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1. Introduction

Optical Coherence Tomography (OCT) is a non-invasive imaging modality using non-ionizing
radiation, typically light in the near infrared spectrum. Even though the first OCT imaging system
was built only thirty years ago [23], it has attracted much interest and it is considered nowadays
as a key imaging technique, especially in ophthalmology, since it can acquire images very quickly
(around 50 000 pixel points per second) with a high resolution of a few micrometers and a tissue
penetration depth of approximately two millimetres. The OCT setup raises many challenges for a
rigorous mathematical model, in particular for a quantitative analysis where we want to explicitly
express the measurements in terms of the physical parameters of the sample under investigation. In
addition, a concrete model needs to be implemented in three dimensions, which makes the derived
algorithms computationally expensive.

In this work, we aim to give a brief overview of the different approaches to model the various OCT
setups. Hereby, there are many modeling questions to be answered before formulating an appropriate
model: How is the sample illuminated? Is there light absorption in the medium? Does the polarization
of the light play an important role or can it be neglected? Do we take multiple scattering effects into
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account, or is it enough to focus on single scattering? What kind of detectors are being used? Just to
name a few relevant decisions to be made.

The basis of our analysis is the mathematical description presented in the review paper [14] by
one of the inventors of OCT, Adolf Fercher, together with [9] where a general formulation in this
spirit was presented. We will thus describe the light as an electromagnetic wave and will be using
Maxwell’s macroscopic equations as our model for the light propagation, which reduces in this setting
to a Helmholtz equation for the electric field. We will then start by giving an overview of some of the
most prominent OCT setups and the corresponding modeling assumptions in this setting in Section 2,
and show examplarily some of the resulting forward models for OCT in Section 3. In Section 4, we
will present the effects of the different assumptions and simplifications to the forward simulations and
compare the results to real measurement data.

2. Different modeling choices for OCT

There exist many different variations in the experimental setup of OCT, but its basic working
principle is to illuminate the sample from a fixed direction (we will use the third basis vector e3 as
the illumination direction) with an incident light beam EI and to measure the backreflected light ES by
interferometry, that is, to superimpose ES with a copy ER of the incident field (typically produced by
reflecting EI at a mirror) and to detect the resulting intensity.

The light propagation is thereby commonly described as an electromagnetic wave, which is a pair
of an electric and a magnetic field evolving according to Maxwell’s macroscopic equations. Since all
the media the light is interacting with are typically assumed to be non-magnetic, it is sufficient to keep
track of the electric field Ê : R×R3 → R3 and the electric displacement field D̂ : R×R3 → R3, which
are functions of time and space; although it is usually more convenient to do the calculations in Fourier
domain, that is, for the functions

E : R ×R3 → C3, E(k, x) =

∫
R

Ê(t, x)eikctdt, and

D : R ×R3 → C3, D(k, x) =

∫
R

D̂(t, x)eikctdt,

where the constant c denotes the speed of light in vacuum.

2.1. The illumination

The incident light is a solution of Maxwell’s equations in the vacuum and can be seen as the electric
field which would be produced in the absence of the sample. The equations can be in Fourier space
reduced to the Helmholtz equation

∆EI(k, x) + k2EI(k, x) = 0, (k, x) ∈ R ×R3, (2.1)

for the electric field EI of the incident light with the additional condition that

∇ · EI(k, x) = 0, (2.2)

where the differential operators ∇ and ∆ only act on the spatial variable x.
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Swept Source OCT vs. Broadband Illumination: In swept source OCT, the incident wave is almost
monochromatic, meaning that we have for every x ∈ R3 that

supp EI(·, x) ⊂ [−k0 − ε,−k0 + ε] ∪ [k0 − ε, k0 + ε]

for a sufficiently small ε > 0, and the measurement is repeated for multiple values k0 in some
interval [kmin, kmax], 0 < kmin < kmax. (We remark that the function EI in Fourier space fulfills the
symmetry EI(−k, x) = EI(k, x), since each component of the electric field ÊI is real-valued.)

Alternatively, the illumination can be done with one illumination with a broadband laser beam
with

supp(supx∈R3 |EI(·, x)|) = [−kmax,−kmin] ∪ [kmin, kmax].

Since we will see that we can solve the equations for the resulting electric field E(k, ·), in particular
the vector Helmholtz equation (2.8), for each value of k separately, this difference is irrelevant
for the mathematical model and we formulate it in the following therefore simply for a single
broadband illumination.

Gaussian Beams: In the classical OCT setup, the illumination is done by a laser beam (propagating
along the negative e3 direction) which is focused on a certain spot r ∈ R3, which is usually
chosen inside the sample. To record the full image, measurements are done for illuminations
at every horizontal position (r1, r2) ∈ R2 (practically, on some finite grid). The depth r3 of the
focus is thereby normally kept constant. Thus, the incident light is typically well described by a
Gaussian shaped beam, see, for example, [49] for a treatise of the generation of light with a laser.

To obtain an expression for such a beam, we may solve the equations (2.1) and (2.2) for an
arbitrary value k with initial data of the form

EI(k, r1 + x1, r2 + x2, r3) = fk(x1, x2)ηk, (x1, x2) ∈ R2, (2.3)

in the focus plane {x ∈ R3 | x3 = r3}, where fk : R2 → C is a (Gaussian like) function such that
its two-dimensional Fourier transform f̂k is supported in the disk D|k|(0) ⊂ R2 with center zero
and radius |k| and ηk ∈ R

2 × {0} denotes a fixed polarization vector. This has a solution which is
symmetric with respect to x3 regarding the focus plane of the form

EI(k, r + x) = EI,+(k, r + x) + EI,−(k, r + x)

with

EI,±(k, r + x) =
1

8π2

∫
D|k|(0)

f̂k(κ)ηk,±(κ)e
±ikx3

√
1− |κ|

2

k2 ei(κ1 x1+κ2 x2)dκ (2.4)

and the adapted polarization vectors

ηk,±(κ) =

ηk,1, ηk,2,±
ηk,1κ1 + ηk,2κ2√

k2 − |κ|2

 .
However, since the incident wave should be propagating downwards, so that before a certain time,
say t = 0, we can ensure that ÊI(t, r + x) = 0 for all points x below a certain horizontal plane
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where the sample is located, say in the half space {x ∈ R3 | x3 < 0}; we know for every x ∈ R3

with x3 < 0 that the function k 7→ EI(k, r + x) =
∫ ∞

0
ÊI(t, r + x)eikctdt must be holomorphically

extendible to the upper half complex plane such that ω 7→
∫
R
|EI(k + iω, r + x)|2dk is bounded, the

function EI should be only a combination of the terms eikφ·x with φ ∈ S2 and φ3 < 0 (corresponding
to the plane waves (t, x) 7→ eik(φ·x−ct) moving in the direction φ).

Thus, we could keep as the initial wave the downwards moving part EI = EI,− of our symmetric
solution, where we assume fk = 0 for |k| < [kmin, kmax] and impose the reality assumptions f−k = fk

and η−k = ηk. If we consider the typical case that f̂k has a very small support around the origin,
where we want to assume the Gaussian behavior

f̂k(κ) ≈ Ake−ak |κ|
2

(2.5)

for some parameters Ak ∈ C and ak > 0, we can keep only the lowest order in κ in the integrand
and find the classical form

EI(k, r + x) ≈
Akη

8π2

∫
R2

e−ak |κ|
2
e−i(k− |κ|

2
2k )x3ei(κ1 x1+κ2 x2)dκ

=
Akkη

4π(2akk − ix3)
e−ikx3e−

k
4akk−2ix3

(x2
1+x2

2)
(2.6)

for a Gaussian beam, depicted in Figure 1.
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Figure 1. A focused Gaussian beam presenting various forms of wavefronts.

Plane Waves: Approximating the expression (2.6) close to the focus point, that is, for x ≈ 0, we see
that the shape of the Gaussian beam resembles the one of the plane wave

EI(k, r + x) ≈
Akη

8πak
e−ikx3 .

Thus, if the object is placed at the beam waist and its size is (for every k ∈ [kmin, kmax]) of the
same order of magnitude as the Rayleigh length 2akk of the light beam, then we can approximate
the illumination by a plane wave, see [14]. Since this assumption simplifies the mathematical
analysis a lot, most of the works that followed used this form of illumination, see, for example,
[5–7, 15, 16, 24, 29, 53] and some papers from the authors of this article [9–11, 13].
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However, in particular, intensity changes due to the distance to the focus point are not reflected in
this approximation which can have a negative impact for quantitative reconstructions.

Besides this rastering of the sample with focused illuminations, there also exist full-field OCT
methods where the whole sample is illuminated at once. For these setups, the illumination is
typically well modeled by plane waves, see [33, 34], for example.

2.2. The medium

In Maxwell’s macroscopic equations, the medium is usually modeled as a non-magnetic, dielectric
medium, whose optical properties are characterized by its electric permittivity ε : R × R3 → C3×3, a
function of the wavenumber k and the position x, which relates the electric displacement field D and
the electric field E in the medium via the linear relationship

D(k, x) = ε(k, x)E(k, x). (2.7)

In the end, we are interested in the inverse problem of reconstructing ε from the OCT data; however,
this data seems not sufficient for a full recovery of the nine four-dimensional, complex-valued entries of
ε. It is therefore common to restrict the analysis to media with a certain structure where a reconstruction
becomes possible.

There are various popular assumptions, which can in different combinations be suitable.

Isotropic Medium: In general, the inner structure of the dielectric medium can cause that the
displacement field D produced in the presence of an electric field E is not parallel to E so that the
permittivity ε is indeed matrix-valued. To recover in this case some of the matrix entries, there
exists the so-called polarization sensitive OCT method which makes illuminations with differently
polarized incident waves and also detects the polarization state of the reflected light, see [22]. At
least for orthotropic media (that is, media whose permittivity ε fulfill that ε(k, x) is symmetric and
ε13 = 0 = ε23), a functional OCT scheme has been addressed in [11].

Mostly, however, it is assumed that the medium is isotropic, meaning that ε is a multiple of the
identity matrix:

ε(k, x) = n2(k, x)I3×3

with the refractive index n : R ×R3 → {z ∈ C | =z ≥ 0}.

Non-Absorbing Medium: For biological samples in the near-infrared spectrum (that is, with central
wavelengths between 800 and 1300 nanometers), where OCT typically operates, we have that the
scattering effects dominate the absorption effects. Thus, it is often a reasonable assumption to
neglect absorption completely, which means to assume that ε(k, x) ∈ R3×3 for all (k, x) ∈ R ×R3.

Non-Dispersive Medium: In addition, the bandwidth of the light source in a typical OCT system
is within a narrow spectrum of a few tens of nanometers. Thus, it is commonly assumed that
the permittivity is independent of the wavenumber k over that small bandwidth of the source,
see [6, 7, 37], for example. However, this way dispersion effects are excluded from the model.

Slowly Varying in Horizontal Direction: Since the laser illuminates only a small region inside the
sample, we can assume that the properties of the medium within the illuminated region are almost
independent of the lateral coordinates x1 and x2, so that the permittivity can be locally considered
to depend spatially only on the depth x3.
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Weakly Scattering Medium: An assumption with mainly theoretical motivation, is to pretend that the
medium is only weakly scattering, meaning that ε − I3×3 is so small that we can apply the Born
approximation to linearize the forward problem and get an explicit formula for it, see [9, 14, 45,
54]. Allowing for strongly scattering media in which also multiple scattering events needs to be
considered, results in contrast in more complicated models [1, 27, 36, 58].

Layered Medium: One of the main applications of OCT is in ophthalmology where the retina of
the human eye is imaged. Another important application is the imaging of human skin. Both
of them are biological tissues presenting a layered structure, where each layer is described by
a distinct permittivity (usually with additional simplifying assumption such as being constant or
only weakly scattering) so that we have disjoint bounded sets Ω j ⊂ R

3, j ∈ {1, . . . , J}, with
a smooth boundary and local permittivities ε j : R × R3 → C3×3, j ∈ {1, . . . , J}, for which the
permittivity has the form

ε(k, x) = χR3\Ω(x)I3×3 +

J∑
j=1

χΩ j(x)ε j(k, x),

where Ω =
⋃J

j=1 Ω j is the region of the sample and J ∈ N denotes the number of layers, see, for
example, [9, 18, 19, 26, 52].

Often one makes the additional assumption that, at least locally in the illuminated region, the
domains Ω j can be approximated by the sets

{x ∈ R3 | z j+1 < x · νΩ, j+1, x · νΩ, j ≤ z j}

which are bounded by planes with upwards pointing normal unit vectors νΩ, j ∈ S
2 and parameters

z j ∈ R (all depending on the position of the illuminated region).

Point-Like Scatterers: Similarly to the layered media, one may assume the inhomogeneities inside
the object as randomly distributed point-like scatterers with constant optical properties. Then, the
aim is to recover the geometry of the area where the scatterers are located [35, 38, 46, 60].

2.3. The scattering

In general, Maxwell’s macroscopic equations describe perfectly the wave propagation into the
imaging system and the scattering theory is the main tool to derive a formula for the backscattered light
from the object, see, for example, [8,32]. Since most OCT systems are using focused illuminations and
are thus essentially performing multiple one-dimensional measurements, the electromagnetic theory
can be considerably simplified, such as in [3, 9, 15, 16, 44, 48, 51], to name but a few examples.

In the general case, Maxwell’s macroscopic equations can be (implementing the medium via the
relation (2.7)) combined into the vector Helmholtz equation

∇ × (∇ × E)(k, x) = k2ε(k, x)E(k, x), k ∈ R, x ∈ R3. (2.8)

for the electric field E : R ×R3 → C3, which is induced by the incident field EI , that is, we request an
initial condition of the form Ê(t, x) = ÊI(t, x) for all times t < t0 with the time t0 be chosen such that
ÊI is not interacting with the sample before t0: ÊI(t, x) = 0 for all t < t0 and x ∈

⋃
k∈R supp(ε(k, ·)).
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Choosing for simplicity t0 = 0, this can be again formulated as a boundedness condition on the analytic
continuation of the inverse Fourier transform ES of the scattered fields ÊS = Ê − ÊI on the upper half
complex plane (as indicated in the derivation of (2.6)), or more commonly expressed by the Silver–
Müller radiation condition

lim
|x|→∞

((∇ × ES (k, x)) × x − ik|x|ES (k, x)) = 0,

see [8], for example.
The differential equation (2.8) together with this initial condition can then be rewritten as the

Lippmann-Schwinger integral equation

E(k, x) − EI(k, x) = U[E](k, x) (2.9)

with the integral operatorU given by

U[E](k, x) =
(
k2I + ∇∇·

) ∫
R3

Φ(k, x − y)(ε(k, y) − I3×3)E(k, y)dy,

where I is the identity operator and

Φ : R × (R3 \ {0})→ C, Φ(k, x) =
eik|x|

4π|x|
,

denotes the three-dimensional outgoing Green’s function of the Helmholtz operator (that is, the
solution of the distributional equation ∆Φ + k2Φ = −δ fulfilling the boundedness condition for k in
the upper half complex plane). We note that the integration area in the operator U is restricted to the
support of the functions ε(k, ·) − I3×3, which represents the sample and should thus be bounded.

Born Approximation: The integral (2.9) is only an implicit equation for the scattered field. If we
make the assumption of a weakly scattering medium, meaning that we consider the deviation
ε(k, y)− I3×3 of the permittivity from the permittivity of free space to be small, we may neglect in
a first order approximation the second order term (ε(k, y)−I3×3)(E(k, y)−EI(k, y)) in the integrand
and approximate ES by its first order Born approximation, given by the explicit expression

E(1)
S (k, x) = U[EI](k, x).

The product of (ε(k, y) − I3×3)EI at a point y can be interpreted as the response of the medium
there to the (unperturbed) incident illumination EI , which acts as a point source that propagates
according to the Green’s function to an examination point x. The integral over the object volume
then provides the total contribution of the sample.

However, the approximation does not reflect that these additional contributions also interact
with the medium. This could be iteratively taken into account by using higher order Born
approximations defined by

E(`+1)
S (k, x) = U[EI + E(`)

S ](k, x), ` ∈ N.

But although the usage of higher-order Born approximation in case of a strongly deviating
refractive index is possible, it is due to the evaluation of many integrals not very efficient.
Therefore, other possibilities such as the implementation of the radiative transfer equation and
Monte Carlo simulations are often preferred, see [20, 27, 28, 36, 50, 58].
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Far-Field Approximation: Maybe less an approximation, but rather attributed to the comparably
large distance of the detector to the sample, it is sometimes considered that the scattered field
there is only known in highest order so that barely the first term E(∞)

S (k, x
|x| ) in the expansion

ES (k, x) =
eik|x|

4π|x|

(
E∞S (k, x

|x| ) + O( 1
|x| )

)
for |x| → ∞ significantly enters into the measurements.

In particular in combination with the Born approximation, this nevertheless simplifies the
expression for the scattered field as we end up with

E(1,∞)(k, ϑ) = −k2
∫
R3

e−ikϑ·yϑ ×
(
ϑ ×

(
ε(k, y) − I3×3

)
EI(k, y)

)
dy,

which makes it a very common model, see, for example, [9,14–17,42], especially, combined with
plane wave illumination. When it comes to Gaussian beam illumination, the difference between
far- and near-field representation becomes more noticeable. The latter counts also for system
effects that are neglected when the far-field approximation is applied, see [5, 13, 59].

Linear Polarization: If we assume an isotropic medium described by a refractive index n, then we can
write the vector Helmholtz equation (2.8) (using the vector identity ∇ × (∇ × E) = ∇(∇ · E) − ∆E
together with the direct consequence ∇ · (n2E) = 0 of (2.8)) in the form

∆E(k, x) + k2n2(k, x)E(k, x) + ∇
(
E · ∇

(
ln n2(k, x)

))
= 0, k ∈ R, x ∈ R3,

from which we see that if E · ∇n vanishes identically, then the vector Helmholtz equation is
reduced to the scalar Helmholtz equation for every component of E. This is, for example, the
case if EI(k, x) = uI(k, x)η with η ∈ R2 × {0} and the refractive index n is assumed to depend only
on x3 (which may be approximated by assuming a medium which is slowly varying in horizontal
direction) so that ∇n is parallel to e3. Then, the electric field is of the form E(k, x) = u(k, x)η with
u being a solution of

∆u(k, x) + k2n2(k, x)u(k, x) = 0,

thus reducing the vector-valued problem to a scalar one, see, for example, [3, 14–16, 34].

Fresnel Formulas and the Huygens–Fresnel Principle: We consider for simplicity a layered
medium whose layers are bounded by parallel planes perpendicular to an upwards pointing normal
vector νΩ ∈ S

2 where the local permittivities are assumed to be isotropic, non-dispersive and
spatially constant: ε j(k, x) = n2

jI3×3. Then, the electric field E in each layer Ω j will be given as a
superposition of plane waves of the form

E j,φ,η(k, x) = A j,φeikn jφ·xη j,φ

with different propagation directions φ ∈ S2 for appropriately chosen amplitudes A j,φ ∈ C and
polarization vectors η j,φ ∈ S

2 with φ · η j,φ = 0.

The amplitudes and polarizations have then to be chosen so that at every point xΩ, j ∈ ∂Ω j ∩ ∂Ω j+1

on a discontinuity of the refractive index, the transmission conditions

lim
m→∞

E(k, ȳm) = lim
m→∞

E(k, y
m

) and
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lim
m→∞

n jE(k, ȳm) · νΩ = lim
m→∞

n j+1E(k, y
m

) · νΩ

are fulfilled for all sequences (ȳm)∞m=1 ⊂ E j and (y
m

)∞m=1 ⊂ E j+1 with limm→∞ ȳm = xΩ, j and
limm→∞ y

m
= xΩ, j.

For only two (infinite) layers and an incident plane wave, the solution can be shown to be of the
form

E(k, x) = χΩ1(x)
(
Aeikn1φ·xη + Ãe−ikn1φ·xη̃

)
+ χΩ2(x)Beikn2φ̃·xη̄,

where the amplitudes Ã, B ∈ C, the polarization vectors η̃, η̄ ∈ S2, and the propagation direction
φ̃ ∈ S2 of the reflected and transmitted waves can be explicitly calculated via the Fresnel equations
from the amplitude A ∈ C, the polarization η ∈ S2 and the direction φ ∈ S2 of the incident plane
wave, see, for example, [25].

Now, similarly to the higher Born approximation, we can iteratively calculate the solution of the
general scattering problem by—starting with the incident wave, decomposed as a sum of plane
waves—successively reflecting and scattering the different plane waves at the discontinuities of
the layers. Since each reflection step goes along with a loss in amplitude, one can in practice only
keep those plane wave components which were produced from a low number of reflections. For
a more detailed explanation of the construction, we refer to [7, 13, 43].

We want to mention at this point that even if we take in this construction only contributions
from waves into account which have been reflected at most once, the so obtained single scattering
solution would be different from the corresponding Born solution, since it would still depend non-
linearly on the refractive index (as it appears in the exponent of every plane wave component).

We refer to [6, 7, 21, 47] for works using similar modeling. The layered structure can be also
combined with different differential equations, like the radiative transfer equation [20, 55].

Instead of calculating the solution inside the layers completely, there also exists the approach of
applying the extended Huygens-Fresnel principle, see [4, 31, 61], to propagate the values of the
electric field from one layer boundary directly to the next layer boundary and in that way also
back to the detector, see [3, 44, 51].

2.4. The measurements

Since the time resolution is usually not sufficient to determine from measurements of the rapidly
oscillating electromagnetic waves ÊS the Fourier transform ES , the way to get information about the
phase is to split off a part of the incident wave via a beam splitter and reflect it at a mirror, which
produces a well-known electromagnetic field ER (which can be calculated from the Fresnel equations),
and recombine it with the scattered field ES to measure the superposition ES + ER. There are slight
variations on how this is exactly done.

Time-Domain vs. Spectral-Domain OCT: In time-domain OCT, the mirror to produce the field ÊR is
movable and for every shifted position µ ∈ [−µ0, µ0] of the mirror, we get for an induced scattered
field ÊS at a detector point x ∈ R3 the averaged intensity measurement

I(µ, x) =

∫
R

|ÊS (t, x) + ÊR(t +
2µ
c , x)|2dt

AIMS Mathematics Volume 8, Issue 2, 2508–2531.
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=

∫
R

|ÊR(t +
2µ
c , x)|2dt + 2

∫
R

ÊS (t, x) · ÊR(t +
2µ
c , x)dt +

∫
R

|ÊS (t, x)|2dt.

The dominant first term is simply the intensity of the incident light beam, which is known,
and the last term can be obtained by an intensity measurement of the scattered field without
superimposing it with the reference field ÊR (but often it is simply ignored as it is of second order
in the field ÊS , which is usually much weaker than ÊR). Therefore, we can assume to know by
this the second, cross-correlation term.

Using the Parseval–Plancherel identity, we can write it in the form∫
R

ÊS (t, x) · ÊR(t +
2µ
c , x)dt =

c
2π

∫
R

ES (k, x) · ER(k, x)e2iµkdk,

so that we can calculate from this by doing a Fourier transform with respect to µ (provided the
interval of µ is sufficiently large—in general, a convolution operator will additionally appear,
see [16]) the product

M(k, x) = ES (k, x) · ER(k, x) for all k ∈ [kmin, kmax]. (2.10)

The expression<(M) can alternatively be directly measured by sending the sum ÊS +ÊR through a
spectrometer giving the values |ES (k, x) + ER(k, x)|2 of which the values |ES (k, x)|2 and |ER(k, x)|2

can be again obtained separately leaving only <(M). This is the way spectral-domain OCT is
working, which has the experimental advantage, that there is no more necessity of moving the
mirror which speeds up the measurements.

We want to remark that if not a broadband signal is used, but a swept source method, then for
each illumination with an almost monochromatic incident wave at wavenumber k, only one value
<(M(k, x)) is recovered with this spectral method, and the full signal is obtained by repeating the
procedure for every value k ∈ [kmin, kmax].

Polarization Sensitive OCT: For a polarization sensitive setup, every measurement is repeated with
an incident wave where just the polarization vectors in every Fourier component are changed.
Additionally, the superposition ES + ER is splitted and sent to different polarization filters so
that we can measure the single components <(ES , j(k, x)ER, j(k, x)), j ∈ {1, 2, 3}, of the cross-
correlations.

Focused Illumination vs. Full-field OCT: In full-field OCT, the whole sample is, as we have seen,
illuminated at once and we measure the resulting scattered field (in one of the previously described
ways) at all points x on a detector planeD = {x ∈ R3 | x3 = d} above the sample.

In the classical setup, we generate for each point (r1, r2, d) ∈ D an incident wave (k, x) 7→ EI(k, r+

x) with focus in r = (r1, r2, r3) ∈ R3 for some depth focus r3 (inside the sample) and detect the
hereby induced scattered field ES at the detector position (r1, r2, d) only. Hereby, we produce at
every point on the detector a measurement which contains information of the sample in a small
neighbourhood of the vertical line {(r1, r2, x3) | x3 ∈ R}, which is typically called an “A-scan”.

The reconstruction of the medium is thus essentially reduced to a (one-dimensional)
reconstruction of the sample on each of these vertical lines from its corresponding A-scan.
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Thus, the A-scans are treated independently and the image quality reduces far from the focal
plane. Interferometric synthetic aperture microscopy (ISAM) on the other hand uses a more
sophisticated model and takes into account scattering and diffractions effects in order to produce
images with resolution independent of the focus position. ISAM may be implemented by an
existing OCT system with the addition of a spectral detector. We refer the interested reader
to [34, 38, 40, 41] and references therein.

3. Examples of forward models

To give a brief overview, what assumptions are typically made and how they are usually combined,
we tried to collect and classify some of the theoretical works on OCT in Table 1.

Illumination
p.w. = plane wave, G.b. = Gaussian beam
Medium
w.s. = weakly scattering, (n.-)abs. = (non-)absorbing, (n.-)disp. = (non-)dispersive, lay. = layered
medium, p.sca. = point scatterers
Scattering
B.A. = Born approximation, F.A. = far-field approximation, Huy. = Huygens principle l.p. =

linear polarization, FF. = Fresnel formulas

Table 1. Classification of some articles on OCT depending on the considered setup.

Articles Illumination Medium Scattering Measurement
[9, 14–17, 24, 26, 34] p.w. w.s., disp. B.A. &/or F.A., l.p. FD &/or TD
[6, 7, 12, 37, 52, 53] p.w. n.-abs. &/or abs., n.-disp., lay. l.p., FF. FD &/or TD

[38, 39, 57] G.b. p.sca., lay. F.A., FF. FD
[2, 3, 44, 51] G.b. w.s., lay. Huy. TD

Although we cannot present all the works in detail here, we would like to give a brief summary of
the main ideas. The first set of articles (see the first row of Table 1) assumes plane wave illumination
for a weakly scattering medium. The works of Fercher and colleagues [14–17] are the ones that
every researcher interested in the fundamentals of OCT should start with. The basics of reflection
tomography and backscattering are presented but also how an OCT system is implemented. All
different types of OCT are addressed and how other factors (like noise) affect the signal. In [9] we
see one of the first attempts by mathematicians to describe how OCT operates. In addition, iterative
methods are presented for reconstructing the refractive index from OCT data even for anisotropic
media. The case of a medium consisting of discrete reflectors is addressed in [24] and the formula
of the measured intensity is derived for both TD- and FD-OCT. Here, signal processing techniques
required in practice (like phase shifting) are also analysed. In [26] a model is presented that deals
with the non-linear sampling of the measured signal both theoretically and numerically. The novelty
of the work [34] has to do with the implementation of a method that produces images with spatially
independent resolution (see subsection 2.4 where we discuss about ISAM).
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The second set of papers refer to mathematical models based on plane wave illumination and assume
layered structure for the medium. In [6, 7] the authors use an one-dimensional model to reconstruct
the refractive indices of a multi-layered medium. The work [12] can be seen as an extension to
more dimensions with the addition of point-like inhomogeneities inside the layers. A similar inverse
problem to reconstruct both the thickness and the refractive index of every layer is studied in [37].
The application of Fresnel’s equations was discussed in [52, 53]. A theoretical approach for various
OCT systems is presented in [52] whereas in [53] a matrix formulation is used and the solution of a
minimization problem produces accurate reconstructions.

The next set of papers consider the scattering of a Gaussian beam by a medium in a FD-OCT system.
The works [38, 39] (just to name a few) present the advantages of ISAM for a medium consisting of
multiple points scatterers. The derived solution of the inverse problem is independent of the focus
position. In [57] the authors of this review article collaborated with researchers from the Medical
University of Vienna to validate the accuracy of the presented mathematical model for layered media
with experimental data.

The last row in Table 1 refers to works where the analytical model describing OCT is based on the
extended Huygens-Fresnel (EHF) principle and how multiple scattering events affect the signal. The
main advantages is that it is independent of the sample arm geometry and it can be combined with
Monte Carlo simulations to extract the scattering properties of the sample. We refer only to the early
works since there have been tens of later articles using this model.

In the following, we consider two particular cases and how these assumptions are combined to a
complete forward model.

3.1. Single scattering plane wave model

One of the classical models, used for example in [14], assumes (locally) a plane wave illumination
and considers a medium which is isotropic, non-absorbing, and non-dispersive. Then, we have seen
that we can describe the medium by a refractive index n : R3 → C, being a function of x.

Assuming further that the medium is weakly scattering and applying the Born and far-field
approximations, we obtain for the far-field pattern E(1,∞)

S of the scattered field ES induced by an incident
plane wave EI(k, x) = Ae−ikx3η with A ∈ C and η ∈ R2 × {0} in the direction ϑ ∈ S2 with ϑ3 > 0 the
expression

E(1,∞)(k, ϑ) = Ak2(ϑ × (ϑ × η))
∫
R3

(
n2(y) − 1

)
e−ik(ϑ·y+y3)dy.

As expected, the measurements thus are proportional to the Fourier transform F [n2 − 1](k(ϑ + e3)) of
the reflectivity n2 − 1. We stress here once more that OCT is a band-pass technique and we actually
detect only high frequency Fourier components because only backscattered light is measured within a
small frequency range.

In Figure 2 we see the few accessible Fourier data (in red) for two different OCT systems compared
to the available Fourier data (gray upper cone): In standard OCT with focused illumination, we will
only detect the directly back-scattered values, that is, ϑ = e3 (at each horizontal position), whereas in
full-field OCT we would (ideally) obtain the contributions from all ϑ ∈ S2 with ϑ3 > 0.

This result is the main reason for the few mathematical-oriented papers, since for many years the
inverse problem in OCT, to recover the reflectivity n2−1 from the OCT data, was just accomplished by
the application of the Fourier transform. However, the need to improve image quality and enhance

AIMS Mathematics Volume 8, Issue 2, 2508–2531.



2520

quantitative analysis forced different mathematical groups to relax some of the assumptions and
consider different cases to handle the more general scheme.

k1, k2

k3

2kmax

2kmin

(a) Standard OCT.

k1, k2

k3

kmax(ϑ+ e3)

kmin(ϑ+ e3)

(b) Full-field OCT.

Figure 2. Limited Fourier data because of backscattering at few wavelengths.

3.2. A Gaussian illumination model

In [57], we used a Gaussian incident wave EI for analyzing a layered medium with constant local
refractive indices and whose layers {x ∈ R3 | z j+1 < x · νΩ ≤ z j} are bounded by parallel planes with
normal vector νΩ.

Using (2.3) for the data in the focal plane, this leads (we only consider the A-scan at the position
(r1, r2) = (0, 0) to simplify the notation) to

ES (k, x) =
1

8π2

J+1∑
j=1

∫
R2
β j(k, κ)

 j−1∏
`=1

(1 − β2
`(k, κ))e

ik2n`(k)(z`−z`+1) cos θt,`(k,κ)

 f̂k(κ)

ei
√

k2−|κ|2r3ei(K−ψ(K))·xΩeiψ(K)·xdκ, (3.1)

where the following notation was introduced:

• β j : R × R2 → R3 denotes the dispersive reflection coefficient, accounting for the differently
polarized parts of the electric field;
• for a κ ∈ R2 with K = (κ,−

√
k2 − |κ|2) ∈ R3, we define the scattered vector

ψ : R3 → R3, K 7→ K − 2 (K · νΩ) νΩ;

• θt, j denotes the angle of transmission from the layer j to the layer ( j + 1);
• xΩ = (0, 0, z1) denotes the point on the top surface of the medium.

A part which often has been neglected in articles on OCT, is the transport of the reflected light to
the detector. In practice, a common setup is that the back-reflected light is coupled into a single-mode
fiber and later transferred to the detector. Since both fibers connecting the sample and the reference
arm with the detector are assumed to have equal length, the additional phase factor, which commonly
represents the way of light through a fiber, cancels out when being combined in (2.10).

While the way through the fiber only takes a minor role in an OCT measurement, the coupling into
the fiber has a more prominent position in here [38, 57]. This coupling is done by using a scan lens
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which discards all (plane wave) parts in equation (3.1) whose propagation directions strongly deviate
from the illumination direction e3 [30]. The maximal deviation is described by the (maximal) angle of
acceptance, which we denote by θ. The set of incident directions yielding an accepted wave vector is
then given by

Bk =

{
κ ∈ R2

∣∣∣∣ ψ(K(κ)) · e3 ≥ k cos θ
}
⊂ R2. (3.2)

Thus, we change the area of integration in (3.1) to Bk ⊂ R
2, which gives us (after multiplying with the

reflected field) our forward model.
To simplify the expression, the integral may be replaced by its far-field approximation: For a

direction ϑ ∈ S2
+ and (large) ρ ∈ R, the far-field approximation of the reflected field by a single

interface, that is j = 1 in (3.1), is given by [57]

ES (k, ρϑ) '
ikC(κ0)
ρ

β(k, κ0) f̂k(κ0)ei
√

k2−|κ0 |2r3ei(K−ψ(K))·xΩeikρ, (3.3)

where κ0 is such that ψ(K(κ0)) = ϑ and C is constant depending on κ0.

It has been shown in [57] that the far-field approximation is meaningful only if the medium is
located in the focus of the laser beam. However, there are still cases where this approximation fails as
we demonstrate in Section 4.1 with a numerical example.

Although we have for this model no closed form for the reconstruction of the positions z j of the layer
boundaries and the refractive indices n j of the layers, the parameters can numerically be calculated
to optimally fit the data which gives for suitable samples satisfying the modeling assumptions good
reconstructions.

4. Numerical experiments

In this section we present numerical experiments using both simulated and real OCT data. The goal
is to show that some mathematical models even if they are commonly used might not be appropriate
for some specific OCT setups and some objects.

4.1. Near- vs. Far-Field representation

We address a special case where near- and far-field representations of the sample field coincide at a
specific point but deviate in general.

Let the imaging object be a totally reflecting mirror that is not tilted, meaning β ≈ 1 and νΩ = e3.We
assume further that it is placed below the examination point x = 0. Then, after linearizing the root in
(3.1), we obtain the following form for the reflected field

ES (k, 0) ≈
eik(r3−2z1)Ak

8π2

∫
Bk

e−|κ|
2(ak+ i

2k (r3−2z1))dκ,

where we used the definition of f̂k in equation (2.5). It is straightforward to show that Bk, in this simple
case, is given by the ball with radius k sin(θ). Thus, we parametrize the integral to get

ES (k, 0) ≈ eik(r3−2z1) Ak

8π
(
ak + i

2k (r3 − 2z1)
) (

1 − e−k2 sin2(θ)ake−ik sin2(θ)( r3
2 −z1)

)
. (4.1)
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For z1 = r3, we observe that the absolute value of (3.3) is only a good approximation of |ES (k, 0)| if
θ increases to the point that almost all back-reflected waves are collected. The difference between a
small (left) and a large (right) value of θ is shown in the bottom row of Figure 3.
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Figure 3. The far-field approximation (black) in (3.3), the Gaussian near field (red) in (4.1)
and the Gaussian near field in the limit case θ = π

2 for different sample positions xΩ =

(0, 0, z1). The green line denotes the focus position r3. The near field in red is presented for
different values of ak and θ.

4.2. Plane wave vs. Gaussian shaped illumination

We present an example with real data generated from a swept-source OCT system. We show that the
Gaussian beam seems advantageous. In addition, we observe that even multiple reflections (included in
the model) do not improve the simulations. We compare the real data with the single-reflection model
for the plane and the Gaussian shaped illumination. Simulations with second-order reflections are also
presented.

The OCT experiment was performed by a fiber-based OCT system built at the Medical University
of Vienna. It uses a swept-source that emits 60 mW at a central frequency of around 1300nm and
bandwidth from approximatively 1282.86nm to 1313.76nm. A fiber coupler splits the light into the
reference (25%) and sample arm (75%). A dual-balance-detector measures the cross-correlation term
and it is digitized by a data acquisition card. For more details on the OCT system see [57].
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The medium was a three-layered sample consisting of glass, water and glass. The sample was raster-
scanned 1024×1024 times in lateral directions. For each raster scan we record a spectrum consisting of
1498 data points, equally spaced with respect to wavenumber. Due to the small bandwidth of the laser,
dispersion compensation is not needed. In order to adjust all necessary parameters for the Gaussian
incident field the object must be shifted multiple times along its axial direction. For each shift, the
measurement process is repeated.

The optical properties of the sample are known. The used coverglass and the water have, at the
wavelength 1300 nm, refractive indices 1.5088 and 1.3225, respectively. The thickness of each layer
was calculated manually using the optical distance in the image space.

In Figure 4 we present a comparison between the Fourier transform (with respect to wavenumber)
of a single raster scan and the simulations for a plane wave and a Gaussian beam illumination.
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Figure 4. Comparison between real data (red) and simulations (blue). On the left, the
sample field was generated by a plane wave model with first order reflections. On the right,
a Gaussian beam model was applied.

Regarding the major peaks, the maxima of the sinc functions, we observe that the Gaussian
model performs clearly better. This point is crucial for the inverse problem where the quality of the
reconstruction of the refractive index is highly dependent on the height difference between real data
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and forward simulations [7,13]. However, the plane wave model seems to catch better the minor peaks
appearing far from the centres of the sinc functions and this is reflected in Table 2 where we see that
this model leads to smaller root-mean-square error (RMSE).

Table 2. The RMSE between real and simulated data for the plane wave and Gaussian beam
models. The error is computed for single (top row) and multiple reflections (bottom row).

Num. of reflections Plane wave Gaussian beam
Single 0.0363 0.0391

Multiple 0.0364 0.0391

That this lack of information cannot be compensated by adding multiple reflections in the
simulations is presented in Figure 5, which shows a comparison, again in Fourier domain, between
the real data and the plane wave model with first and multiple reflections. The multiple reflections
were calculated up to second order. Hereby, we consider only the multiple reflections that travel at
most the time needed for light to travel from the front to the back surface. The effect of the multiple
reflections is minor as expected from the analytic representation. This is also true for higher order
reflections.

4.2.1. Focusing effect

The effect showing responsible for this inconsistency between the two presented simulations in
Figure 4 is the focus of the laser beam. It is a strongly affecting factor that does not appear in the plane
wave illumination but it is dominant in the Gaussian beam case. Thus, it is essential to consider this
effect when we want to solve the inverse problem of reconstructing the material parameters from the
OCT data.

The difference between the plane wave and the Gaussian beam model is even more highlighted
when the object of interest is moved out of the focus. Figure 6 shows the absolute value of the Fourier
transform of the cross-correlation term. Here, one can easily identify a strong decrease of the intensity
as we move further from the focus position. For the simulations, we assumed that the laser light is
reflected by a non-tilted totally reflecting mirror. The mirror is shifted to different positions x j

Ω
, j =

1, . . . , 9, with respect to the focus position r3. For each position the cross-correlation term (2.10) is
recorded on the exact same spectrum as in Section 4.2.

The lacking intensity decrease in the plane wave model as the object moves out of the focus point
can be artificially compensated for by multiplying with an axial point spread function (PSF) which
imitates the exponential behavior of the actual Gaussian beam with respect to the focus position [56].
For a perfectly reflecting object, the axial PSF takes the form

h(d) =
1

1 +
(

d
zr

)2 , (4.2)

where d accounts for the distance between the object and the focus position and zr is the Rayleigh
length, see [56, equation (4)].

In order to show the similarity of the two models, we compare the intensity in the sample arm as a
function of the distance between the object and the focus. In Figure 7, we present the simulations for
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Figure 5. Comparison between real data (red) and simulations using plane wave illumination
(blue). We consider first- (left) and second-order (right) reflections.

both models at 41 points. The Gaussian model is plotted for multiple values of the maximum angle of
acceptance. Due to the strong focus of the OCT setup, which is accompanied by a small beam width in
the center, the Gaussian model converges, as the angle of acceptance increases, to a state of saturation.
This happens for angular values larger than 4◦ and then the Gaussian model coincides with the PSF
correction.

5. Conclusions

In this work we presented different possibilities for modeling an Optical Coherence Tomography
system. The performed analysis was based on different mathematical models originated from
Maxwell’s equations or their simplification, the Helmholtz equation. We tried to cover as many as
possible cases considering various illumination techniques, medium properties, scattering behaviours
and measurement ways. The addressed models were also tested/compared using simulated and real
OCT data.
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Figure 6. Comparison of the plane wave model (red) and the Gaussian model (blue) for
different object positions with respect to the focus (green line).
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Figure 7. The dependence of the intensity on the distance between the object and the focus
point. The Gaussian model presented for different maximal angles of acceptance (solid lines)
and the PSF correction (4.2) (red stars).
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