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1. Introduction

Let O be a smooth, simply connected and bounded domain in R2. Let ε > 0, and we set Oε = εO,
Ωε = R2 \ εO. Let Γε be the boundary of Oε. The Navier-Stokes equations{

∂tuν,ε + uν,ε · ∇uν,ε + ∇pν,ε = ν∆uν,ε in Ωε × (0,∞), (1.1)
div uν,ε = 0 in Ωε × [0,∞) (1.2)

are assumed to describe the motion of viscous fluid substances in the exterior domain Ωε. Here,
uν,ε(x, t) is the velocity field, the scalar function p represents the pressure, and ν > 0 is the kinematic
viscosity. We assume that the velocity field vanishes at infinity and satisfies the non-slip boundary
conditions, that is, {

uν,ε = 0 on Γε × [0,∞], (1.3)
uν,ε(x, t)→ 0 as |x| → ∞, t ∈ [0,∞) . (1.4)

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023135


2612

Formally, if we set ν = 0 and ε = 0, we obtain the Euler flow in the whole plane:
∂tu + u · ∇u + ∇p = 0 in R2 × [0,∞), (1.5)
div u = 0 in R2 × [0,∞), (1.6)
u(x, t)→ 0 as |x| → ∞, t ∈ [0,∞). (1.7)

As we know, the vanishing viscosity limit problem is largely open in fluid mechanics. Let us
mention some well known results. For the case of the whole space R2, the problem is much more
tractable, and the convergence was verified in several studies (see [1, 11]). For the three dimensional
case, we refer to [5, 12]. For a compact manifold without boundary of any dimension, we refer to [3].
For Navier type boundary condition, the convergence was established in [2]; see also [7,8,10,15]. For
the non-characteristic boundary case, the vanishing viscosity limit was established in [14]. For the case
in a bounded domain with Dirichlet boundary conditions, whether the vanishing viscosity limit holds
even for a short time is largely an open problem. Kato [13] proposed the criterion for the vanishing
viscosity limit in bounded domains, which shows that the vanishing of energy dissipation in a small
layer near the boundary is equivalent to the validity of the zero-viscosity limit in the energy space.

In this article, we consider the vanishing viscosity limit problem by assuming additionally that the
size ε of the obstacle also tends to zero. To some degree, we are making the flow more viscous at its
scale when making our obstacle smaller. In [4], the authors showed that the solution of Eqs (1.1)–(1.4)
converges to the solution of Eqs (1.5)–(1.7) in L∞([0,T ]; L2(R2)) for arbitrary T > 0 provided that
there exists a constant K such that

ε ≤ Kν. (C)

Moreover, the convergence rate was established:

‖uν,ε − u‖L2(R2) ≤ K
√
ν. (1.8)

The purpose of the present work is to weaken the smallness condition on the size of the obstacle.
We find that, when the initial data u0 of the Euler flow is antisymmetric, the condition (C) could be
left out. More precisely, suppose the initial data u0 of the Euler flow is antisymmetric and belongs
to H3(R2). Then, we can construct a family of approximations uε0 of u0 such that the solutions of
Eqs (1.1)−(1.4) with initial data uε0 converge to the solution of Eqs (1.5)−(1.7) with initial data u0 in
L∞([0,T ]; L2(Ω))-norm for arbitrary T > 0, provided that ε, ν → 0, with the smallness condition (C)
dropped out.

The remainder of this article is divided into four sections. In Section 2, we state our main result,
namely, the convergence for small viscosity and small size of the obstacle. In Section 3, the proof of
our main result is given. In Section 4, we validate the convergence hypothesis of the initial data. In
Section 5, some comments and discussion are given.

2. Notations and main results

In this section, some notations will be introduced, and then we state our main results. H s(Ωε)
stands for the usual L2-based Sobolev spaces of order s, and H s

0(Ωε) denotes the closure of C∞0 under
the H s-norm.
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For a scalar function ψ, we denote (−∂2ψ, ∂1ψ) by ∇⊥ψ, while for a vector field u, we will use the
notation ∇⊥ · u := −∂2u1 + ∂1u2. Moreover, u⊥ denotes (−u2,u1).

Throughout the paper, if we denote by K a positive constant with neither any subscript nor
superscript, then K is considered as a generic constant whose value can change from line to line in the
inequalities. On the other hand, we denote by KT a positive constant that may depend on parameter T .
Also, We will use bold characters to denote vector valued functions and the usual characters for scalar
functions.

We next state our main result. Let u0 be smooth, be divergence free and belong to H3(R2). We
know there exists a smooth and global solution u of Euler Eqs (1.5)−(1.7) with initial data u0, see [9].
Furthermore, the authors in [9] proved that u ∈ L∞([0,T ]; H3(R2)) for arbitrary fixed T > 0. Let uε0 ∈
L2(Ωε) be divergence free and satisfy the Dirichlet boundary conditions; then, Kozono and Yamazaki
in [6] proved that there exists a unique global solution of Eqs (1.1)−(1.4) with initial data uε0. Both uε0
and uν,ε are defined only in Ωε, but we will consider them on the whole space by setting them as zero
in Oε.

Theorem 2.1. Suppose that the initial data u0 is antisymmetric and belongs to H3(R2), and there exists
a family of approximations {uε0} of u0 that satisfies the following hypothesis:

‖uε0 − u0‖L2(R2) → 0 as ε→ 0. (H)

Then, there exists a constant KT depending only on the time interval T > 0 such that

sup
t∈[0,T ]

‖uν,ε − uε‖L2(R2) ≤ KT (ε +
√
ν + ‖uε0 − u0‖L2(Ωε)). (2.1)

Remark 2.1. If the initial data satisfies ‖uε0 − u0‖L2(Ωε) ≤ Kε, then we have that

sup
t∈[0,T ]

‖uν,ε − uε‖L2(R2) ≤ KT (ε +
√
ν). (2.2)

3. Proof of main theorem

Proof of Theorem 2.1. Since uν,ε is defined in Ωε, we extend uν,ε to the whole plane by setting uν,ε = 0
in Oε. We then begin to estimate ‖uν,ε − u‖L2(R2), which can be divided into two parts:

‖uν,ε − u‖2L2(R2) = ‖u‖2L2(Oε)
+ ‖uν,ε − u‖2L2(Ωε)

. (3.1)

We consider the first part. Since u ∈ L∞([0,T ]; H3(R3)), we get that ‖u‖L∞(R3) is uniformly bounded
in [0,T ]. Therefore

‖u‖L2(Oε) ≤ ‖u‖L∞(R2)|Oε|
1
2

≤ Kε.
(3.2)

We then focus on the estimate of ‖uν,ε − u‖L2(Ωε). Observe that u is defined in the whole plane and
consequently does not satisfy non-slip boundary conditions on Γε. Therefore, we could not obtain the
estimates of uν,ε − u from (1.1)−(1.4) directly. We here consider instead a smooth vector field uε that
is approximate to u, while it vanishes on the boundary Γε, thus allowing energy estimates.
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Observe that u is divergence free in R2; there exists a stream function ψ of u such that u = ∇⊥ψ.
Moreover, we can choose ψ such that it vanishes at the origin. Notice that the initial data u0 of the
Euler equations is antisymmetric, and it follows that u(0, t) vanishes at the origin for all t ∈ [0,T ]. As a
result, ψ(x, t) = O(x2) as x→ 0. Without loss of generality, we assume that the obstacle O is contained
in the unit disk B(0, 1). Let ϕ be an arbitrary smooth function in R+ such that

ϕ(x) = 1 for x ∈ [2,∞), ϕ(x) = 0 for x ∈ [0,
3
2

]. (3.3)

We set ϕε(x) = ϕ( |x|
ε

). We then define the approximate sequence uε of u as follows:

uε = ∇⊥(ϕεψ). (3.4)

The approximate sequence uε has many properties, which are stated in the following lemma.

Lemma 3.1. Fix T > 0. There exists a constant K independent of ε such that

(1) uε is divergence free and vanishes on Γε,
(2) ‖uε‖H1(Ωε) ≤ K,
(3) ‖uε‖W1,∞(Ωε) ≤ K,
(4) ‖uε − u‖H1(Ωε) + ‖uε − ϕεu‖H1(Ωε) ≤ Kε.

Proof. From the definition of ϕε, we know that it vanishes in a neighborhood of Γε. Therefore uε

vanishes on Γε. Moreover,

∇ · uε = ∇ ·
[
∇⊥(ϕεψ)

]
= 0, (3.5)

and consequently, uε is divergence free. We conclude that item (1) is verified. We begin to check
item (2). Using the Minkowski inequality, we obtain

‖uε‖2L2(Ω) =

∫
Ωε

|ϕεu + ∇⊥ϕεψ|2

≤ ‖ϕεu‖2L2(Ωε)
+ ‖∇⊥ϕεψ‖2L2(Ωε)

.

(3.6)

Since u is smooth and bounded in H3(R2) for t ∈ [0,T ], we see that the first term on the right side
of (3.6) is uniformly bounded with respect to ε. Meanwhile, we observe that ψ(x) = O(x2) when
x→ 0, and ∇⊥ϕε is supported in the annulus Cε, which is

Cε = {x ∈ R2 |
3
2
ε ≤ |x| ≤ 2ε}. (3.7)

It immediately follow that

‖∇⊥ϕεψ‖L2(Ωε) ≤ ‖∇ϕ
ε‖L∞(Cε)‖ψ‖L2(Cε)

≤ Kε2.
(3.8)

Therefore, we have the following estimate:

‖uε‖L2(Ω) ≤ K. (3.9)
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We next handle ‖∇uε‖L2(Ωε) similarly. We first rewrite ∇uε as

∇uε = ∇∇⊥ϕεψ + ∇ϕεu + ∇⊥ϕεu⊥ + ϕε∇u. (3.10)

We see that ∇∇⊥ϕε vanishes outside of the annulus Cε, and ψ = O(ε2) in Cε. Therefore, the first term
on the right side of (3.10) obeys

‖∇∇⊥ϕεψ‖L2(Ωε) = ‖∇∇⊥ϕεψ‖L2(Cε) ≤ Kε. (3.11)

The second and third terms on the right side of (3.10) can be handled together. Using again the property
that ∇⊥ϕε is supported in the annulus Cε and u = O(ε) in Cε , it follows that

‖∇ϕεu + ∇⊥ϕεu⊥‖L2(Ωε) ≤ Kε. (3.12)

The fourth term on the right side of (3.10) is uniformly bounded with respect to ε. We therefore
conclude that

‖∇uε‖L2(Ωε) ≤ K. (3.13)

Combining (3.9) and (3.13), we immediately establish item (2). Now, we begin to estimate item (3),
which can be handled similarly. From the definition of uε, we know that

‖uε‖W1,∞(Ωε) = ‖ϕεu + ∇⊥ϕεψ‖L∞(Ωε)

+ ‖∇∇⊥ϕεψ + ∇ϕεu + ∇⊥ϕεu⊥ + ϕε∇u‖L∞(Ωε).
(3.14)

Observe that ϕε and u are uniformly bounded in [0,T ], and we have

‖ϕεu‖L∞(Ωε) + ‖ϕε∇u‖L∞(Ωε) ≤ K. (3.15)

Moreover, notice that ∇ϕε vanishes outside of Cε, and ψ = O(ε2) in Cε. We are ready to check that

‖∇⊥ϕεψ‖L∞(Ωε) + ‖∇∇⊥ϕεψ + ∇ϕεu + ∇⊥ϕεu⊥‖L∞(Ωε) ≤ K. (3.16)

Combining the estimates (3.14)–(3.16), we conclude that item (3) holds. We at last handle item (4).
From the definition of uε, we have

‖uε − u‖H1(Ωε) = ‖∇⊥ϕεψ + ϕεu − u‖H1(Ωε)

≤ ‖∇⊥ϕεψ‖H1(Ωε) + ‖ϕεu − u‖H1(Ωε).
(3.17)

Using again the property that ∇ϕε is supported in the annulus Cε and ψ = O(ε2) in this annulus, it
follows that

‖∇⊥ϕεψ‖H1(Ωε) ≤ ‖∇ϕ
εψ‖L2(Ωε) + ‖D2ϕεψ‖L2(Ωε) + ‖∇ϕεu‖L2(Ωε)

≤ Kε.
(3.18)

It is easy to see that ϕεu − u vanishes outside of εB(0, 2) and is uniformly bounded with respect to ε,
and we thus obtain

‖ϕεu − u‖H1(Ωε) ≤ |∇ϕ
εu‖L2(Ωε) + ‖ϕε∇u − ∇u‖L2(Ωε)

≤ Kε.
(3.19)
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Collecting (3.17)–(3.19) gives

‖uε − u‖H1(Ωε) ≤ Kε. (3.20)

We have left to show that

‖uε − ϕεu‖H1(Ωε) ≤ Kε. (3.21)

We first rewrite this term as

‖uε − ϕεu‖H1(Ωε) = ‖∇⊥ϕεψ + ϕεu − ϕεu‖H1(Ωε) = ‖∇⊥ϕεψ‖H1(Ωε). (3.22)

The previous estimate (3.18) yields that (3.21) holds. Therefore, item (4) is verified, and the proof of
Lemma 3.1 is completed.

We then proceed the proof of Theorem 2.1. We observe that the second term of (3.1) satisfies

‖uν,ε − u‖L2(Ωε) ≤ ‖u
ν,ε − uε‖L2(Ωε) + ‖uε − u‖L2(Ωε). (3.23)

It follows from item (3) of Lemma 3.1 that

‖uν,ε − u‖L2(Ωε) ≤ ‖u
ν,ε − uε‖L2(Ωε) + Kε. (3.24)

We then begin to estimate the L2(Ωε)-norm of uν,ε − uε, which is defined as Wν,ε. On one hand, from
the definition, we know uε satisfies

∂tuε = ∂t[∇⊥(ϕψ)]
= ϕε∂tu + ∇⊥ϕεψ

= ϕε(−u · ∇u − ∇p) + ∇⊥ϕεψ.

(3.25)

Consequently, by subtraction of (3.25) from (1.1), we get the identity about Wν,ε

∂tWν,ε = ν∆uν,ε − uν,ε · ∇uν,ε − ∇pν,ε + ϕε(u · ∇u + ∇p) − ∇⊥ϕεψ. (3.26)

Multiplying (3.26) by Wν,ε and integrating over Ωε, we can see that

1
2

d
dt
‖Wν,ε‖2L2(Ωε)

= ν

∫
Ωε

uν,ε ·Wν,ε −

∫
Ωε

[
uν,ε · ∇uν,ε − ϕεu · ∇u

]
·Wν,ε

+

∫
Ωε

ϕε∇p ·Wν,ε −

∫
Ωε

ψ∇⊥ϕε ·Wν,ε

=: I1 + I2 + I3 + I4.

(3.27)

We will examine each term on the right-hand-side of (3.27). We begin with I1. Firstly, we rewrite it as

I1 = ν

∫
Ωε

∆Wν,ε ·Wν,ε + ν

∫
Ωε

∆uε ·Wν,ε. (3.28)
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Since Wν,ε vanishes at the boundary, using integration by parts, we get that

I1 = −ν‖∇Wν,ε‖2L2(Ωε)
− ν

∫
Ωε

∑
i, j

∂iuεj∂iWν,ε
j

≤ −
ν

2
‖∇Wν,ε‖2L2(Ωε)

+
ν

2
‖uε‖2L2(Ωε)

,

(3.29)

where we have used the Cauchy-Schwarz and Young’s inequalities. Thanks to Lemma 3.1, we arrive
at

I1 ≤ −
ν

2
‖∇Wν,ε‖2L2(Ωε)

+ Kν. (3.30)

We then consider the second term. Observing
∫

Wν,ε · [(Wν,ε + uε) · ∇Wν,ε] = 0, it follows that

I2 = −

∫
Ωε

[
uν,ε · ∇uν,ε − ϕεu · ∇u

]
·Wν,ε

= −

∫
Ωε

[
(Wν,ε + uε) · ∇(Wν,ε + uε) − ϕεu · ∇u

]
·Wν,ε

= −

∫
Ωε

[
(Wν,ε + uε) · ∇uε − ϕεu · ∇u

]
·Wν,ε

= −

∫
Ωε

[Wν,ε · ∇uε] ·Wν,ε −

∫
Ωε

[
uε · ∇uε − ϕεu · ∇u

]
·Wν,ε

=: I21 + I22.

(3.31)

The term I21 satisfies the following estimate:

|I21| =

∣∣∣∣∣∣−
∫

Ωε

[Wν,ε · ∇uε] ·Wν,ε

∣∣∣∣∣∣
≤ ‖uε‖L∞(Ωε)‖W

ν,ε‖2L2(Ωε)
.

(3.32)

From Lemma 3.1, we conclude that

|I21| ≤ K‖Wν,ε‖2L2(Ωε)
. (3.33)

Before we handle I22, we first rewrite it as

I22 = −

∫
Ωε

[
(uε − ϕεu) · ∇uε

]
·Wν,ε +

∫
Ωε

[
ϕεu · ∇(u − uε)

]
·Wν,ε. (3.34)

Using the Cauchy-Schwarz and Young’s inequalities, we get that

|I22| ≤ ‖W‖2L2(Ωε)
+ ‖uε − ϕεu‖2L2(Ωε)

‖∇uε‖2L∞(Ωε)

+ ‖∇(u − uε)‖2L2(Ωε)
‖ϕεu‖2L∞(Ωε).

(3.35)

It follows from Lemma 3.1 that

|I22| ≤ Kε2. (3.36)
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Combining (3.33) and (3.36) gives

|I2| ≤ K(‖Wν,ε‖2L2(Ωε)
+ ε2). (3.37)

Next, we begin to estimate I3. To this aim, we use integration by parts to rewrite it as

I3 =

∫
Ωε

∇(pϕε) ·Wν,ε −

∫
Ωε

p∇ϕε ·Wν,ε = −

∫
Ωε

p∇ϕε ·Wν,ε. (3.38)

From the Cauchy-Schwarz and Young’s inequalities, we see that

|I3| ≤
1
2
‖Wν,ε‖2L2(Ωε)

+
1
2
‖p∇ϕε‖2L2(Ωε)

. (3.39)

Observing that we could choose the pressure p such that it vanishes at the origin, and recalling that
∇ϕε vanishes outside of Cε, it immediately follows that

|I3| ≤
1
2
‖Wν,ε‖2L2(Ωε)

+ Kε2. (3.40)

We then estimate I4. Using again the property that ∇ϕε vanishes outside of Cε, we get

|I4| ≤
1
2
‖Wν,ε‖2L2(Ωε)

+ Kε2. (3.41)

Collecting the estimates about I1, I2, I3, I4, we conclude that

1
2

d
dt
‖Wν,ε‖2L2(Ωε)

+
1
2
‖∇Wν,ε‖2L2(Ωε)

≤ K‖Wν,ε‖2L2(Ωε)
+ Kε2 + Kν. (3.42)

It follows from Grönwall’s inequality that

sup
t∈[0,T ]

‖uν,ε − uε‖2L2(Ωε)
≤ KT (ε2 + ν + ‖uε0 − uε0‖

2
L2(Ωε)

). (3.43)

Collecting (3.1), (3.2), (3.24) and (3.43) yields

sup
t∈[0,T ]

‖uν,ε − u‖2L2(R2) ≤ KT (ε2 + ν + ‖uε0 − uε0‖
2
L2(Ωε)

). (3.44)

The proof of Theorem 2.1 is completed.

4. Examination of hypothesis (H)

In this section, we will examine the validation of hypothesis (H). We will make use of the stream
function of velocity field u to construct an approximate family {uε0}ε≤1 of u0 such that uε0 satisfies the
Dirichlet boundary conditions on Oε and converges to u0 in L2 space as ε→ 0.

Lemma 4.1. Suppose that u0 is smooth and belongs to H3(R2). Then, there exists an approximate
family {uε0} of u0 that satisfies the hypothesis (H).

AIMS Mathematics Volume 8, Issue 2, 2611–2621.



2619

Proof. Let ψ0 be the stream function of u0, which is defined as

ψ0(x) =

∫
R2

(x − y)⊥ · u0(y)
2π|x − y|2

dy +

∫
R2

y⊥ · u0(y)
2π|y|2

dy. (4.1)

The constant
∫
R2

y⊥·u0(y)
2π|y|2 dy in the above identity is to guarantee that ψ0 vanishes at the origin. We are

ready to define the approximate sequence {uε0}. Without loss of generality, we assume that obstacle O
is contained in the unit disk at the origin. Let η : R+ → [0, 1] be a smooth function such that

η(x) = 0 for x ∈ [0,
3
2

], η(x) = 1 for x ∈ [2,∞). (4.2)

For x ∈ R2, we set ηε = ηε(x) = η( |x|
ε

). We can see that ηε vanishes in a neighbourhood of the boundary
Γε, and we define uε0 as

uε0 = ∇⊥(ηεψ0). (4.3)

It is easy to check that uε0 satisfies the Dirichlet boundary conditions in Ωε and is divergence free. We
now show that uε0 converges to u0 as ε → 0 in L2(R2). In fact, observing that uε0 vanishes in Oε, it
follows that

‖uε0 − u0‖
2
L2(R) = ‖u0‖

2
L2(Oε)

+ ‖∇⊥ηεψ + ηεu0 − u0‖
2
L2(Ωε)

. (4.4)

As the Lebesgue measure of O is O(ε2), we get that

‖u0‖
2
L2(Oε)

≤ Kε2. (4.5)

Meanwhile, both ∇⊥ηε and (ηε − 1) are supported in the annulus Cε, that is,

Cε = {x ∈ R2 |
3
2
≤ |x| ≤ 2}. (4.6)

It follows that

|∇⊥ηεψ + ηεu0 − u0‖L2(Ωε) ≤ ‖∇
⊥ηε‖L∞(R2)‖ψ‖L2(Cε)

+ ‖1 − ηε‖L∞(R2)‖u0‖L2(Cε)

≤ Kε.

(4.7)

Combining (4.4), (4.5) and (4.7) yields immediately

‖uε0 − u0‖L2(R) ≤ Kε. (4.8)

The proof of Lemma 4.1 is completed.

Collecting the results from Lemma 4.1, we have the following corollary.

Corollary 4.1. Let initial approximate data uε0 of u0 be constructed as in Lemma 4.1, and let uν,ε

be the solution of Navier-Stokes Eqs (1.1)−(1.4) with initial data uε0. Let u be the solution of Euler
Eqs (1.5)−(1.7) with initial data u0. Then, we have that uν,ε converges to u in the following sense:

sup
t∈[0,T ]

‖uν,ε − u‖L2(R2) ≤ KT (ε +
√
ν). (4.9)
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Proof. From inequality (3.44), it follows that

sup
t∈[0,T ]

‖uν,ε − uε‖L2(R2) ≤ KT (ε +
√
ν + ‖uε0 − uε0‖L2(R2)). (4.10)

Combining with inequality (4.8), we conclude that

sup
t∈[0,T ]

‖uν,ε − u‖L2(R2) ≤ KT (ε +
√
ν). (4.11)

5. Conclusions

In [4], the authors established the convergence result by assuming the size ε of the obstacle is
smaller than some constant K times the viscosity ν, and the main idea in the proof is to compensate for
the mismatch between the slip boundary condition of ideal flows and the Dirichlet boundary conditions
of viscous flows.

In this paper, we have established the convergence with the smallness condition ε ≤ Kν eliminated,
and the convergece rate is obtained. We want to remark that the convergence requires that ε → 0, and
one would like to study the vanishing viscosity limit problem with the size of the obstacle fixed, which
is the most physically important problem.
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