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Abstract: The applications of spherical Radon transforms include synthetic aperture radar, sonar
tomography, and medical imaging modalities. A spherical Radon transform maps a function to its
integrals over a family of spheres. Recently, several types of incomplete spherical Radon transforms
have received attention in research. This study examines two types of quarter-spherical Radon
transforms that assign a function to its integral over a quarter of a sphere: 1) center of a quarter sphere
of integration on a plane, and 2) center on a line and the rotation of the quarter sphere. Furthermore,
we present inversion formulas for these two quarter-spherical Radon transforms.
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1. Introduction

A spherical Radon transform maps a function to its integral over a family of spheres. The problem of
inverting a spherical Radon transform from a set of integrals along all spheres is overdetermined as the
family of all spheres in Rn, n ≥ 2, is determined using (n + 1)-dimensional variables. Hence, spherical
Radon transforms can be inverted in numerous ways from a set of integrals along some spheres. The
centers of the spheres are centered at any point in the whole space with a fixed radius [39], or all
spheres of integration pass through the origin [3, 4, 25, 30, 31]. In case of a variable radius, the centers
can also be restricted on a hyperplane [2, 7, 27, 32, 38], a sphere [8, 9, 26, 40], a cylinder [13, 20],
etc. [12, 18, 19, 28, 36].

The relevance of the spherical Radon transform to solving the wave equation has garnered
significant interest in the context of Partial Differential Equations (PDEs) [5]. This interest has grown
as the wave equation became intertwined with fields such as sonar, seismic waves and radar [7, 29].
For example, a simplified model of Photoacoustic Tomography can be described as follows [1,17,24]:
When a body of interest is irradiated with short pulses of electromagnetic waves, some of the radiation
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is absorbed by the body and heats the tissue. As a result, the body experiences thermoelastic expansion
and ultrasound waves are produced. Transducers placed at the boundary of the body record this
ultrasound. Assuming that the speed of the ultrasound is a constant c, at any instant t, one transducer
records several signals generated by a location at a fixed distance ct from the detector. In other words,
the detector measurements can be represented as the integral of a function along a sphere centered at the
detector location with varying radii (depending on time). We can measure enough data using an array of
these transducers (or by moving the detector to the boundary surface) to recover an unexposed image
function that essentially contains the biological information of the body. As similar mathematical
problems arise in other imaging models, such as sonar and radar imaging, the inversion of spherical
Radon transforms has become a subject of considerable interest.

Recent research has also explored incomplete spherical Radon transforms. For instance, restrictions
have been imposed on the set of radii of integration spheres [1,11]. Another variant is the spherical-cap
Radon transform, which assigns a given function f to its integrals over a part of a sphere of integration,
rather than the entire sphere [11, 33], (where limited angular-aperture detectors are employed, similar
to [15,35]). While the uniqueness of the spherical-cap Radon transform has been established, obtaining
an exact inversion formula remains a challenge to the best of our knowledge.

In this study, we investigate two types of quarter-spherical Radon transforms whose integrals are
a quarter of a sphere: 1) centers of spheres of integration lie on a plane, and 2) centers of spheres of
integration lie on a line and a quarter sphere of integration revolves around the line. To our knowledge,
we are the first to study these types of Radon transforms and find the exact inversion formulas. These
quarter-spherical Radon transforms are developed from endoscopic photoacoustic imaging that can
provide structural and functional information of biological luminal structures such as the coronary
arteries and digestive tract [14, 16, 22, 34, 37, 41]. In [34], the author built a forward imaging model
and inverted the forward model through iterative optimization, and in [41], a Convolutional Neural
Network (CNN) based on deep gradient descent was developed. Assuming our model is successful,
our results help reconstruct higher quality images than [34] and provide a theory as to why CNNs [41]
work.

The shape of the detector is frequently depicted in endoscopic photoacoustic images as a
pentahedron with two right-triangle faces, as shown in Figure 1(a); for the design of an actual detector,
see [37] Figure 1. The motion of the detector corresponds to one of the centers of the integral sphere,
and the time may vary with radius. We study the quarter-spherical Radon transforms for reasons
that may be somewhat related to endoscopic photoacoustic imaging. However, it is reasonable that
these transforms could appear in photoacoustic imaging using pentahedron detectors, like a spherical-
cap Radon transform arises in one with a specific detector [33]. Additionally, such a problem of
determining a function from the integral value on a particular family of manifolds is known as the
integral geometry problem [10, 21]; it is a complex task that is worth studying.

The rest of this paper is organized as follows. Quarter-spherical Radon transforms are precisely
formulated in Section 2. Two inversion formulas for the two types of quarter-spherical Radon
transforms are derived in Section 3. The paper concludes with a short discussion in Section 4.
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2. Formulation of the quarter-spherical Radon transform

In this section, we define two quarter-spherical Radon transforms. First, let us define a quarter-
spherical Radon transform with the centers of integration spheres on the hyperplane for the n
dimensions, as follows:

Definition 1. For (u, r) ∈ Rn−1 × [0,∞), the quarter-spherical Radon transform of f on the hyperplane
is defined as

RH f (u, r) = r1−n
∫

S n−1
r,q

f (u + x, z)dS (x, z), (u, r) ∈ Rn−1 × [0,∞),

where dS (x, z) is the surface measure on the sphere and S n−1
r,q = {(x, z) ∈ Rn : |(x, z)| = r, x1 > 0, z > 0}

if the integral exists (see Figure 1(b) for n = 3).

scanning mirror

(a) a pentahedron.

(u, 0)

z

(b) the center on the x plane.

θ

(0, u)

z

(c) the center on the z axis.

Figure 1. A pentahedron and quarter sphere of integration.

Next, let us define the quarter-spherical Radon transform with the centers of integration spheres on
a line and the rotation of a quarter sphere, as follows:

Definition 2. For (u, θ, r) ∈ R1× [0, 2π)× [0,∞), the quarter-spherical Radon transform of f is defined
as

RL f (u, θ, r) =
1
r2

∫
S 2
θ,r,q

f (x, z + u)dS (x, z),

where S 2
θ,r,q = {(x, z) ∈ R3 : |(x, z)| = r, z > 0, (cos θ, sin θ) ·x > 0} if the integral exists (see Figure 1(c)).

Actually, we are interested in the 3 dimension cases for RH f and RL f , but the inversion of RH f can
be easily generalized, and the inversion of RL f requires an inversion formula for 2 dimension RH f .
Therefore, for RL f , only the 3 dimension case is discussed.

3. Inversion formulas

In this section, we derive inversion formulas for two quarter-spherical Radon transforms. We first
develop an inversion formula for the quarter-spherical Radon transform RH f . For finding the inversion
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formula for RL f , we need an inversion formula for the quarter-spherical Radon transform RH f when
considering n = 2.

Theorem 3. For f ∈ C(Rn) with compact support in {(x, z) ∈ Rn : z ≥ 0}, we have

f (x, z) =
4z

(2π)n

∫
R

∫
Rn−1

ei
(
x·ξ+z2σ−

|ξ|2
4σ

) (
iσ
π

) n−1
2

1 + erf
− ξ1√i

2
√
σ

−1

×

∞∫
0

Fn−1(RH f )(ξ, r)e−ir2σrn−1drdξdσ,

(3.1)

where Fn−1 is the n − 1-dimensional Fourier transform and erf is the error function defined as erf z =
2
√
π

∫ z

0
e−t2dt*.

Proof. By definition, RH f can be written as

r2−n
∫

|x|≤r,x1>0

f (x + u,
√

r2 − |x|2)
dx√

r2 − |x|2
. (3.2)

Let us define the function F on Rn by

F(x, z) =


f (x,
√

z)
√

z
if z > 0,

0 otherwise.

Then, we have f (x, z) = zF(x, |z|2) for z ≥ 0. Substituting F into (3.2) gives

RH f (u, r) = r2−n
∫

|x|≤r,x1>0

F(x + u, r2 − |x|2)dx.

Taking the n − 1-dimensional Fourier transform of RH f with respect to u, we have

rn−2Fn−1(RH f )(ξ, r) =
∫

|x|≤r,x1>0

Fn−1F(ξ, r2 − |x|2)eiξ·xdx,

where Fn−1(RH f ) and Fn−1F are the n − 1-dimensional Fourier transforms of RH f and F with respect
to u and x, respectively.

By multiplying rer2(−iσ−ϵ) for ϵ > 0 and integrating with respect to r, we have
∞∫

0

Fn−1(RH f )(ξ, r)er2(−iσ−ϵ)rn−1dr =

∞∫
0

∫
|x|≤r,x1>0

Fn−1F(ξ, r2 − |x|2)eiξ·xer2(−iσ−ϵ)rdxdr

=

∫
Rn−1
+

∞∫
|x|

Fn−1F(ξ, r2 − |x|2)eiξ·xer2(−iσ−ϵ)rdrdx,

(3.3)

*for details of the error function see [23, Chapter 2]
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where Rn−1
+ = {x ∈ Rn−1 : x1 > 0}. Changing the variables r2 − |x|2 → t gives

∞∫
0

Fn−1(RH f )(ξ, r)er2(−iσ−ϵ)rn−1dr = 2−1
∫
Rn−1
+

∞∫
0

Fn−1F(ξ, t)eiξ·xe−i(t+|x|2)(σ−iϵ)dtdx

= 2−1
∫
Rn−1
+

∫
R

Fn−1F(ξ, t)eiξ·xe−i(t+|x|2)(σ−iϵ)dtdx.

The last equality follows from the compact support of F on z > 0. Hence, it holds that

∞∫
0

Fn−1(RH f )(ξ, r)er2(−iσ−ϵ)rn−1dr = 2−1
∫
Rn−1
+

eiξ·xe−|x|
2(iσ+ϵ)dxFnF(ξ, σ − iϵ), (3.4)

where FnF is the n-dimensional Fourier transform of F. To compute the integral with respect to x, we
employ the following identities [6, (11) on page 15 and (18) on page 73]: for Re a > 0,

∞∫
0

e−x2a cos(xξ)dx =
1
2

(
π

a

) 1
2

e−
ξ2
4a and

∞∫
0

e−x2a sin(xξ)dx = −
i
2

(
π

a

) 1
2

e−
ξ2
4a erf

 ia−
1
2 ξ

2

 , (3.5)

where Re a is the real part of a ∈ C. Hence, we have

∞∫
0

e−x2ae−ixξdx =
1
2

(
π

a

) 1
2

e−
ξ2
4a

1 + erf
 ia−

1
2 ξ

2

 , (3.6)

which implies

∫
Rn−1
+

eiξ·xe−|x|
2(iσ+ϵ)dx =

∞∫
0

eiξ1 x1e−x2
1(iσ+ϵ)dx1

n−1∏
k=2


∫
R

eiξk ·xke−x2
k (iσ+ϵ)dxk


=

1
2

(
π

(iσ + ϵ)

) n−1
2

(
1 + erf

(
−

1
2

i(iσ + ϵ)−
1
2 ξ1

))
e−

|ξ|2
4(iσ+ϵ) ,

with ∫
R

e−x2ae−ixξdx =
(
π

a

) 1
2

e−
ξ2
4a for Re a > 0. (3.7)

Thus (3.4) is equal to

∞∫
0

Fn−1(RH f )(ξ, r)er2(−iσ−ϵ)rn−1dr =
1
4

(
π

(iσ + ϵ)

) n−1
2

(
1 + erf

(
−

iξ1
2(iσ + ϵ)

1
2

))
e−

|ξ|2
4(iσ+ϵ)FnF(ξ, σ − iϵ).
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The compact support of F on the right-hand side implies the boundedness of FnF, which belongs
to a Schwarz space, so the right-hand side has a finite value for every ϵ, which means it is bounded.
Taking the limit on ϵ gives

∞∫
0

Fn−1(RH f )(ξ, r)e−ir2σrdr =
1
4

(
π

iσ

) n−1
2

(
1 + erf

(
−

iξ1
2(iσ)

1
2

))
e−
|ξ|2
4iσFnF(ξ, σ),

or equivalently,

4
(
iσ
π

) n−1
2

(
1 + erf

(
−

iξ1
2(iσ)

1
2

))−1

e−
i|ξ|2
4σ

∞∫
0

Fn−1(RH f )(ξ, r)e−ir2σrn−1dr = FnF(ξ, σ).

Now, we can recover F by taking the inverse Fourier transform as

F(x, z) =
4

(2π)n

∫
R

∫
Rn−1

ei
(
x·ξ+zσ− |ξ|

2
4σ

) (
iσ
π

) n−1
2

(
1 + erf

(
−

iξ1
2(iσ)

1
2

))−1

×

∞∫
0

Fn−1(RH f )(ξ, r)e−ir2σrn−1drdξdσ,

which implies the conclusion. □

To obtain the inversion of RL f , we find the relation with the 2-dimensional quarter-spherical Radon
transform RH f and then apply (3.1) with n = 2.

Theorem 4. For f ∈ C(R3) with compact support and f (−x, z) = − f (x, z), we have

f (x, z) =

√
i

2π
5
2

∫
R

∫
R

ei
(
zξ+|x|2σ− ξ

2
4σ

) 1 + erf
− ξ1√i

2
√
σ

−1 ∞∫
0

F1(∂θRL f )(ξ, θx − π/2, r)e−ir2σr2√σdrdξdσ,

where θx is the polar angle of x.
The assumption f (−x, z) = − f (x, z) in the above Theorem 4 is necessary to prove it mathematically.

Proof. Notice that

RL f (u, θ, r) =

π
2∫

0

θ+ π2∫
θ− π2

f (r cosω1 sinω2, r sinω1 sinω2, r cosω2 + u) sinω2dω1dω2.

Differentiating with respect to θ gives

∂θRL f (u, θ, r) =

π
2∫

0

[
f (r cos(θ + π2 ) sinω2, r sin(θ + π2 ) sinω2, r cosω2 + u)
− f (r cos(θ − π2 ) sinω2, r sin(θ − π2 ) sinω2, r cosω2 + u)

]
sinω2dω2.
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Let Fθ(x̂, ẑ) = [ f (ẑ cos(θ + π2 ), ẑ sin(θ + π2 ), x̂) − f (ẑ cos(θ − π2 ), ẑ sin(θ − π2 ), x̂)]ẑ, ẑ ≥ 0. Then, it follows
that

r∂θRL f (u, θ, r) = RHFθ(u, r),

where RHFθ is the 2-dimensional quarter-spherical Radon transform on the line. By exploiting (3.1)
with n = 2, we have, for ẑ > 0,

f
(
ẑ cos(θ +

π

2
), ẑ sin(θ +

π

2
), x̂

)
− f

(
ẑ cos(θ −

π

2
), ẑ sin(θ −

π

2
), x̂

)
=

4
(2π)2

∫
R

∫
R

ei
(
x̂ξ+ẑ2σ−

|ξ|2
4σ

) (
iσ
π

) 1
2
1 + erf

− ξ1√i
2
√
σ

−1 ∞∫
0

F1(∂θRL f )(ξ, θ, r)e−ir2σr2drdξdσ,

which implies the conclusion. □

4. Conclusion and additional remarks

In this paper, we studied two quarter-spherical Radon transforms which may arise in endoscopic
PAT with a certain type of detectors. These spherical Radon transforms, one of the incomplete spherical
Radon transforms, are first suggested and their exact inversion fomulas are provided. Considering
applications of the spherical Radon transform, our results are expected to have a significant impact
both mathematically and in terms of applicability in endoscopic PAT as well as sesimic waves, radar
and PDEs.

Lastly, we would like to note the following:

1) Theorems 3 and 4 imply that the mapping f 7−→ RH f is one-to-one on Cc(Rn) = { f ∈ C(Rn) :
f has compact support} and the mapping f 7−→ RL f is one-to-one on { f ∈ Cc(R3) : f (−x, z) =
− f (x, z)}.

2) The smoothness and decay conditions for f in both inversion formulae (Theorems 3 and 4) are
not optimized. This formula can hold under weaker requirements, such as piecewise continuity
of f , or f decaying rapidly on the z axis.

3) Accurately and efficiently numerically implementing the inversion formula derived in the paper is
an interesting problem in its own right. The authors plan to address this problem in future work.
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