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Abstract: Spectra of network related graphs have numerous applications in computer sciences,
electrical networks and complex networks to explore structural characterization like stability and
strength of these different real-world networks. In present article, our consideration is to compute
spectrum based results of generalized prism graph which is well-known planar and polyhedral graph
family belongs to the generalized Petersen graphs. Then obtained results are applied to compute some
network related quantities like global mean-first passage time, average path length, number of spanning
trees, graph energies and spectral radius.
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1. Introduction

Visualization and network analysis of real world networks including social networks, worldwide
web, internet and biological networks is effectual research field during recent years [1, 2]. Subjects
of control theory nonlinear dynamics, and graph theory are utilized in study of complex networks
which makes it more challenging and comprehensive. Depending upon the structural characterization,
eigenvalues of a network graph contravene in robustness analysis, electrical networks and vibration
theory explains the strength and stability of these networks [3, 4]. Modern Scientific fields
like theoretical chemistry, communication networks and combinatorial optimization are extensively
utilizing numerous distance and degree based eigenvalues [8, 9]. The undirected graphs are used to
describe different complex networks and models whereas processors and communication links are
represented by vertices and edges, respectively. Consider a graph G whose vertices are labeled as
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1, 2, 3, ..., n then its adjacency matrixA(G) is defined as

A(G) =

{
1 if νi ∼ ν j ,

0 if νi / ν j .

In algebraic graph theory, adjacency matrix has numerous implementations i.e., widely used
in computer programs as data structure for representation and manipulating the graphs due to
their less storage and faster compilation capability [10–12]. The eigenvalues of matrix A(G)
are considered as eigenvalues of given graph G and known as the adjacency spectrum of G,
denoted by (η1 ≤ η2 ≤ η3 ≤ ... ≤ ηn). The diagonal matrix of vertex degrees is defined as D(G) =

diag
[
dνi j

]
f or i = j where dνi j denotes degree of certain vertex. Then Laplacian matrix [13] is

L(G) = D(G) −A(G) which can be elaborated as

L(G) =


dνi j if νi = ν j,

−1 if νi ∼ ν j,
0 if νi / ν j.

Numerous implementation of Laplacian spectrum is involved in complex networks to solve
theoretical problems, dynamical processes and topological structures explanation [14–16]. A large
number of results related to Laplacian spectra has calculated in existing literature mentioned in [17–21].
For instance, the second smallest eigenvalue of Laplacian matrix is known as the diameter of a
network. The Kirchhoff index of networks can be expressed by the sum of reciprocals of nonzero
eigenvalues, and the number of spanning trees of networks can be determined by the product of all
nonzero adjacency, Laplacian and signless Laplacian eigenvalues. Additionally, the synchronizability
of a network can be determined by the the ratio of the maximum eigenvalue to the smallest nonzero
one of its Laplacian matrix [22, 23]. Consequently, calculating these spectra is of great interest though
determining this analytically is a theoretical challenge. The signless Laplacian matrix, denoted by £(G)
and defined as

£(G) =


dνi j if νi = ν j,

1 if νi ∼ ν j,
0 if νi / ν j.

is a well-known parameter in algebraic graph theory to describe structure and topology of graphs and
numerous results and applications about £(G) are mentioned in [24–27]. Prism graph Rm

n is a famous
family in graph theory generated by iterative method taking m-copies of cycle graph Cn and then
joining corresponding vertices as described in Figures 1 and 2. It is easy to evaluate that Rm

n contains
mn number of vertices and (2m − 1)n number of edges. Laplacian spectrum of R3

n and L(Rm
n ) are

calculated in [2, 28], respectively. Motivated by above work, we evaluated and analyzed the adjacency
and signless Laplacian spectrum for generalized prism graphRm

n . Then the obtained results are utilized
to examine some network related quantities. Some previous results used to evaluate required solutions
in this paper are given below:
Definition 1.1. [29] Consider two matrices X and Y then Kronecker product X ⊗ Y is obtained by
replacing i j-entry xi j of X by xi jY . Some properties of kronecker product are mentioned in following
lemmas.
Lemma 1.1. [30] Let W ∈ Mm,n(F), X ∈ Mp,q(F),Y ∈ Mn,k(F),Z ∈ Mq,r(F) and α ∈ F then
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• (X ⊗ Y)T = XT ⊗ YT ;
• (X ⊗ Y)(X′ ⊗ Y ′) = XX′ ⊗ YY ′;
• α(X ⊗ Y) = αX ⊗ Y = X ⊗ αY .

Consider the path and cycle graph with n vertices, denoted by Pn and Cn. Spectrum of Pn and Cn

are calculated in existed literature.
Lemma 1.2. [31] The adjacency eigenvalues of cycle graph Cn are 2cos 2πµ

n where µ = 1, 2, ..., n − 1
and adjacency eigenvalues of path graph Pm are 2cos πλ

n+1 where λ = 1, 2, ...,m.
Let the product of all non-zero eigenvalues of given matrix and sum of reciprocal of obtained

eigenvalues are denoted byAm
n and Bm

n , respectively, that is

Am
n =

N∏
k=1

∈i and Bm
n =

N∑
k=1

1
∈i
,

where ∈k(k = 1, 2, ...,N) denotes eigenvalues of given adjacency matrix.

Figure 1. Construction of prism graph utilizing cycle graph Cn.

Figure 2. Generalized Prism Graph Rm
n .
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2. Results

Some generalized results of prism network are evaluated in this section utilizing the edge parcel
technique, degree checking strategy, vertex distance schemes, whole of degrees of neighbors technique,
vertex adjacency schemes, vertex segment strategy, graph hypothetical devices, combinatorial
techniques and expository strategies. In addition, Matlab and Maple are used for mathematical
calculations and verification.
Theorem 2.1. Consider the adjacency matrix of generalized prism graph with m copies and vertices
in each cycle, denoted byA(Rm

n ). Then, product of all eigenvalues is

Am
n = 2

m−1∏
i=0

n∏
j=1

(
cos

2π j
n

+ cos
πi

m + 1

)
,

and sum of reciprocal of nonzero eigenvalues is

Bm
n =

1
2

m−1∑
i=0

n∑
j=1

(
cos

2π j
n

+ cos
πi

m + 1

)−1

.

Proof. The adjacency matrix of prism graph Rm
n is:

A(Rm
n ) =


A(Cn) f or i = j

In f or i ≥ 1, j = i + 1

In f or i ≥ 2, j = i − 1

On elsewhere


m

,

which can be written as

A(Rm
n ) =

 A(Cn) f or i = j

On elsewhere


m

+

 In f or i ≥ 1, j = i + 1 and i ≥ 2, j = i − 1

On elsewhere


m

.

Thus by Lemma 1.1,

A(Rm
n ) =

 1 f or i = j

On elsewhere


m

⊗A(Cn) +

 1 f or i ≥ 1, j = i + 1 and i ≥ 2, j = i − 1

On elsewhere


m

⊗ In,

where matrix  1 f or i ≥ 1, j = i + 1 and i ≥ 2, j = i − 1

On elsewhere


m

,

is adjacency matrix of path graph with m vertices say Pm. Then

A(Rm
n ) = A(Cn) ⊗ Im +A(Pm) ⊗ In.

Suppose, there exists two matrices P,Q which are invertible and relate with Cn and Pm such that:

(A(Cn))′ = P−1A(Cn)P,

and
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(A(Pm))′ = Q−1A(Pm)Q,

diagonal elements of these both upper triangular matrix is:

2cos
2πµ

n
and 2cos

πλ

m + 1
with µ = 1, 2, . . . , n and λ = 0, 1, . . . ,m − 1.

And clearly,

(P ⊗ Q)−1(A(Cn) ⊗ Im +A(Pm) ⊗ In)(P ⊗ Q) = A(Cn)′ ⊗ Im +A(Pm)′ ⊗ In,

diagonal elements of this upper triangular matrix are defined as

2cos
2πµ

n
+ 2cos

πλ

m + 1
with µ = 1, 2, . . . , n and λ = 0, 1, . . . ,m − 1.

Consequently, the adjacency eigenvalues for n-prism networks are

2cos
2πµ

n
+ 2cos

πλ

m + 1
with µ = 1, 2, . . . , n and λ = 0, 1, . . . ,m − 1. (2.1)

By utilizing the above results, one can get

Am
n =

m−1∏
λ=0

n∏
µ=1

µλ,µ = 2
m−1∏
λ=0

n∏
µ=1

(
cos

2πµ
n

+ cos
πλ

m + 1

)
, (λ, µ) , (0, 0) (2.2)

and

Bm
n =

m−1∑
λ=0

n∑
µ=1

µλ,µ =
1
2

m−1∑
λ=0

n∑
µ=1

(
cos

2πµ
n

+ cos
πλ

m + 1

)−1

, (λ, µ) , (0, 0). (2.3)

Above theorem gives the exact results for adjacency matrix of generalized prism graph. Utilizing
above theorem, we established following corollary for which is classic prism and closely related to
results in [2].
Corollary 2.1. Product and sum reciprocal of eigenvalues for Rm

3 are given as:

Ag = 2
m−1∏
λ=0

3∏
µ=1

(
cos

2πµ
3

+ cos
πλ

m + 1

)
, (λ, µ) , (0, 0)

and

Bg =
1
2

m−1∑
λ=0

3∑
µ=1

(
cos

2πµ
3

+ cos
πλ

m + 1

)−1

, (λ, µ) , (0, 0).

Product and reciprocal of sum of eigenvalues obtained from Laplacian matrix L of prism graph along
with numerous application in complex networks is explained already in literature [28]. Now we
calculate generalized formulae to obtain product and sum of eigenvalues of signless Laplacian matrix
£(G) of prism graph in following theorem.
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Theorem 2.2. The product and sum of reciprocal nonzero eigenvalues of £(Pm) are

Am
n =

m−1∏
i=0

n∏
j=1

(
4 + 2cos

2π j
n

+ 2cos
πi

m + 1

)

Bm
n =

m−1∑
i=0

n∑
j=1

(
4 + 2cos

2π j
n

+ 2cos
πi

m + 1

)−1

.

Proof. The signless Laplacian matrix of prism graph Rm
n is:

£(Rm
n ) =


£(Cn) f or i = j

In f or i ≥ 1, j = i + 1

In f or i ≥ 2, j = i − 1

On elsewhere


m

,

which can be written as

£(Rm
n ) =

 £(Cn) f or i = j

On elsewhere


m

+

 In f or i ≥ 1, j = i + 1 and i ≥ 2, j = i − 1

On elsewhere


m

.

Thus by Lemma 1.1

£(Rm
n ) =

 1 f or i = j

On elsewhere


m

⊗ £(Cn) +

 1 f or i ≥ 1, j = i + 1 and i ≥ 2, j = i − 1

On elsewhere


m

⊗ In,

where matrix  1 f or i ≥ 1, j = i + 1 and i ≥ 2, j = i − 1

On elsewhere


m

is adjacency matrix of path graph with m vertices say Pm. Then

£(Rm
n ) = £(Cn) ⊗ Im + £(Pm) ⊗ In,

where In denotes the identity matrix of dimension n × n. Actually, there exists invertible matrices P,Q
such that the matrices:

(£(Cn))′ = P−1£(Cn)P

and

(£(Pm))′ = Q−1£(Pm)Q

are both upper triangular with diagonal elements

2 + 2cos
2πµ

n
and 2 + 2cos

2πλ
m + 1

with µ = 1, 2, . . . , n and λ = 0, 1, . . . ,m − 1.
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And clearly,

(P ⊗ Q)−1(£(Cn) ⊗ Im + £(Pm) ⊗ In)(P ⊗ Q) = £(Cn)′ ⊗ Im + £(Pm)′ ⊗ In

is upper triangular matrix whose diagonal elements are

4 + 2cos
2πµ

n
+ 2cos

2πλ
m + 1

with µ = 1, 2, . . . , n and λ = 0, 1, . . . ,m − 1.

Consequently, the adjacency eigenvalues for n-prism networks are

4 + 2cos
2πµ

n
+ 2cos

2πλ
m + 1

with µ = 1, 2, . . . , n and λ = 0, 1, . . . ,m − 1. (2.4)

By utilizing the above result, one can get

Am
n =

m−1∏
λ=0

n∏
µ=1

µλ,µ =

m−1∏
λ=0

n∏
µ=1

(
4 + 2cos

2πµ
n

+ 2cos
2πλ

m + 1

)
, (λ, µ) , (0, 0) (2.5)

and

Bm
n =

m−1∑
λ=0

n∑
µ=1

µλ,µ =

m−1∑
λ=0

n∑
µ=1

(
4 + 2cos

2πµ
n

+ 2cos
2πλ

m + 1

)−1

, (λ, µ) , (0, 0). (2.6)

3. Implementation of adjacency spectra

Spectral radius, graph energy, Kirchoff index, average path length, global mean first passage time
and number of spanning trees are some network related quantities which can be calculated by utilizing
above determined results in Theorems 2.1 and 2.2, and capable to enriches and extends the earlier
results in literature.

3.1. Kirchoff network descriptor

Novel concept of resistance distance was introduced by Randic and Klein [32] in which they
considered one unit resistor as an edge and whole resistive network as graph G. In electrical network
theory, effective resistance between nodes µ and λ is called resistance distance, denoted by rλµ, can
also be computed by ohm’s law. Mathematically, the Kirchoff index is

KI(G) =
1
2

n∑
λ=1

n∑
µ=1

rλµ(G).

Actually, KI(G) is sum of resistance distances between all vertices pairs in G with numerous
applications in graph theory, physics and chemistry. Some recent publications related to Kirchoff

index and its applications are cited in [33, 34]. Consider a connected graph G of order M with ελ
non-zero eigenvalues where i = 1, 2, ...,N. Then KI(G) can be defined in terms of eigenvalues as [35]

KI(G) = N
N∑
λ=2

1
ελ
. (3.1)
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Now we compute exact formula for KI(Rm
n ) utilizing above result as follows:

KI(Rm
n ) =

n∑
λ<µ

rλµ(G) = Nm

Nm∑
φ=2

1
εφ

= Nm

m−1∑
λ=0

n∑
µ=1

1
ελµ

(λ, µ) , (0, 0).

By using the number of vertices of prism graph and results of Theorem 2.1, we evaluate:

KI(Rm
n ) =

mn
2

m−1∑
λ=0

n∑
µ=1

(
cos

2πµ
n

+ cos
πλ

m + 1

)−1

, (λ, µ) , (0, 0).

Similarly, utilizing signless Laplacian matrix of prism graph Rm
n , we obtain kirchoff index as:

KI(Rm
n ) = mn

m−1∑
λ=0

n∑
µ=1

(
4 + 2cos

2πµ
n

+ 2cos
2πλ

m + 1

)−1

.

3.2. Global mean-first passage time

A network related important quantity mean-first passage time (Fλµ) is utilized in estimation of
transport speed for random walks in complex network systems whereas global mean-first passage time
(Fλµ) is used to measure diffusion efficiency which can be calculated by averaging the quantity (Fλµ)
over ν origins of particles and (ν − 1) possible destinations [36, 37].

Fν =
1

ν(ν − 1)

∑
λ,µ

Fλµ(ν). (3.2)

The commuting time Tλµ between vertices (nodes) λ and µ is calculated as 2Erλµ using previous results
given in [14].

Tλµ = Fλµ + Fµλ = 2Erλµ, (3.3)

where E is size of graph G. Now, utilizing above Eqs (3.2) and (3.3), and discussions, global mean-first
passage time for Rm

n is:

Fν =
2Em

νm(νm − 1)

n∑
λ<µ

rλµ(G) =
2Em

νm(νm − 1)

Nm∑
φ=2

1
εφ

=
2Em

νm(νm − 1)

m−1∑
λ=0

n∑
µ=1

1
ελµ

(λ, µ) , (0, 0)

=
2Em

νm(νm − 1)

m−1∑
λ=0

n∑
µ=1

(
cos

2πµ
3

+ cos
πλ

m + 1

)−1

(λ, µ) , (0, 0).

Since νm = nm and εm = (2m − 1), therefore network size νm can be utilized to describe global
mean-first passage time.

Fν =
2m − 1

(mn − 1)

m−1∑
λ=0

n∑
µ=1

(
cos

2πµ
3

+ cos
πλ

m + 1

)−1

(λ, µ) , (0, 0).

Similarly, utilizing signless Laplacian matrix of prism graph Rm
n , we obtain global mean-first passage

time such that
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Fν =
2m − 1

(mn − 1)

m−1∑
λ=0

n∑
µ=1

(
4 + 2cos

2πµ
n

+ 2cos
2πλ

m + 1

)−1

(λ, µ) , (0, 0).

3.3. Average path length

In computer sciences, interpretation of term “Small world” is very short average path length APL
of mostly real world networks. Clustering coefficient, average path length and degree distribution are
most robust and prominent measures of network topology. For a graph (or network) G, average number
of steps along the shortest path dλµ is average path length (APL), denoted by Dm, which is a measure
of the efficiency of mass transport or information on networks among all possible pairs of network
nodes [14]. Then APL for Rm

n is defined as

Dm(Rm
n ) =

2
νm(νm − 1)

n∑
µ<λ

dλµ(G). (3.4)

If we consider an electrical network as complete graph then relation between the shortest paths dλµ(G)
and effective resistance rλµ(G) given in reference [38]

rλµ =
2 dλµ
| ν |

, (3.5)

where | ν | describes the order of complete graph G. We obtain following result from above Eqs (3.4)
and (3.5),

Dm(Rm
n ) =

2
νm(νm − 1)

×
νm

2

n∑
µ<λ

rλµ(G) =
2

νm(νm − 1)
.
νm

2
.νm

n∑
µ<λ

1
ελµ

=
νm

(νm − 1)

m−1∑
λ=0

n∑
µ=1

1
ελµ

(λ, µ) , (0, 0).

By using the number of vertices of prism graph and results of Theorem 2.1, we evaluate:

Dm(Rm
n ) =

mn
(mn − 1)

m−1∑
λ=0

n∑
µ=1

(
cos

2πµ
3

+ cos
πλ

m + 1

)−1

(λ, µ) , (0, 0).

Similarly, utilizing signless Laplacian matrix of prism graph Rm
n , we obtain average path length such

that

Dm(Rm
n ) =

mn
(mn − 1)

m−1∑
λ=0

n∑
µ=1

(
4 + 2cos

2πµ
n

+ 2cos
2πλ

m + 1

)−1

(λ, µ) , (0, 0).

3.4. The number of spanning trees

The standard random walks, reliability, resistor networks, transport, loop-erased random walks
and self-organised criticality are well-known terms in complex networking and closely related to the
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number of spanning trees (NST) which proves the importance and numerous implementation of NST
in various networks [39–43]. The Kirchhoff’s Matrix-tree theorem [44, 45] “Product of all nonzero
eigenvalues of the Laplacian matrix of the graph results the number of spanning trees” can be utilized
to calculate exact NST of prism graph Rm

n denoted by NS (Rm
n ). Then

NS (Rm
n ) =

∏νm
η=2 εη

νm
=
Am

n

νm
=

∏m−1
i=0

∏n
j=1 ελµ

νm
(λ, µ) , (0, 0)

=
2

mn

m−1∏
i=0

n∏
j=1

(
cos

2π j
n

+ cos
πi

m + 1

)
(λ, µ) , (0, 0).

Similarly, utilizing signless Laplacian matrix of prism graph Rm
n , we obtain the number of spanning

trees such that

NS (Rm
n ) =

1
mn

m−1∏
i=0

n∏
j=1

(
4 + 2cos

2πµ
n

+ 2cos
2πλ

m + 1

)
(λ, µ) , (0, 0).

3.5. Graph energies and spectral radius

Graph energies EG and spectral radius SR are network topology descriptor dependent upon
eigenvalues of graph (network) matrices. Spectral radius has numerous contrivance in vibration
theory, theoretical chemistry, combinatorial optimization, and communication networks, robustness
analysis and electrical networks [5–7]. Graph energies are widely used in Huckle Molecular Orbital
theory HMO, protein sequences and as a numerical invariant of chemical structures [46, 47]. EG and
SR are defined as sum of absolute eigenvalues and the maximum eigenvalue of adjacency matrices,
respectively. Thus

EG =

Nm∑
φ=1

∣∣∣εφ∣∣∣ and EG =
Nmmax
φ=1

∣∣∣εφ∣∣∣ .
Then by using above definitions, adjacency matrix of prism graph Rm

n and resuts obtained in
Theorem 2.1, we have

EG(Rm
n ) =

N∑
φ=0

∣∣∣µφ∣∣∣ =

m−1∑
λ=0

n∑
µ=1

∣∣∣∣∣∣2
(
cos

2πµ
n

+ cos
πλ

m + 1

)∣∣∣∣∣∣ , (λ, µ) , (0, 0),

SR(Rm
n ) =

N
max
φ=0

µφ =
m−1
max
λ=0

n
max
µ=1

2
(
cos

2πµ
n

+ cos
πλ

m + 1

)
, (λ, µ) , (0, 0).

Similarly, utilizing signless Laplacian matrix of prism graph Rm
n , we obtain graph energies and

spectral radius such that:

EG(Rm
n ) =

N∑
φ=0

∣∣∣µφ∣∣∣ =

m−1∑
λ=0

n∑
µ=1

∣∣∣∣∣4 + 2cos
2πµ

n
+ 2cos

2πλ
m + 1

∣∣∣∣∣ , (λ, µ) , (0, 0),

SR(Rm
n ) =

N
max
φ=0

µφ =
m−1
max
λ=0

n
max
µ=1

(
4 + 2cos

2πµ
n

+ 2cos
2πλ

m + 1

)
, (λ, µ) , (0, 0).
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4. Conclusions

In this article, we evaluated the exact formulae for adjacency and signless Laplacian spectrum
of generalized prism graph utilizing algebraic methodologies. Then applied these evaluated explicit
expressions to determine some network related quantities like global mean-first passage time, average
path length, number of spanning trees, kirchoff network descriptor, graph energies and spectral radius
which are potentially helpful to understand characterizations of different network’s topology.
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39. G. J. Szabó, M. Alava, J. Kertész, Geometry of minimum spanning trees on scalefree networks,
Phys. A, 330 (2003), 31–36. https://doi.org/10.48550/arXiv.cond-mat/0405688

40. Z. H. Wu, L. A. Braunstein, S. Havlin, H. E. Stanley, Transport in weighted
networks: Partition into superhighways and roads, Phys. Rev. Lett., 96 (2006), 148702.
https://doi.org/10.1103/PhysRevLett.96.148702

41. D. Dhar, Theoretical studies of self-organized criticality, Phys. A, 369 (2006), 29–70.
https://doi.org/10.1016/j.physa.2006.04.004

42. D. Dhar, A. Dhar, Distribution of sizes of erased loops for loop-erased random walks, Phys. Rev.
E, 55 (1997), 2093. https://doi.org/10.1103/PhysRevE.55.R2093

43. T. Elmar, S. Wagner, Resistance scaling and the number of spanning trees in self-similar lattices,
J. Stat. Phys., 142 (2011), 879–897. https://doi.org/10.1007/s10955-011-0140-z

44. Z. Z. Zhang, B. Wu, F. Comellas, The number of spanning trees in Apollonian networks, Discrete
Appl. Math., 169 (2014), 206–213. https://doi.org/10.1155/2019/4271783

45. C. Godsil, G. Royle, Algebraic graph theory, graduate texts in mathematics, Springer, New York,
2001. https://doi.org/10.1007/978-1-4613-0163-9

AIMS Mathematics Volume 8, Issue 2, 2634–2647.

http://dx.doi.org/https://doi.org/10.3390/sym10060206
http://dx.doi.org/https://doi.org/10.1017/CBO9780511810817
http://dx.doi.org/https://doi.org/10.1016/j.dam.2011.06.027
http://dx.doi.org/https://doi.org/10.1007/978-3-030-03574-7$_$1
http://dx.doi.org/https://doi.org/10.1007/978-3-030-03574-7$_$1
http://dx.doi.org/https://doi.org/10.1007/BF01164627
http://dx.doi.org/https://doi.org/10.1142/S0217984914502522
http://dx.doi.org/https://doi.org/10.1088/1742-5468/2013/10/P10004
http://dx.doi.org/https://doi.org/10.1155/2020/6048438
http://dx.doi.org/https://doi.org/10.48550/arXiv.0710.2686
http://dx.doi.org/https://doi.org/10.1209/0295-5075/90/68002
http://dx.doi.org/https://doi.org/10.1002/(SICI)1097-461X(1999)71
http://dx.doi.org/https://doi.org/10.48550/arXiv.cond-mat/0405688
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.96.148702
http://dx.doi.org/https://doi.org/10.1016/j.physa.2006.04.004
http://dx.doi.org/https://doi.org/10.1103/PhysRevE.55.R2093
http://dx.doi.org/https://doi.org/10.1007/s10955-011-0140-z
http://dx.doi.org/https://doi.org/10.1155/2019/4271783
http://dx.doi.org/https://doi.org/10.1007/978-1-4613-0163-9


2647

46. E. Huckel, The theory of unsaturated and aromatic compounds, Z. Elektrochem. Angew. Phys.
Chem., 42 (1937). https://doi.org/10.1007/BF01341936

47. R. Pariser, R. G. Parr, A semi-empirical theory of the electronic spectra and electronic
structure of complex unsaturated molecules, J. Chem. Phys., 21 (1953), 466–471.
https://doi.org/10.1063/1.1698929

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 2, 2634–2647.

http://dx.doi.org/https://doi.org/10.1007/BF01341936
http://dx.doi.org/https://doi.org/10.1063/1.1698929
http://creativecommons.org/licenses/by/4.0

	Introduction
	Results
	Implementation of adjacency spectra
	Kirchoff network descriptor
	Global mean-first passage time
	Average path length
	The number of spanning trees
	Graph energies and spectral radius

	Conclusions

