑖𝑗 =50 

Jeffreys Uniform Jeffreys Uniform 

𝑃𝑖𝑗 BF 𝑃𝑖𝑗 BF 𝑃𝑖𝑗 BF 𝑃𝑖𝑗 BF 

 

Beta 

𝐻12: 𝜃1 ≥ 𝜃2 0.7331 2.7467 0.7234 2.6153 0.9975 399.0000 0.9971 343.8276 

𝐻13: 𝜃1 ≥ 𝜃3 0.9696 31.8947 0.9671 29.3951 0.9999 9999.0000 0.9999 9999.0000 

𝐻23: 𝜃2 ≥ 𝜃3 0.8958 8.5969 0.8882 7.9445 0.9209 11.6422 0.9082 9.8932 

Exponential 

𝐻12: 𝜃1 ≥ 𝜃2 0.7320 2.7313 0.7228 2.6075 0.9975 399.0000 0.9971 343.8276 

𝐻13: 𝜃1 ≥ 𝜃3 0.9691 31.3625 0.9666 28.9401 0.9999 9999.0000 0.9999 9999.0000 

𝐻23: 𝜃2 ≥ 𝜃3 0.8954 8.5602 0.8879 7.9206 0.9207 11.6103 0.9081 9.8932 

Power 

𝐻12: 𝜃1 ≥ 𝜃2 0.7320 2.7313 0.7228 2.6075 0.9975 399.0000 0.9971 343.8276 

𝐻13: 𝜃1 ≥ 𝜃3 0.9691 31.3625 0.9666 28.9401 0.9999 9999.0000 0.9999 9999.0000 

𝐻23: 𝜃2 ≥ 𝜃3 0.8954 8.5602 0.8879 7.9206 0.9207 11.6103 0.9081 9.8932 

 

Gamma 

𝐻12: 𝜃1 ≥ 𝜃2 0.7218 2.5945 0.7156 2.5162 0.9968 311.5000 0.9965 284.7143 

𝐻13: 𝜃1 ≥ 𝜃3 0.9626 25.7380 0.9606 24.3807 0.9999 9999.0000 0.9999 9999.0000 

𝐻23: 𝜃2 ≥ 𝜃3 0.8876 7.8968 0.8816 7.4459 0.9175 11.1212 0.9066 9.7066 

 

Maxwell 

𝐻12: 𝜃1 ≥ 𝜃2 0.7379 2.8153 0.7135 2.4904 0.9977 433.7826 0.9967 302.0303 

𝐻13: 𝜃1 ≥ 𝜃3 0.9730 36.0370 0.9676 29.8642 0.9999 9999.0000 0.9999 9999.0000 

𝐻23: 𝜃2 ≥ 𝜃3 0.9008 9.0806 0.8852 7.7108 0.9217 11.7714 0.8961 8.6246 

 

Rayleigh 

𝐻12: 𝜃1 ≥ 𝜃2 0.7398 2.8432 0.7212 2.5868 0.9977 433.7826 0.9969 321.5806 

𝐻13: 𝜃1 ≥ 𝜃3 0.9730 36.0370 0.9688 31.0513 0.9999 9999.0000 0.9999 9999.0000 

𝐻23: 𝜃2 ≥ 𝜃3 0.9014 9.1420 0.8890 8.0090 0.9216 11.7551 0.9020 9.2041 

 

Weibull 

𝐻12: 𝜃1 ≥ 𝜃2 0.7405 2.8536 0.7118 2.4698 0.9977 433.7826 0.9964 276.7778 

𝐻13: 𝜃1 ≥ 𝜃3 0.9736 36.8788 0.9674 29.6748 0.9999 9999.0000 0.9999 9999.0000 

𝐻23: 𝜃2 ≥ 𝜃3 0.9023 9.2354 0.8843 7.6430 0.9211 11.6743 0.8912 8.1912 

4. Empirical Evaluation: An application to water brand preference data 

The applicability of the proposed generalization is demonstrated by using the water brand 

preference data gathered through a balance paired comparison (PC) experiment. Thirty-five 

households of Islamabad were requested to report their preferences for drinking water while the pair-
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wise comparing three of leading brands of Pakistan that is, Aquafina (AQ), Nestle (NT) and Kinley 

(KL). Table 7 comprehends the reported choice data of the respondents. An initial analysis reveals that, 

when comparing AQ and NT, 40% of the respondents reported AQ as their preferred brand, whereas 

60% chose NT over AQ. Further, around 63% of the participants preferred AQ brand over KL brand, 

where remaining 37% were of the favor of KL. Lastly, in comparison of NT and KL, almost 57% 

contestants favored NT, while 43% participants stayed with KL. Figure 2 depicts the choice data. 

Table 7. Drinking water brand preference data. 

Pairs 𝑟𝑖𝑗  𝑟𝑗𝑖  𝑛𝑖𝑗 

(𝐴𝑄, 𝑁𝑇 = 1,2) 14 (40%) 21 (60%) 35 
(𝐴𝑄, 𝐾𝐿 = 1,3) 22 (62.8%) 13 (37.1%) 35 

(𝑁𝑇, 𝐾𝐿 = 2,3) 20 (57.1%) 15 (42.8%) 35 

 

Figure 2. Graphical display of the choices of drinking water brands data. 

Next, the estimation of worth parameters deriving the utility of competing brands as latent 

phenomena is persuaded while considering all sub-cases of the devised generalization and both prior 

distributions. The results related to estimated worth parameters and resultant preference probabilities 

are comprehended in the Table 8. Most obviously, the empirical estimation of the proposed procedure 

stays consistent with the simulation evaluation. Firstly, regardless of the prior distributions, all 

members of the suggested scheme capably retain the preferences exhibited through the comparative 

data. The uncovered choice hierarchy is estimated such that, 𝜃𝑁𝑇 > 𝜃𝐴𝑄 > 𝜃𝐾𝐿 indicating Nestle as the 

most preferred brand followed by Aquafina which is then stayed preferable in comparison to Kinley. 

Secondly, all of the members showed an equally tendency of using prior information fetched from the 

considered prior distributions, however, intra-model variations exist. These delicacies are projected in 
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the resulting estimated preference probabilities compiled in the Table 9. One may notice the vivid 

functional dependency of the preference ordering over the associated worth parameter. As the utility 

of the object enhances so is the extent of preference increase. The Bayes factors provided in table 10 

also reveal the same trends. As the utility associated with water brands vary, so does the evidence of 

likely preference. For example, there is substantial evidence in the favor of NT as compared to AQ but 

this evidence turns to be decisive when NT is compared with KL. These variations are in fact the 

projection of varying degrees of comparative utility prevalent in the choices of the respondents. 

Table 8. Estimated values of worth parameters. 

Models Estimated Parameters Jeffreys Uniform 

Beta 

𝜃̂𝐴𝑄 0.3398 0.3398 

𝜃̂𝑁𝑇 0.4057 0.4057 

𝜃̂𝐾𝐿 0.2544 0.2544 

Exponential 

𝜃̂𝐴𝑄 0.3414 0.3396 

𝜃̂𝑁𝑇 0.4108 0.4091 

𝜃̂𝐾𝐿 0.2478 0.2514 

Power 

𝜃̂𝐴𝑄 0.3414 0.3396 

𝜃̂𝑁𝑇 0.4108 0.4091 

𝜃̂𝐾𝐿 0.2478 0.2514 

Gamma 

𝜃̂𝐴𝑄 0.3388 0.3388 

𝜃̂𝑁𝑇 0.4455 0.4455 

𝜃̂𝐾𝐿 0.2157 0.2157 

Maxwell 

𝜃̂𝐴𝑄 0.3520 0.3520 

𝜃̂𝑁𝑇 0.4137 0.4137 

𝜃̂𝐾𝐿 0.2343 0.2343 

Rayleigh 

𝜃̂𝐴𝑄 0.3384 0.3381 

𝜃̂𝑁𝑇 0.3723 0.3726 

𝜃̂𝐾𝐿 0.2892 0.2893 

Weibull 

𝜃̂𝐴𝑄 0.3370 0.3369 

𝜃̂𝑁𝑇 0.3593 0.3597 

𝜃̂𝐾𝐿 0.3037 0.3034 

Table 9. Estimated preference probabilities.  

Models Preference probabilities Jeffreys Uniform 

Beta 

𝑝̂𝐴𝑄,𝑁𝑇 0.4533 0.4533 

𝑝̂𝐴𝑄,𝐾𝐿 0.5749 0.5749 

𝑝̂𝑁𝑇,𝐾𝐿 0.6200 0.6200 

Exponential 

𝑝̂𝐴𝑄,𝑁𝑇 0.4539 0.4536 

𝑝̂𝐴𝑄,𝐾𝐿 0.5794 0.5746 

𝑝̂𝑁𝑇,𝐾𝐿 0.6237 0.6194 

Power 

𝑝̂𝐴𝑄,𝑁𝑇 0.4539 0.4536 

𝑝̂𝐴𝑄,𝐾𝐿 0.5794 0.5746 

𝑝̂𝑁𝑇,𝐾𝐿 0.6237 0.6194 

Continued on next page 
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Models Preference probabilities Jeffreys Uniform 

Gamma 

𝑝̂𝐴𝑄,𝑁𝑇 0.4564 0.4564 

𝑝̂𝐴𝑄,𝐾𝐿 0.5710 0.5710 

𝑝̂𝑁𝑇,𝐾𝐿 0.6127 0.6127 

Maxwell 

𝑝̂𝐴𝑄,𝑁𝑇 0.3987 0.3987 

𝑝̂𝐴𝑄,𝐾𝐿 0.7395 0.7395 

𝑝̂𝑁𝑇,𝐾𝐿 0.8124 0.8124 

Rayleigh 

𝑝̂𝐴𝑄,𝑁𝑇 0.4524 0.4516 

𝑝̂𝐴𝑄,𝐾𝐿 0.5779 0.5773 

𝑝̂𝑁𝑇,𝐾𝐿 0.6237 0.6239 

Weibull 

𝑝̂𝐴𝑄,𝑁𝑇 0.4521 0.4510 

𝑝̂𝐴𝑄,𝐾𝐿 0.5774 0.5779 

𝑝̂𝑁𝑇,𝐾𝐿 0.6235 0.6250 

Table 10. Posterior probabilities of hypotheses and associated Bayes factor.  

 

Models 

 

Hypotheses 

𝑛𝑖𝑗 = 35 

Jeffreys Uniform 

𝑃𝑖𝑗 BF 𝑃𝑖𝑗 BF 

 

Beta 

𝐻12: 𝜃𝐴𝑄 ≥ 𝜃𝑁𝑇 0.2297 0.2982 0.2297 0.2982 

𝐻13: 𝜃𝐴𝑄 ≥ 𝜃𝐾𝐿 0.8505 5.6890 0.8505 5.6890 

𝐻23: 𝜃𝑁𝑇 ≥ 𝜃𝐾𝐿  0.9580 22.8095 0.9580 22.8095 

Exponential 

𝐻12: 𝜃𝐴𝑄 ≥ 𝜃𝑁𝑇 0.2311 0.3006 0.2236 0.2880 

𝐻13: 𝜃𝐴𝑄 ≥ 𝜃𝐾𝐿 0.8506 5.6934 0.8434 5.3857 

𝐻23: 𝜃𝑁𝑇 ≥ 𝜃𝐾𝐿  0.9579 22.7530 0.9554 21.4215 

Power 

𝐻12: 𝜃𝐴𝑄 ≥ 𝜃𝑁𝑇 0.2311 0.3006 0.2236 0.2880 

𝐻13: 𝜃𝐴𝑄 ≥ 𝜃𝐾𝐿 0.8506 5.6934 0.8434 5.3857 

𝐻23: 𝜃𝑁𝑇 ≥ 𝜃𝐾𝐿  0.9579 22.7530 0.9554 21.4215 

 

Gamma 

𝐻12: 𝜃𝐴𝑄 ≥ 𝜃𝑁𝑇 0.2417 0.3187 0.2417 0.3187 

𝐻13: 𝜃𝐴𝑄 ≥ 𝜃𝐾𝐿 0.8508 5.7024 0.8508 5.7024 

𝐻23: 𝜃𝑁𝑇 ≥ 𝜃𝐾𝐿  0.9561 21.7790 0.9561 21.7790 

 

Maxwell 

𝐻12: 𝜃𝐴𝑄 ≥ 𝜃𝑁𝑇 0.2035 0.2555 0.2035 0.2555 

𝐻13: 𝜃𝐴𝑄 ≥ 𝜃𝐾𝐿 0.8349 5.0569 0.8349 5.0569 

𝐻23: 𝜃𝑁𝑇 ≥ 𝜃𝐾𝐿  0.9530 20.2766 0.9530 20.2766 

 

Rayleigh 

𝐻12: 𝜃𝐴𝑄 ≥ 𝜃𝑁𝑇 0.2088 0.2639 0.2118 0.2687 

𝐻13: 𝜃𝐴𝑄 ≥ 𝜃𝐾𝐿 0.8393 5.2228 0.8420 5.3291 

𝐻23: 𝜃𝑁𝑇 ≥ 𝜃𝐾𝐿  0.9546 21.0264 0.9556 21.5225 

 

Weibull 

𝐻12: 𝜃𝐴𝑄 ≥ 𝜃𝑁𝑇 0.1912 0.2364 0.1956 0.2432 

𝐻13: 𝜃𝐴𝑄 ≥ 𝜃𝐾𝐿 0.8260 4.7471 0.8301 4.8858 

𝐻23: 𝜃𝑁𝑇 ≥ 𝜃𝐾𝐿  0.9497 18.8807 0.9512 14.9.4918 

5. Conclusions 

This research elucidates the proposition of a generalized framework to assist rational decision-

making while dealing with binary choices. The objectives are achieved by devising a general paired 

comparison modeling scheme by employing an exponential family of distributions. The 

methodological environment is enriched by illuminating various parametric settings such as sample 

size and prior distributions. Through tiresome evaluation operations, it is delineated that the suggested 
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model is not capable of retaining the preference hierarchy exhibited through the observed data but also 

treats seven mainstream paired comparison models as sub-cases. It is estimated that the members of 

the proposed family robustly use the prior information when offered non-informative priors such as 

Jeffery’s prior and Uniform prior. However, the deducted sub-cases reveal a varying degree of 

estimating accuracy. Also, the suggested generalized scheme capably elaborates the choice hierarchy 

among the competing objects as a function of associated utility. This realization is in fact consistent 

with the theoretical understanding of rational decision-making. Moreover, the inferential aspects of 

the model are explored in depth through the launch of the Bayesian approach. The outcomes of the 

investigation demonstrate with clarity that as the utility of rival objects distinguishes the statistical 

evidence establishing the choice ranking varies accordingly. These mentioned realizations are in 

support of the fondness for professional and commercial research circles exploring capable 

mechanisms assisting optimal decision-making by defining sound interlinks between utility theory and 

its inferential dynamics. Thus, it remains deducible that the study encapsulating various choice 

behaviors and associated utility functional in accordance with choice axioms, is worth pursuing. The 

estimating hierarchy of the contemporary sub-cases of the newly devised family is observed such that, 

𝐺𝑎𝑚𝑚𝑎 > 𝐸𝑥𝑝𝑜𝑛𝑛𝑡𝑖𝑎𝑙 = 𝑃𝑜𝑤𝑒𝑟 > 𝐵𝑒𝑡𝑎 > 𝑀𝑎𝑥𝑤𝑒𝑙𝑙 > 𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ > 𝑊𝑒𝑖𝑏𝑢𝑙𝑙. 

At this stage, it is appropriate to mention that this article demonstrates the utility of non-

informative priors for the estimation of the worth parameters and directed preferences. In the future, it 

will be interesting to compare the dynamic behaviors of the devised family while using informative 

priors as well. Also, it is well known that the self-reported choice data remains vulnerable to the 

contaminations such as desirability bias, order effects and time-varying subtleties. A more 

comprehensive framework capable of handling these complexities is an attractive research pursuit. 
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