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1. Introduction

Fractional differential equations appear naturally in a number of fields, such as physics,
engineering, biophysics, blood flow phenomena, aerodynamics, electro analytical chemistry, biology
and economics. For more details, we refer the readers to [1-4,39,40,42] and many other references
therein.

Nowadays, academic researchers deal with many physical phenomena in plasma physics, physical
chemistry, geophysics, fluid mechanics, nonlinear optics, electromagnetic theory and fluid motion, and
their mathematical models are expressed by nonlinear fractional differential equations (NFDEs). These
equations are commonly used in various scientific disciplines and have been investigated from different
viewpoints. The exact solutions of these equations have gained more and more interest. For this reason,
a lot of different techniques have been dealt with by researchers.

Several studies have been conducted over the years to investigate how stability concepts such as
the Mittag-Leffler function and exponential and Lyapunov stability apply to various types of
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dynamical systems. Ulam and Hyers, identified previously unknown types of stability known as
Ulam-stability [31, 41, 43]. The Hyers type of stability study contributes significantly to our
understanding of chemical processes and fluid movement, as well as semiconductors, population
dynamics, heat conduction and elasticity.

The study of boundary value problems for equations with nonlinear fractional differentials has a
prominent and important role in the theory of fractional Calculus and in the study of physical
phenomena through the physical interpretation of boundary conditions. To pass quickly to the
practical applications of fractional derivatives in various applied sciences, some valuable works in this
field can be found in [17-19,21,22,26-30, 32,33].

Through the in-depth and comprehensive study of fractional differential equations, the existence
and uniqueness of solutions to fractional differential equations are proven using a set of fixed point
theories, such as Banach’s, the Leray- Schauder alternative, Darbo’s theorem and Mdnch’s fixed point
theorem.

In [5], the authors used Darbo’s fixed point theorem to study the existence and the stability of the
solution of the following fractional differential equation (FDE) which involves the Hadamard fractional
derivative (H-FD) of variable order:

D Uw) = Fi(w, Uw)), well,T],
U)=UT) =0,

where 1 <a <2, : [1,7] X R — R is a continuous function, and ’Hi)‘lﬁr,ﬂf 1, are the Hadamard
fractional derivative and integral of variable-order U(w).

Recently, in 2022, the authors developed the existence theory for a new class of nonlinear coupled
systems of sequential fractional differential equations supplemented with coupled, non-conjugate,
Riemann-Stieltjes, integro-multipoint boundary conditions [6]:

{("Df‘“ + DN (w) = Gi(w, Di(w), ¥i(w), 2<é& <3,wel0,1], (1.1)

DI + DY () = Go(w, Pi(w), Pi(w), 2<{ <3,wel0,1],
subject to the coupled boundary conditions:
®,(0) = 0,0,(0) = 0, ®[(0) =0, (1) =k [ WVi(s)dAs + L1 ;¥ (o) + ki [ W (5)dA(s),
— 1
¥1(0) = 0,%/(0) = 0, W/ (0) =0, ¥,(1) = [ ®y(s)dAs + X} Bidi(0) + hy [ D1(s)dA(s),
(1.2)

where D” denotes the Caputo fractional derivative of order P € £,,,,0<p <0, <v<1,G1,G> :
[0,1] X RX R X R — R are given continuous functions, k, ky, h, hy,a;,5: € R,i=1,2,---n—2,and A
is a function of bounded variation.

In [7], the authors studied the existence and uniqueness of a multipoint BVP with H-FD (sequential

type):
HD* + D NYU(w) = Fi(w, Uw)), we[l,T], 1<a<2,
U =0, UT) =) 61, Vw),

J=1
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where 79 is the Hadamard fractional derivative of order o, F; : [1,7] x R — R is a continuous
function , 1 € R",w;,j = 1,2,---m, are given points with 1 < w; < --- < w, < 7, and 01, are
appropriate real numbers.

The authors in [8] implemented the theorems of Banach and Schaefer to set sufficient conditions
that guaranteed the existence of solutions and the stability for the following FDE with H-FD:

D*'Uw) = F(w, Uw),V(w)), well,T], O0<ac<l,
D*V(w) = Fr(w, U(w),V(w), we[l,T], 0<ac<l,

with the following coupled boundary conditions:

U) =6V(T),

V1) = 6UT),
where 9 is the Hadamard fractional derivative of order 6 € {o, 8}, F1,F> : [1,T] X R xR — R are
appropriate functions, and 91, ¢, are real number, with 6,0, # 1.

Due to the importance of the subject and the possibility of employing it in various scientific fields,
many researchers in the field of fractional differential have studied the systems of fractional differentials
equations with a variety of serious conditions accompanying them. For more information about, these
scientific papers, the reader can see [9-16], and the stability of solutions was studied after the existence
of them. To enrich the reader, it is possible to see [20,23-25].

Motivated by the works mentioned above, the existence of the solution for the following couple of
nonlinear sequential fractional differential equations is investigated:

CONED + Dy (w) = Gi(w, Py(w), ¥1(w), 1<&<2, u>0,8 <w<wa,
CONCED + )P () = Go(w, Py(w), Vi(w), 1<4 <2, t>0,8, <w<wy,
O,() =0, @(01)=0, @i (wy)=0,

Yi(h) =0, Yi()=0 Y(w;)=0 —-oo<¥<p <w<oo, i=1,2.

(1.3)

CP* is the Caputo fractional derivative of order P € {&,,1,1}, Gi : [9, @] x R2 — R are given
continuous functions, and y;, @;, ¥;,0;,i = 1,2. are real constants. CP! is the ordinary differential
operator.

The originality and distinction of this work is summarized in employing Monch’s fixed point
theorem with the aid of the Kuratowski measure of non-compactness and Carathéodory’s conditions,
to verify the necessary conditions for the existence of the solution to the system of fractional and
nonlinear equations of sequential type. This work also examines the stability of the solution for the
proposed system of equations.

The second Section of this study contains useful preliminaries needed in the next sections. In
Section 4, the stability of this solution using the Ulam-Hyers stability technique is verified, and the
fifth Section will represent an applied numerical example of the system of equations mentioned above.
Finally, Conclusions are obtained in the sixth Section.
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2. Preliminaries

This section introduces fundooamental fractional calculus concepts, principles and initial
results [1-3].

Definition 2.1. [34] The fractional integral of order a with the lower limit zero for a function f is
defined as

AL
Ia) Jo (w=-v)'=
provided the right-hand side is point-wise defined on [0,00), where I'(.) is the gamma function, which
is defined by I'(@) = fom w e ?dw.

Definition 2.2. [34] The (R-L) fractional derivative of order « > 0,n—1 < @ < n,n € N, is defined as

I f(w) =

dv,w >0, >0,

1 d ! “ n—a—1
—F(n o (%) fo (w—v) f(wdv,w > 0,

where the function k has absolutely continuous derivative up to order (n — 1).

Dg+f(w) =

Definition 2.3. [34] The Caputo derivative of order r € [n — 1,n) for a function f : [0,0) — (R) can
be written as

n—1 k
‘D}, f(w) = D}, [f(w) - Z %f”‘)(O)),w >0,n—-1<r<n.
k=0 '

Note that the CFDs of order r € [n — 1, n) exist almost everywhere on [0, o) if f € AC"([0, ), (R)).
Definition 2.4. It has been shown in [34] that

TP (w) = Py(w) —cog—ci(w—1) = —cpi(w=0"", w—t,n—1<é& <n.
Remark 2.5. If k € C"[0, o), then

1 Y K'(v)

cnyY —
Dol a0 )y v

dv = I""k'n)(w),w>0,n—1 <y < n.

Denote the Banach space of all continuous functions z from [, @] into M by C([, w],M*),

accompanied by the norm: ||Z|| = sup {z(w)}.
Y<w<w

Definition 2.6. [35] The Kuratowski measure of non compactness k defined on bounded set  of
Banach space M is:

k() :=inf{r > 0 : ¥ = ¥; and diam (Y;) < r for1 <i < m}.

The following lemma dealing with the linear variant of the system (1.3) plays a key role in the
forthcoming analysis.
Lemma 2.7. [35] Given the Banach space M* were W,V are two bounded proper subsets of M, the

following characteristics are true.

AIMS Mathematics Volume 8, Issue 2, 2591-2610.



2595

(1) If €V, then k() < k(V);

(2) k(y) = k() = k(convy);

(3) ¥ is relatively compact k() = 0;

(4) k(6y) = |6lk(), 6 € R;

(5) k(¥ U V) = max{k(y), k(V)};

(6) k(Y +V)=k(W) + k(V),y +V ={xlx=u+v,uecy,veV}
(7) k(W +y) = kW), ¥y € M.

Lemma 2.8. [36] Given an equicontinuous and bounded set W* c C([?, w],M*), the function
w > k(W*(w)) is continuous on [, @], kc(W*) = rr%%x] k(W*(w)), and
we[d,@

T T
k(f x(w)dw) < (f (x(a)))da)) , Wi(w) = {x(w) : x € W} 2.1)

Definition 2.9. [37] Given the function ¥ : [1, TIXM — M P satisfies Carathéodory’s conditions,
if the following conditions apply:

¥ (w, z) is measurable in @ for 7 € M*,'

Y(w, z) is continuous in z € M for @ € [9, @].

Theorem 2.10. [38] (Monch’s fixed point theorem) Given a bounded, closed, and convex subset
Q c M, such that O € Q, let also T be a continuous mapping of Q into itself.

If W+ = convT (W), or W* = T (W*)U{0}, and k(W*) = 0, satisfied YV W* C Q, then T has a fixed

point.

Lemma 2.11. Assume that H, and H, € C([9, w], R). The solution for the system

COACED! + )P (w) = Hi(w),
CONCED + u)¥1(w) = Ha(w),

2.2)
O() =0, D(01)=0, Dy(w) =0,
‘P](ﬂz):O, T](Qz) :O, T](Wz):(), —0 <19i <O <wW; <00, i= 1,2,
is
() = f we—m—w( QAT ERPARY )dv
T o TE
Y B A ey
1(01-v)
@ [ en ( fﬂ e %(p)dp)dv (2.3)
7 @ [ =
1(@1-v)
+ x2(w) N et ( TG ﬂl(ﬁ)dp) dv,

and
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W v _ £1-1
¥, (w) :f e—#z(w—v)( %Wz(p)dp) dv
i

9, 1)
2 e [ [ @)
+ vi(w e Hev) (f ———H,(p)dp | dv 2.4
Xx3(w) ) ) T 2(p)dp (2.4)
SR O e ()
+ ya(w) e @2 U>( ——— H,(p)dp|dv,
A 9 9, T'(1) lp)dp
where
A - A A - A
Yi(w) = 481(60)A 382(0))’ Ya(w) = 1«‘32((1))A 281(60), 2.5)
1 1
£1(@) = (1 = ), gy(w) = (@ = B) + e~ 1, 2.6)
A - A A — A
(@) = 883(0))A 784(w), alw) = 584(0))A 683(0))’ 2.7
2 2
&3(w) = (1 — ™) gy(w) = ma(w — %) + 0T — 1, (2.8)
A] = A2A3 - A1A4 * O, (29)
Ay = AgA7 — AsAg # 0, (2.10)

Ar = (1= e @) Ay = (o1 — %) + e @ —
Ay = (1 =M@ Ay = () — ) + e @7 -, 2.11)

As = (1 — e—ﬂz(gz—ﬂz)), Ag = (02 — ) + e H2le2—t) _ 1,
A7 = (1 — ™) Ag = pp(wy — ) + ™70 — 1, (2.12)
Proof. Applying 7% and ©7¢! on (2.2) and using the definition (2.4), we get

CONED + un)di(w) = H,,
CONCED + 1)V 1(w) = Ha.

Using @(F) = 0, ¥(¢) = 0 and evaluating the integration, we get
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- V(v -p)F! Co e
— 1(w-v) _ (w=v)
D (w) = Ll et (Ll @ 7{1(p)dp) dv + " [1—e* ]

+ Dy (@ = 9y + e @) ), (2.13)
M1

w v — p)i-l
Y (w) :f e—ﬂz(w—U)( %Hz(p)dp) dv + @[1 _ e—y(w—v)]
¥ M2

9 ,  T'(&)
d
+ = [o(w — ) + e @) 1. (2.14)
H2

Making use of the conditions ®(0;) = 0,%¥(0;) = 0, D(w;) = 0 and O(w;) = 0 in (2.13) and
(2.14), we obtain

X, [ Y (v—p)!
Aico + Ayey = —41] f e @) f —H, (p)dp) dv, (2.15)
9 o T'(&D)
2 o (@1 -v) Y (v _P)gl_l
Asco + Agc) = -1 e @Iy —————H,(p)dp | dv, (2.16)
A 9 F(fl)
and
02 v _ n)i-1
Asdy + Ngd) = —113 f e-ﬂz@z-”( w%(p)dp) dv, (2.17)
9 9, 1)
2 2 Y (v - p)gl_l
Aqdy + Agdy = —13 f eTH2(@27Y) —sz(p)dp) dv. (2.18)
9 9, 1)

Solving the system (2.15)—(2.18), we find that

1 V(1) — p)é1-]
Co :ﬂ [A4 f e_'ul(gl_v)( %7{1 (p)dp) dv
191 791 1

| U _ &1—-1
—A —ui(@1—-v) f w?—{ d )d ]’
QL ¢ (191 Mgy nwdp)dv

2 | U _ \éa-l
ci _ [Al f e_“‘(wl_u)( —(U p) Wl(p)dp) dv
171

and

A 9 T'(&)
ey i R O ) ]
A H1(01—v) H dp|dvl|,
3fﬂ1 ‘ ( ,  T@n )
_,u_% “ 2(02-v) ' (v _p)ﬁ_l
do A [A4 fﬁ; e ( 9, 1) Halp)dp | dv
7o [ [ =) ) ]
—A 2 (@2 —v) H. dp|dvl,
zfﬂz ‘ (ﬂz r@y pwae)d
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and
2 (g v _ o \a-1
H f —p2 (w2 —v) ( (U P) )
di =—|A e 1@ ————H>(p)dp|dv
! Az[ > o, s TGy e
. ' w-p)!
—A f e—uz(gz—v) ( = 9 Ydp | dv|.
’ 92 9, 1) 2p)dp
Inserting the values of ¢y, c1, ¢, and ¢y in (2.13) and (2.14) and using the notations (2.5)—(2.10), we
obtain (2.3) and (2.4). This completes the proof. O

3. Existence results via Monch’s fixed point theorem

Let O = {(®;(w), ¥1 ()@, F)) € C([9, @], R) x C([9, @], R)}. Clearly, the aforementioned set O
is a Banach space endowed with norm

(D1, ¥Dllg = 1P1lleo + [P lleo-

To show that our system (1.3) has a solution, we set the following Assumptions,

(@ 1) Suppose that G|, G : [}, @] X (R)> — R satisfy the Carathéodory conditions.
(Wr) 3Kg,, Kg, € L9, @] X (R),, and 3 D61> Dg, : (R)+ = (R), such that
Y w e [9, @], V(D, ¥, € O) we have

IG1(w, @1, ¥l < Kg, (w0)Dg,(1D1]leo + [P1]]e0),
IG2(w, @1, ¥)lleo < Kg,(0)Dg, (D1l + [P1lleo),

where Hg,, Hg,are non-decreasing continuous functions.
(‘W5) Let S € O x O, be assumed to be bounded, and

K(G, (w,8)) < Kg,(w), K(S),
7((62’ ((1), S)) < 7(gz ((1)), 7((8)

For easy computations, we let

X1 = ma s Y2 = ma s 3.1
X1 = max ba@)l - xz2 = max [o(w) 3.1)
X3 = max |3, ka= max |ys(w), (3.2)
weld, ] weld, @]
and
/‘Y‘\ =1+ ¥, -9 &1 1= —u (@ -1) + v -9 £ 1— —u1(01-91)
VS TE D) {( X))@ —t)'(1-e )+ 1o —9)F (1 —e )}

~ (@) — )5 (1 — et @i=90)
mlE + 1

) (3.3)
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(14 B (@ = )7 (1= e™77) 4 30 = 92)11(1 - 7277
(wy — )51 (1 — e H2(@=92))

(5 + 1)

1<w<e

Theorem 3.1. Assume that the Assumptions (‘,M\/ D, ((wz), and (@3) hold. If

(3.4)
max{%élY],WézYz} <1,
has at least one solution on [, w].

(3.5)

Proof. Define the continuous operator Z:0->0as

where ’K;i = sup Kg (w), Vi = 1,2, then the system of fractional differential equations given by (1.3)
where

E = E1(D, V) (w), 5a(@), ¥))(w),

h 9

A3
01
+ x1(w)

gl(u,@(p),‘ﬂ(p))dp) dv
o H1©@1-v) (fv v-p)~!
9 g, T(&)
+ x2(w)

Gi(u, @1(p), ¥ (P))dp) dv
e‘ﬂl(m—v) ( Y (v - p)&_l
9 o T'(&)
and

Y w-p)!

(3.6)
Ql(u,dh(p),‘l’l(p))dp) dv, w € [?, o],

W
5 = f e—uz(w—v)(
%) 2]

F({l) Qz(u,d)](p),‘l’](p))dp) dv
: v — p)a-1

+ X3 (w) e_ﬂZ(Qz—v) ( (v p)

%

')

gZ(ua q)l (p)9 \Pl (p))dp) dU
e te(@2=v) ( Y- p)gl_l
9 9, 11
Based on (qT/ 1) and ((/M\/z), the operator = is well defined.
Now, the operator equation

(3.7)
Ga(u, D1 (p), \Pl(p))dp) dv, w e[, @].

= Y (v=-p)t!

w2

+ x4(w)

h

(@1, ¥)) = Z(01, V),

is equivalent to the fractional Eqs (2.3) and (2.4). Keep in mind that showing the existence of a solution
for (3.8) is equivalent to showing the existence of a solution for (1.3).
in O with

(3.8)
Next, we define Sg = {(®,'¥1) € O : [[(®y1, ¥))ll5 < ©,0 > 0} to be a closed bounded convex ball
AIMS Mathematics
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Now, to satisfy Monch’s fixed point theorem conditions, we split our proof into four steps.

Step 1. We show that ES@ C Sp, we let w € [, w] and YV(P,,¥;) € S, and we have

_ w v N1
B (@1, )l = f e-ﬂ'@-")( wopr ||g1<u,c1>1(p>,%<p)>||mdp)dv
i o

A3
e[ [
+x1(w) et f ————1G1(u, @1 (p), ¥1(0)lldp | dv (3.9)
171 19| F(é“l)
1 —u1 (w1 -v) v (U _p)’fl_l
+ x2(w) e M ——G1(u, ©1(p), ¥1(0)llwdp | dv, w € [, w].
9 s 1T(&)

Using (:VT/Z), Yw € [, w] we have

1G1(w), @1(w), ¥1(W)lle <K, (0)Dg, (1P (W)l + IF1(w)lle0)
< 7(;]5591(®)

e v —ui(w—v v (U _p)fl_l %
IZ1(D1, ¥)lleo :f et >(f ————K5,96,G1l1P1(0)l + II‘Pl(p))Ilmdp) dv
9 9 T

4 e [ [ w=p
+ x1(w) ’ e @ ( ’ T&)W@ﬁgl@llﬁ(ﬂ)ll(» + ll‘I’l(P))lloodP) dv

! —u (@ —v) ! (U _p)&—l?(* X Wy dold
+ x2(w) ) e T 6, 96.G111X1(0)lle + [[P1(0)llwdp | dv,
< %, 96, (©), (3.10)

and similarly,

= —t2(w-v) Y (v _p)gl_l *
Ba(@1, W)l = f et ( K5, 960.G/101 (0l + ||\P1<p)>||mdp) dv
92 9, 1)

02 P v (v _p)§1—1 .
+ x3(w) ; e ( ; Tgl)«gzﬁgzgﬂ@ﬂp)ﬂm + ||‘P1(p))||oodp) dv
i —p2(@2-v) Y (- p)§1—1 *
+ xa(w) e &) Ks,96,G:21D1(0)ll + I¥1(0))llwdp | dv,
2 1
< K, 96,(©). (3.11)

Combining (3.10) and (3.11) yields

IE(®@1, ¥)ll5 =IE (@1, ¥1)lleo + E(@1, ¥1)lleo
<K T196,(0) + K. T>95,(0)
<0, (3.12)

ES@ C S@.
Step 2. We show the continuity of the operator E, for this, we define the sequence

{V, = (®,,,¥1,)} € Se, then show that V, - V = (®,¥;) as n - .

AIMS Mathematics Volume 8, Issue 2, 2591-2610.
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Because of Carathéodory continuity of G, it is clear that

GG @1, (), H1,()) = Gi (L @1(), W1 () as n — oo

Recalling ((l//l\/z), we deduce that

&-1 £-1
U - " v —

(%) I1G1 @11, 1) = G1 (1, D1 (1), 1 (o < TG, 96, (©) [%) (3.13)

Together with the Lebesgue dominated convergence theorem and the fact that the function

Mo 9 w-p)"
— Kg,96,(0) (3.14)
I'é
is Lebesgue integrable on [, @], we get

IE1 (@1, ¥l (3.15)

< ’ o1 @=v) Twopt —p G (r, @ -
< 1(1, @1,(1), P1,(r) — Gi(r, ©1(r), ¥1(r)llodp | du
A A r(gl)

o (01-v) Y (v _p)fl_l
+ x1(w) ] e e ( ; T&)llg‘(r’q)l"(r)’%”(r)) - Ql(r,(Dl(i’),‘Pl(i”))||oodp) dv
| v — p)1-1
+X2(w)f e_”l(wl_v)( %Hgl(h Dy,(r), ¥1,(r) = Gi1(r, ©1(r), ‘Pl(”))Hood,D) dv,
W h
that is,

IZ1(@ 1, ¥1,)(W) = E1(@1, ¥l = 0 as n— o0 V¥ w e [§, @]
Then,
IE1(@ 1, F1,) = Ef(@1, ¥l — 0 as 1 — oo, (3.16)
which means that the operator =, is continuous. In a similar way, we get
IE(®@ 1, 1) = Eo(@1, )l — 0 as 1 — oo (3.17)
(3.16) and (3.17) yield
IE(@1,, ¥1,) = E(@1,¥)ll5 > 0 as n — co. (3.18)

By getting (3.18), we conclude that the operator is continuous.
Step 3. We show that the operator is equicontinuous.
Let wy,w; € [1.9, ID'] and V((Dl, \Pl) S S@. Then,

IE1(D1, Y1) (ws) — E4(@y, ¥1)(@))l|eo
! Y w-p)!
% F(fl)

Gi(u, @(p), ¥i(p))dp | dv

[e—lll(wz—v) _ e—,ul(wl—v)] (
H

AIMS Mathematics Volume 8, Issue 2, 2591-2610.



2602

f ooy (82 P G1(u, D1 (p), ¥1(p))dp | dv (3.19)
P 7 A S '
i 1 _ ui(w2—w2) p(wa=1) _ Lua(wi=h)
< {WQIE)Q](@)'L“F(&1 n 1){2(1 e ) + |e e I}
-0 as w; = w,.
In a like manner, we have
IZ2(@1, ¥ (ws2) — En( @, Tl
— “! [e—,uz(wz—v) e—ﬂz(wz—v)] (fv MQ (u, ® (p) ¥ (p))d )dl}
- 9, T'(&1) 2R P
14
f [e7H2(@2V)] ( N —(UF(IZ) Qz(u,(D1(P),‘P1(P))dP) dv|, (3.20)

1
< {7(3255g2(@)# D [2(1 _ eﬂz(wz—wl)) + |e#2(w2—192) _ eﬂz(wl—ﬂ2)|]} — 0 as w; = w,.
2 1

From (3.19) and (3.29), it is clear that both inequalities are independent of (@, ¥,) € Sg, which
means that the operator = is bounded and equicontinuous.
Step 4. To satisfy all conditions of Monch’s fixed point theorem, finally, we let

7/[:7/[1 ﬂﬂz,ﬂ],ﬂz CS@.

Furthermore, U, and U, are assumed to be bounded and equicontinuous.
Show that

U, c comv(E,(U,) U (o)), and U, C comv(Z,(U;) U {o}).
Thus, the functions

() = k(Ui (w)),
Ih(w) = k(U (w)),

are continuous on [, @w]. By Kuratowski Lemma (2.7) and (4/4\/3), we write

H]((l)) = k(q/ll (a)))
< k(conv(/E\l (Uy) U {o}))
< kE U (w))

0] U _ fl—l
- k{ f e‘“‘(‘“_")( wopr ||gl(u,<1>1<p),%(p>>||dp) dv
191 191

')
01 v — )11
) | e‘”‘@l‘”( fﬂ %||g1<u,<1>1<p>,‘1ﬁ(p>)||dp)dv
| v — el
@) [ e—”l“f“-”)( 0 %||gl<u,<1>1(p>,%(p))||dp)dv:<<I>1,%)ew}
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“ —up(w—v) U(U_p)fl_l
Sk{fﬂl e (ﬁl OB G Uy o | do

01 U _ fl—l
+x1(w) . e_#l(gl_v)( i %Ql(%ﬂl(ﬁ))dp)dv
W U _ &1-1
(@) fﬂ ¢ ( fﬂ %gmu,% (p))dp) dv: (), %) € w}

1
—— v C 9N (] — o @ =0 o T N ot (e1=0)
é%mr(&ﬂ){am)(wl P = ™)+ (o) — 9)F (1 — e @)

() — ﬁl)s‘fl(l — e—#l(wl—ﬂl))
'€+ 1)
< %, Tl o (3.21)

I leo

that is
I [l < 7G5, Tl Lo,

it is also supposed that max{%él?l,%;z?g} < 1, which implies |[IT;]lo = 0, so [Ij(w) =0, V w €
[¢, @].
In a like manner, we get [L(w) =0, V w € [¢, @].

Consequently, k(U (w)) < k(U (w)) = 0, and k(U(w)) < k(U (w)) = 0, implying U(w) is relatively
compact in O x O. Based on Arzeld-Ascoli theorem, we obtain that U is relatively compact in Sg.

Now, all conditions of Monch’s fixed point theorem apply; therefore = has fixed point (®y,¥;) on
S,. ]

4. Hyers-Ulam stability of system

LEt us define nonlinear operator Z;, Z, € C([#, @w],R) x C([9¥, @], R) — C([I, @], R), where El
and &, are defined by (3.6) and (3.7).

{ICDf' D'+ u)®1(w) - Gi(w, @1 (W), ¥i(w)] < Zi(@, ¥)(w), we @ m), @.1)

COANED! + 1)W1 (w) — Go(w, Pi(w), ¥1(w))] < Za(Py, ¥1)(w),
for w € [, @w]. For some ¢y, ¢, > 0, we consider the following inequal:

11, (@, YDl <61, 122, (P, PN < 6. (4.2)

Definition 4.1. Problem (1.3) is Hyers-Ulam stable if there exist M; > 0,i = 1,2, 3,4, such that for
given ¢1,¢> > 0 and for each solution (®,¥;) € C([?, @], R) X C([¢, @], R) of inequality 4.1, there
exists a solution (97, ¥7) € C([¥, @], R) X C([}, @], R) of problem (1.3) with

(@) — (D) < Mgy + Mago,

I(F) = (Pl < Mgt + Mg
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Remark 4.2. (®,Y)) is a solution of inequality (4.1) if there exist functions Z; € C([¢, w],R), i=1,2,
which depend upon ®©,, ¥, respectively, such that

|Z1(w)] <61,
| Z>(w)] < 6.

CONCD! + 1D (w) = Gi(w, O (W), ¥1(w) + Zi(w), we @),
CONCED + 1)1 (w) = Gr(w, Dy (w), ¥1(w)) + Zr(w).

Remark 4.3. If (®,,Y,) represent a solution of inequality (4.1), then (®,¥;) is a solution of the
following inequality:

(@) — (D) < Mgt + Mas,
I(P) = (Pl < Mag + Myso.

From Remark 4.2, we have

COACD! + 1D (w) = Gi(w, O 1(w), ¥1(w) + Zi(w), we @),
CONED + 1)1 (w) = Gr(w, D (w), ¥1(w)) + Zr(w).

With the help of Definition 4.1 and Remark 4.2, we verify Remark 4.3 in the following lines.

A —~ A A U _ -1
D (w) =E1(Dy, ¥))(w) + {f“ e_m(w_v)( wgl(u,‘bl(/?),q’l(ﬂ))dp) dv
%

9, T'(&)
01 U _ ~éi-1
@) | e-”“@l-”)( 0 %@(u,@](p),%@»dp)dv
T | U _ &1-1
+)(2(w)f9 e_’”(wl_v)( 9 %Ql(%qﬁ(ﬂ),qﬁ(ﬁ))dp)dv},

and it follows that

I21(D1, ¥))(w) - B (w)

“ —uy (w—v) v (U—P)gl_l
) {fﬁ < (fﬂ rey o

T B A Uy S
+x1(w e i@ “)( —— ¢idpldv
x(w) 9 g, T'(&) s1ap

T ~ B U(U_p)fl—l
+yo(w e (@ U)( ———¢dp|dv
w0l )Ll n TE

1
<— i+ Z 908 (1 = e @Iy 4 T (00 — 911 (] — 1@
ﬂlr(§1+1) {( +/\/2)(wl ]) ( e )+X1(Ql l) ( e )}
(@) — 9151 (1 — e @ =0)

- GED) o

<Ti61.
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In a like manner, we obtain

Ex(B1, ¥))(w) — P (w)

w U _ n\a-1
< e_’“(“’_“)( wop $»d )dv
{ﬁ s TG P

O ore Y (v—p)i!
+paw) | @ '”( f o Gydp|dv
’ 9 9, T'(1) :
@2

U _ -1
+ —ﬂz(wz—v)( (v p) d )d }
Y 4(w) A e ), T Sadp|dv

1
<———— (1 +xa — ) (1 = e @292 4 T30y — 9,)01(1 — e H2(02—12)
< TG+ D) {( +xa)(w2 —92) (1 —e )+ 0302 — ) (1 — e )}

(@3 — 341 (1 — e #a(@12))
- S
(& +1) ?

< Tasn.
We obtain
(@1, ¥) — (D, )] < r/r\lgl + ?25‘2,
where "Y'\l and /‘Y’\z are defined in (3.3) and (3.4). Thus, the operator E, which is given by (3.6) and (3.7),
can be extracted from the fixed point property, as follows:
®1(w) — @y * ()] =Dy (w) — Ey(Dy#, 1)) + Ey(@r%, ¥1#)(w) — Dy * (w)]
<E( @, ¥)(@) = E1( @1, Fr)(@)] + [Ei( @, Fr#)(w) — Oy # ()]
<(T11 +T161) + (T162 + T1G)I(@1, ¥1) = (@5, ¥y )|
+ 118+ 116 4.3)

1P, (@) =¥ * ()] =¥ ) — Ex(® 1, W1 #)(w) + Ex(@yx, F#)(w) — Py * ()]
<IEA(D, )W) — Ea(@ 1, P #) ()] + [Eo(@y %, F)(w) — Py * ()]
<(Tap1 + Tadht) + (Lo + T2 (D1, ) = (D, P )]
+ rd) + T, (4.4)
(4.3) and (4.4) yield
(1 + TG+ (F1 + 1S
L= (01 + 1)@ + ¢2) + (11 + L)y + 62))
<Vi$ + Vo,

(I(Dy, ¥1) — (D, ¥y 9|l <

with
Y, = (Y1 + 1)
1= ((F1 + Y21 + ¢2) + (Y1 + L) + 62))
W, = (Y1 + 1)

1= (0 + 1)1 + ) + (T + T)(@1 + b))
Hence, the problem (1.3) is U-H stable.
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5. Example

Define @y = {y = (®, D,, D3+ ,D,,---) : lim ®, = 0}, and it is obvious that z; is a Banach space
with ||®]|., = sup |D,,].

n>1

Example 5.1. Consider the following system:

CONCED + p)01(w) = Gi(w, P1(w), Pi(w), 1<& <2, >0, <w< @,
CONCD + 1)V 1(w) = Go(w, P1(w), Y1(w)), 1< <2, pr>0,% <w< @,

(5.1
O,(3) =0, Di(e1) =0, Pi(wy)=0,
V() =0, Yi(e) =0, Yi(w)=0, -oco<d<po<w <o, i=12
Here, &, :%, & =§, h=Lh=1 0 =§, 92=§,wl =2, wmy=2, ;= =1,
A; = 0.3583844, A, = 0.173209134,
| (w)] 1 1
, O ,'P = + + =1,
G1(w, Pr(w), ¥1()) {(a) L)1+ D)) | 27(1 + [F(w)) 81}
sin(271|®; (w))| 1 ¥ (w) }
w, D (w), VY (w)) = + + ,
Gr( i) T (@) { W0r  l0vexd 100+ 0@
Vw € [1,2] with {®,},51, {Yo}is1 € Po, and the hypothesis A, of theorem 3.1 is verified. Also,
1Dy (W) 1 1
, O , ¥ o < + + —
G Gk Tl H{«u T +1®,@))  27(1 + @) 81} .
< () 1
< (w+9)(ll i+ 1)
= K, (0)Dg, (D1 l)-
Similarly,
sin(27|®; (w))] 1 (W)
G2 (w, @ w,‘I’wllmsH + + }
(e Bl Frie) 40 10Vw +4 1001+ [¥ @) ||,
1
< I—O(II‘Plll +1)
= Kg,(0)Dg, (11 llo)-
As a result, Theorem 3.1°s condition A, is also /v\eriﬁAed.
Next, by relying on the bounded subset S C & X &, we get
7<‘(gla ((,(), S)) < ng(w)(]((s),
W(QZa ((l), S)) < 7<‘g2((‘u)7((‘9)’
where in our case, we have Kg, (w) = ﬁ, Kg,(w) = {5- The latter two inequalities show that the

condition (A,) of Theorem 3.1 is satisfied.
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Finally, we calculate

. 1
Wg] (CL)) = 1_07

1
Ty S——F—
(€ + 1)
(@) — )5 (1 — et @i=90)

ml(€r + 1)

{1+ i@ = 9)7 (1= e 7) 4 Koy = ) (1 - e @)

~ (0.268629314, 5.2)
and

. 2
7(gz(u)) = 1_0’
Te L |
(5 + 1)
_ (Wz _ 192){1(1 _ e—ﬂz(wz—ﬂz))
Ml (4 + 1)

(1 + Xa) (@2 = 3:)% (1 = e#27) 4 15(0r = 9) (1 = 2772

~ 0.3906796025. (5.3)

Then, maX{/‘Y'\ﬂ(g2 (w), ’T\z‘ng(a))} = max{0.026862931,0.078135920} = 0.078135920 < 1. Thus,
Theorem 3.1’s requirements are all satisfied, that is, Eq (5.1) has at least one solution (¥, V1) € C(g) X

C([1, 2], ¥o).
6. Conclusions

Based on Monch’s fixed point theorem with the aid of the Kuratowski measure of non-compactness
and Carathéodory’s conditions, we have proved that there is a solution to the system of fractional
differential equations given in (1.3). In addition, we verified the stability of the solutions for this
system using the method of Ulam-Hyers. We concluded the work with an applied example that makes
it easier for the reader to understand the theoretical results. For future work, those interested in the
field can also investigate these solutions via other fractional derivatives, such as Caputo-Hadamard,
Katugampola, Hilfer and y-Caputo. Also, there could possibility to discuss the existence according to
the resolvents operators see [43].
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