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always sufficiently descent independent of any line search, as well as having conjugacy property. Using
the standard Wolfe line search, global and local convergence of the proposed algorithm is proved
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especially in comparison with that of the other similar efficient algorithms.
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1. Introduction

Since unconstrained optimization problems often arise from scientific computing and mining of big
data [1–4], it is valuable to develop efficient numerical algorithms to solve these problems. However,
it seems that there is no any algorithm available in the literature which is in commanding position
when it is used to solve all the unconstrained optimization problems, compared with other similar
algorithms [5–10]. For this reason, many researchers have been studying new numerical methods to
solve the unconstrained optimization problems [1, 11].

Mathematically, a unconstrained optimization problem is written as

min f (x), x ∈ Rn, (1.1)

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023128


2474

where f : Rn → R is continuously differentiable such that its gradient function g: Rn → Rn is available.
By gk we denote the gradient vector of g at xk.

Owing to smaller capacity of computation and storage, conjugate gradient methods (CG) are usually
used to solve problem (1.1). By CG, the iterative format to generate a sequence of approximate optimal
solutions is

xk+1 = xk + αkdk, k = 0, 1, 2, . . . , (1.2)

where x0 is an arbitrarily chosen initial solution, dk is a search direction to efficiently seek for an
optimal solution of problem (1.1), and αk > 0 is a step size found by line search along dk. In general,
the search directions in the classical CG methods are given by

dk =

{
−gk, if k = 0,
−gk + βkdk−1, otherwise,

(1.3)

where βk is the so called conjugate parameter, often being computed by the following classical
methods [2, 12]:

βHS
k =

gT
k yk−1

dT
k−1yk−1

, βFR
k =

‖gk‖
2

‖gk−1‖
2 , βPRP

k =
gT

k yk−1

‖gk−1‖
2 ,

βCD
k =

‖gk‖
2

−dT
k−1gk−1

, βLS
k =

gT
k yk−1

−dT
k−1gk−1

, βDY
k =

‖gk‖
2

dT
k−1yk−1

.

(1.4)

In (1.4), yk−1 = gk − gk−1 when k ≥ 1. When αk in (1.2) is the exact step size and problem (1.1) is
a strictly convex quadratic minimization problem, the values of all βk in (1.4) are the same. However,
for a generic nonlinear objective function, it is often difficult to find the exact step size. Thus, an
inexact line search with lower computational cost is generally adopted. For instance, using the strong
Wolfe inexact line search, Riahi and Qattan [13] established global convergence theory of the Fletcher-
Reeves CG method and proved its property of local linear convergence. Unfortunately, in most cases,
when the Armijo-type line search is used to find the step size αk, it is often difficult to establish global
convergence of the classical CG methods, where the search direction dk is not necessarily descent.
For this reason, many variants of CG methods have been proposed to overcome the above difficulty.
For instance, using a modified Armijo-type line search, an improved spectral conjugate algorithm was
developed in [6] and its global convergence was proved. Numerical tests also showed the advantages
of this algorithm.

As remarkable extensions of the classical CG methods, three-term CG methods have been attracting
extensive research interest [8–10,14–16]. The first three-term CG method was proposed in [14], which
chooses the search directions by

dk+1 = −gk+1 + βkdk + γkdt, (1.5)

where βk = βHS
k (or βFR

k , βDY
k etc.), dt(t ≤ k − 1) was a restart direction, and

γk =


0, if t = k − 1;
gT

k+1yt

dT
t yt

, if t < k − 1.
(1.6)

By numerical tests, it was shown [14] that in the third term of (1.5), the automatical restarts of using
the gradient information in (1.6) may improve convergence of the algorithm.
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Nazareth [15] presented another method of choosing the directions, given by

dk+1 = −yk +
yT

k yk

yT
k dk

dk +
yT

k−1yk

yT
k−1dk−1

dk−1, (1.7)

where d−1 = d0 = 0. It was proved that without requirement of the exact line search, the developed
algorithm based on (1.7) can maintain finite termination as applied to solve convex quadratic
minimization problems.

In [10, 17], two three-term conjugate gradient methods were given by

dk+1 = −gk+1 + βPRP
k dk −

gT
k+1dk

gT
k gk

yk, (1.8)

and

dk+1 = −gk+1 + βHS
k dk −

gT
k+1dk

dT
k yk

yk. (1.9)

respectively. Independent of any line search, it was proved that the directions in (1.8) and (1.9) are
sufficiently descent. Since (1.8) and (1.9) can reduce to the standard PRP and HS conjugate gradient
methods in (1.4) under the exact line search, respectively, they are regarded as two modified versions
of the standard CG methods. It is noteworthy that the search directions in the standard PRP and HS
conjugate gradient methods are not necessarily descent in general.

In [8, 9, 16], Andrei suggested three descent three-term CG methods, which computed the search
directions by the following different formats:

dk+1 = −
yT

k sk

‖gk‖
2 gk+1 +

yT
k gk+1

‖gk‖
2 sk −

sT
k gk+1

‖gk‖
2 yk, (1.10)

dk+1 = −gk+1 −

((
1 +
‖yk‖

2

yT
k sk

)
sT

k gk+1

yT
k sk

−
yT

k gk+1

yT
k sk

)
sk −

sT
k gk+1

yT
k sk

yk, (1.11)

and

dk+1 = −gk+1 −

((
1 + 2

‖yk‖
2

yT
k sk

)
sT

k gk+1

yT
k sk

−
yT

k gk+1

yT
k sk

)
sk −

sT
k gk+1

yT
k sk

yk. (1.12)

All of them satisfy the conjugacy condition, and except for (1.10), the search directions in (1.11)
and (1.12) are descent when the Wolfe line search are used. Numerical experiments indicated that the
CG method in [8] outperforms the other six algorithms available in the literature.

Recently, Liu et al. [18] constructed two three-term CG methods, specified by:

dk+1 = −gk+1 +
gT

k+1yk

‖dk‖
2 dk −

gT
k+1dk

‖dk‖
2 yk, (1.13)

and

dk+1 = −gk+1 +
gT

k+1(yk − dk)
‖dk‖

2 dk −
gT

k+1dk

‖dk‖
2 yk, (1.14)

respectively. A remarkable property of these search directions is that they were proved to be sufficiently
descent under any line search. However, it is unclear whether these directions in (1.13) and (1.14)
satisfy any conjugacy condition or not.
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Motivated by a need to further improve numerical efficiency of algorithms, we intend to develop a
novel three-term CG algorithm such that the search directions may simultaneously possess descent and
conjugate properties. Then, using the standard Wolfe inexact line search, we attempt to prove its global
and local convergence under appropriate assumptions, and test its numerical performance by solving
benchmark test problems.

The remainder of this article is organized as follows. The new three-term CG algorithm is first
developed in Section 2. In Section 3, global convergence of this algorithm is proved. Section 4 is
devoted to testing of its numerical performance. Conclusions are drawn in the last section.

2. Development of a new algorithm

In this section, we state ideas to develop a new algorithm, and then present its framework of
computer procedures.

Combining the ideas in [6, 18], we construct the search direction by

dk+1 =


−gk+1, if wk = 0,

−gk+1 +
gT

k+1(yk − sk)
wk

sk −
gT

k+1sk

wk
yk, otherwise,

(2.1)

where wk = max{
∣∣∣sT

k ȳk

∣∣∣ , sT
k yk}, d0 = −g0, and

ȳk =

(
In −

gk+1gT
k+1

‖gk+1‖
2

)
yk

is defined as done in [6]. Clearly, ȳk can be regarded as a modified difference of gradients. For this
reason, we call the proposed CG method in this paper, where the search directions are defined by (2.1),
a three-term CG method with modified gradient-differences. In essence, this three-term CG method is
an extension of the two-term spectral conjugate gradient method in [6].

We first prove the following property of the search directions in (2.1).

Proposition 1. Let dk be given by (2.1). Then, for any k ≥ 0, the following inequality holds:

gT
k dk ≤ −‖gk‖

2. (2.2)

Proof. By definition, when k = 0, we have gT
0 d0 = −‖g0‖

2. When k > 0, we have gT
k dk = −‖gk‖

2 if
wk−1 = 0; Otherwise, it is true that

gT
k dk = −gT

k gk +
gT

k (yk−1 − sk−1)
wk−1

gT
k sk−1 −

gT
k sk−1

wk−1
gT

k yk−1

= −‖gk‖
2 −

(gT
k sk−1)2

wk−1
≤ −‖gk‖

2.

(2.3)

Consequently, for any k ≥ 0,
gT

k dk ≤ −‖gk‖
2, (2.4)

i.e., dk is always sufficiently descent. �
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Remark 1. As pointed out in [19–22], such a sufficiently descent condition like (2.4) plays a critical
role in proving global convergence of CG methods.

Based on the above nice property of the search directions (2.1) in Propositions 1, we come to state
a framework of computer procedures for solving unconstrained optimization problems (1.1).

Algorithm 1. (New three-term conjugate gradient algorithm (NTTCG))
Step 0. Take an initial (approximate) solution x0 ∈ Rn and an initial search direction d0 = −g0. Choose
the parameters 0 < ρ < σ < 1 used in the line search. The tolerance error is ε ∈ (0, 1). Set k := 0.
Step 1. If ‖gk‖∞ ≤ ε, then the algorithm stops.
Step 2. Determine the step size αk by the following standard Wolfe line search:{

f (xk + αkdk) − f (xk) ≤ ραkgT
k dk,

gT
k+1dk ≥ σgT

k dk.
(2.5)

Step 3. Update the solution by xk+1 := xk + αkdk. Compute gk+1, and compute a search direction dk+1

given in (2.1).
Step 4. Set k := k + 1. Return to Step 1.

Remark 2. By Proposition 1, we know that dk+1 in Step 3 of Algorithm 1 is a sufficiently descent
direction at xk+1, which ensures that the conducted line search in Step 2 of Algorithm 1 stops in finitely
many steps [23].

Remark 3. It follows from (2.4) that the inequalities:

‖gk‖
2 ≤ ‖dT

k gk‖ ≤ ‖dk‖‖gk‖

hold for any k ≥ 0. Thus, ‖dk‖ ≥ ‖gk‖ is true for any k ≥ 0.

3. Conjugacy properties and convergence analysis

In this section, we study conjugacy property of the search directions defined by (2.1), and establish
global and local convergence theory of Algorithm 1.

3.1. Convex cases

We first study the conjugacy property of the search directions generated by Algorithm 1 in the case
that the objective function in problem (1.1) is convex quadratic.

Specifically, a problem of convex quadratic minimization is written as:

min f (x) =
1
2

xT Qx + qT x + c, (3.1)

where Q ∈ Rn×n is a given positive definite matrix and q ∈ Rn is a given vector. When Algorithm 1
is applied to solve problem (3.1), we can prove that the search directions in (2.1) have the following
property.

Proposition 2. For problem (3.1), let dk be chosen by (2.1). Then, by the exact line search, dk+1 and dk

are conjugate with respect to Q for any k ≥ 0.
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Proof. With the exact line search, we have

gT
k+1sk = 0, (3.2)

and
skȳk = sT

k yk = sT
k (gk+1 − gk) = sT

k Qsk. (3.3)

Consequently,

dk+1 = −gk+1 +
gT

k+1(yk − sk)

max{
∣∣∣sT

k ȳk

∣∣∣ , sT
k yk}

sk −
gT

k+1sk

max{
∣∣∣sT

k ȳk

∣∣∣ , sT
k yk}

yk

= −gk+1 +
gT

k+1yk∣∣∣sT
k ȳk

∣∣∣ sk

= −gk+1 +
gT

k+1Qsk

sT
k Qsk

sk

= −gk+1 +
gT

k+1Qdk

dT
k Qdk

dk.

(3.4)

Thus, for k = 0,

dT
1 Qd0 = gT

1 Qg0 −
gT

1 Qg0

gT
0 Qg0

gT
0 Qg0 = 0. (3.5)

For k > 0, we have

dT
k+1Qdk = −gT

k+1Qdk +
gT

k+1Qdk

dT
k Qdk

dT
k Qdk = 0. (3.6)

In other words, dk+1 and dk are conjugate with respect to Q for any k ≥ 0. �

Remark 4. The basic idea to derive the search directions (2.1) is to guarantee their sufficiently descent
property by appropriately modifying the steepest descent direction −gk+1 (see Proposition 1). It is
well known that the conjugate directions in the classic conjugate direction method are not necessarily
descent. Proposition 2 demonstrates that our search directions also satisfy the so-called conjugacy
condition in the case that the objective function is convex quadratic, although it is not true that any
two directions (for example, the two directions dk+2 and dk) are conjugate with respect to the matrix
Q, as in the classic conjugate direction method. In one word, compared with majority of the existing
three-term conjugate gradient methods in the literature, the search directions (2.1) have an advantage
of simultaneously possessing descent and conjugate properties.

The following result further states global convergence of Algorithm 1 when it is implemented to
solve a uniformly convex optimization problem, an extention of the convex quadratic minimization
problem (3.1).

Theorem 1. Let f : Rn → R be twice continuously differentiable and uniformly convex on a level set
Ω = {x ∈ Rn| f (x) ≤ f (x0)}, i.e., there exists a positive constant µ such that for all x, y ∈ Ω,

(g(x) − g(y))T (x − y) ≥ µ‖x − y‖2

holds. Let {gk} be the gradient sequence generated by Algorithm 1. Then,

lim
k→∞

inf ‖gk‖ = 0. (3.7)
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Proof. For the sake of contradiction, we suppose that there exists a constant ε > 0 such that ‖gk‖ ≥ ε

for all k ∈ N.
Since the step size satisfies (2.5), the sequence { f (xk)} generated by Algorithm 1 is decreasing, and

all the iterative points xk are in the level set Ω. Since f : Rn → R is twice continuously differentiable
and uniformly convex on Ω, it follows from Steps 2 and 3 in Algorithm 1 that the level set Ω is a
bounded closed convex set, i.e., there exists a positive constant B > 0 such that

‖x‖ ≤ B,∀x ∈ Ω. (3.8)

In addition, the gradient of f is also Lipschitz continuous on Ω, i.e., there exists a constant L > 0
such that for all x, y ∈ Ω, the following inequality holds:

‖g(x) − g(y)‖ ≤ L‖x − y‖. (3.9)

Furthermore, we can prove boundedness of the sequence {dk}. Actually, from (3.9) and the
uniformly convex property of f , we have ‖yk‖ ≤ L‖sk‖ and sT

k yk ≥ µ‖sk‖
2. Thus, by the

Cauchy-Schwarz inequality, we have

‖dk+1‖ ≤ ‖gk+1‖ +
‖gk+1‖(‖yk‖ + ‖sk‖)‖sk‖

sT
k yk

+
‖gk+1‖‖sk‖‖yk‖

sT
k yk

≤ ‖gk+1‖ +
‖gk+1‖(2‖yk‖ + ‖sk‖)‖sk‖

µ‖sk‖
2

≤ ‖gk+1‖ +
2L‖gk+1‖‖sk‖

µ‖sk‖
+
‖gk+1‖

µ

=

(
1 +

2L + 1
µ

)
‖gk+1‖.

(3.10)

Take M = 1 + 2L+1
µ

. From (3.10) and ‖gk‖ ≥ ε, it follows that

∞∑
k=0

‖gk‖
4

‖dk‖
2 ≥

∞∑
k=0

ε2

M2 = +∞. (3.11)

Using (3.9) and the second inequality in (2.5), it yields

(σ − 1)gT
k dk ≤ (gk+1 − gk)T dk ≤ ‖gk+1 − gk‖‖dk‖ ≤ αkL‖dk‖

2. (3.12)

Consequently,

f (xk) − f (xk+1) ≥ −ραkgT
k dk ≥ ραk‖gk‖

2 ≥
ρ(1 − σ)‖gk‖

4

L‖dk‖
2 , (3.13)

hence,

f (x0) − lim
k→∞

f (xk+1) ≥
ρ(1 − σ)

L

∞∑
k=0

‖gk‖
4

‖dk‖
2 . (3.14)

From (3.14) and the boundedness of f on Ω, we know that

∞∑
k=0

‖gk‖
4

‖dk‖
2 ≤

L
(
f (x0) − lim

k→∞
f (xk+1)

)
ρ(1 − σ)

< +∞, (3.15)
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which contradicts (3.11). The proof is completed. �

We can also prove that Algorithm 1 is R-linearly convergent when the objective function is
uniformly convex.

Theorem 2. Suppose that f : Rn → R is twice continuously differentiable and uniformly convex on
the level set Ω, and that the sequence {xk} generated by Algorithm 1 converges to the unique optimal
solution x∗. Then for all k > 0, there exist constants a > 0 and b ∈ (0, 1) such that

‖ f (xk) − f (x∗)‖ ≤ abk. (3.16)

Proof. Since f is twice continuously differentiable and uniformly convex on Ω, it follows from (3.2)-
(3.4) and (3.12) in [24] that there exist constants λ̂ > λ > 0, ζ̂ > ζ > 0 such that for all x ∈ Ω, the
following inequalities hold:

ζ‖x − x∗‖2 ≤ λ‖g(x)‖2 ≤ f (x) − f (x∗) ≤ λ̂‖g(x)‖2 ≤ ζ̂‖x − x∗‖2. (3.17)

Thus, from the first inequality in (2.5), we have

f (xk+1) − f (x∗) ≤
(
f (xk) − f (x∗)

)
+ ραkgT

k dk

≤
(
f (xk) − f (x∗)

)
− ρ

(1 − σ) ‖gk‖
2

L‖dk‖
2 ‖gk‖

2

≤
(
f (xk) − f (x∗)

)
− ρ

1 − σ
LM2 ‖gk‖

2

≤
(
f (xk) − f (x∗)

)
− ρ

1 − σ
λ̂LM2

(
f (xk) − f (x∗)

)
=

(
1 − ρ

1 − σ
λ̂LM2

) (
f (xk) − f (x∗)

)
,

(3.18)

where the second inequality follows from (3.12) and (2.2), the third inequality follows from (3.10),
and the last inequality follow from (3.17). Consequently,

f (xk+1) − f (x∗) ≤
(
1 − ρ

1 − σ
λ̂LM2

)k+1 (
f (x0) − f (x∗)

)
. (3.19)

Taking a = f (x0) − f (x∗) and b = 1 − ρ
1 − σ
λ̂LM2

, the desired result (3.16) has been proved. �

3.2. Non-convex cases

For non-convex minimization problems, we can prove that the search directions in (2.1) satisfy an
approximate Dai-Liao conjugate condition.

Proposition 3. Suppose that sT
k yk >

∣∣∣sT
k ȳk

∣∣∣. Then, dk+1 in (2.1) satisfies the following approximate
Dai-Liao conjugate condition:

dT
k+1yk = −tkgT

k+1sk. (3.20)
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Proof. When sT
k yk >

∣∣∣sT
k ȳk

∣∣∣, it holds that

dT
k+1yk = −gT

k+1yk +
gT

k+1(yk − sk)
sT

k yk
sT

k yk −
gT

k+1sk

sT
k yk
‖yk‖

2

= −

(
1 +
‖yk‖

2

sT
k yk

)
gT

k+1sk

= −tkgT
k+1sk,

(3.21)

where tk = 1 +
‖yk‖

2

sT
k yk

> 0. The result (3.20) has been proved. �

Remark 5. Although the condition (3.20) in Proposition 3 does not always hold at any iteration, it does
not affect global convergence of Algorithm 1. By a simple example, we can show that this condition is
often satisfied (see Table 1). In addition, our numerical tests will also show advantages of the search
directions given by (2.1).

Example 1. For the Rosenbrock problem:

min f (x) = 100(x2 − x2
1)2 + (1 − x1)2.

Initial point x0 = (−1.2, 1).

We implement Algorithm 1 to solve the Rosenbrock problem, and partly present the obtained values
of sT

k yk and
∣∣∣sT

k ȳk

∣∣∣ in Table 1.

Table 1. Values of sT
k yk and

∣∣∣sT
k ȳk

∣∣∣ in different iterations.

k 10 11 12 13 14 15

sT
k yk 0.246690 0.391931 0.320335 0.225285 0.192523 0.555195∣∣∣sT
k ȳk

∣∣∣ 0.245609 0.391931 0.302341 0.230323 0.192523 0.257161

In Table 1, it is easy to see that the directions at the 10th, 12th and 15th iterations, the inequality
(3.20) holds.

Before stating global convergence of Algorithm 1 in the non-convex case, we first make the
following mild assumptions.

Assumption 1. The level set Ω = {x ∈ Rn| f (x) ≤ f (x0)} is bounded, i.e., there exists a positive constant
B > 0 such that (3.8) holds for all x ∈ Ω.

Assumption 2. In some neighborhood N of Ω, f is continuously differentiable and its gradient is
Lipschitz continuous. That is to say, there exists a constant L > 0 such that (3.9) holds for all x, y ∈ N .

Theorem 3. Let {gk} be a gradient sequence generated by Algorithm 1. Suppose that there exists a
constant τ > 0 such that sT

k yk ≥ τ for any k ≥ 1. Under Assumptions 1 and 2, it is true that

lim
k→∞

inf ‖gk‖ = 0. (3.22)
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Proof. From Assumptions 1 and 2, we have

‖dk+1‖ ≤ ‖gk+1‖ +

∣∣∣gT
k+1yk

∣∣∣
sT

k yk
‖sk‖ +

∣∣∣gT
k+1sk

∣∣∣
sT

k yk
‖sk‖ +

∣∣∣gT
k+1sk

∣∣∣
sT

k yk
‖yk‖

≤ ‖gk+1‖ +
‖gk+1‖‖yk‖

τ
‖sk‖ +

‖gk+1‖‖sk‖

τ
‖sk‖ +

‖gk+1‖‖sk‖

τ
‖yk‖

≤ ‖gk+1‖ +
4LB2‖gk+1‖

τ
+

4B2‖gk+1‖

τ
+

4LB2‖gk+1‖

τ

=

(
1 +

8L + 4
τ

B2

)
‖gk+1‖,

(3.23)

where the first and second inequalities follow from the Cauchy-Schwarz inequality and sT
k yk ≥ τ, and

the last inequality follows from (3.8) and (3.9).
Similar to the proof of Theorem 1, we can also prove that (3.15) holds under Assumptions 1 and 2.

Together with (3.23), it is concluded that (3.22) holds. �
In order to present R-linear convergence of Algorithm 1 in the non-convex case, we need the

following assumption:

Assumption 3. (1) f : Rn → R is twice continuously differentiable.
(2) The sequence {xk} generated by Algorithm 1 satisfies xk → x∗, where ∇ f (x∗) = 0 and ∇2 f (x∗) is
positive definite.
(3) There exists a positive constant τ such that sT

k yk > τ holds for all the sufficiently large k > 0.

Theorem 4. Let {xk} be the sequence generated by Algorithm 1, which converges to a solution x∗

satisfying (2) in Assumption 3. Suppose that Assumptions 1 and 2 hold. Then, for the sufficiently large
k > 0, there exist constants a > 0 and b ∈ (0, 1) such that

‖ f (xk) − f (x∗)‖ ≤ abk. (3.24)

Proof. From (3) in Assumption 3, we can know that ‖dk‖ is bounded for all k > 0. Moreover, from
(4.1)–(4.3) in [18], it is clear that there exists a neighborhood of x∗, denoted by U(x∗), such that (3.17)
holds for all x ∈ U(x∗). The rest of the proof is similar to that of Theorem 2, we omit it here. �

4. Numerical tests

In this section, by numerical experiments, we study effectiveness and robustness of Algorithm 1
when it is employed to solve unconstrained optimization problems.

Algorithm 1 (NTTCG) is tested through solution of the 75 benchmark test problems with variable
dimensions from 1000 to 10000. These problems are from [25] or CUTE [26]. Its computer codes
are written using the language of Fortran 77, and run on a personal computer with a 2.2GHZ CPU
processor, 8GB memory and Windows 10 operation system.

To show advantages of our algorithm (NTTCG), we compare it with the other four similar
algorithms, including TMRMIL in [18], ISCG in [6], CG DESCENT in [7] and THREECG in [8].
For all the compared algorithms, the termination condition is ε = 10−6 or the number of iterations
exceeds 10,000. In Algorithm 1, ρ = 0.0001, σ = 0.01, and the parameters not mentioned here are
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consistent with the corresponding literature. We show the numerical performance differences among
these five algorithms by the Dolan and Moré performance profiles [27]. Let S be a set of all methods,
P be a set of test problems, np be the size of the set P and tp,s be the number of iterations or the CPU
time needed to solve problem p ∈ P by method s ∈ S . Then, the performance ratio is computed by

rp,s =
tp,s

min{tp,s : s ∈ S }
, and the overall performance of Algorithm s is given by

ρs(τ) = 1
np

size{p ∈ P : rp,s ≤ τ}. In fact, ρs(τ) is the probability for Algorithm s that a performance
ratio rp,s is within a factor τ ∈ R of the best possible ratio. The function ρs(τ) is the distribution
function for the performance ratio rp,s. We report the numerical results in Figures 1 and 2. From
Figures 1 and 2 , we can known that our algorithm (NTTCG) performs the best among the five
algorithms, either with respect to the number of iterations, or with respect to the elapsed CPU time.
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Figure 1. Performance profile for the consumed CPU time.
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Figure 2. Performance profile for the number of iterations.
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We also underline good numerical results in Table 3. In Table 3, P, Ni and CPU stand for the
number of problems in Table 2, the number of iterations and the consumed CPU time in centisecond
(cs), respectively. From the underlined results in Table 3, we know that our algorithm (NTTCG)
performs very well in some test problems.

Table 2. Benchmark test problems.

No. Problem Dim No. Problem Dim

1 Extended Trigonometric 7000 15 Extended Quadratic Penalty QP1 3000 2000
2 Extended Rosenbrock 10000 16 Extended Tridiagonal 2 9000
3 Extended White & Holst 9000 17 BDQRTIC (CUTE) 3000
4 Diagonal 3 6000 18 TRIDIA (CUTE) 8000
5 Raydan 1 10000 19 NONDIA (CUTE) 6000
6 Diagonal 1 9000 20 DQDRTIC (CUTE) 10000
7 Diagonal 2 1000 21 DIXMAANC (CUTE) 10000
8 Diagonal 3 1000 22 LIARWHD (CUTE) 9000
9 Extended Himmelblau 8000 23 DIXMAANG (CUTE) 3000
10 Extended Powell 10000 24 DIXMAANJ (CUTE) 3000
11 Extended Block-Diagonal BD1 6000 25 DIXMAANL (CUTE) 9000
12 Extended Maratos 8000 26 SINQUAD (CUTE) 9000
13 Extended Cliff 6000 27 BIGGSB1 (CUTE) 7000
14 Quadratic QF1 10000 28 Scaled Quadratic SQ2 9000

Table 3. Advantages of Algorithm 1 in numerical tests.

Problem
NTTCG TMRMIL ISCG CG DESCENT THREECG

Ni/CPU(cs) Ni/CPU(cs) Ni/CPU(cs) Ni/CPU(cs) Ni/CPU(cs)

1 50/46 58/34 79/73 85/51 52/43
2 16/7 26/14 22/13 35/21 28/8
3 10/2 13/3 11/4 17/6 12/3
4 8/1 10/2 10/2 21/22 10/2
5 2/1 3/1 3/2 4/1 3/2
6 431/98 5835/1899 473/204 F/F 477/171
7 229/20 1372/307 230/25 231/12 231/28
8 43/2 69/5 45/3 44/2 45/2
9 198/118 5161/1800 215/163 731/486 312/140
10 11/5 15/3 12/5 17/6 12/6
11 57/6 60/6 61/12 59/6 75/13
12 4/1 8/2 5/2 15/3 7/3
13 221/25 6552/649 223/38 245/22 225/28
14 7/2 10/4 8/5 17/3 9/4
15 18/4 33/5 39/15 41/18 34/6
16 92/55 476/166 106/104 8119/2891 123/96
17 599/31 5452/368 601/51 600/41 601/45
18 4/1 5/1 10001/2730 9/3 5/2
19 593/159 1818/473 637/401 6005/2342 722/290
20 15/14 5480/2287 263/727 442/356 2177/1444
21 369/227 5415/4426 386/335 376/331 385/272
22 2/1 3/1 3/1 4/1 3/1
23 10/1 11/2 11/2 12/3 12/2
24 111/32 128/22 121/55 633/123 235/52
25 7/2 8/2 8/4 11/5 8/3
26 26/5 41/6 29/7 35/8 29/8
27 3572/987 5628/919 3877/998 6500/837 4754/877
28 2/1 6/1 6/1 11/11 6/2
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5. Conclusions

In this paper, we have developed a novel three-term CG algorithm (NTTCG) based on modified
gradient-differences for solving unconstrained optimization problems. Global convergence has been
proved for this algorithm.

By applying our method to solve the 750 benchmark test problems, the numerical results have
demonstrated that NTTCG outperforms the compared four algorithms in the literature. Especially,
compared with the existing methods, NTTCG can find the optimal solutions of the unconstrained
optimization problems, using less number of iterations, or less CPU time consumed.

In future research, it is valuable to study the method of obtaining the iteration direction by
minimizing a quadratic approximate model of the objective function or the conic model in a specific
subspace spanned by gk+1, sk and yk.

It is also interesting to extend the algorithm proposed in this paper to solve nonlinear system of
monotone equations since it has been shown in [28–34] that recovering sparse signals and restoring
blurred images can be formulated as a system of equations, and the CG methods can solve nonlinear
system of monotone equations efficiently. Furthermore, as done in [35], we can also modify our
algorithm to solve symmetric system of nonlinear equations.
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