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Abstract: The paper studies the global dynamics and probability density function for a class of
stochastic SVI epidemic models with white noise, Lévy jumps and nonlinear incidence. The stability
of disease-free and endemic equilibria for the corresponding deterministic model is first obtained. The
threshold criteria on the stochastic extinction, persistence and stationary distribution are established.
That is, the disease is extinct with probability one if the threshold value Rj < 1, and the disease is
persistent in the mean and any positive solution is ergodic and has a unique stationary distribution
if R} > 1. Furthermore, the approximate expression of the log-normal probability density function
around the quasi-endemic equilibrium of the stochastic model is calculated. A new technique for
the calculation of the probability density function is proposed. Lastly, the numerical examples and
simulations are presented to verify the main results.
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1. Introduction

As is well known, in real life, there are many infectious diseases that seriously threaten human
health. Especially, in recent decades, the repeated epidemic of infectious diseases has brought great
disasters to human survival and the national economy and people’s livelihood.

It has been confirmed that vaccination is one of the most practical and efficient strategies to
prevent and control the spread of many diseases, such as measles, pertussis, influenza, Hepatitis B
virus (HBV) and human tuberculosis (TB) (see [1-4]). The spectacular successful cases were seen
to be the eradication of small-pox in 1977 [5], the control of poliomyelitis and measles throughout
Central and South America [6,7], and in the United Kingdom the vaccination campaign against measles
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in 1994 [8]. In order to analyze the dynamical properties of vaccination, in recent years various types
of epidemic dynamical models with vaccination are established and investigated widely (see [9—15]
and the references cited therein).

On the other hand, to the best of our knowledge, in modeling the dynamics of epidemic systems the
incidence rate is an important substance. In many practicalities, such as media reports, vaccination,
quarantine, catch and kill, protection, and population density, which may directly or indirectly influence
the incidence rate. At this time, the nonlinear incidence, such as the saturated incidence ff Cf[,
Beddington-DeAngelis incidence ; +f) gial, nonlinear incidences SS g(I) and Bf(S, I), is more realistic
and achieving more exact results (see [15—23]and the references cited therein).

Motivated by the previous works, this paper describes the effects of vaccination prevention strategies
for the newly susceptible individuals and the vaccinated can also be affected under the nonlinear
incidence of disease, we propose the following deterministic Susceptible-Vaccinated-Infected (SVI)
epidemic model with nonlinear incidence:

dS (@) =[(1 =mA = uS (1) = BpS O fU(®))] dt,
dV(t) =[rA = uV(0) - B, V(DgU(1)] dr, (1.1)
dI(1) = [BpS O fU®) + B, V(DU (1) — (u + 0)I(1)] d,

where the definitions of all state variables, parameters and functions in model (1.1) are listed in
Tables 1-3. It will be seen below that the basic reproduction number R, of the model (1.1) depends
directly on the vaccination rate and nonlinear incidence, and that the main dynamical properties of the
model, such as the stability of equilibria, the extinction and persistence of the disease, etc., are fully
determined by Ry.

Table 1. The definitions of state variables in model (1.1).

State variable Definition

S() population density of susceptible individuals at time ¢
V(1) population density of vaccinated individuals at time ¢
I(1) population density of infected individuals at time ¢

Table 2. The definitions of parameters in model (1.1).

Parameter Definition

A the recruitment rate of susceptible individuals

B the transmission rate between susceptible and infected
o the transmission rate between vaccinated and infected
u the natural death rate of total population

m the prevalence rate of the vaccination program

0 the death rate due to the disease of infected
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Table 3. The definitions of functions in model (1.1).

Function Definition
f) feCYR,), f(0)=0, f/(I) >0and f(I) < f/(O) forall I >0
gD g€ CY(R,), g(0)=0,g ) >0and g(I) < g (0) forall I >0

However, the results of studies over the past few years have shown that birth and death rates are
more or less influenced by random white noise during disease transmission. As a result, a growing
number of authors have studied the associated stochastic epidemic models (see [13,22-31] and the
references cited therein). The main research subjects include the global existence of a positive
solution with any positive initial value in probability, the persistence and extinction of the disease in
probability, the asymptotical behaviors in probability around the disease-free and endemic equilibria of
the corresponding deterministic models, the existence of stationary distribution as well as ergodicity,
the expressions of probability density functions, etc. Especially, in articles [13, 18,31] the stochastic
epidemic models with vaccination are proposed and studied.

From the perspective of epidemiology, the existence and ergodicity of stationary distribution
indicates that an infectious disease will prevail and persist for a long time. More importantly, the
corresponding probability density function of the stationary distribution can reflect all statistical
properties of different compartment individuals. It can be regarded as a great intersection of
epidemiological dynamics and statistics. We see that recently the probability density functions for
stochastic epidemic models are studied in articles [25,29-31] by solving the corresponding algebraic
equations which are equivalent to the Fokker-Planck equation. It should be pointed out that until now
there are still relatively few works devoted to the expressions of probability density functions due to
the difficulty of solving the corresponding Fokker-Planck equation.

It is a pity that the stochastic model with only white noise cannot reasonably describe some
random disturbance in the actual environment, such as the outbreak of bird flu and SARS, earthquakes,
hurricanes, floods, discharge of toxic pollutants, etc., this is because these processes are discontinuous.
In order to accurately describe these phenomena, it is a feasible and more realistic method to introduce
the Lévy jumps noise to the original basic dynamical model. We see that a lot of research has been
done to direct at the epidemic models with Lévy jumps noise (see [32—41] and the references cited
therein). Particularly, in articles [34,41], the stochastic epidemic models with vaccination and Lévy
jumps are proposed and studied. It was shown that the white noises and Lévy jumps could make the
stationary distribution vanish as well as appear.

Motivated by the above works, in order to describe the effects of Lévy jumps in the transmission
of disease under the vaccination prevention strategies, on the basis of model (1.1), in this paper we
propose the following stochastic SVI models with white noise, Lévy jumps and nonlinear incidence:

dS () =[(1 =mA = uS (1) = BpS (O fU )] di + o1 S (NdB, (1) + f m W) ((—)W(dt, du),
V4

dV() =[rA — pV () - B, V(g ®)] di + o2 V(D)dBy (1) + fﬂz(u)V(t—)W(dt, du),
V4

dl(t) =[BpS (O fU(®) + B, V()gU (1)) — (u + O)I(1)] dt + o31()dBs(1) + fnz(u)l(t—)ﬁ’(dt, du).
Z
(1.2)
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In this paper, we always assume that model (1.2) is defined on a complete probability space
(Q,{F }i50, P) with a filtration {F }»( satisfying the usual conditions (that is to say, it is increasing
and right continuous while ¥, contains all P-null sets). In model (1.2), Bi(t) (i = 1,2,3) are
standard Brownian motion, o; (i = 1,2,3) are the intensities of B;(t); W(t, u) is the compensated
Poisson random measure with characteristic measure v on Z, where Z is a measurable subset of
(0, +00) with the measure v(Z) < oo. V~V(t, u) = W(t,u) — tv(u), and W(t,u) is a Poisson counting
measure with characteristic measure v which is defined on Z and often used to describe jumps process.
ni(u) (i = 1,2,3) are the density of jumps process defined for all u € Z. S(t—), V(¢—) and I(t—) are the
left limit of S'(¢), V(¢) and I(¢), respectively.

For the jumps process in model (1.2), we always require the following assumptions (see [39]):

(H1) 7;(u) is continuous function for u € Z, and fz nl.z(u)v(du) <oo0,i=1,2,3.

(H2) 1 + n;(u) > O forall u € Z, and fz[n[(u) —In(1 + n;(w)v(du) < o0, i =1,2,3.

The main purpose in this paper is to investigate the stochastic dynamics of model (1.2) including
the stochastic extinction and persistence of disease, the existence of ergodic stationary distribution
and expressions of probability density functions, which are corresponding to the global stability of
disease-free and endemic equilibria and the uniform persistence of positive solutions for corresponding
deterministic model (1.1). The main contribution and innovations are summarized as follows:

(1) The basic reproduction number R, of deterministic model (1.1) is calculated, which depends
directly on the vaccination and nonlinear incidence. The stability of disease-free and endemic
equilibria is fully determined by Ry.

(2) The threshold value R; of stochastic model (1.2) is defined which depends on the white noise,
Lévy jumps, vaccination and nonlinear incidence. The threshold criteria for the stochastic extinction
and persistence in the mean of the disease are established.

(3) The existence and ergodicity of stationary distribution for model (1.2) are obtained by
constructing a suitable Lyapunov function, and it is determined by threshold value R;.

(4) The expression of a log-normal density function around the quasi-endemic equilibrium of
stochastic model is calculated, and a new technique for the calculation of probability density function
is proposed.

The rest of this article is organized as follows. In Section 2, the dynamical behavior for model (1.1)
is discussed. In Sections 3 and 4, we investigate the stochastic extinction and persistence in the mean
of the disease, and the existence of stationary distribution for model (1.2), respectively. In Section 5,
the criterion on the existence of log-normal probability density function of model (1.2) is established,
here we will adopt a new technique for the calculation of density function. Furthermore, in Section 6,
we present the numerical simulations to support the main results obtained in this paper. Lastly, in
Section 7, we give a brief conclusion.

2. Stability in deterministic model (1.1)

The initial condition of any solution for model (1.1) is given by
S©)=80>0, V(0) =V, >0, 1(0) = [y > 0.

Based on the fundamental theory of ordinary differential equations, it is easy to get that the unique
nonnegative solution (S (¢), V (), I(¢)) for any initial value (S, Vo, Iy) € R? model (1.1) is defined for
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all # > 0. Moreover, in the light of model (1.1) we have
dS +V+D=[A—ulS +V+1D-0o6lldt <[A—ulS +V+1)]dt

This implies lim sup, (S + V +I) < &, and the set

A
nm={sS,v.H:$>0,v>0,1>0,S+V+I1<—}
J7
is a positive invariant set of model (1.1). This shows that, without loss of generality, we only need to
consider the solutions of model (1.1) in the region II.

Model (1.1) always has a unique disease-free equilibrium Py = (Sg, Vo,0) with Sy =

U=mA and
u

Vo = % By using the next generation matrix method we can obtain that the basic reproduction
number of model (1.1) is

"(0)So + B,g’ (0)V,
RO:’Bbf()O ,38()0‘ 2.0
u+0o
When R, > 1, we can easily obtain that model (1.1) has a unique endemic equilibrium P* = (§*, V*, I*)
with §* = ﬂilﬁ_b’})(’;*), * = " +ﬁ”§( 7 and I* is the unique positive solution of the equation

(A -mAB U  mAB)
Fu+BpfI7)  I'(p+BgI")

Furthermore, we can build the following result.

—(u+0)=0.

Theorem 2.1. For model (1.1), the following conclusions hold.
(i) If Ry < 1, then disease-free equilibrium P is globally asymptotically stable.
(ii) If Ry > 1, then Py is unstable and endemic equilibrium P* is locally asymptotically stable.

Proof. (i) In view of model (1.1), we have dS < [(1 — m1)A — uS]dt and dV < [xA — uV]dt, which

implies that limsup, , S < @ := S and limsup,_,, V < ’L—A := V4. Choose a Lyapunov function

U(t) = 1I7(1), then when Ry < 1 we have

d_U :]2[

PSS . BVeld)
dt

; 1 — U+ O] < Pu+6)Ry-1)<0

for any (S,V,I) € II. Furthermore, we easily prove that the maximal invariant set in {(S,V,]) €
IT : % = 0} is equilibrium Py. Therefore, by the LaSalle’s invariant principle, P, is globally
asymptotically stable.

(i1) Calculating the Jacobi matrix of model (1.1) at equilibrium P, implies the characteristic
equation: (A + u)*(A — (u + 6)(Ry — 1)) = 0. When R, > 1, it is clear that J(P,) has an eigenvalue
A= (u+0)Ry— 1) > 0. Hence, Py is unstable.

The Jacobi matrix of model (1.1) at equilibrium P* is

- 9 —l:13
J(P*) = 0 =y =bs |,
Lyl =l
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where [i1 = p+ B f(I"), i3 = BuS” f/U"), bo = i+ Bug ("), by = BV°g' (), Iy = Bof "), b2 = Bug(I")
and l33 = —-B,S*f/(I")- B Vg I")+ (u+0) > —ﬁbslf(’ ) _ ﬁ"vlf(’ ) (u+0) = 0. By directly calculating,
we can obtain the characteristic equation of J(P*)

¢ =+ L+ D+ 1 =0,

YVhAerf Iy =1y + Dy + 53 > 0,0 = I (I + I33) + Dolss + balsy + Lislsy > 0 and Iy = 1y (Dolas + Doslsy) +
113122131 > 0. Since

Ll =Ty = (I + L)l (D + Dy + T33) + Dolss + Dalso] + (4 + B3)lislsy > 0,

owing to the Routh-Hurwitz criterion, we can obtain that P* is locally asymptotically stable. This
completes the proof. O

Remark 2.1. The conclusion (i) of Theorem 2.1 shows that the disease in model (1.1) is extinct.
Furthermore, from conclusion (ii) of Theorem 2.1 and by using the persistence theory of dynamical
systems we can easily prove that when Ry > 1 the disease in model (1.1) is uniformly persistent, that
is, there is a constant m > 0 such that for any positive solution (S (t), V(t), I(t)) of model (1.1), one has
liminf, (S (?), V(2), I(t)) > (m,m,m). However, it is regrettable that when Ry > 1 we can not get the
global stability of P*. Therefore, this will be an interesting open problem.

3. Extinction and persistence in the mean

Firstly, as the based properties of solutions for model (1.2), we introduce the following lemmas.

Lemma 3.1. For any initial value (S(0),V(0),1(0)) € R3, model (1.2) has a unique solution
(S (), V() (1)) defined for all t > 0, and this solution remains in Ri with probability one.

The proof of this lemma is similar to that given in [37], we here omit it.

Lemma 3.2. For any initial value (S (0), V(0), 1(0)) € Ri, then solution (S (t), V(¢), 1(t)) of model (1.2)
satisfies

1 1 1
lim —InS(¢) <0, lim " In/(t) <0, lim " InV() <0a.s.,
t—00 t—00

t—oo f

1 3.1
lim ;(S O+V@®+11)=0a.s..
— o0
Moreover; if u > 1 (of Vo3V 0'%) we obtain
1 !
lim n xi(n)dBi(t) =0a.s., i =1,2,3,
t—o00
o (3.2)
1 —
lim f f ni(w)xi(s—)W(ds,du) = 0 a.s., i =1,2,3,
=l Jo Jz

where x1(t) = S (1), x2(t) = V(t) and x3(t) = 1(¢).
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The proof of Lemma 3.2 is similar to that given in [37], we hence omit it here.
In this section, we mainly discuss the extinction and persistence in mean of the disease in
model (1.2). Firstly, define a threshold value as follows:

PR [a—nwu%m4/wgﬂ»} 53
M3+ H M
where 13 =+ 5 + [ (3(u) — In[ 1 + 750 T)v(dw).
For the following stochastic system:
dS =[(1 — m)A — uS1dt + o SdB (1) + fm(u)S (s—)ﬁ/(ds, du),
‘ (3.4)

dV =[x — uVdt + o, VdB,(t) + fnz(u)V(s—)W(ds, du),

z
with the initial values S(0) = S(0) > 0 and V(0) = V(0) > 0, owing to the stochastic comparison
theorem, we have

SH<S@®, Vi) < V(@) a.s., (3.5)
where (S (1), V(¢), 1(1)) is the solution of model (1.2) with initial value (S (0), V(0), 1(0)). Moreover, by
integrating (3.4) we easily obtain that

1 [ 1-mA
lim 2 [ §(sas = LZ0A
0

t—oo

1 [ A
lim - f Visyds = 22 as. . (3.6)
0 H

t—oo
Now, we can establish the following main conclusions in this section.

Theorem 3.1. Let (S(2),V(¢),I(t)) be any positive solution of system (1.2) with initial value
(5(0), V(0), 1(0)) € R3. Then the following conclusions hold.

() If RS < 1, then limsup,_ M0 < (u3 + 8)(RS = 1) < 0 a.s. That is, lime I(t) = 0 a.s.

0 P; i 0

Furthermore, lim,_, ., % fOtS(s)ds = % and lim,_,, % fot V(s)ds = % a.s.

@) If Ry > 1, then liminf,_,. % fot I(s)ds > %(,ug + 0OWR, — 1) as., where y =
,1T+5 [{u + Bo}f (0) + {u + B,}g’(0)] > 0. Furthermore, when 0 < < 1, then liminf,_,, % fotS(s)ds > 0,
and when 0 < < 1, then liminf,_, % fot V(s)ds > 0.

Proof. (i) Using Ito formula to In I(¢), we obtain

mww+mwm_( ﬂ)

dinl(n) == ; U+ 6+ 7* dt + o3dBs(1)

+ f [In(1 + 73)I — In I — p3]v(du)dt + f [In(1 + 13)I — In [IW(dt, du).
VA VA

Hence, we have

t 2
In1(7) =In 1(0) + f [ﬁ”sf(l) L BYED (,1 +6+ 5)] ds
o | 1 I 2
+ 0'3f dBs(s) + f f[ln(l +13) —In1 — n3]v(du) (3.7)
0 0 V4

+ f f [In(1 + 3)I — In YW(dt, du).
0 V4
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In the light of the strong law of large numbers [42], we have lim,_ % fot dB;(s) = 0 a.s. and
lim;_, % fot fZ[ln(l + n3)I(s) — In I(s)]ITV(ds, du) = 0 a.s. Divided by ¢ the both sides of (3.7), then
taking the superior limit and combining (3.6), we can obtain

Ini() . lft[ﬁbsf(l) BVg)
p- +
0

lim sup =lim su 7 7

s[(l - B f"(0) N nB,Ag'(0)
7 7
=(u3 +0)(Ry— 1) <0a.s..

It shows that lim,_,, I(#) = O a.s. Namely, the disease will be eliminated in the future. Furthermore,
when lim,_,, I(¢) = 0 a.s., we further obtain the limit system as follows:

2
]ds - (,1 L6+ % ; f[m ~In(1 + n3)]v(du))
Z

0.2
] - (ﬂ +0+ 73 + f[m —In(1 + m)]v(du))
V4

=[(1 —m)A —uSldt + 01SdB; (1) + fzm(u)S (s—)W(ds, du),
dV =[nA — uVdt + o, VdB, (1) + fz @)V (s=)W(ds, du).
Clearly, by integrating, as in (3 6), we can directly obtain
}Lrglo% S(sds = 4 ﬂ”)A lim i fo V(s)ds = % as..

(i7) Define function U, as follows:

Ui(S, V. 1) = —lnl—(f'(0)+g'(0))1—'BbJ;(O)(S +1) — ﬁvg( )(V +1).

Using Ito formula, we can obtain

2
L0y <5+ 2+ [ = InC1 s n0bid) - Buf O - B8OV
Z

1 —-mA A
— Bt (0) [( DA _ S] N ¥0) [”— - V]
7 2

5
—— [+ Bp)f'(0) + (u+B)g' (O] I
< —(uz + )R, — 1) + .

Therefore,

Bt (0) B oy

dU, <LU,dt — 03dB;(t) - ———=0,S dBs(t) —
i

|+ Bp)f(0) N (1 +,3v)g’(0)]
7 2
- f In(1 + m3(w)W(dt, du) — (f'(0) + £'(0)) f 13 () IW(dt, du) (3.8)
VA Z
ﬁbf "(0)

031dB;(1)

f (m@S +ns)W(dr, du)
_Bg (0)

f (12()V + n3(w)DW(dt, du).
V4
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Integrating both sides of (3.8) on interval [0, 7], and then divide by ¢, in the light of Lemma 3.2, we can
obtain liminf,_,, % fot I(s)ds > %(;13 + 0)(R; — 1) > 0 a.s. It shows that if R} > 1, then the disease will
persistence in the mean.

Let N(t) = S(t) + V(¢) + I(¢), then from model (1.2) and Lemma 3.1 we obtain

dN(t) =[A —u(S () + V() + I(t)) — 61(1))dt + H(1)
<[A — uN(t)]dt + H(¢),

where H(t) = Y1, [oix,()dBi(t) + [, ni(w)xi(t—)W(dt,du)], here we denote x,(t) = S(1), x2(t) = V(1)
and x;3(¢) = I(¢) for the convenience. By the comparison principle of stochastic differential equations,
we further obtain

N(t) < N(0)e™ + %(1 —e "™+ E@) a.s., (3.9
where

! 3
E(r) = f e N [ox(s)dBi(s) + f M) (s—)W(ds, du).
0 P z

Define X(r) = N(0) + A(t) — U(t) + E(t), where A(t) = %(1 —e ™y and U@) = NO)(1 — e™#).
From (3.9) we have N(r) < X(¢) for all + > 0. Obviously, X(#) > 0 a.s. for all + > 0, and A(¢) and
U(t) are continuous adapted increasing processes on ¢ > 0 with A(0) = U(0) = 0. Therefore, by
Theorem 3.9 in [42], we can obtain that lim,_,., X(f) < oo a.s. Consequently, lim sup,_, . N(#) < oo a.s.
Thus, there is a constant M, > 0, which is dependent on the solution (S (), V(¢), I(¢)), such that for all
t>0,

S <My, V(i) <My, I(t) < Mja.s. . (3.10)

When 0 < 7 < 1, from the first equation of model (1.2) and (3.10), we have

S-S0 1
¢ )

+1al f S(s)dBl(s)Jrl f f m1(w)S (s—)W(ds, du)
t 0 tJo Jz

j; [(1 =)A= uS(s) = BpS () f(I(s)))ds

1 !
>(1-mA - 7 f (e + By f (0)M)S (s)ds
0
1 d 1 (" —~
+ -0 f S(s)dB;(s) + —f fm(u)S(s—)W(ds, du).
! 0 tJo Jz
From Lemma 3.2 we finally obtain

1 (" 1 -m)A
liminf—f S(s)ds > # >0a.s..
t—oo )y M +ﬁbf'(O)MQ

When 0 < 7 < 1, a similar argument as in above, we can obtain

1 (" A
liminf—f V(s)ds > —————— > 0a.s..
=0 1 o M+ Bg’ (0)M,

This completes the proof. O
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Remark 3.1. When o; = 0 and n;(u) = 0 (i = 1,2, 3), we see that model (1.2) becomes into model (1.1),
and threshold value Ry reduces to the basic reproduction number Ry of model (1.1). Therefore, a
comparison of Theorem 3.1 with Theorem 2.1 and Remark 2.1 shows that the conclusions on the
extinction and persistence of the disease for model (1.1) is extended to the conclusions on the extinction
and persistence in the mean with probability one for model (1.2).

Remark 3.2. Regrettably, in conclusion (ii) of Theorem 3.1 we do not obtain a more strong conclusion
for S(t) and V(t) just as for I(t). That is, there is a common constant m > 0 such that for
any positive solution (S(t), V(t),1(t)) of model (1.2) one has liminf,_ % fOtS(s)ds > m a.s. or

liminf,_, % fot V(s)ds > m a.s. Here, we will leave this problem in the future study.
4. Stationary distribution

In this section, we discuss the ergodicity and the existence of stationary distribution in model (1.2).
We can directly establish the following result.

Theorem 4.1. Assume R > 1. Then any positive solution (S(1), V(1), (1)) of model (1.2) with initial
value (S (0), V(0), 1(0)) € Ri is ergodic and has a unique stationary distribution n(-).

Proof. Define function W : R? — R, as follows:
1
W(S,V,I) =QU; —InS —InV + 0+—1(S +V+D¥ = QU,+ U, + Us + Uy,

where U, is defined in the proof of conclusion (ii) of Theorem 3.1, Q > 0 is an enough large constant
which is determined below, 6 € (0, 1) is an enough small constant satisfying p = u—4(c3vo3vo3) > 0.
Additionally, U, = =InS, Us = —InV and Uy = 5=(S + V + D)’*'. For any integer k > 0, let set
Hi = (3,k) X (3,k) X (+,k) € R3. It is clear that

liminf W(S,V,I) = +oo.
(S,V,I)eR3 \ Hy

k—oo

Hence, function W(S, V, I) has a minimum point (S, Vp, Ip) in the interior of Ri. Then, we can define
the nonnegative function U : R? — R, as follows:

Ul, v, =W(S,V,I) = W(So, Vo, Ip).
In view of Ito formula, we have
LU=LW-= Q£U1+£U2+.£U3+.£U4. (41)

From the proof of conclusion (ii) of Theorem 3.1, we have obtained

LU < —(uz +0)(Ry — 1) + yl. 4.2)
Calculating LU,, LU3 and LU, respectively, we further obtain
1-mA f
LU, =- % +Bpf(D) + u+ % + f(m(u) — In[1 + i () v(du)
X z 4.3)
) Ty (1 -mA
<Bof (O +p + 5 f(m(u) — In[1 + (W) v(du) - —
V4
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A g

LUs = — TS +Bog(D) + f(nz(u) — In[1 + n(w))v(du)
V4

3 g A
<+ S+ Bog (0)] + f (m2(u) = In[1 + 2 (w)v(du) — T
A

and

4.4)

0
LU, =S +V+D[A-pulS +V+D) -6+ S +V+ DS + o3V + o3 1)

0
SAS +V+D —pS +V+D" + E(a% Vo3 Va3)S +V+ D)
<A-Ls+ven<a-LEt v,

where

1 0
A= sup {A(S +V+1) - Sl 5(0% VosVailS +V+ I+)9“} < 0.

(S,V.DeR3
Choose constant Q > 0 satisfying the following inequality:
2 52

2
—Q(/,t+6+%+f[n3—1n(1+773)]v(du))(R(S)—l)+A+2,u+%+72+
Z

+ f(m(u) — In[1 + (W) Dv(du) + f(ﬂz(u) —In[1 + @) Dv(du) + A < 2.
z V4

Then, from (4.1)—(4.6) we can obtain

LU < =2+[Qy + B (0) + Bog (O] — ———— — — — S (§H! 4yl 4 [0+,

(4.5)

(4.6)

4.7)

Now, we define the set H = {(S,V,]) : £ < § < é,§< V< é,f <I< é}, where & > 0 is an enough

small constant satisfying the following inequalities:

(1-mA _
'3

—2+B- -1,

-,
€
-2+ [Qy +Bpf'(0) + 8,8 (0)]¢ < —1,
0,1 641
-2+ B- Z(E) < 1,

where B = sup;cz ([Qy + B (0) + B8/ (O)11 = §1**'} < eo.
Divide the set H¢ into the following six domains:

H =((S,V,[)eR,,0<S <&, Hy={(S,V,)eR,0<V<ES > ¢,
1
H; ={(S,V,D eR,0< I <&V > ¢, H4:{(S,V,1)eRi,sZg},

1 1
Hs ={(S,V,[) e R}, V > E}’ Hg=1{(S,V,DeR, 1> E}.

(4.8)

4.9)
(4.10)

4.11)
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Now, we deduce LU(S,V,I) < —1 for any (S, V,I) € H in the following four cases.
Case 1. If (S, V,I) € H,, by (4.8), we can get

LU <2410y + B O +Bg Ol - 20wt - L0
(1- A (4.12)
<-2+4+B- -1.
£
Case 2. If (S, V,I) € Hy, by (4.9), we can get
LU <=2410y +Bf O+ B.g O - 2174 - T2
A 4.13)
<-24+4B-—— < -1.
£
Case 3. If (S, V,I) € Hs, by (4.10), we can get
LU <=2+[0y +Bof(0) + Bug (O < =2 + [Qy + Bof (0) + B,g (0)]€ < 1. (4.14)
Cased. If (S,V,I) € Hy U Hs U Hg, by (4.11), we can get
LU <=2+ [Qy +Bof (0 + g O = F1*! = £50+1 = Syt _ & o
4 4 4 4 .

© 1 6+1
<-2+B-=(- 1.
< + 4(6) <

In addition, for model (1.2) the diffusion matrix is A = diag(c3S?, 03V? 031?). Choose M, =
ming , {075 %, 03 V2, 0317}, we can obtain

TAT! = O'%S ZT% + G%Vzrg + 0'§IZT§ > MOITI2

forany (S,V,I) € Hand 7 = (1,75, 73) € R>.

Thus, by Rayleigh’s principle in [43] and [44], the conditions (i) and (ii) in [45, Lemma 4.4] are
verified, respectively. It follows from the conclusions in [45, Lemma 4.4] that model (1.2) is ergodic
and has a unique stationary distribution (). This completes the proof. O

Remark 4.1. From Theorems 3.1 and 4.1, we see that when threshold value R > 1, for model (1.2),
we not only establish the persistence of positive solutions in the mean, but also the ergodicity and the
existence of stationary distribution of positive solutions. This shows that model (1.2) has more rich
dynamical properties than the corresponding deterministic model (1.1).

Remark 4.2. From conclusion (i) in Theorem 3.1, we can obtain that if any positive solution
(S(®), V(©), I(2)) of model (1.2) is persistent in the mean then threshold value R > 1. If we further
can get R) > 1, then from Theorem 4.1 it will show that the solution (S (t), V(¢), (1)) has a unique
stationary distribution. This seems to indicate that the persistence in the mean for model (1.2) may
imply the existence of stationary distribution. Here, we will leave this issue in the future study.
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5. Density function

In this section, we investigate the existence and calculation of log-normal probability density
function for model (1.2). Firstly, in order to facilitate calculation and demonstration, we introduce
the logarithmic transformation x; = InS, x, = InV and x3 = In/ to model (1.2), then by Ito formula,
we have
dx; =[(1 = mAe™ — uy — Bpf(e™)]dt + o1dB; (1)

+ f In(1 + n1(w)W(dt, du),

dx; = [nAi—xz — 11 — Byg(e™)] di + 02d By (1)
+ f In(1 + 7, (u)) W(dt, du),

055 = B0 f€)e™™ + Bugle™)e™™ — (s + 8)]dr
+ 03dBs(1) + fz In(1 + 73 (u)W(dt, du),

(5.1)

where y; = u + é + fz(ﬁi(”) — In[1 + n;(u)])v(du),i = 1,2, 3. Define a constant as follows:

oA

N

(I =m)Byf'(0) N 73,8'(0)
T '

H1 H2

If R(s) > 1, then function equation:

(A -mAB ) mABg()
Iy +Bpf(D] Iz + Brg(D)]

h(I) = (uz +6) =0

has a unique positive root I;. Define E¥ = (S, VI, I}) = (e"1, ™2, e%), where

. (d=-mA . A
T B U T e+ B

It can be seen that Ef = (S7,V!, I}) coincides with endemic equilibrium P* = (S§*, V*, I*) of

model (1.1) when oy = 0, = o3 = 0. In the general, E; is called the quasi-stationary state of
model (1.2).

Let (y1,y2,¥3) = (X1 — X}, X — x5,x3 — x3), where x] = InS], x; = InV] and x; = InI, the
linearization of system (5.1) at E is

dy, =[=luy: — Lisys] dt + o1dB (1) + fhl(l + 11 () W(dt, du),

z

dy, =[=lny — bsys| dt + 02dBy (1) + fln(l + () W(dt, du), (5.2)

z

dys =[l31y1 + loys — lzys] dt + 03d Bs(1) + fhl(l + 3 () W(dt, du),

z
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where . ) )
l]] :(1 - 7T)A€_x1 > 0, l]3 :,Bbex3f'(ex3) > O,

122 :ﬂ'Ae_x; > 0, 123 :ﬁveng’(exg) > 0,
L1 =Bpf(€5)e175 > 0, Iy = B,g(e™)e™™5 > 0,
Ly =Bpei[e 5 f(e) — f(e%)] + Bre2[e S g(e™) — g'(e%)] > 0.

To prove the existence of a log-normal probability density function for model (1.2), we firstly
introduce the following auxiliary lemmas.

Lemma 5.1. [31] For the algebraic equation G% + ApXo + ZOAg = 0, where Gy = diag(1,0,0),
-l =L -k
Ao=| 1T 0 0 |. (5.3)

Ifl, >0, 5 >0and L, — I3 > 0, then X is a positive definite matrix and has the expression:

b 0 _ 1
2(lhib-13) . 2(lib-13)
-1 0 _ L
2(lhib-13) 2l3(I h-13)

Lemma 5.2. [31] For the algebraic equation G% + Aol + FoAg = 0, where G, = diag(1,0,0),

—b, —by —bs
Ao=| 1 0 0 | (5.5)

0 0 b3

If by > 0 and by > 0, then 1 is a positive semidefinite matrix and has the expression:

ﬁ 0 0
Ihy=| 0 ﬁ 0 |. (5.6)
0 0 0

Next, by introducing a new calculation technique for the density function, the conclusion on the
existence of log-normal probability density function is given as follows.

Theorem 5.1. Let (1, y», y3) be any solution of system (5.2) with initial value (y,(0), y»(0), y3(0)) € R?,
If R(S) > 1, then there is a log-normal probability density function ®(y;, y,,y3) around quasi-stationary
state E, which has the following expression:

D1, ¥, y3) = (2”)—% |2|—%e—%(yl,yz,ys)Z"(yuyz,ys)T,
where X is a positive definite matrix, and the specific form of X is given as follows:

T =" S0UD) T+ LW + I3 e (1),
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where
1 B+l o+l _1%1—113131 1 lu+ls
Pl lzllm lsllpl 111313292 P2 lslzpz
J, = ) J, = 11
! 0 123l3|1p1 Lip 2 1131321p2 3202
- 0 - 0 0
hslz1p1 lizl3p2
and if 1}y # by, then
Ibs _ haly 1
lzz;;s A l } 138 p3
- — 23 3 0
0y =X, J3= lnp3A l1p3A >
b3 13

IiilopsA  lilopsA

if liy = by, then

I 1

hi3p3 p3
@0 = F(), J3 = —@ 0 s
-2 10
I3
where A = BU=2) gnd p2 = o7 + 2 [ (:(u) = In[1 + miCw))v(du) (i = 1,2,3).

Proof. In view of (5.2), let Y = (y1, y»,y3)! and the coefficients matrix

=l 0 =3
A=l 0 —ln -3
i Il I3y

Similar to the method in [46], the density function ®(Y) = ®(y;,y,,y3) of the quasi-stationary
distribution of system (5.1) around the origin point can be obtained by solving the following three-
dimensional Fokker-Plank equation

3 2 2

: 0 0
- Z[ﬁ + f(m(u) = In[1 + 7 (DV(d)] == @ + —[(=L11y1 = Li3y3)®P]
o) . dy; o

+ aiyz[(—lzz)ﬁ — b3y3)®@] + %[(131}’1 + loyr — l3y3)®@] = 0,

its form may be expressed approximately as a Gaussian distribution
d(Y) = Ce—%(Y—Y*)Q(Y—Y*f, (5.7)

where Y* = (0,0, 0), and Q is a real symmetric matrix which satisfies the following equation:
0G*0+A"Q + QA =0,

where G* = diag(p7, p3.p3) With p? = 07 + 2 fz(n,-(u) — In[1 + n;w)v(du),i = 1,2, 3.

If O is positive definite matrix, let 07! =%, then
G*+AL+32A" =0, (5.8)

Therefore, if a positive definite matrix X is calculated, then positive definite matrix O will be obtained.
Thus, density function ®(Y) will be concretely acquired. According to [47], Eq (5.8) can be formed
from the sum of the following three equations:

G+ AL, +%AT =0, i=1,2,3,
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where ¥ = ¥, + %, + X3 and G = G? + G + G3 with
G} = diag(pi,0,0), G3 = diag(0,p3,0), G3 = diag(0,0,p3).
Next, it will be shown that A is a stable matrix. In fact, the characteristic equation of the matrix A is
0a(D) = B+ LA + LA+ 15, (5.9)

where I} = Iy + 1y + 133> 0, [ = [11(Inn + [33) + [nl33 + balzy + Li3l31 > 0 and I3 = 111 (lolss + Ix3130) +
131131 > 0. By calculation, we can obtain

Lily =1z =(lp + L)l (L + Do + 133) + Iolss + balso] + (L + 133)l303 > 0, (5.10)

which means that A is a stable matrix by the Hurwitz criterion.
Now, the special expression of X can be found in three steps as follows: X = X; + X, + X3.
Step 1. We consider the following algebraic equation:

GI+ AT + 24T = 0. (5.11)
We will choose a reversible matrix J; with the expression
Hit M1z Hi3
Ji=| pa1 2 Ho3
H31 HM32 H33
such that Eq (5.11) changes to the following form:
LG + LA L2 Il + 1IN (LAY =0, (5.12)

which satisfies J1G1JT = G} = diag(1,0,0) and J,AJ;' = Ag. Let £y = J,X,J], then Eq (5.12) is
equivalently rewritten by G% +ApZy + oAl = 0.
According to G% = J,G1JT, we have

ﬂ%ll)% /111,1121/0% #11#31/0% 100
/JII,UZIP% #%1/0% /l21/l31/0% =10 0 0 [,
,Uuﬂslp% ,U31,U21,0f ﬂ%lp% 000

it implies that
1
ﬂhﬁ=1ﬁﬂu=;?MM=Qﬂn=0 (5.13)

In view of Ay = JiAJ;" and (5.13), namely, J;A = AyJ;, we have

—lnpn + Gz —lopnn + Bopns —ipnn + bapn + l3uns)
31023 =l + l3p —l3pp — 3323 }
3133 —lppzy + Iz —lyspsy — 3333
=Ly —(hpne + by + Buzy)  —(Lps + by + Lusz)
= M1 H12 Mi3 ]
0 HM22 HM23
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Hence, we have I31u33 = 0, —lnuss + Iopzs = pon, lipnz = pin, —lapzs — l33pss = po3, —lopios + l3opin3 =
12 and —lyspny — 3oz = py3. Solving these equations we further can obtain

_ _ 1 M3 1 o+l
33 =0, o3 = ——, Uz = —— = — , M13 = — s
L3101 ly3 lzazip as1pPi
’ ” (5.14)
L, 5, I3, 5, + 3l
Moo = — 122,u32 = M12 = = .
lsl31p, Lalsipr  lipr 3101
In addition, by carefully calculating we can verify that —ly uy, + Lz = =Ly, —lopin + bopyz =

—=(hpaa + bptan + usp) and —(lispnn + bapn + Bapnz) = —(lipas + bpos). Thus, by (5.13) and (5.14), the
specific expression of J; is calculated as

1 1, +l303 Do+l
Pl 131101 1311p|
Ji = 0 2
! 123131191 Bip1
" Iabip 0

Clearly, J; is reversible. From Lemma 5.1, we have known that X is positive definite and

b 0 S S
2(lib-13) . 2(lib-13)
X = 0 21 l-13) 0
-1 0 _ L
2(lib-13) 2l3(1I 1 h—-13)

Therefore, from X, = J,X,J7, we finally obtain a positive definite matrix
T = J (I (5.15)
Step 2. We consider the following algebraic equation:
G5+ A%, + AT = 0. (5.16)
Similarly to Step 1, we will choose a reversible matrix J, with the expression

my; mp; mp3
Jry=| my my my
ms; Mszp Ms33

such that Eq (5.16) changes to the following form:
LGy Ty + LAT LT + 3 Jh (LA DT =0,

which satisfies ,G3J! = G = diag(1,0,0) and J,AJ,' = Ay. According to G5 = J,G3J1, we have

mfng mu””zzp% m12m32p% 10O
mlzmzng mip% m22m32p§ =10 0 0],
m12m32p§ m32m22p§ m§2p§ 000
which implies
mLps=1=mp=—, my=0, my =0. (5.17)
P2

AIMS Mathematics Volume 8, Issue 2, 2829-2855.



2846

In view of Ay = J2AJ2‘1 and (5.17), namely, J,A = AyJ,, we have

=lymyy + lyymyz —lomyy + lomyz —(Lizmyy + bamyg + l33my3)
—ljymyy + l3mo3 l3ma3 —l13myy — l33my3
—lyym3 + [33m33 l3m33 —lizm3y — l33m33
—(lymyy + bmyy + lsmzy)  —lLimyy —(Limyz + bhmys + l3ms3)

= myi mip mis

my; 0 nyp3

Hence, we obtain l,m33 = 0, l3omp3 = myo, —li3ms; — lamss = my3, =l ymsy + l3ymss = myy, =l my; +
l31my3 = myy, —lj3my; — l33my3 = my3. Solving these equations, we further obtain

nmip 1 1
my3 =0, my3=——=-—, m3; = — ,
I3 [3202 Li3l3202 (5.18)
_ I — _l%l - li3l3 P _111 + I35 '
T by llppy ~ 00 Lopy
In addition, by carefully calculating we can verify that —/;;m; + l3ym;3 = —(lymy; + bLmyy + l3msy),

—122m12+l32m13 = —llmlz and —(1131’1’111 +123m12+133m13) = —(llm13 +12m23). ThllS, by (517) and (518),

we can also obtain
B —lsl3 1 lutl

0 13 lpp2 P2 1312/)2
J = 11
2 113132192 3202
" Ii3lp 0

Clearly, J, is reversible. From Lemma 5.1, we finally obtain a positive definite matrix
T =J ()7 (5.19)
Step 3. We consider the algebraic equation
G3 + A3 + ;AT = 0. (5.20)
Likewise, we will choose a reversible matrix J3 such that Eq (5.20) changes to the following form:
LGIIE + LA B2 JE + 2301 (AT =0,
which satisfies Gj = J3G3J7 and Ay = J3AJ;', where

ny npp N3
Jy=| ny ny nx
n3; N3z N33

In the light of G} = J3G3J3, we have

2 2 2 2

ny;p3  Na3n3P3 N33ngzP; 1 00
2 2 2 2 | _

npnpizp;  Npp;  nosngps | =| 0 0
2 2 )

Nn33Nniz3p3  N33h3p3  H3303 000
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Then, we can obtain

1
2 2
ny;P3 = 1= niz = —, Nyz3 = 0, niyz = 0.

(5.21)
P3
In view of Ay = J3AJ3‘1 and (5.21), namely, J3A = A(J33, we have
=lynyy + Bingy  —lpng + Ipniy —(lizng + bangg + l33n13)
=111y —lnny 113121 — I3ny,
—l1n3; —lyn3 —li3n3; — banz
—(hinyy + Lngy + l3nzy)  —(Liny + bnoy + l3nzy)  —lings
= ni nip nis
Ny no 0
Thus, we have
—linoy = nyy, =linnz = oy, —lony = nyp, —Ilnny = —lnhnsy,
1 (5.22)
— liznz — lany =0, =li3ny — lany =njiz = —,
P3
which implies
1
Lisngy + Ipny = ——,
p3 (5.23)
l13 b3
—Ny + —nyp = 0.
I [
Assume [} # l;. By solving Eq (5.23), we have
[ g
Ny =—7——=, I =7—7, (5.24)
lrp3A hipsA
where A = W According to (5.22) and (5.24), one can easily obtain ny; = = %,
I3l I I ..
nip = —lony = %, ny = - = 2t and ny = -2 = - In addition, by carefully
calculating we can Verify that _lllnll + l311’l13 = —(llnll + lznzl + l3l’l31), —1221’112 + 132?113 = —(lll’l12 +
lzl’lzz + 131’132) and —(1137111 + 1231’112 + 1331’113) = —lll’l13. Thus, we can obtain
lubs _lply 1
lnp3A l11p3A p3
J.=| - b3 13
3 opsA lip3A
23 I3
li1lap3A liilopsA
Clearly, J; is reversible. From Lemma 5.1, we finally obtain a positive definite matrix
T = J ()7 (5.25)

When [;; = [, we will use Lemma 5.2. Let

by —by -bs
AO = 1 O O s
0 0 an
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where by = Iy + 133, by = Inlsz + lhslzn + l13l3; and by is giVCI’l below. From A, = J3AJ;I and (5.21),
namely, J3A = AyJ33, we have

—lnnyy + iy —lonpg + longiy —(Lang + bang + l3ng3)
—lnyy —lynyn —li3na; — lany
—lyn3 —lynn3 —l13n3) — banz,

—(biny1 + bynyy + b3ngy)  —(biniy + bynyy + b3nzy) —byngs

= ny np ni

—lyn3, =l 1n3; 0

Thus, we have
—lhny = nyy, —lpny = nyp, —lizns — Ixnyp =0,

= lisngy — lngy = ny3, —(Lisnyy + bangg + langz) = —bings,
(5.26)
—Ihny + Ling = —=(binyy + bang; + bangy),

— Ipniy + lpniz = —(binyy + bangy + binzy).
We further have

=lny + iy = = (binyy + byng + byngy)

n
=~ (I + La)ny + (Inlsz + Il + 113131)1—“ — bangy,
1

—Inniy + Inniz = — (bingy + byngy + byngy)
n
— — bang,

=— (I + L)y + (bolss + Islzp + 113l31) by

and then
millaslsy + Lislsi] =l (linys + bangy),

(5.27)
niallaslzy + Li3l31] =la(l3on13 + bingy).

Choose n3p = 1 and by = —lypn;; = —lp3—32, then from (5.26) and (5.27) we easily obtain nj;; = 0,

ni = —Z—i, ny = A 1y = ——— and 1y, = 0. Thus, we finally have

11
L1303 li3p3

Lt 1

li3p3 p3

0

Clearly, J;5 is reversible. From Lemma 5.2, we can choose a semipositive definite Iy as follows:

1
» 0 0

_ 1
F()— 0 1Dy 0

0 0

o

By I'y = J3X3J5 , we finally obtain a semipositive definite matrix
T3 = J5'To(;5) 7 (5.28)
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Summarizing the above calculations, we finally conclude that there exists a real symmetric positive
definite matrix X = X, 4+ X, + X3 satisfying (5.8). As a result, there is a locally approximate log-normal
probability density function

1 s 1% I -1 s v INT
1 1 S Vv 1 S Vv o
5(In i JIn vF Jn 5 )X (In i JIn vF Jn 1;')

3t
O(y1,y2,y3) = 2m) 2|2 2e
near the quasi-stationary state E;. This completes the proof. O

Remark 5.1. From the proof of Theorem 5.1 it is shown that a new calculation technique for matrix X
is proposed. Obviously, this technique is different from the calculation method given in [31].

6. Numerical examples
In this section, we present the simulation results to give the reader a clear understanding of our

results were achieved by using the method mentioned in [48]. Throughout the following numerical
simulations, we choose the nonlinear incidence functions as follows:

fi) =

D= :
mral 0% B val

Example 1. In model (1.2), we choose the parameters u = 0.5, 4 =2.5,8, = 04,8, = 0.2, p = 04,
0=085H, =H, =1,a =1, (01,03,03) = (0.2,0.2,0.65), (11,172,1m3) = (0.01,0.01,0.02) and
v(Z) = 1. By calculating, from (3.3) we obtain Rj = 0.98 < 1, which means that disease () will
disappear with probability one by conclusion (i) of Theorem 3.1. However, model (1.1) has an endemic
equilibrium P* = (§*, V*,I*), which is local asymptotically stable because the basic reproduction
number Ry = 1.0963 > 1 by Theorem 2.1.

The numerical simulations are presented in Figure 1 in allusion to the deterministic, white noise and
Lévy jumps, respectively. We easily see from Figure 1 that the solution (S (#), V (), I(¢)) of deterministic
model (1.1) converges to its endemic equilibrium as ¢t — oo, and the solution (S (), V(¢), I(¢)) for
stochastic model (1.2) satisfies that /() is extinct with probability one, and S (¢), V(¢) are persistence
in the mean. Therefore, conclusion (if) in Theorem 2.1 and conclusion (i) in Theorem 3.1 are verified
by the numerical simulations. This also demonstrates that the jump noise have a positive impact on
control the diseases. Hence, the impact of the noise cannot be overlooked in modeling process.

¥

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
time t time t time t

Figure 1. The simulation of solution (S (¢), V(¢), I(¢)) for deterministic models (1.1) and (1.2)
with white noise and model (1.2) with jumps (R) = 0.98 < 1and Ry = 1.12 > 1).

Example 2. In model (1.2), we take the parameters (0,03,03) = (0.02,0.02,0.06) and other
parameters are given as in Example 1. By calculation, we obtain R} = 2.949 > 1, which shows
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that the diseases will persistence in the mean and any positive solution of model (1.2) is ergodic and
has a unique stationary distribution by Theorems 3.1 and 4.1, respectively.

The numerical simulations are presented in Figure 2. We easily see from Figure 2 that the solution
(S, V(1),1(t)) of model (1.1) converges to its endemic equilibrium as t — oo, and the solution
(S, V(1),1(¢)) for stochastic model (1.2) is persistence in the mean and has a unique stationary
distribution. Therefore, conclusion (ii) in Theorem 2.1, conclusion (i) in Theorem 3.1 and Theorem 4.1
are verified by the numerical simulations.

) 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
time t time t time t

Figure 2. The simulation of solution (S (), V(¢), I(¢)) for deterministic models (1.1) and (1.2)
with white noise and model (1.2) with jumps (R) = 2.949 > 1).

In addition, by calculating we also have Rg = 2.9478 > 1. Hence, there is a log-normal probability
density function ®(yy, y,, y3) in the quasi-stationary state £, by Theorem 5.1. Moreover, it is calculated
that A = stizba) — (00122 # 0, which implies

liln
T =J7 S0 (ID)T +  e () + I ()
5172 -0.102 1.345

=10"*] -0.102 4.108 0.041
1.345 0.041 28.981

By simple calculation, one can get that £ = (S5, Vi, I7) = (5.074,3.952, 1.154). Thus, the log-normal
probability density function ®(S, V,I) of system (1.2) is derived as

O(S, V,I) = 2576.972¢ 200 st 10 s In s 20 sfedn sy dn rfsp)”

The numerical simulations are given in Figure 3, which present the visual expressions of marginal
density functions of solution (S (¢), V(¢), I(¢)) for model (1.2).

25 35 45

0
55 6 6.5 34 36 38 a 42 44 46 48 5 08 1 12 14 16

s V()
Figure 3. The simulations of marginal density functions of solution (S (¢), V(¢), I(t)) for
model (1.2) with jumps (R(S) =2.9478 > 1).
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7. Conclusions

In this paper, we investigated the dynamical behavior for a stochastic SVI epidemic model with
white noise, Lévy jumps and nonlinear incidence. In order to observe the influence of randomness,
deterministic model (1.1) is first discussed. The basic reproduction number R, is calculated, and
then it is proved the disease-free equilibrium is globally asymptotically stable if Ry > 1, otherwise,
the endemic equilibrium is local asymptotically stable if Ry > 1. For stochastic model (1.2), a new
threshold value Rj is defined, and when R} < 1 then the extinction with probability one of the disease
is proved, and when R > 1 then the persistence in the mean and the existence of stationary distribution
for any positive solution are established. Furthermore, we also established the existence criterion
for the log-normal probability density function by solving the corresponding Fokker-Planck equation.
Particularly, a new technique for the calculation of probability density function is introduced. The
results show that Lévy noise can effectively alter the dynamical behaviour of the disease and that it can
also contribute to its extinction.

Theorems 3.1 and 4.1 imply that the disease dies out as threshold value R} < 1, and otherwise the
disease persists and possesses a unique stationary distribution as R > 1. This shows that R plays a
similar role to the basic reproduction number Ry of model (1.1). Comparing Ry and R; given in (2.1)
and (3.3), we have R) < Ry. This means that Lévy jumps can also inhibit the outbreak of the disease.
These important results demonstrate that the Lévy jumps process may have a greater impact on the
dynamical properties of model (1.2).

There is a few interesting topics to worthy of further study. It is possible to come up with more
realistic and complex stochastic models, such as considering the impact of vaccination of susceptible
individuals, vaccine effectiveness on model (1.2). In addition, it is important to note that the approach
used in this paper can also be applied to the study of other interesting models, such as COVID-19
spread model, SVEIS model, SVIRS model and so on. We will study these problems in the future.

Furthermore, in [39,40] we see that the stochastic SIC epidemic system with quadratic white noise
and Lévy jumps and an application to COVID-19 in Morocco, and the stochastic and fractal-fractional
Atangana-Baleanu order hepatitis B model with Lévy noise are proposed and investigated. Particularly,
in [40] the probability density function is discussed for quadratic white noise intensity by the numerical
simulations. Therefore, an interesting and challenging issue is to establish the theoretical results in
allusion to probability density function for the above two kinds of models.
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