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1. Introduction

Over the past few decades, fractional differential equations (FDEs) have gained importance in the
modelling of various physical phenomena due to their ability to describe the memory and hereditary
properties of different materials and processes. Various fractional models based on Caputo derivative
have been successfully established, such as COVID-19 transmission [1], HIV-1 infection of CD4+

T-cells [2], epidemiological MSEIR model [3], model of cancer chemotherapy effect [4], fractional
model for Maxwell fluid [5]. Due to the singularity of the definition of Caputo derivatives, it
causes some difficulties to the numerical and analytical methods of fractional calculus. Recently,
Caputo and Fabrizio [6] proposed a new definition of fractional derivative by replacing the singular
kernel in the Caputo derivative with exponential kernel, which was called Caputo-Fabrizio fractional
derivative. This new operator has been successfully applied in human liver model [7], groundwater
flow model [8, 9], electrical circuits model [10], COVID-19 model [11], Korteweg-de Vries-Burgers
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equation [12], fractional Maxwell fluid [13], pneumococcal pneumonia infection model [14] and
transmission dynamics of brucellosis model [15].

The standard Cattaneo equation is normally obtained by using a generalized form of Fick’s law,
which describes a diffusion process with finite propagation velocity. Cattaneo equation is a hyperbolic
partial differential equation as follows:

∂u(x, t)
∂t

+
∂2u(x, t)
∂t2 =

∂2u(x, t)
∂x2 , (1.1)

where u(x, t) denotes distribution function of diffusing-quantity/temperature [16]. However, the
classical Cattaneo equation cannot describe the anomalous diffusion behavior observed in many natural
systems. To address this issue, Compte and Metzler [17] extended the classical Cattaneo model
to the time-fractional Cattaneo model, and studied the properties of the corresponding fractional
Cattaneo equation. Following Compte and Metzler, Kosztolowicz and Lewandowska [18] proposed
a theoretical basis for the study of subdiffusion impedance using a hyperbolic equation. Since
then, many researchers have numerically considered the fractional Cattaneo equation in the sense of
Caputo [19–25].

Caputo-Fabrizio derivative has many interesting properties. It can portray substance heterogeneities
and configurations with different scales, which cannot be handled by the well-known local theory. In
recent years, fractional Cattaneo equation based on Caputo-Fabrizio derivative has attracted much
attention from many researchers. Since finding the solutions of these differential equations is a difficult
task, it is necessary to find the solutions of partial differential equations(PDEs) by numerical methods.
Liu [26] introduced a second order Crank-Nicolson scheme for fractional Cattaneo equation based
on Caputo-Fabrizio derivative. Taghipour [27] considered a θ-finite difference scheme using cubic
B-spline for the fractional Cattaneo equations. In [28], the spline-based collocation schemes are
developed for the numerical solution of the time-fractional Cattaneo equations involving the Caputo-
Fabrizio derivative. Li [29] proposed a fully discrete spectral method for fractional Cattaneo equation
having Caputo-Fabrizio derivative, in which finite difference method is used in time and Legendre
spectral approximation in space. Note that, the above-mentioned papers applied finite difference
scheme in time direction, owing to the memory effect of fractional derivative, to compute the solution
at the current time level, all previous solutions have to be saved, which would make the storage very
expensive if low-order methods are employed for spatial discretization.

In this paper, we consider the following time-fractional Cattaneo equation with nonhomogeneous
term [26]:

∂u(x, t)
∂t

+
∂γu(x, t)
∂tγ

=
∂2u(x, t)
∂x2 + f (x, t), (1.2)

where (x, t) ∈ Ω = [0, L] × [0,T ], 1 < γ < 2, f (x, t) ∈ C(Ω) with initial conditions

u(x, 0) = ϕ(x),
∂u
∂t

∣∣∣∣
t=0
= ψ(x), 0 ≤ x ≤ L, (1.3)

and boundary conditions

u(0, t) = u(L, t) = 0, t > 0. (1.4)
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CF
0 Dγ

t u(x, t) denotes the Caputo-Fabrizio operator of the function u(x, t) defined as

CF
0 Dγ

t u(x, t) =
M(γ)
2 − γ

∫ t

0
u′′(x, s)eσ(t−s)ds, (1.5)

where M(γ) is a normalization function such that M(0) = M(1) = 1 and σ = 1−γ
2−γ .

As a global method, spectral method can achieve exponential rates of convergence for smooth
problems and requires fewer grid points to produce highly accurate solution, which makes it widely
used for solving the numerical solutions of different types of PDEs. Numerical methods based
on some orthogonal or semi-orthogonal polynomials [30–33] are widely used to solve fractional
differential equtions (FDEs). These methods utilize operational matrix of derivatives or integration
to transform complicated FDEs into a system of linear or nonlinear algebraic equations. Recently,
Genochi polynomial [34], Legendre polynomial [35] and Chebyshev polynomial [36] are applied to
solve FDEs with Caputo-Fabrizio derivative. Orthogonal wavelet is a special orthogonal function
with compact support, such as Legendre wavelet [37, 38], Chebyshev wavelet [39, 40] and Jacobi
wavelet [41, 42], which can approximate discontinuous or rapidly changing functions at different
resolutions. The main characteristic of wavelet-based technology is that the coefficient matrix of
the discretized algebraic equation is a sparse matrix, which reduces the amount of calculation and
accelerates the simulation speed. Since the Caputo-Fabrizio operator is a relatively new operator, as
far as we know, there is no paper using orthogonal polynomial wavelets to solve fractional Cattaneo
equations with Caputo-Fabrizio derivative. Euler wavelets have good accuracy for solving various
differential equations [43–45], but do not have orthogonality. It is actually easier to use orthonormal
Euler wavelets than Euler wavelets.

Motivated by the above discussion, our main target is to present an effective numerical method
based on orthonormal Euler wavelets to solve time fractional Cattaneo equation with Caputo-Fabrizio
derivative. Therefore, we construct orthonormal Euler wavelets by Gram-Schmidt orthogonalization
of Euler polynomials. In addition, to obtain more accurate numerical solutions, Laplace transform is
utilized to obtain the exact Caputo-Fabrizio fractional integral formula of Euler wavelets. The proposed
method has the following advantages:
(i) Caputo-Fabrizio fractional integral operator for the orthonormal Euler wavelets has been derived
directly with no approximations.
(ii) The present method is convenient for solving this problem, since the boundary and initial conditions
are taken into account automatically in the algorithm.
(iii) This method is applicable to linear and nonlinear Cattaneo equations.

The paper is organized as follows. Section 2 introduces some fundamental definitions of fractional
calculus and Laplace transform. Section 3 is devoted to the construction of orthonormal Euler wavelet.
Convergence analysis and error estimate of the orthonormal Euler wavelets expansion are displayed in
Section 4. An exact formula for the Caputo-Fabrizio fractional integral of orthonormal Euler wavelets
is derived in Section 5. The description of the proposed method is presented in Section 6. Some
illustrative examples are provided in Section 7. Finally, conclusion and discussion is given in Section 8.

2. Preliminaries and notations

In this section, some necessary definitions and mathematical preliminaries are given.
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Definition 2.1. (See [46]) The Laplace transform F(s) of a locally integrable function f (x) is defined by

L[ f (x)] =
∫ ∞

0
e−sx f (x)dx, (2.1)

where s is a complex number, and this operator has the following properties:

(1) L[λ1 f1(x) + λ2 f2(x)] = λ1L[ f1(x)] + λ2L[ f2(x)],
(2) L[ f (x − a)µ(x − a)] = e−asF(s),
(3) L[ f ∗ g] = L[ f (x)]L[g(x)],

where λ1, λ2 and a are constants, µ(x) is the step function and f ∗ g is the convolution of two functions
f and g.

Definition 2.2. (See [47]) Let n ≥ 1 and α ∈ [0, 1], the Caputo-Fabrizio fractional derivative with
order α of a function f (x) is defined by

CF Dn+α
a f (x) =

M(α)
1 − α

∫ x

a
f (n+1)(s) exp

(
−
α(x − s)

1 − α
)
ds. (2.2)

Definition 2.3. (See [47]) Let n ≥ 1, α ∈ [0, 1], and f ∈ C1[a, b]. The Caputo-Fabrizio integral of
order α + n of a function f is given by

CF Jn+α
a f (x) =

1
M(α)n!

∫ x

a
(x − s)n−1[α(x − s) + n(1 − α)] f (s)ds, (2.3)

where M(α) is a normalization function such that M(0) = M(1) = 1.

Lemma 2.1. (See [47]) Let γ ∈ (n, n+1), γ = n+α, n = [γ] ≥ 0, α ∈ [0, 1]. Assume that f (x) ∈ Cn[a, b],
then the following statements hold:

(1) CF Jγa (CF Dγ
a f (x)) = f (x) −

n∑
i=0

f (i)(a)
i!

(x − a)i, i = 0, 1, 2, · · · , n. (2.4)

(2) CF Dγ
a(CF Jγa f (x)) = f (x) − f (a) exp

(
− α

(x − a)
1 − α

)
. (2.5)

Definition 2.4. (See [48]) The Riemann-Liouville fractional integral of order α (α > 0) is defined as

Iα f (x) =
1
Γ(α)

∫ x

0
(x − s)α−1 f (s)ds, α > 0. (2.6)

3. Orthonormal Euler wavelets

The main goal of this section is to construct the orthonormal Euler wavelets (OEWs). To obtain
orthonormal Euler polynomials (OEPs), we apply the Gram-Schmidt orthonormalization process on
sets of Euler polynomials. Then, the orthonormal Euler wavelets will be constructed using the
orthonormal Euler polynomials and their properties.
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3.1. Orthonormal Euler polynomials

Definition 3.1. (See [49]) The Euler polynomials Em(x) of degree m can be constructed from the
following relation:

m∑
k=0

(
m
k

)
Ek(x) + Em(x) = 2xm, m = 0, 1, 2, · · · . (3.1)

From Eq (3.1), the first few terms of Euler polynomials are listed below:

E0(x) = 1, E1(x) = x −
1
2
, E2(x) = x2 − x, E3(x) = x3 −

3
2

x2 +
1
4
, E4(x) = x4 − 2x3 + x,

E5(x) = x5 −
5
2

x4 +
5
2

x2 −
1
2
, · · · . (3.2)

Euler polynomials has the following properties:

(1) E
′

m(x) = mEm−1(x), m = 1, 2, · · · ,
(2) Em(x + 1) + Em(x) = 2xm,

(3)
∫ 1

0
Em(x)En(x)dx = (−1)n−1 m!(n + 1)!

(m + n + 1)!
Em+n+1(0), m, n ≥ 1.

Note that Euler polynomials are not mutually orthogonal. To overcome this difficulty, we try to apply
the Gram-Schmidt orthogonal normalization process on Em(x) with respect to the weight function
w(x) = 1. We denote the orthonormal Euler polynomials by OEm(x). For instance, for m = 5, we have

OE0(x) = 1, OE1(x) =
√

3(2x − 1), OE2(x) =
√

5(6x2 − 6x + 1),

OE3(x) =
√

7(20x3 − 30x2 + 12x − 1),

OE4(x) =
√

9(70x4 − 140x3 + 90x2 − 20x + 1),

OE5(x) =
√

11(252x5 − 630x4 + 560x3 − 210x2 + 30x − 1).

By analyzing these coefficients, we can get an explicit representation of OEPs.

Definition 3.2. The explicit form of the OEPs of degree m on the interval [0, 1] is given by

OEm(x) =
√

2m + 1
m∑

k=0

(−1)m−k

(
m
k

)(
m + k

k

)
xk, m = 0, 1, 2, · · · . (3.3)

The orthogonality property for these polynomials is as follows:∫ 1

0
OEi(x)OE j(x)dx = δi, j, i, j = 0, 1, 2, · · · , (3.4)

where δi, j is the Kronecker delta function. Furthermore, by analyzing the integrals of these polynomials
from 0 to x, we obtain ∫ x

0
OE0(t)dt =

1
2

OE0(x) +
1

2
√

3
OE1(x),
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and for m ≥ 1,∫ x

0
OEm(t)dt =

1
2
√

(2m + 1)(2m + 3)
OEm+1(x) −

1
2
√

(2m + 1)(2m − 1)
OEm−1(x). (3.5)

Therefore, we also have

2
√

2m + 1OEm(x) =
1

√
2m + 3

OE
′

m+1(x) −
1

√
2m − 1

OE
′

m−1(x), m ≥ 1. (3.6)

3.2. Construction of orthonormal Euler wavelets

Wavelets are a set of functions which can be defined from dilation and translation of a mother
wavelet function ψ(x). When the dilation and translation parameters vary continuously, we get a series
of continuous wavelet functions [50]. The orthonormal Euler wavelets (OEWs) ψn,m(x) have four
arguments n = 1, 2, · · · , 2k−1 can assume any positive integer, m is the order of the orthonormal Euler
polynomials and x is the normalized variable. They are defined on the interval [0, 1) by

ψn,m(x) =


2

k−1
2 OEm(2k−1x − n + 1), n−1

2k−1 ≤ x < n
2k−1 ,

0, otherwise,
(3.7)

where m = 0, 1, · · · , and OEm(x) are the OEPs of degree m defined in Eq (3.3). It is easy to verify that
the constructed OEWs ψn,m(x), n = 1, 2, · · · , 2k−1, m = 0, 1, · · · , constitutes an orthonormal set on the
interval [0, 1). Suppose f (x) ∈ L2[0, 1) can be expressed in terms of OEWs as

f (x) =
2k−1∑
n=1

∞∑
m=0

cn,mψn,m(x) ≃
2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(x) = CTΨ(x), (3.8)

where C and Ψ(x) are 2k−1M × 1 matrices given by

C = [c1,0, c1,1, · · · , c1,M−1, c2,0, · · · , c2,M−1, · · · , c2k−1,0, · · · , c2k−1,M−1]T ,

Ψ(x) = [ψ1,0(x), ψ1,1(x), · · · , ψ1,M−1(x), ψ2,0(x), · · · , ψ2,M−1(x), · · · , ψ2k−1,0(x), · · · , ψ2k−1,M−1(x)]T , (3.9)

and

cn,m = ⟨ f (x), ψn,m(x)⟩L2[0,1) =

∫ 1

0
ψn,m(x) f (x)dx. (3.10)

Two-dimensional orthonormal Euler wavelets can be expressed as product of 1D-OEWs as follows:

ψn,m,n′,m′(x, y) =


ψn,m(x)ψn′,m′(y), n−1

2k−1 ≤ x < n
2k−1 , n′−1

2k′−1 ≤ y < n′

2k′−1 ,

0, otherwise,
(3.11)
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where n′ = 1, 2, · · · , 2k′−1, m′ = 0, 1, · · · . It is easy to verify that {ψn,m(x)ψn′,m′(y)} is an orthonormal set
over [0, 1) × [0, 1). Similarly, an arbitrary function of two variables f (x, y) defined over [0, 1) × [0, 1)
can be expanded into 2D-OEWs basis as

f (x, y) =
2k−1∑
n=1

∞∑
m=0

2k′−1∑
n′=1

∞∑
m′=0

cn,m,n′,m′ψn,m(x)ψn′,m′(y)

≃

2k−1∑
n=1

M−1∑
m=0

2k′−1∑
n′=1

M′−1∑
m′=0

cn,m,n′,m′ψn,m(x)ψn′,m′(y)

=ΨT (x)UΨ(y),

where cn,m,n′,m′ = ⟨ψn,m(x), ⟨ f (x, y), ψn′,m′(y)⟩⟩ is the coefficient of 2D-OEWs, in which ⟨, ⟩ denotes the
inner product and U is a 2k−1M × 2k′−1M′ coefficient matrix.

4. Convergence analysis and error estimation

In this section, we prove the convergence of OEWs with respect to the L2-norm. To this end, we
first derive the upper error bound for the mentioned OEWs expansion.

Theorem 4.1. Let
2k−1∑
n=1

∞∑
m=0

cn,mψn,m(x) be the orthonormal Euler wavelet expansion of f (x) ∈ L2[0, 1)

and suppose f (x) has a bounded second-order derivative, say | f ′′(x)| ≤ B, then for m ≥ 2, the following
inequality holds:

∣∣∣cn,m

∣∣∣ ≤ 2
√

3B

2
5
2 k
√

2m + 1
√

(2m − 3)3
, (4.1)

where cn,m = ⟨ f (x), ψn,m(x)⟩L2[0,1) is given in (3.10).

Proof. The orthonormal Euler wavelets coefficient is given as follows:

cn,m =

∫ n
2k−1

n−1
2k−1

f (x)2
k−1

2 OEm(2k−1x − n + 1)dx.

By using the substitution t = 2k−1x − n + 1 and the relation (3.6), we have

cn,m =
2−

1+k
2

√
2m + 1

∫ 1

0
f
( t + n − 1

2k−1

)
d
[OEm+1(t)
√

2m + 3
−

OEm−1(t)
√

2m − 1

]
.

Taking integration by parts and using the relation (3.6) yield that

cn,m = −
2

1−3k
2

√
2m + 1

∫ 1

0
f ′
( t + n − 1

2k−1

)
d
[ OEm+2(t)

2(2m + 3)
√

2m + 5
−

OEm(t)

2(2m + 3)
√

2m + 1

−
OEm(t)

2(2m − 1)
√

2m + 1
+

OEm−2(t)

2(2m − 1)
√

2m − 3

]
.
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By using the integration by parts again, we have

cn,m = −
2

3−5k
2

√
2m + 1

∫ 1

0
f ′′

( t + n − 1
2k−1

)[ OEm+2(t)

2(2m + 3)
√

2m + 5
−

OEm(t)

2(2m + 3)
√

2m + 1

−
OEm(t)

2(2m − 1)
√

2m + 1
+

OEm−2(t)

2(2m − 1)
√

2m − 3

]
dt

=
2

3−5k
2

√
2m + 1

∫ 1

0
f ′′

( t + n − 1
2k−1

)[ (2m + 1)
√

2m + 5OEm+2(t) − (2m + 5)
√

2m + 1OEm(t)
2(2m + 1)(2m + 3)(2m + 5)

−
(2m − 3)

√
2m + 1OEm(t) − (2m + 1)

√
2m − 3OEm−2(t)

2(2m − 3)(2m − 1)(2m + 1)

]
dt.

By applying the Cauchy-Schwarz inequality and using the assumption that | f ′′(x)| ≤ B, we obtain

∣∣∣∣ ∫ 1

0
f ′′

( t + n − 1
2k−1

)[ (2m + 1)
√

2m + 5OEm+2(t) − (2m + 5)
√

2m + 1OEm(t)
2(2m + 1)(2m + 3)(2m + 5)

−
(2m − 3)

√
2m + 1OEm(t) − (2m + 1)

√
2m − 3OEm−2(t)

2(2m − 3)(2m − 1)(2m + 1)

]
dt

∣∣∣∣2
≤

∫ 1

0

∣∣∣∣ f ′′( t + n − 1
2k−1

)∣∣∣∣2∣∣∣∣ (2m + 1)
√

2m + 5OEm+2(t) − (2m + 5)
√

2m + 1OEm(t)
2(2m + 1)(2m + 3)(2m + 5)

−
(2m − 3)

√
2m + 1OEm(t) − (2m + 1)

√
2m − 3OEm−2(t)

2(2m − 3)(2m − 1)(2m + 1)

∣∣∣∣2dt

≤B2
∫ 1

0

[ (2m − 3)2(2m − 1)2(2m + 1)2(2m + 5)OE2
m+2(t)

4(2m − 3)2(2m − 1)2(2m + 1)2(2m + 3)2(2m + 5)2

+
4(2m − 3)2(2m + 1)2(2m + 5)2(2m + 1)OE2

m(t)
4(2m − 3)2(2m − 1)2(2m + 1)2(2m + 3)2(2m + 5)2

+
(2m + 1)2(2m + 3)2(2m + 5)2(2m − 3)OE2

m−2(t)
4(2m − 3)2(2m − 1)2(2m + 1)2(2m + 3)2(2m + 5)2

]
dt

≤B2
[ 1
4(2m + 3)2(2m + 5)

+
4

4(2m − 1)2(2m + 1)
+

1
4(2m − 1)2(2m − 3)

]
≤

3B2

2(2m − 1)2(2m − 3)
.

Therefore, for m ≥ 2,

∣∣∣cn,m

∣∣∣ ≤ 2
√

3B

2
5
2 k
√

2m + 1
√

(2m − 3)3
. (4.2)

Theorem 4.2. Let f (x) ∈ L2[0, 1) be a bounded function with second derivative say | f ′′(x)| ≤ B. Then
the following inequality holds: ∥∥∥ f (x) −CTΨ(x)

∥∥∥
2
≤

B

22k
√

(2M − 4)3
. (4.3)
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Proof. By the definition of the L2-norm, we have

∥∥∥ f (x) −CTΨ(x)
∥∥∥2

2
=

∫ 1

0
( f (x) −CTΨ(x))2dx

=

∫ 1

0

( 2k−1∑
n=1

∞∑
m=0

cn,mψn,m(x) −
2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(x)
)2dx

=

∫ 1

0

( 2k−1∑
n=1

∞∑
m=M

c2
n,mψ

2
n,m(x)

)
dx

=

2k−1∑
n=1

∞∑
m=M

c2
n,m.

The above equation holds due to the fact that the constructed Euler wavelets are orthonormal. By the
Theorem 4.1, we have

∥∥∥ f (x) −CTΨ(x)
∥∥∥2

2
=

2k−1∑
n=1

∞∑
m=M

c2
n,m ≤

3B2

24k23

∞∑
m=M

1
(m − 2)4 . (4.4)

Using the integral inequality yields that

∞∑
m=M

1
(m − 2)4 =

∞∑
m=M−2

1
m4 ≤

∫ ∞

M−2

1
m4 dx =

1
3(M − 2)3 . (4.5)

Therefore, ∥∥∥ f (x) −CTΨ(x)
∥∥∥2

2
≤

B2

24k23

1
(M − 2)3 . (4.6)

Here, take the square root for both sides of (4.6), then∥∥∥ f (x) −CTΨ(x)
∥∥∥

2
≤

B
22k

1√
(2M − 4)3

. (4.7)

The proof is completed. 2
Corollary 4.1. The upper bound of error given in Theorem 4.2 is related to k and M. Obviously, for a
fixed k, B

22k
1√

(2M−4)3
tends to zero as M tends to ∞. Therefore, we conclude that CTΨ(x) converges to

f (x) with respect to the L2-norm.

Theorem 4.3. Let f ∈ L2[0, 1) be a bounded function with second derivative say | f ′′(x)| ≤ B. Then the
following inequality holds:∥∥∥CF

Jγa f (x) −CF Jγa fk,M(x)
∥∥∥

2
≤

1
Γ(η)

1√
2η(2η − 1)

B

22k
√

(2M − 3)3
, (4.8)

where γ = η + α, η = [γ], fk,M(x) = CTΨ(x).
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Proof. The definition of Caputo-Fabrizio integral can be further simplified as follows:

CF Jη+αa f (x) =
1 − α
M(α)

Iη f (x) +
α

M(α)
Iη+1 f (x), (4.9)

using the Cauchy formula [51], where

Iη f (x) =
1
Γ(η)

∫ x

a
(x − s)η−1 f (s)ds. (4.10)

By the Hölder’s inequality, we can estimate the difference between CF Jγa f (x) and CF Jγa fk,M(x) at x ∈
[0, 1], as follows:∣∣∣∣CF Jγa f (x) −CF Jγa fk,M(x)

∣∣∣∣
≤

1 − α
M(α)

1
Γ(η)

∫ x

a

| f (s) − fk,M(s)|
(x − s)1−η ds +

α

M(α)
1

Γ(η + 1)

∫ x

a

| f (s) − fk,M(s)|
(x − s)−η

ds

≤
1 − α
M(α)

1
Γ(η)

( ∫ x

a

ds
(x − s)2−2η

)1/2( ∫ x

a
( f (s) − fk,M(s))ds

)1/2

+
α

M(α)
1

Γ(η + 1)

( ∫ x

a

ds
(x − s)2η

)1/2( ∫ x

a
( f (s) − fk,M(s))ds

)1/2

≤
(1 − α

M(α)
1
Γ(η)

1√
(2η − 1)

(x − a)η−
1
2 +

α

M(α)
1

Γ(η + 1)
1√

(2η + 1)
(x − a)η+

1
2
)∥∥∥ f (x) −CTΨ(x)

∥∥∥
2
. (4.11)

Hence, ∥∥∥CF
Jγa f −CF Jγa fk,M

∥∥∥
2

≤
(1 − α

M(α)
1
Γ(η)

1√
(2η − 1)

∥∥∥(x − a)η−
1
2 ∥2

+
α

M(α)
1

Γ(η + 1)
1√

(2η + 1)

∥∥∥(x − a)η+
1
2 ∥2

)∥∥∥ f (x) −CTΨ(x)
∥∥∥

2

≤
(1 − α

M(α)
1
Γ(η)

1√
2η(2η − 1)

+
α

M(α)
1
Γ(η)

1√
(2η + 1)(2η + 2)

) B
22k

1√
(2M − 4)3

≤
1
Γ(η)

1√
2η(2η − 1)

B
22k

1√
(2M − 4)3

. (4.12)

The proof is completed. 2

Theorem 4.4. If a continuous function f (x, y) ∈ L2([0, 1) × [0, 1)) has bounded mixed fourth partial
derivative

∣∣∣∂4 f (x,y)
∂x2∂y2

∣∣∣ ≤ B̃, then 2D-OEWs expansion of f (x, y) converges uniformly to the function f (x, y),
that is

f (x, y) =
2k−1∑
n=1

∞∑
m=0

2k′−1∑
n′=1

∞∑
m′=0

cn,m,n′,m′ψn,m(x)ψn′,m′(y), (4.13)

where cn,m,n′,m′ = ⟨ψn,m(x), ⟨ f (x, y), ψn′,m′(y)⟩⟩.
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Proof.

cn,m,n′,m′ =

∫ 1

0

∫ 1

0
f (x, y)ψn,m(x)ψn′,m′(y)dxdy

=

∫ 1

0
ψn′,m′(y)

( ∫ n
2k−1

n−1
2k−1

f (x, y)2
k−1

2 OEm(2k−1x − n + 1)dx
)
dy

=

∫ n
2k′−1

n−1
2k′−1

2
k′−1

2 OEm′(2k′−1y − n′ + 1)
( ∫ n

2k−1

n−1
2k−1

f (x, y)2
k−1

2 OEm(2k−1x − n + 1)dx
)
dy.

By change of variable s = 2k−1x − n + 1, t = 2k′−1y − n′ + 1, dx = 1
2k−1 ds and dy = 1

2k′−1 dt, we obtain

cn,m,n′,m′ = 2
1−k′

2

∫ 1

0
OEm′(t)

( ∫ 1

0
f (

s + n − 1
2k−1 , y)2

1−k
2 OEm(s)ds

)
dt. (4.14)

Similar to the previous steps used in the Theorem 4.1, we have

∣∣∣cn,m,n′,m′
∣∣∣ ≤ 2

√
3B̃

2
5
2 k
√

2m + 1
√

(2m − 3)3

2
√

3

2
5
2 k′
√

2m′ + 1
√

(2m′ − 3)3

≤
12B̃

2
5
2 (k+k′)(2m − 3)2(2m′ − 3)2

.

Since n ≤ 2k−1, n′ ≤ 2k′−1, we get∣∣∣cn,m,n′,m′
∣∣∣ ≤ 12B̃

(2n)
5
2 (2m − 3)2(2n′)

5
2 (2m′ − 3)2

. (4.15)

Therefore,
2k−1∑
n=1

∞∑
m=0

2k′−1∑
n′=1

∞∑
m′=0

cn,m,n′,m′ψn,m(x)ψn′,m′(y) is absolutely convergent. If n = n′, m = m′, then

we have ∣∣∣cn,m,n′,m′
∣∣∣ ≤ 12B̃

(2n)5(2m − 3)4 .

5. Caputo-Fabrizio fractional integral for orthonormal Euler wavelets

In this section, we will derive the exact formula for the fractional integral of orthonormal Euler
wavelets ψn,m(x) in the sense of Caputo-Fabrizio. In fact, the α − th repeated integral of f (x) is the
special case of Riemann-Liouville fractional integral, when α is a positive integer. To derive the
Caputo-Fabrizio fractional integral of orthonormal Euler wavelets, first we need to derive the Riemann-
Liouville fractional integral of order α of the orthonormal Euler wavelets.

Theorem 5.1. The Caputo-Fabrizio fractional integral of order γ > 0 of orthonormal Euler wavelets
ψn,m(x) is given by

CF Jγaψn,m(x) =
1 − β
M(β)

Inψn,m(x) +
β

M(β)
In+1ψn,m(x), (5.1)
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where γ = n + β, n = [γ] ≥ 0, β ∈ [0, 1] and Inψn,m(x) is given by the following theorem. To make
the theorem more general, we derive the Riemann-Liouville fractional integral of order α > 0 of the
orthonormal Euler wavelets.

Theorem 5.2. The Riemann-Liouville fractional integral of order α > 0 of the orthonormal Euler
wavelets ψn,m(x) is given by

Iαψn,m(x) =


0, 0 ≤ x ≤ n−1

2k−1 ,
U(x), n−1

2k−1 ≤ x ≤ n
2k−1 ,

U(x) − V(x), n
2k−1 ≤ x ≤ 1,

(5.2)

where

U(x) = 2
k−1

2
√

2m + 1
m∑

i=0

(−1)m−iCi
mCi

m+i2
i(k−1) Γ(i + 1)
Γ(i + α + 1)

(
x −

n − 1
2k−1

)i+α
,

and

V(x) = 2
k−1

2
√

2m + 1
m∑

i=0

(−1)m−iCi
mCi

m+i

i∑
r=0

Cr
i 2

r(k−1) Γ(r + 1)
Γ(r + α + 1)

(
x −

n
2k−1

)r+α
.

Proof. See Appendix.
For instance, in the case of k = 2, M = 3, γ = 5/2, x = 0.65, we obtain

CF J5/2
0 Ψ6×1(0.65) =



0.17338847530345
−0.07144345083118
0.00329403922934
0.00835269885277
−0.01160828498416
0.00925321971836


,

where Ψ6×1(x) = (ψ1,0(x), ψ1,1(x), ψ1,2(x), ψ2,0(x), ψ2,1(x), ψ2,2(x))T .

6. Description of the proposed method

For simplicity, we consider the following time-fractional Cattaneo equation with T = 1, L = 1:

∂u(x, t)
∂t

+
∂γu(x, t)
∂tγ

=
∂2u(x, t)
∂x2 + f (x, t), (6.1)

u(x, 0) = ϕ(x),
∂u
∂t

∣∣∣∣
t=0
= ψ(x), 0 ≤ x ≤ 1, (6.2)

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 1. (6.3)

To solve the time-fractional Cattaneo eqution (6.1), we assume

∂2+γu(x, t)
∂x2∂tγ

= ΨT (x)UΨ(t), (6.4)
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where U = (ui j)2k−1 M×2k−1 M is an unknown wavelet coefficient matrix and Ψ(·) is the vector defined
in (3.9). By applying the Caputo-Fabrizio fractional integral of order γ with respect to t on both sides
of Eq (6.4) and considering the property of Caputo-Fabrizio fractional integral, we obtain

∂2u(x, t)
∂x2 = ΨT (x)UCF Jγ0Ψ(t) +

∂2u(x, t)
∂x2

∣∣∣∣∣
t=0
+ t

∂

∂t

(∂2u(x, t)
∂x2

)∣∣∣∣∣
t=0
. (6.5)

Using the conditions (6.2), we yield

∂2u(x, t)
∂x2 = ϕ′′(x) + tψ′′(x) + ΨT (x)UCF Jγ0Ψ(t). (6.6)

By integrating Eq (6.6) two times with respect to x and combining the conditions (6.2), we have

u(x, t) = x
∂u
∂x

∣∣∣∣∣
x=0
+ ϕ(x) − ϕ(0) − xϕ′(0) + t(ψ(x) − ψ(0) − xψ′(0)) + (I2Ψ(x))T UCF Jγ0Ψ(t). (6.7)

Putting x = 1 in Eq (6.7), we get

−
∂u
∂x

∣∣∣∣∣
x=0
= ϕ(1) − ϕ(0) − ϕ′(0) + t(ψ(1) − ψ(0) − ψ′(0)) + (I2Ψ(1))T UCF Jγ0Ψ(t). (6.8)

Therefore, we have

u(x, t) =(ϕ(x) − ϕ(0) − xϕ′(0)) + t(ψ(x) − ψ(0) − xψ′(0)) + (I2Ψ(x))T UCF Jγ0Ψ(t) (6.9)
− x

[
ϕ(1) − ϕ(0) − ϕ′(0) + t(ψ(1) − ψ(0) − ψ′(0)) + (I2Ψ(1))T UCF Jγ0Ψ(t)

]
.

Taking the first derivative of Eq (6.9) with respect to t, we get

∂u(x, t)
∂t

=ψ(x) − ψ(0) − xψ′(0) + (I2Ψ(x))T UCF Jγ−1
0 Ψ(t) − x

[
ψ(1) − ψ(0) − ψ′(0) (6.10)

+ (I2Ψ(1))T UCF Jγ−1
0 Ψ(t)

]
.

Again, taking the Caputo-Fabrizio fractional derivative of order γ of Eq (6.9) with respect to t and
considering the Lemma 2.1, we obtain

∂γu(x, t)
∂tγ

= (I2Ψ(x))T U(Ψ(t) − Ψ(0)e
αt

1−α ) − x
(
I2Ψ(1))T U(Ψ(t) − Ψ(0)e

αt
1−α ). (6.11)

Now, by substituting Eqs (6.6), (6.10) and (6.11) into Eq (6.1) and considering the collocation points
xi =

2i−1
2k M , t j =

2 j−1
2k M , i, j = 1, 2, · · · , 2k−1M, we obtain the following linear system of algebraic equation:

(I2Ψ(xi) − xiI2Ψ(1))T U
(CF Jγ−1

0 Ψ(t j) + Ψ(t j) − Ψ(0)e
αt j
1−α

)
− ΨT (xi)UCF Jγ0Ψ(t j) (6.12)

= f (xi, t j) − (ψ(xi) − ψ(0) − xiψ
′(0)) + xi(ψ(1) − ψ(0) − ψ′(0)) + (ϕ′′(xi) + t j(ψ′′(xi))).

Solving this system, we obtain the unknown Euler wavelet coefficient vector U and thereafter
substituting U into Eq (6.9), we obtain the approximate solutions of the given time-fractional Cattaneo
equation (6.1).
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7. Numerical examples

In this section, we provide several numerical examples with exact solution to demonstrate the
accuracy of the orthonormal Euler wavelets collocation method. All the numerical experiments are
performed by Matlab 7.0. We report errors by using
(i) Mean root square norm (L2):

L2 − error =

√∑m
i=0

∑m
j=0(uk,M(xi, t j) − u(xi, t j))2

m2 ,

(ii) Maximum error norm (L∞):

L∞ − error = max
1≤i≤m,1≤ j≤m

|uk,M(xi, t j) − u(xi, t j)|,

where uk,M(xi, t j) is the approximated solution and u(xi, t j) is the exact solution.

Example 1. Consider the following time-fractional Cattaneo equation:


∂u(x,t)
∂t +

∂γu(x,t)
∂tγ =

∂2u(x,t)
∂x2 + f (x, t), 0 < x < 1, 0 ≤ t ≤ 1, 1 < γ < 2,

u(0, t) = 0, u(1, t) = 0,
u(x, 0) = 0, ∂u

∂t

∣∣∣∣
t=0
= 0,

(7.1)

where f (x, t) = 2(1− x2)x
16
3 (t + 1−eσt

γ−1 )+ t2(418
9 x

16
3 − 208

9 x
10
3 ). The exact solution is u(x, t) = t2(1− x2)x

16
3 .

Figure 1 shows the numerical solution (left) and absolute error (right) for some different points of
[0, 1] × [0, 1] with γ = 5/4, k = 5 and M = 5. For various γ, Table 1 gives the L∞, L2 errors with
different k and M.
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Figure 1. The plot of numerical solution and pointwise errors for Example 1 with γ = 5/4,
k = 5 and M = 5.
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Table 1. Error estimate for Example 1 with different k and M.

γ norm k = 3,M = 3 k = 4,M = 4 k = 5,M = 5 k = 6,M = 6
1.2 L∞ 4.4291e-4 4.8747e-6 6.1905e-11 5.2767e-13

L2 1.2791e-4 1.4450e-6 1.1791e-11 1.0202e-13
1.4 L∞ 4.3108e-4 4.7223e-6 6.1689e-11 5.2645e-13

L2 1.2334e-4 1.3840e-6 1.1756e-11 1.0039e-13
1.6 L∞ 4.2223e-4 4.5005e-6 5.8791e-11 5.2395e-13

L2 1.2122e-4 1.2886e-6 1.6430e-11 9.8481e-14
1.8 L∞ 4.6023e-4 3.7309e-6 1.9333e-9 5.5668e-13

L2 1.7954e-4 9.8998e-7 9.6276e-10 2.8539e-13
1.9 L∞ 9.6641e-4 2.9868e-5 9.7490e-8 5.9616e-11

L2 4.9498e-4 1.3332e-5 4.4653e-8 2.7277e-11

Example 2. Consider the following time-fractional Cattaneo equation with the exact solution u(x, t) =
et sin(πx): 

∂u(x,t)
∂t +

∂γu(x,t)
∂tγ =

∂2u(x,t)
∂x2 + f (x, t), 0 < x < 1, 0 ≤ t ≤ 1, 1 < γ < 2,

u(0, t) = 0, u(1, t) = 0,
u(x, 0) = sin(πx), ∂u

∂t

∣∣∣∣
t=0
= sin(πx),

(7.2)

where f (x, t) = et sin(πx) + 1
2−γ

1
1−σ (et − eσt) sin(πx) + etπ2 sin(πx).

Figure 2 shows the numerical solution and pointwise errors on [0, 1]× [0, 1] with γ = 1.9, k = 5 and
M = 5. For various γ, Table 2 gives the L∞, L2 errors with different k and M. In Figure 3, we depict the
logarithmic plot for the maximal absolute errors L∞ and mean root square error L2 at selected points
with k = 4, γ = 1.9 and M = 3 through 9.
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Figure 2. The plot of numerical solution and pointwise errors for Example 2 with γ = 1.9,
k = 5 and M = 5.
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Table 2. Error estimate for Example 2 with different k and M.

γ norm k = 3,M = 3 k = 4,M = 4 k = 5,M = 5 k = 6,M = 6
1.2 L∞ 1.0143e-4 8.0837e-7 3.3529e-11 6.0396e-14

L2 3.6737e-5 2.3647e-7 8.8511e-12 1.9451e-14
1.4 L∞ 1.0483e-4 7.6592e-7 3.1084e-11 9.9476e-14

L2 4.0664e-5 2.2115e-7 8.7714e-12 2.7726e-14
1.6 L∞ 1.6201e-4 5.4781e-7 1.2204e-10 1.6875e-13

L2 8.8981e-5 1.3852e-7 6.4412e-11 3.6683e-14
1.8 L∞ 0.0016 1.1935e-5 1.5296e-8 3.9275e-12

L2 8.7472e-4 6.2400e-6 8.0685e-9 2.0768e-12
1.9 L∞ 0.0083 2.5393e-4 8.2131e-7 5.0065e-10

L2 0.0042 1.2783e-4 4.1361e-7 2.5214e-10

3 4 5 6 7 8 9
−10

−9

−8

−7

−6

−5

−4

−3

−2

M

lo
g 10

E
rr

or

 

 

L−∞

L
2

Figure 3. The logarithmic plot for L∞ and L2 error for Example 2.

Example 3. Consider the following time-fractional Cattaneo equation with the exact solution u(x, t) =
etx2(1 − x)2:


∂u(x,t)
∂t +

∂γu(x,t)
∂tγ =

∂2u(x,t)
∂x2 + f (x, t), 0 < x < 1, 0 ≤ t ≤ 1, 1 < γ < 2,

u(0, t) = 0, u(1, t) = 0,
u(x, 0) = x2(1 − x)2, ∂u

∂t

∣∣∣∣
t=0
= x2(1 − x)2,

(7.3)

where f (x, t) = etx2(1 − x)2 + 1
2−γ

1
1−σ (et − eσt)x2(1 − x)2 − et(12x2 − 12x + 2).

Figure 4 shows the numerical solution and pointwise errors on [0, 1]× [0, 1] with γ = 1.7, k = 5 and
M = 5. For various γ, Table 3 gives the L∞, L2 errors with different k and M. In Figure 5, we depict the
logarithmic plot for the maximal absolute errors L∞ and mean root square error L2 at selected points
with k = 3, γ = 1.7 and M = 3 through 9.
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Figure 4. The plot of numerical solution and pointwise errors for Example 3 with γ = 1.7,
k = 5 and M = 5.

Table 3. Error estimate for Example 3 with different k and M.

γ norm k = 3,M = 3 k = 4,M = 4 k = 5,M = 5 k = 6,M = 6
1.2 L∞ 2.0143e-6 3.2792e-9 8.3658e-13 5.7454e-15

L2 1.1090e-6 1.8354e-9 4.8755e-13 8.2946e-16
1.4 L∞ 2.4907e-6 2.6650e-9 9.5716e-13 1.2768e-15

L2 1.4089e-6 1.5146e-9 5.5222e-13 2.1428e-16
1.6 L∞ 7.6440e-6 1.0909e-8 7.1870e-12 5.4678e-15

L2 4.2624e-6 6.0637e-9 4.0095e-12 9.1325e-16
1.8 L∞ 9.1918e-5 6.7269e-7 8.5751e-10 2.1959e-13

L2 4.8255e-5 3.5286e-7 4.4978e-10 1.1499e-13
1.9 L∞ 4.6337e-4 1.4125e-5 4.5675e-8 2.7842e-11

L2 2.3351e-4 7.1249e-6 2.3041e-8 1.4045e-11
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Figure 5. The logarithmic plot for L∞ and L2 error for Example 3.
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Example 4. Consider the following time-fractional Cattaneo equation with the exact solution u(x, t) =
et(1 − x)x

16
3 : 

∂u(x,t)
∂t +

∂γu(x,t)
∂tγ =

∂2u(x,t)
∂x2 + f (x, t), 0 < x < 1, 0 ≤ t ≤ 1, 1 < γ < 2,

u(0, t) = 0, u(1, t) = 0,
u(x, 0) = (1 − x)x

16
3 , ∂u

∂t

∣∣∣∣
t=0
= (1 − x)x

16
3 ,

(7.4)

where f (x, t) = et(1 − x)x
16
3 + 1

2−γ
1

1−σ (et − eσt)(1 − x)x
16
3 + et(304

9 x
13
3 − 208

9 x
10
3 ).

Figure 6 displays the numerical solution and pointwise errors on [0, 1] × [0, 1] with γ = 1.5, k = 5
and M = 5. In Table 4, we list the L∞, L2 errors with different k, M and γ.
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Figure 6. The plot of numerical solution and pointwise errors for Example 4 with γ = 1.5,
k = 5 and M = 5.

Table 4. Error estimate for Example 4 with different k and M.

γ norm k = 3,M = 3 k = 4,M = 4 k = 5,M = 5 k = 6,M = 6
1.2 L∞ 9.4908e-5 9.8307e-7 8.7095e-11 4.4699e-13

L2 2.6285e-5 2.8646e-7 2.0943e-11 9.9711e-14
1.4 L∞ 9.1462e-5 9.4324e-7 8.6046e-11 4.4436e-13

L2 2.5169e-5 2.7294e-7 2.0245e-11 9.7045e-14
1.6 L∞ 8.8202e-5 8.8560e-7 8.4203e-11 4.4144e-13

L2 2.4450e-5 2.5215e-7 1.8668e-11 9.3449e-14
1.8 L∞ 9.8768e-5 6.7160e-7 4.4743e-10 4.4437e-13

L2 3.8992e-5 1.9644e-7 2.1858e-10 1.2035e-13
1.9 L∞ 2.5128e-4 7.7518e-6 2.5265e-8 1.5449e-11

L2 1.2672e-4 3.5255e-6 1.1706e-8 7.1740e-12
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Example 5. Consider the following time-fractional Cattaneo equation with the exact solution u(x, t) =
et(sin(πx))2: 

∂u(x,t)
∂t +

∂γu(x,t)
∂tγ =

∂2u(x,t)
∂x2 + f (x, t), 0 < x < 1, 0 ≤ t ≤ 1, 1 < γ < 2,

u(0, t) = 0, u(1, t) = 0,
u(x, 0) = (sin(πx))2, ∂u

∂t

∣∣∣∣
t=0
= (sin(πx))2,

(7.5)

where f (x, t) = et((sin(πx))2 + 1
2−γ

1
1−σ (et − eσt)(sin(πx))2 − et2π2(cos(πx))2.

In Figure 7, we plot the approximate solution and pointwise errors on [0, 1] × [0, 1] when γ = 1.9,
k = 5 and M = 5. For various γ, Table 5 gives the L∞, L2 errors with different k and M. In Figure 8,
we depict the logarithmic plot for the maximal absolute errors L∞ and mean root square error L2 at
selected points with k = 4, γ = 1.9 and M = 3 through 9.
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Figure 7. The plot of numerical solution and pointwise errors for Example 5 with γ = 1.9,
k = 5 and M = 5.

Table 5. Error estimate for Example 5 with different k and M.

γ norm k = 3,M = 3 k = 4,M = 4 k = 5,M = 5 k = 6,M = 6
1.2 L∞ 0.0014 1.2982e-5 3.2843e-9 6.0574e-12

L2 3.0838e-4 2.9801e-6 7.6865e-10 1.4442e-12
1.4 L∞ 0.0014 1.2562e-5 3.1775e-9 5.9392e-12

L2 2.9784e-4 2.8451e-6 7.3457e-10 1.3902e-12
1.6 L∞ 0.0014 1.1862e-5 2.9698e-9 5.7323e-12

L2 3.1058e-4 2.5919e-6 6.5691e-10 1.3124e-12
1.8 L∞ 0.0018 9.3156e-6 1.2832e-8 6.6569e-12

L2 8.8981e-4 4.5346e-6 6.5375e-9 2.5842e-12
1.9 L∞ 0.0072 2.1421e-4 6.9554e-7 4.2455e-10

L2 0.0037 1.0762e-4 3.5099e-7 2.1461e-10
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Figure 8. The logarithmic plot for L∞ and L2 error for Example 5.

Example 6. Consider the following nonlinear time-fractional Cattaneo equation with the exact solution
u(x, t) = etx2 sin(πx):

∂u(x,t)
∂t +

∂1.5u(x,t)
∂t1.5 =

∂2u(x,t)
∂x2 + u(1 − u) + f (x, t), 0 < x < 1, 0 ≤ t ≤ 1,

u(0, t) = 0, u(1, t) = 0,
u(x, 0) = x2 sin(πx), ∂u

∂t

∣∣∣∣
t=0
= x2 sin(πx),

(7.6)

where f (x, t) = x2 sin(πx)
2−γ

1
1−σ (et−eσt)− (2 sin(πx)+4πx cos(πx)−π2x2 sin(πx))et+ (etx2 sin(πx))2. In [36],

the authors solved the problem using shifted Chebyshev polynomial collocation method and Caputo-
Fabrizio operational matrix of derivative. To compare our numerical findings with those results in [36],
we list absolute errors at different spatial points at time t = 0.1, and for different value of M with k = 1
in Table 6. It can be seen that we obtain more accurate numerical solutions with the same parameters.
For k = 2 and M = 6, the numerical solution and pointwise errors on [0, 1]×[0, 1] are given in Figure 9.
In Figure 10, we depict the logarithmic plot for the maximal absolute errors L∞ and root mean square
error L2 at selected points with k = 2 and M = 3 through 9.

Table 6. Absolute errors for M = 4 and M = 6 in Example 6.

Method in [36] Present method
x M = 4 M = 6 M = 4 M = 6

0.2 6.7e-3 3.7e-4 1.7e-5 2.4e-7
0.4 5.2e-3 8.2e-4 1.0e-5 1.0e-7
0.6 1.6e-3 3.6e-4 1.2e-5 1.1e-7
0.8 9.1e-3 4.2e-4 1.9e-5 1.7e-7
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Figure 9. The plot of numerical solution and pointwise errors for Example 6 with k = 2 and
M = 6.
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Figure 10. The logarithmic plot for L∞ and L2 error for Example 6.

8. Conclusions

In this work, a numerical algorithmn based on orthonormal Euler wavelets together with collocation
method is proposed for the time-fractional Cattaneo equation with Caputo-Fabrizio derivative. The
orthonormal Euler wavelets are constructed by applying the Gram-Schmidt orthonormalization process
on sets of Euler polynomials. The convergence analysis and error estimate of the orthonormal Euler
wavelets expansion are investigated. The exact formula of the Caputo-Fabrizio fractional integral of
orthogonal Euler wavelets is obtained for the first time. The main characteristic behind the method is
that the problem under consideration is converted into a system of algebraic equations, which greatly
simplifies the problem. The effectiveness of the proposed method for time-fractional Cattaneo equation
with Caputo-Fabrizio derivative is verified by the graphical and tabular demonstrations. It can be seen
from the Tables 1–5 that maximum absolute error L∞ and root mean square error L2 become smaller
and smaller with increasing k and M. One can see from the Figures 3, 5, 8 and 10 that L∞ and L2

errors show exponential decay in the coordinate, the error variations are essentially linear versus the
polynomial degrees. In addition, we also compare our results in Example 6 with the results of shifted
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Chebyshev polynomial collocation method. We find that Euler wavelets collocation method in this
work provides much better results than the aforementioned numerical method. The outcomes show
that the proposed method is suitable for solving time-fractional Cattaneo equations having Caputo-
Fabrizio derivative.

In our future work, we will consider 2D and 3D linear and nonlinear fractional partial differential
equations involving Caputo-Fabrizio derivative, such as fractional KdV, KdV-Burgers equations, time
distributed-order differential equations.
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Appendix

In this section, we prove Theorem 5.2.
Proof. According to the definition of orthonormal Euler wavelets ψn,m(x), they are given as follows:

ψn,m(x) =
{

2
k−1

2 OEm(2k−1x − n + 1), n−1
2k−1 ≤ x < n

2k−1 ,

0, otherwise.
(A.1)

Using the unit step function, orthonormal Euler wavelets can be expressed as

ψn,m(x) = µ n−1
2k−1

(x)2
k−1

2 OEm(2k−1x − n + 1) − µ n
2k−1

(x)2
k−1

2 OEm(2k−1x − n + 1),

where µc(x) is the unit step function defined as

µc(x) =
{

1, x ≥ c,
0, x < c.

(A.2)

Recalling the definition of Caputo-Fabrizio integral of order η = n + β:

CF Jn+β
a f (x) =

1
M(β)n!

∫ x

a
(x − s)n−1[β(x − s) + n(1 − β)] f (s)ds, (A.3)

it can be further simplified as follows using the Cauchy formula In f (x) = 1
Γ(n)

∫ x

a
(x − s)n−1 f (s)ds and

the relation Γ(n) = (n − 1)!,

CF Jn+β
a f (x) =

1 − β
M(β)

In f (x) +
β

M(β)
In+1 f (x). (A.4)
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Note that In f (x) is the special case of Riemann-Liuville integral Iα f (x) = 1
Γ(α)

∫ x

0
(x − s)α−1 f (s)ds.

Furthermore, by the aid of convolution operation, Iα f (x) can be express as

Iαψn,m(x) =
1
Γ(α)

xα−1 ∗ ψn,m(x). (A.5)

By employing the Laplace transform, we obtain

L{Iαψn,m(x)} = L{
1
Γ(α)

xα−1}L{ψn,m(x)} =
1
sα
L{ψn,m(x)}. (A.6)

Next, we focus on the derivation of L{ψn,m(x)}. By using the delay property of Laplace transform
L{µc(x) f (x)} = e−csL{ f (x + c)}, we have

L{ψn,m(x)} =2
k−1

2 L{µ n−1
2k−1

(x)OEm
(
2k−1x − n + 1

)
}

− 2
k−1

2 L{µ n
2k−1

(x)OEm
(
2k−1x − n + 1

)
}

=e−
n−1

2k−1 s2
k−1

2 L{OEm(2k−1(x + n − 1
2k−1 ) − n + 1

)
}

− e−
n

2k−1 s2
k−1

2 L{OEm(2k−1(x + n
2k−1 ) − n + 1

)
}

=e−
n−1

2k−1 s2
k−1

2 L{OEm
(
2k−1x)} − e−

n
2k−1 s2

k−1
2 L{OEm(2k−1x + 1)}. (A.7)

From Eq (3.3), we have

OEm(2k−1x) =
√

2m + 1
m∑

i=0

(−1)m−iCi
mCi

m+i2
i(k−1)xi, (A.8)

and

OEm(2k−1x + 1) =
√

2m + 1
m∑

i=0

(−1)m−iCi
mCi

m+i

i∑
r=0

Cr
i 2

r(k−1)xr. (A.9)

By substituting Eqs (A.8) and (A.9) into Eq (A.7), we obtain

L{ψn,m(x)} =e−
n−1

2k−1 s2
k−1

2
√

2m + 1
m∑

i=0

(−1)m−iCi
mCi

m+i2
i(k−1)
L{xi}

− e−
n

2k−1 s2
k−1

2
√

2m + 1
m∑

i=0

(−1)m−iCi
mCi

m+i

i∑
r=0

Cr
i 2

r(k−1)
L{xr}.

Since L{xr} =
Γ(r+1)

sr+1 , we have

L{ψn,m(x)} =2
k−1

2
√

2m + 1
m∑

i=0

(−1)m−iCi
mCi

m+i2
i(k−1)Γ(i + 1)

e−
n−1

2k−1 s

si+1

− 2
k−1

2
√

2m + 1
m∑

i=0

(−1)m−iCi
mCi

m+i

i∑
r=0

Cr
i 2

r(k−1)Γ(r + 1)
e−

n
2k−1 s

sr+1 .
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From the definition of Iαψn,m(x), we get

L{Iαψn,m(x)} =L{
1
Γ(α)

xα−1}L{ψn,m(x)} =
1
sα
L{ψn,m(x)}

=2
k−1

2
√

2m + 1
m∑

i=0

(−1)m−iCi
mCi

m+i2
i(k−1)Γ(i + 1)

e−
n−1

2k−1 s

si+α+1

− 2
k−1

2
√

2m + 1
m∑

i=0

(−1)m−iCi
mCi

m+i

i∑
r=0

Cr
i 2

r(k−1)Γ(r + 1)
e−

n
2k−1 s

sr+α+1 .

By taking the inverse Laplace transform and using the delay property of Laplace transform power
function L{(x − a)nµ(x − a)} = e−as Γ(n+1)

sa+1 , we obtain

Iαψn,m(x) =2
k−1

2
√

2m + 1
m∑

i=0

(−1)m−iCi
mCi

m+i2
i(k−1) Γ(i + 1)
Γ(i + α + 1)

(
x −

n − 1
2k−1

)i+α
µ n−1

2k−1
(x)

− 2
k−1

2
√

2m + 1
m∑

i=0

(−1)m−iCi
mCi

m+i

i∑
r=0

Cr
i 2

r(k−1) Γ(r + 1)
Γ(r + α + 1)

(
x −

n
2k−1

)r+α
µ n

2k−1
(x).

The theorem then follows.2
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