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1. Introduction

Let Ω ⊆ Rn, n ≥ 2 be a bounded open set with a regular boundary Γ = ∂Ω. A coupled wave
equation, via laplacian and with just one memory term is considered:

|yt|
ρytt(x, t) − a∆y(x, t) − c∆ytt + c∆z(x, t) +

∫ t

0
g(t − s)∆y(x, s)ds = 0, in Ω × (0,∞),

ztt(x, t) − ∆z(x, t) − 1
c ∆ztt + c∆y(x, t) = 0, in Ω × (0,∞),

y = z = 0, on Γ × (0,∞),

y(x, 0) = y0(x), z(x, 0) = z0(x), yt(x, 0) = y1(x), zt(x, 0) = z1(x), in Ω,

(1.1)

where a > 0, c ∈ R∗ such that a > c2, and

a = b + c2, (1.2)

where b is a positive constant satisfying

l = b −
∫ ∞

0
g(s)ds > 0. (1.3)
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Throughout this paper, we assume that ρ is a positive constant that verifies

ρ > 0 if n = 2 or 0 < ρ ≤
2

n − 2
if n ≥ 3.

Morris and Özer [17, 18] proposed the following piezoelectric beam model
ρvtt − αvxx + γβpxx = 0, in (0, `) × (0,∞),
µptt − βpxx + γβvxx = 0, in (0, `) × (0,∞),
v(0) = p(0) = αvx(`) − γβpx(`) = 0,
βpx(`) − γβvx(`) = −

V(t)
h ,

(1.4)

where the coefficients ρ, α, γ, µ, β, ` and h > 0 are the mass density per unit volume, elastic
stiffness, piezoelectric coefficient, magnetic permeability, impermeability coefficient of the beam and
Euler-Bernoulli beam of length and thickness, respectively. V(t) denotes the voltage directed to the
electrodes that included full magnetic effects. They obtained that for a dense set of system parameters
with V(t) = pt(`, t), the system (1.4) is strongly controllable in the energy space. Ramos, Gonçalves
and Corrêa Neto [22] added a damping term δvt with δ > 0 in the first equation of problem (1.4) and
set V(t) = 0. They analyzed the exponential stability of the total energy of the continuous problem and
showed a numerical counterpart in a totally discrete domain. Ramos, Freitas and Almeida et al. [23]
replaced δvt by ξ1vt +ξ2vt(x, t−τ); that is, they considered a system with time delay in the internal state
feedback, where ξ2vt(x, t − τ) with ξ2 > 0 represents the time delay on the vertical displacement and
τ > 0 represents the respective retardation time. By using an energy-based approach, the exponential
stability of solutions was also proved in [23]. Soufyane, Afilal and Santos [24] generalized their
results and established an energy decay rate for piezoelectric beams with magnetic effect, nonlinear
damping and nonlinear delay terms by using a perturbed energy method and some properties of convex
functions. Recently, Akil [1] investigated the stabilization of a system of piezoelectric beams under
(Coleman or Pipkin)-Gurtin thermal law with magnetic effect. It is certainly not the object of the
present paper to consider the evolution equations like (1.4) with nonlinear damping and/or time-delay

terms. In this paper, we mainly consider the effect of the viscoelastic memory damping
∫ t

0
g(t −

s)∆y(x, s)ds, which is presented only in the first equation of the evolution equations like (1.4) and with
Dirichlet conditions on the whole boundary. Viscoelasticity is the property of materials that exhibit
both viscous and elastic characteristics when undergoing deformation. Generally, one makes full use

of the memory term (infinite memory
∫ ∞

0
g(s)∆y(x, t − s)ds or finite memory

∫ t

0
g(t − s)∆y(x, s)ds)

to describe the viscoelastic damping effect. The aforementioned model can be used to describe the
motion of two elastic membranes subject to an elastic force that pulls one membrane toward the other.
We note that one of these membranes possesses a rigid surface and that has an interior that is somehow
permissive to slight deformations, such that the material density varies according to the velocity. The
study of viscoelastic problems has attracted the attention of many authors and a flurry works have been
published. It is certainly beyond the scope of the present paper to give a comprehensive review for
only one viscoelastic equation. In this regard, we would like to mention some references regarding
the energy decay in the presence of viscoelastic effects, for instance, [2, 4–7, 10, 15, 21] and references
therein. It is not difficult to find that with the analysis of exponential stability for models consisting of
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two coupled wave equations, one of them with a memory effect is a subject of great importance. Dos
Santos, Fortes and Cardoso [9] first investigated the issue of exponential stability of the following two
coupled wave equations:ρvtt − αvxx + γβpxx +

∫ t

−∞
g(t − s)vxx(s)ds = 0, in (0, `) × (0,∞),

µptt − βpxx + γβvxx = 0, in (0, `) × (0,∞),

with boundary condition

v(0, t) = p(0, t) = vx(`, t) = px(`, t) = 0, t > 0,

and initial data

v(x, 0) = v0(x), vt(x, 0) = v1(x), p(x, 0) = p0(x), pt(x, 0) = p1(x), x ∈ (0, `),

v(x,−t) = v2(x, t), (x, t) ∈ (0, `) × (0,∞),

where v0, v1, v2, p0 and p1 are known functions belonging to appropriate spaces and α = α1 + γ2β

with α1 positive constant satisfies κ := α1 −
∫ ∞

0
g(s)ds > 0. They deduced that the past history term

acting on the longitudinal motion equation is sufficient to cause the exponential decay of the semigroup
associated with the system, independent of any relation involving the model coefficients. Zhang, Xu
and Han [25] considered a kind of fully magnetic effected nonlinear multidimensional piezoelectric
beam with viscoelastic infinite memory; that is, they studied the following problem

ρvtt(x, t) = α∆v(x, t) − γβ∆p(x, t) −
∫ ∞

0
g(s)∆v(x, t − s)ds + f1(v, p), x ∈ Ω, t > 0

µpttx, t = β∆p(x, t) − γβ∆v(x, t) + f2(v, p), x ∈ Ω, t > 0
v(x, t) = p(x, t) = 0, x ∈ Γ0, t > 0
α ∂v
∂~n (x, t) − γβ∂p

∂~n (x, t) = β∂p
∂~n (x, t) − γβ ∂v

∂~n (x, t) = 0, x ∈ Γ1, t > 0
v(x, 0) = v0(x), vt(x, 0) = v1(x), p(x, 0) = p0(x), pt(x, 0) = p1(x), x ∈ Ω,

v(x,−s) = h(x, s), x ∈ Ω, s > 0,

where ∂Ω = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅, ~n is the unit outward normal vector of Γ1 and the functions
fi(v, p), i = 1, 2 and h(x, s) are nonlinear source terms and memory history function, respectively.
Based on frequency-domain analysis, they proved that the corresponding coupled linear system can
be indirectly stabilized exponentially by only one viscoelastic infinite memory term. Moreover, by the
energy estimation method under certain conditions, they obtained the exponential decay of the solution
to the nonlinear coupled PDE’s (partial differential equations) system.

We also recall the works [12, 13, 19, 20], where the authors studied the wellposedness and the
asymptotic behavior of a linear (and quasi-linear) system of two coupled nonlinear viscoelastic wave
equations. We also cite the recent works [3, 11], where the authors studied a similar problem to (1.1)
with ρ = 0, without dispersion terms and under different types of damping (localized frictional and past
history damping). Through our review of the literature, we found that no prior studies have explored
this type of coupling (one equation is quasi-linear and the other one is linear) with the presence of a
memory term (or a past history term). Consequently, the significance of our work is that it pioneers
the impact of memory term in this context and, furthermore, our main result extends exponential
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decay outcomes, which have previously been established for the coupling of two viscoelastic wave
equations via zero-order or first-order terms to the realm of coupling by second-order terms. Also, our
result removes the assumption of equal wave propagation speeds, a common feature in numerous prior
studies.

Motivated by the above works, we are concerned with the stability of a system of coupled quasi-
linear and linear wave equations with only one viscoelastic finite memory involved. Different from
the works in [9, 25], in this paper we focus on the finite memory damping and the system is quasi-
linear. Some technical difficulties may be caused by the nonlinearity and the finite memory term. The
remaining part of the paper is subdivided as follows: In section two, we give preliminaries and technical
lemmas, which are crucial to establish the decay rates. By using the perturbed energy method, we prove
the general decay of the energy associated with system (1.1) in the last section.

2. Preliminaries and technical lemmas

In this section, we give necessary assumptions and establish three lemmas needed for the proof of
our main result.

We use the standard Lebesgue space L2(Ω) with its usual norm ‖ · ‖. We denote, respectively, by Cp

and Cs the embedding constants of H1
0(Ω) ↪→ L2(Ω) and H1

0(Ω) ↪→ Lr(Ω) , for r > 0 if n = 2 or 0 <
r ≤ 2n

n−2 if n ≥ 3, i.e.,
‖y‖ ≤ Cp‖∇y‖, ‖y‖r ≤ Cs‖∇y‖, ∀ y ∈ H1

0(Ω),

where ‖z‖r denotes the usual Lr(Ω)-norm.
In this paper, we take into account the following conditions:

(H1): g : R+ → R+ is a differentiable function such that g(0) > 0 and g′(s) < 0 for any s ∈ R+ .

(H2): There exists a nonincreasing continuous function ξ : R+ → R+ satisfying

g′(t) ≤ −ξ(t)g(t), ∀ t ≥ 0. (2.1)

The energy of solutions of system (1.1) is given by

E(t) =
1

ρ + 2

∫
Ω

|yt|
ρ+2dx +

1
2

(
b −

∫ t

0
g(s)ds

) ∫
Ω

|∇y|2dx +
1
2

(g ◦ ∇y)(t) +
c
2

∫
Ω

|∇yt|
2dx

+
1
2

∫
Ω

|zt|
2dx +

1
2c

∫
Ω

|∇zt|
2dx +

1
2

∫
Ω

|c∇y − ∇z|2dx, (2.2)

where

(g ◦ ∇y)(t) =

∫ t

0
g(t − s)‖∇y(t) − ∇y(s)‖2ds.

The energy satisfies the following dissipation law.

Proposition 2.1. We have

E′(t) =
1
2

(g′ ◦ ∇y)(t) −
1
2

g(t)
∫

Ω

|∇y|2dx ≤ 0. (2.3)
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Proof. Multiplying (1.1)1 by yt and (1.1)2 by zt, we integrate by parts on Ω to obtain

d
dt

(
1

ρ + 2

∫
Ω

|yt|
ρ+2dx +

a
2

∫
Ω

|∇y|2dx +
c
2

∫
Ω

|∇yt|
2dx

)
− c

(∫
Ω

∇z · ∇ytdx
)

−

∫ t

0
g(t − s)

∫
Ω

∇y(s)∇ytdxdt = 0 (2.4)

and
1
2

d
dt

(∫
Ω

|zt|
2dx +

∫
Ω

|∇z|2dx +
1
c

∫
Ω

|∇zt|
2dx

)
− c

(∫
Ω

∇y · ∇ztdx
)

= 0. (2.5)

Thus, a direct computation shows that∫ t

0
g(t − s)

∫
Ω

∇y(s)∇yt(t)dxds =
1
2

(g′ ◦ ∇y)(t) −
1
2

g(t)
∫

Ω

|∇y(t)|2dx

−
1
2

d
dt

{
(g ◦ ∇y)(t) −

(∫ t

0
g(s)ds

) ∫
Ω

|∇y(t)|2dx
}
. (2.6)

Using (2.6) and the fact that a = b + c2 in (2.4), we infer that

d
dt

(
1

ρ + 2

∫
Ω

|yt|
ρ+2dx +

1
2

(
b −

∫ t

0
g(s)ds

) ∫
Ω

|∇y|2dx +
1
2

(g ◦ ∇y)(t) +
c
2

∫
Ω

|∇yt|
2dx

)
+

c2

2
d
dt

∫
Ω

|∇y|2dx − c
(∫

Ω

∇z · ∇ytdx
)
−

1
2

(g′ ◦ ∇y)(t) +
1
2

g(t)
∫

Ω

|∇y(t)|2dx = 0. (2.7)

By adding (2.5) and (2.7), (2.3) holds true. �

(2.3) implies that system (1.1) is dissipative, and so E(t) ≤ E(0).
Using the Faedo-Galerkin method, for instance, Liu [12] and Mustafa [19], we obtain the following

local existence result:

Proposition 2.2. Let (y0, y1), (z0, z1) ∈ H1
0(Ω)×H1

0(Ω) be given. Assume that g satisfies (H1) and (H2),
then problem (1.1) has a unique local solution (y, z) satisfying

y, yt, z, zt ∈ C
(
[0,T ); H1

0(Ω)
)
,

for some T > 0.

Thus, it is easy to see that

l
2

∫
Ω

|∇y|2dx +
c
2

∫
Ω

|∇yt|
2dx +

1
4

∫
Ω

|∇z|2dx +
1
2c

∫
Ω

|∇zt|
2dx ≤

(
2 +

c2

l

)
E(t) ≤

(
2 +

c2

l

)
E(0),

which gives that the solution of problem (1.1) is bounded and global in time.

Lemma 2.3. Under assumptions (H1) and (H2), the functional

A(t) =
1

ρ + 1

∫
Ω

y|yt|
ρytdx + c

∫
Ω

∇y∇ytdx +

∫
Ω

zztdx +
1
c

∫
Ω

∇z∇ztdx

AIMS Mathematics Volume 8, Issue 12, 30668–30682.



30673

satisfies along the solution and the estimate:

A′(t) ≤
1

ρ + 1

∫
Ω

|yt|
ρ+2dx −

l
2

∫
Ω

|∇y|2dx + c
∫

Ω

|∇yt|
2dx +

∫
Ω

|zt|
2dx +

1
c

∫
Ω

|∇zt|
2dx

−

∫
Ω

|c∇y − ∇z|2dx +
b − l

2l
(g ◦ ∇y)(t). (2.8)

Proof. Multiplying (1.1)1 by y and integrating by parts over Ω, we obtain

d
dt

1
ρ + 1

∫
Ω

y|yt|
ρytdx −

1
ρ + 1

∫
Ω

|yt|
ρ+2dx + b

∫
Ω

|∇y|2dx + c
∫

Ω

∇y (c∇y − ∇z) dx

+
d
dt

∫
Ω

c∇yt∇ydx − c
∫

Ω

|∇yt|
2dx −

∫
Ω

∇y(t)
∫ t

0
g(t − s)∇y(s)dsdx = 0. (2.9)

Therefore, multiplying (1.1)2 by z and integrating by parts over Ω, we infer that

d
dt

∫
Ω

zztdx −
∫

Ω

|zt|
2dx +

∫
Ω

|∇z|2dx − c
∫

Ω

∇y∇zdx +
d
dt

1
c

∫
Ω

∇z∇ztdx −
1
c

∫
Ω

|∇zt|
2dx = 0. (2.10)

Combining (2.9) and (2.10), we find

A′(t) =
1

ρ + 1

∫
Ω

|yt|
ρ+2dx − b

∫
Ω

|∇y|2dx −
∫

Ω

|c∇y − ∇z|2dx + c
∫

Ω

|∇yt|
2dx

+

∫
Ω

∇y(t)
∫ t

0
g(t − s)∇y(s)dsdx +

∫
Ω

|zt|
2dx +

1
c

∫
Ω

|∇zt|
2dx. (2.11)

It is easy to check that [14] ∫
Ω

∇y(t)
∫ t

0
g(t − s)∇y(s)dsdx

≤ (b −
l
2

)
∫

Ω

|∇y|2 dx +
b − l

2l
(g ◦ ∇y)(t). (2.12)

Inserting (2.12) in (2.11), the inequality (2.8) holds true. �

Lemma 2.4. Assume that (H1) and (H2) hold and (y, yt, z, zt) is a solution of (1.1), then the functional

B(t) =

∫
Ω

(
∆yt −

1
ρ + 1

|yt|
ρyt

) ∫ t

0
g(t − s) (y(t) − y(s)) dsdx

satisfies

B′(t) ≤ −
1

ρ + 1

(∫ t

0
g(s)ds

) ∫
Ω

|yt|
ρ+2dx +

cδ1

2

∫
Ω

|c∇y − ∇z|2dx +

(
b2δ2

2
+ 2(b − l)2δ2

) ∫
Ω

|∇y|2 dx

+

δ2 +
δ2C

2(ρ+1)
s

ρ + 1

(
2
c

E(0)
)ρ
−

∫ t

0
g(s)ds

 ∫
Ω

|∇yt|
2 dx

+

(
c(b − l)

2δ1
+

b − l
2δ2

+ (b − l)(2δ2 +
1

4δ2
)
)

(g ◦ ∇y)(t)

+
g(0)
4δ2

1 +
C2

p

ρ + 1

 (−g′ ◦ ∇y)(t), (2.13)

for any δ1, δ2 > 0.
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Proof. By exploiting Eq (1.1) and integrating by parts, we have

B′(t) = −
1

ρ + 1

(∫ t

0
g(s)ds

) ∫
Ω

|yt|
ρ+2dx + b

∫
Ω

∇y(t)
∫ t

0
g(t − s)∇(y(t) − y(s))dsdx

+ c
∫

Ω

(c∇y − ∇z)
∫ t

0
g(t − s)∇(y(t) − y(s))dsdx −

(∫ t

0
g(s)ds

) ∫
Ω

|∇yt|
2dx

−

∫
Ω

(∫ t

0
g(t − s)∇y(s)ds

) (∫ t

0
g(t − s)∇(y(t) − y(s))ds

)
dx

−

∫
Ω

∇yt(t)
∫ t

0
g′(t − s)∇(y(t) − y(s))dsdx

−
1

ρ + 1

∫
Ω

|yt|
ρyt

∫ t

0
g′(t − s)(y(t) − y(s))dsdx. (2.14)

By the Young inequality and Cauchy Schwarz inequality, we infer for any δ1 > 0 that

c
∫

Ω

(c∇y − ∇z)
∫ t

0
g(t − s)∇(y(t) − y(s))dsdx ≤

cδ1

2

∫
Ω

|c∇y − ∇z|2dx +
c(b − l)

2δ1
(g ◦ ∇y)(t). (2.15)

Likewise, for (2.15) it is easy to check that for every δ2 > 0,

b
∫

Ω

∇y(t)
∫ t

0
g(t − s)∇(y(t) − y(s))dsdx ≤

b2δ2

2

∫
Ω

|∇y|2dx +
(b − l)

2δ2
(g ◦ ∇y)(t) (2.16)

and ∫
Ω

∇yt(t)
∫ t

0
g′(t − s)∇(y(t) − y(s))dsdx ≤ δ2

∫
Ω

|∇yt|
2dx −

g(0)
4δ2

(g′ ◦ ∇y)(t). (2.17)

Now, the remaining terms can be estimated as estimates (3.11) and (3.15) in [16]:

−

∫
Ω

(∫ t

0
g(t − s)∇y(s)ds

) (∫ t

0
g(t − s)∇(y(t) − y(s))ds

)
≤ (2δ2 +

1
4δ2

)(b − l)(g ◦ ∇y)(t) + 2δ2(b − l)2
∫

Ω

|∇y|2dx (2.18)

and

1
ρ + 1

∫
Ω

|yt|
ρyt

∫ t

0
g′(t − s)(y(t) − y(s))dsdx

≤
C2(ρ+1)

s δ2

ρ + 1
(
2
c

E(0))ρ
∫

Ω

|∇yt|
2dx −

g(0)C2
p

4(ρ + 1)δ2
(g′ ◦ ∇y)(t). (2.19)

The combination of (2.14)–(2.19) yields to the desired inequality (2.13). �

Lemma 2.5. Let Z = (y, yt, z, zt) be a solution of (1.1), then under the assumptions (H1) and (H2) the
functional

D(t) =
1

ρ + 1

∫
Ω

|yt|
ρyt(cy − z)dx + c

∫
Ω

zt(cy − z)dx + c
∫

Ω

∇yt(c∇y − ∇z)dx +

∫
Ω

∇zt(c∇y − ∇z)dx
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satisfies

D′(t) ≤ δ3

∫
Ω

|c∇y − ∇z|2dx +
b2

2δ3

∫
Ω

|∇y|2dx +
b − l
2δ3

(g ◦ ∇y)(t)

+ (c2 + c3C2
p)

∫
Ω

|∇yt|
2dx −

3c
4

∫
Ω

|zt|
2dx +

(
C2

sδ4

2(ρ + 1)
− 1

) ∫
Ω

|∇zt|
2dx

+

 c
ρ + 1

+
((ρ + 2)E(0))

2
ρ+2

2(ρ + 1)δ4

 ∫
Ω

|yt|
ρ+2dx (2.20)

for every δ3, δ4 > 0.

Proof. Multiplying (1.1)1 by cy − z, using (1.1)2 and integrating by parts over Ω, we obtain

d
dt

1
ρ + 1

∫
Ω

|yt|
ρyt(cy − z)dx −

1
ρ + 1

∫
Ω

|yt|
ρyt(cy − z)tdx

+b
∫

Ω

∇y∇(cy − z)dx +

∫
Ω

(cztt − ∆ztt)(cy − z)dx +
d
dt

c
∫

Ω

∇yt∇(cy − z)dx

−c
∫

Ω

∇yt∇(cy − z)tdx −
∫

Ω

(c∇y − ∇z)
∫ t

0
g(t − s)∇y(s)dsdx = 0,

which implies that

D′(t) =
1

ρ + 1

∫
Ω

|yt|
ρyt(cy − z)tdx − b

∫
Ω

∇y∇(cy − z)dx + c
∫

Ω

zt(cy − z)tdx

+c
∫

Ω

∇yt∇(cy − z)tdx +

∫
Ω

∇zt∇(cy − z)tdx +

∫
Ω

(c∇y − ∇z)
∫ t

0
g(t − s)∇y(s)dsdx

=
c

ρ + 1

∫
Ω

|yt|
ρ+2dx −

1
ρ + 1

∫
Ω

|yt|
ρytztdx − b

∫
Ω

∇y∇(cy − z)dx + c2
∫

Ω

ztytdx − c
∫

Ω

|zt|
2dx

+c2
∫

Ω

|∇yt|
2dx −

∫
Ω

|∇zt|
2dx +

∫
Ω

(c∇y − ∇z)
∫ t

0
g(t − s)∇y(s)dsdx. (2.21)

Thanks to Young’s inequality and Cauchy Schwarz’s inequality, we find for any δ3 > 0 that

−b
∫

Ω

∇y∇(cy − z)dx ≤
δ3

2

∫
Ω

|c∇y − ∇z|2dx +
b2

2δ3

∫
Ω

|∇y|2dx (2.22)

and ∫
Ω

(c∇y − ∇z)
∫ t

0
g(t − s)∇y(s)dsdx ≤

δ3

2

∫
Ω

|c∇y − ∇z|2dx +
b − l
2δ3

(g ◦ ∇y)(t). (2.23)

Using Hölder’s inequality, Young’s inequality and Poincaré’s inequality, we derive that

c2
∫

Ω

ztytdx ≤
c
4

∫
Ω

|zt|
2dx + c3

∫
Ω

|yt|
2dx

≤
c
4

∫
Ω

|zt|
2dx + c3C2

p

∫
Ω

|∇yt|
2dx, (2.24)
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−
1

ρ + 1

∫
Ω

|yt|
ρytztdx ≤

1
ρ + 1

{ ∫
Ω

|yt|
ρ+2dx

} ρ+1
ρ+2

{ ∫
Ω

|zt|
ρ+2dx

} 1
ρ+2

≤
δ4

2(ρ + 1)

{ ∫
Ω

|zt|
ρ+2dx

} 2
ρ+2

+
1

2(ρ + 1)δ4

{ ∫
Ω

|yt|
ρ+2dx

} 2(ρ+1)
ρ+2

≤
C2

sδ4

2(ρ + 1)

∫
Ω

|∇zt|
2dx +

(
(ρ + 2)E(0)

) 2
ρ+2

2(ρ + 1)δ4

∫
Ω

|yt|
ρ+2dx, (2.25)

for any δ4 > 0.
Inserting (2.22)–(2.25) in (2.21), we obtain (2.20). �

3. General stability

We define the functional F by

F (t) = NE(t) + N1A(t) + N2B(t) + N3D(t),

where N,N1,N2 and N3 are positive constants that will be chosen later.
It is easy to check, for N sufficiently large, that E(t) ∼ F (t), i.e.,

c1E(t) ≤ F (t) ≤ c2E(t), ∀ t ≥ 0, (3.1)

for some constants c1, c2 > 0.
The main result of this paper reads as follows.

Theorem 3.1. Let (y0, y1), (z0, z1) ∈ H1
0(Ω) × H1

0(Ω). Assume that (H1) and (H2) hold true, then for
any t1 > 0, there exists positive constants β1 and β2 such that the energy E(t) satisfies

E(t) ≤ β2e
−β1

∫ t

t1
ξ(s)ds

. (3.2)

Proof. Set g0 =

∫ t1

0
g(s)ds > 0. By using (2.11), (2.13), (2.20) and (2.3), one obtains for all t ≥ t1

F ′(t) ≤

N
2
−

N2g(0)
4δ2

(1 +
C2

p

ρ + 1
)

 (g′ ◦ ∇y)(t)

−

 N2g0

ρ + 1
−

N1

ρ + 1
− N3

 c
ρ + 1

+

(
(ρ + 2)E(0)

) 2
ρ+2

2(ρ + 1)δ4



∫

Ω

|yt|
ρ+2dx

−

{
N1l
2
− N2

(
b2δ2

2
+ 2(b − l)2δ2

)
−

N3b2

2δ3

}∫
Ω

|∇y|2dx

−

N2g0 − N1c − N2

δ2 +
δ2C

2(ρ+1)
s

ρ + 1

(
2
c

E(0)
)ρ − N3(c2 + c3C2

p)
∫

Ω

|∇yt|
2dx
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−

{
3cN3

4
− N1

}∫
Ω

|zt|
2dx

−

{
N3 −

N1

c
−

N3C2
sδ4

2(ρ + 1)

}∫
Ω

|∇zt|
2dx

−

{
N1 −

cN2δ1

2
− N3δ3

} ∫
Ω

|c∇y − ∇z|2dx

+

{
N1(b − l)

2l
+ N2

(
c(b − l)

2δ1
+

(b − l)
2δ2

+ (b − l)(2δ2 +
1

4δ2
)
)

+
N3(b − l)

2δ3

}
(g ◦ ∇y)(t).(3.3)

By choosing δ1 = N1
cN2
, δ2 = lN1

N2(b2+4(b−l)2) , δ3 = N1
4N3

and δ4 =
2(ρ+1)N1

3cC2
s N3

, (3.3) becomes

F ′(t) ≤
{

N1(b − l)
(

1
2l

+
2l

b2 + 4(b − l)2

)
+ N2

2

(
c2(b − l)

2N1
+

3(b − l)(b2 + 4(b − l)2)
4lN1

)
+

2(b − l)N2
3

N1

}
× (g ◦ ∇y)(t) +

N
2
−

N2
2g(0)(b2 + 4(b − l)2)

4lN1
(1 +

C2
p

ρ + 1
)

 (g′ ◦ ∇y)(t)

−

 N2g0

ρ + 1
−

N1

ρ + 1
− N3

 c
ρ + 1

+
3cC2

s N3

(
(ρ + 2)E(0)

) 2
ρ+2

4N1(ρ + 1)2



∫

Ω

|yt|
ρ+2dx

−
2N2

3b2

N1

∫
Ω

|∇y|2dx −
{

3cN3

4
− N1

}∫
Ω

|zt|
2dx −

{
N3 −

4N1

3c

}∫
Ω

|∇zt|
2dx

−

N2g0 − N1c −
N1l

b2 + 4(b − l)2

1 +
C2(ρ+1)

s

ρ + 1

(
2
c

E(0)
)ρ − N3(c2 + c3C2

p)
∫

Ω

|∇yt|
2dx

−
N1

4

∫
Ω

|c∇y − ∇z|2dx. (3.4)

At this point, we choose N1 for any positive real number and we pick up N3 and N2, respectively,
such that

N3 >
4N1

3c
,

N2g0 > N1 − N3

c +
3cC2

s N3

(
(ρ + 2)E(0)

) 2
ρ+2

4N1(ρ + 1)


and

N2g0 > N1c +
N1l

b2 + 4(b − l)2

1 +
C2(ρ+1)

s

ρ + 1

(
2
c

E(0)
)ρ + N3(c2 + c3C2

p).

After this, we choose N sufficiently large so that (3.1) holds true and

N >
N2

2g(0)(b2 + 4(b − l)2)
2lN1

(1 +
C2

p

ρ + 1
).

Therefore, it follows for some constants m,C > 0 and all t ≥ t1 that

F ′(t) ≤ −mE(t) + C(g ◦ ∇y)(t). (3.5)
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Denote L(t) = F (t) + CE(t). Clearly, L(t) is equivalent to E(t). It follows from (3.5) that

L′(t) ≤ −mE(t) + C
∫ t

0
g(s)

∫
Ω

|∇y(t) − ∇y(t − s)|2dxds. (3.6)

Next, we multiply (3.6) by ξ(t) and use Assumption (H2) and (2.3) to obtain

ξ(t)L′(t) ≤ −mξ(t)E(t) + Cξ(t)
∫ t

0
g(s)

∫
Ω

|∇y(t) − ∇y(t − s)|2dxds

≤ −mξ(t)E(t) + C
∫ t

0
ξ(s)g(s)

∫
Ω

|∇y(t) − ∇y(t − s)|2dxds

≤ −mξ(t)E(t) −C
∫ t

0
g′(s)

∫
Ω

|∇y(t) − ∇y(t − s)|2dxds

≤ −mξ(t)E(t) −CE′(t), ∀ t ≥ t1. (3.7)

Denote R(t) = ξ(t)L(t) + CE(t) ∼ E(t), then we have from (3.7) and the fact that ξ is nonincreasing
that, for any t ≥ t1,

R′(t) ≤ −mξ(t)E(t).

Using the fact that R ∼ E, we obtain
R′(t) ≤ −β1R(t)

for some positive constant β1. By applying Gronwall’s Lemma, we obtain the existence of a constant
C1 > 0 such that

R(t) ≤ C1e
−β1

∫ t

t1
ξ(s) ds

,

which yields to

E(t) ≤ β2e
−β1

∫ t

t1
ξ(s) ds

,

for some constant β2 > 0. �

Remark 3.2. By replacing in (1.1) the memory term by a past history term of the form
∫ ∞

0
g(s)∆y(x, t−

s)ds, and by defining the new variable η (as in [8]) by η(x, s, t) = y(x, t) − y(x, t − s), ∀ (x, s, t) ∈ Ω × (0,+∞) × (0,+∞),

η0(x, s) = η(x, s, 0) = f (x, 0) − f (x, s), ∀ (x, s) ∈ Ω × (0,+∞),

(1.1) becomes

|yt|
ρytt − κ∆y − c∆ytt + c∆z −

∫ ∞

0
g(s)∆η(x, s, t)ds = 0, in Ω × (0,∞) × (0,∞),

ztt − ∆z − 1
c ∆ztt + c∆y = 0, in Ω × (0,∞),

ηt(x, s, t) + ηs(x, s, t) = yt(x, t) in Ω × (0,∞) × (0,∞),

y = z = 0, on Γ × (0,∞),

y(x, 0) = y0(x), z(x, 0) = z0(x), yt(x, 0) = y1(x), zt(x, 0) = z1(x), in Ω,

y(x,−t) = f (x, t), in Ω × (0,∞),

(3.8)
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where κ = l + c2. The energy of solutions of (3.8) is defined by

E(t) =
1

ρ + 2

∫
Ω

|yt|
ρ+2dx +

l
2

∫
Ω

|∇y|2dx +
c
2

∫
Ω

|∇yt|
2dx +

1
2

∫
Ω

|zt|
2dx

+
1
2c

∫
Ω

|∇zt|
2dx +

1
2

∫
Ω

|c∇y − ∇z|2dx +

∫ ∞

0

∫
Ω

g(s)|∇η(s)|2dxds.

Define
G(t) = ME(t) + M1A(t) + M2B1(t) + M3D(t),

where

B1(t) =

∫
Ω

(
c∆yt −

1
ρ + 1

|yt|
ρyt

) ∫ ∞

0
g(s)η(s)dsdx.

Now, we suppose that g satisfies

(H3): g ∈ C1(R+) ∩ L1(R+) satisfies
∫ ∞

0
g(s)ds > 0 and g(s) > 0, ∀ s ∈ R+.

(H4): For any s ∈ R+, g′(s) < 0 and there exists two positive constants b0 and b1 such that

−b0g(s) ≤ g′(s) ≤ −b1g(s).

By proceeding as in the last section, we can prove for suitable choices of M,M1,M2 and M3 that

G′(t) ≤ −C2E(t), ∀ t ≥ 0,

for some positive constant C2. Therefore, we have the following result:

Theorem 3.3. Assume (H3) and (H4), then the energy of solutions of (3.8) decays exponentially, i.e.,
there exists positive constants µ and ζ such that

E(t) ≤ µE(0)e−ζt, ∀ t ≥ 0. (3.9)

4. Examples

In this section, we give two examples that illustrate explicit formulas for the decay rates of the
energy.

(1) Let g(t) = pe−k(1+t)q
, t ≥ 0, where p > 0 , 0 < q ≤ 1 and p > 0 are chosen so that g satisfies (1.3).

It holds that
g′(t) = −pqk(1 + t)q−1e−k(1+t)q

= −ξ(t)g(t),

where ξ(t) = qk(1 + t)q−1. From (3.2), we obtain that

E(t) ≤ β2e−β1k(1+t)q
, ∀ t ≥ 0.

(2) Let g(t) = a
(1+t)p , where p > 1 and a > 0 are chosen such that (1.3) holds true. One has

g′(t) =
−ap

(1 + t)p+1 = −ξ(t)g(t),

where ξ(t) =
p

1+t .
Therefore, it follows from (3.2) that

E(t) ≤
C

(1 + t)p , ∀ t ≥ 0.
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5. Conclusions

This paper focused on the stability of solutions for a system of two coupled quasi-linear and linear
wave equations in a bounded domain of Rn, subject to viscoelasticity dissipative term existing only in
the first equation. This system modeled the motion of two elastic membranes subject to an elastic force
that pulls one membrane toward the other. As a future work, we can change the type of damping by
considering, for example, structural damping (of the form ∆yt), Balakrishnan-Taylor damping (of the
form (∇y,∇yt)∆y) or strong damping (of the form ∆2yt).
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