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Abstract: The rapid expansion of renewable energy sources and their integration into the energy mix 
has generated scholarly interest in comprehending the interplay between renewable and conventional 
energy markets. This research aims to examine the (a)symmetric volatility spillover between the oil 
market and various regional renewable energy stock markets, namely the US, Europe and Asia. To 
achieve this objective, we employ the time-varying parameter vector autoregressive-based 
connectedness (TVP-VAR) approach, which allows analysing the interconnection and transmission of 
shocks between the different markets. Based on an analysis of daily data relative to the different 
regional renewable energy stock markets and international oil prices, the findings suggest the presence 
of a dynamic volatility connectedness between the green and brown energy stock markets. The extent 
of connectedness is contingent upon the specific regional renewable energy market under consideration. 
Moreover, the decomposition of the volatility series into good and bad volatility emphasizes an 
asymmetric pattern, which becomes more pronounced during periods of major events. On average, the 
oil market and the Asian renewable energy stock market are net receivers of volatility shocks. In 
contrast, the US and European renewable energy stock markets are net transmitters of shocks. Our 
findings provide investors with valuable insights for portfolio design and risk management decisions. 
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1. Introduction  

The latest decades have been marked by increased environmental degradation and the rise of 
climate change as a severe threat to humanity. At the same time, the energy transition has often been 
considered a potential solution to prevent further environmental degradation and comply with the 
objectives of the Paris Agreement on climate change [1]. However, the energy transition process has 
been relatively slow due to various challenges to its implementation [2]. Indeed, despite the increase 
in renewable energy (hereafter RE) adoption during the recent decades, most countries still rely on 
fossil fuels as a primary energy source [3]. The substitution hypothesis has been widely discussed in 
scholarly circles. It suggests that increasing fossil fuel prices could lead to a faster adoption of RE 
sources in countries that heavily rely on energy consumption [4–6]. However, the occurrence of some 
major events suggests that the interconnection between fossil fuel prices and RE sources is still open 
to debate. For instance, the latest sharp rise in natural gas prices following the Russian-Ukrainian 
conflict has not increased the demand for RE sources. On the contrary, there has been a significant 
surge in the demand for coal as an alternative to oil and natural gas.  

Scholars have been recently interested in examining the relationship between fossil fuels and RE 
sources [7–12]. An emerging trend in the literature has mainly concentrated on the potential 
interdependence between the crude oil market and the RE stock market [13]. The linkage between oil 
prices and stocks of companies in the RE sector can be primarily attributed to the substitution effect. 
According to [5], the substitution effect is observed when an increase in the cost of crude oil prompts 
an upswing in demand for RE sources. This heightened demand leads to enhanced profitability of RE 
companies and the appreciation of their stock prices. Empirical studies have employed a wide range 
of econometric methodologies to investigate the interrelationships between fossil fuel prices, 
particularly crude oil, and RE stocks. The existing studies have used copulas [14,15], quantile-based 
approaches [13,16], wavelets [17,18,19,20] and connectedness [21,22]. In addition, most studies 
analyseysed the relationship between the WilderHill Clean Energy Index and oil prices, which tracks 
the stock market for RE companies around the globe. Scarce research concentrated on the potential 
geographic heterogeneity in the relationship between oil prices and RE stocks [23,24]. Finally, most 
studies analysed the symmetric relationship between oil prices and RE stocks [25,26]. 

This study contributes to the existing literature by examining the dynamic connectedness between 
the second moment of conventional energy prices and RE stock prices. More specifically, it explores 
the connectedness between West Texas Intermediate (WTI) oil price volatility and NASDAQ OMX 
Green Economy indices volatility across different regions, namely Asia, Europe and the United States. 
The empirical analysis uses the time-varying parameter vector autoregressive (hereafter TVP-VAR) 
model developed by [27,28] based on daily data ranging from November 10, 2010, to November 15, 
2022. The study adds to the literature in several ways. First, despite the expanding interest in the 
association between oil prices and RE stocks, most works have concentrated on a single RE market. 
The US market has been the subject of ongoing analysis by academics, such as [13,21,29,30]. In 
contrast, the European renewable stock market received little attention, as highlighted by [31]. For 
instance, [26] conducted a study examining the association between the CBOE Crude Oil ETF 
Volatility Index and the S&P Global Clean Energy Index (SPGCE), which assesses the financial 
performance of companies involved in clean energy production across various countries. Although the 
RE stock index considers companies in many countries, it does not allow analyzing their 
interrelationship. The current understanding of the interplay between the international crude oil market 
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and RE stock markets across different geographical regions is still limited. Research into the 
connectedness between oil prices and RE stocks of various regional markets is developing but is still 
in its early stages. To fill this gap, this research focuses on the volatility of the NASDAQ OMX Green 
Economy index associated with three geographic regions: the US, Europe and Asia. The analysis 
enables the identification of whether the crude oil market volatility dominates the different RE stock 
markets. Additionally, it determines which RE stock market (American, European or Asian) has a 
dominant role and thus explains the volatility associated with the other markets. The importance of 
conducting such a regional investigation lies in its ability to assess the potential of RE markets to serve 
as hedging instruments.  

Second, the approach implemented in this study involves a combination of the TVP-VAR 
methodology proposed by [32] with the connectedness approach developed by [27,28]. The dynamic 
connectedness allows us to comprehend the evolution of volatility transmission over time. Indeed, the 
nature of volatility spillover may change over time, making the TVP-VAR model more appropriate 
than decomposing the full period into different sub-periods. Additionally, the time-varying analysis 
has many advantages, the most significant being the ability to establish linkages between the observed 
connectedness and potential shocks that may arise. Indeed, oil prices and RE stocks may be 
characterized by low and high volatility spillover episodes, which can be influenced by various factors, 
including economic events and policy changes. For instance, [20] showed that the volatility spillover 
between renewable and oil prices depends on major events, such as the COVID-19 pandemic, the 
Global Financial Crisis and Brexit. In addition, [33] examined the connectedness between oil price 
uncertainty, financial stress and economic policy uncertainty using the TVP-VAR. The findings 
suggest that connectedness increased during the COVID-19 pandemic. Therefore, a time-varying 
volatility transmission analysis is required to identify these changing patterns and dynamics. In the 
same vein, [34] suggested utilizing connectedness measures based on the TVP-VAR instead of 
employing the rolling-window estimation of the VAR model. Additionally, the connectedness approach 
is favored over Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) models 
because it can ascertain the spillover direction by computing pairwise net spillovers [30].  

Third, the present research conducts an asymmetric volatility spillover analysis. Although the 
symmetric volatility spillover between oil prices and the regional RE stock markets may provide some 
insights into the interrelationships between the different markets, it may not be adequate in identifying 
any potential asymmetry. According to the literature on financial markets, asymmetry is commonly 
used in the literature on financial markets to describe the idea that positive and negative news have 
different effects on the price and volatility of an asset. For instance, [35] investigated the volatility 
transmission among crude oil markets and concluded a strong asymmetry in response to shocks during 
some economic stress periods. To account for asymmetry, we adopt the methodology of [15], which 
involves inferring the good and bad volatility of RE stock indices using the GJR-GARCH model 
developed by [36]. In other words, the methodology consists of dividing the volatility caused by 
positive and negative returns into good and bad volatility. The adopted methodology has been shown 
to exhibit a robust performance in volatility modelling for financial time series [15]. It is worth noting 
that the study conducted by [24] is the closest to our research. The authors analysed the connectedness 
between WTI crude oil prices, US, European and Asian green energy stocks. However, our study 
outperforms that of [24], which only considers the symmetric volatility spillover between the 
traditional and green energy stocks. As mentioned, our study fills this gap by providing new insights 
into the positive and negative volatility spillover between traditional and renewable energy stocks.  
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The remainder of this paper is organized as follows: Section 2 is devoted to a summary of the 
existing literature, while a presentation of methods and materials is provided in Sections 3 and 4, 
respectively. The results of the empirical investigation are addressed in Section 5. Section 6 is reserved 
for policy implications, and finally, Section 7 concludes the research. 

2. Literature review 

The association between oil prices and stocks of RE companies has received growing attention in 
recent times. According to [4], the linkage between the oil and RE markets is unclear and remains in 
question. Indeed, the relationship between the oil and RE markets is predominantly upheld through 
pricing mechanisms. [37] state that crude oil price plays a crucial role in determining when RE projects 
become profitable, the pace at which conventional energy sources are substituted by renewable ones, 
and the financial viability of companies operating within the RE industry. A positive correlation exists 
between oil prices and RE, whereby an increase in oil prices fosters the substitution of conventional 
fossil fuel sources with alternative RE sources [4,25]. Indeed, the substitution effect is observed when 
oil prices increase, which induces a rise in the demand for RE sources, yielding more profitability for 
RE companies and an appreciation of their stock prices [5]. Stocks of RE companies may also be linked 
to oil prices via the production cost channel, as suggested by [13]. The increase in oil prices for 
companies relying on oil as input leads to increased production costs and decreased demand for oil. 
This, in turn, could accelerate the shift towards RE sources and lead to an increased market value of 
RE companies' stocks. The discussion above suggests that prevailing explanations regarding the 
connection between crude oil prices and RE stock prices have focused on unidirectional impacts from 
oil prices towards renewables. Little attention has been paid to how RE stocks may affect oil prices. 
For instance, [37] states that the growth of RE projects may influence oil prices. However, it is essential 
to note that the impact of renewables on oil prices has received less research attention than the impact 
of oil prices on renewable energy stocks. 

On the empirical side, a growing number of studies with different time frames and methodologies 
yielded mixed findings on the interconnections between RE stocks and crude oil prices. An 
investigation was carried out by [25] to examine the relationship between oil prices and the WilderHill 
Clean Energy Index as a proxy of RE stocks. The authors employed the Lag Augmented Vector 
AutoRegressive (LA-VAR) Wald test developed by [38] to assess the existence of Granger causality. 
The findings confirm that oil prices Granger-cause stock prices of RE companies. [4] also investigated 
the impact of oil prices on RE stocks. The VAR model indicates that variations in oil prices contribute 
to the performance of RE stock indices. Based on copulas, [14] analysed the systemic risk and 
dependence between RE stock and crude oil prices. The empirical analysis suggests the presence of 
significant connections between the two markets. Moreover, about 30% of the potential downside and 
upside risks associated with RE stocks are attributed to oil price variations. [17] also analysed the 
association between oil and RE stock prices using wavelet and the Granger non-causality test from 
2006 to 2015. The empirical investigation suggests a two-way non-linear causal relationship between 
oil prices and RE stocks. However, the causal relationship from RE stocks to oil prices is more 
significant. The wavelet analysis has also been used by [18], who investigated the connections between 
the Renewable Energy Industrial Index and the NYSE Arca Oil Index using daily data from July 2019 
to June 2020. The findings indicate the presence of co-movements between oil prices and RE stocks. 
Furthermore, the relationship between the two variables exhibited a co-movement pattern only during 
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the initial stages of the COVID-19 pandemic. [20] analysed the volatility spillover between five green 
indices and oil shocks (supply shock, demand shock and risk shock) between 2007 and 2021 based on 
the wavelet coherence model and frequency connectedness. The findings confirm the presence of a 
strong correlation between the oil and green markets in the mid- and long-term. In addition, the green 
stock market exhibits more significant volatility spillovers from the oil market. The volatility spillover 
between the two markets is found to be intensified during specific events, such as COVID-19 and the 
Global Financial Crisis. Finally, [37] analysed the correlation between oil prices and RE stocks using 
the detrended cross-correlation analysis. The findings confirm the existence of a high correlation 
between oil and indices of the renewable sector between mid-2008 and mid-2012, which coincides with 
the Global Financial Crisis.  

Other studies employed quantile-based approaches. For example, [13] examined the relationship 
between oil prices and different sectoral RE stocks. The study employed the nonparametric causality-
in-quantiles test introduced by [39] from October 2010 to September 2020. The findings suggest that 
oil returns cause the renewable stock index returns under normal market conditions, while no 
significant causal relationships are observed from renewable stock index returns to oil returns. In a 
similar work, [16] investigated the impact of oil prices on clean energy stock indices using the quantile 
regression developed by [40]. The results show that a rise in oil prices is associated with an 
appreciation of different clean energy indices only for low quantiles. The two studies above conclude 
the importance of accounting for the nonnormal distribution of the variables. [41] accounted for 
another potential irregularity in the data generation process, namely asymmetry. The asymmetric 
association between oil prices and RE stocks has been examined using the non-linear ARDL model 
proposed by [42]. The empirical investigation confirms the presence of asymmetry, as only increases 
in oil prices affect the WilderHill New Energy Global Innovation Index. [5] examined the impact of 
oil shocks on RE stock returns between January 2001 and December 2018 by disentangling oil prices 
into supply, aggregated demand and oil-specific demand shocks. The results provide empirical 
evidence in favour of the substitution effect, which claims that a decrease in oil prices is associated 
with a rise in the value of RE stocks. This relationship explains approximately 14.54% of the observed 
fluctuations in the long-term returns of RE stocks. 

Some recent studies have implemented the connectedness analysis to assess the interconnections 
between crude oil and RE stock markets. For instance, [30] examined the connectedness between the 
return and volatility of the WilderHill Clean Energy Index and the WTI crude oil price. The author 
concluded that crude oil prices are affected by the return and volatility of the clean energy index. [21] 
analysed the association between oil prices and RE stocks. The study employed many indicators related 
to RE sources and implemented the connectedness analysis and different GARCH-type models. The 
results generally confirm the presence of connections between oil prices and renewable stocks. 
However, the author highlighted the existence of heterogeneous interactions between oil prices and 
RE stocks, which depend on the RE source. [43] implemented the connectedness proposed by [44] to 
check the relationship between WTI crude oil price and the return and volatility of the Wilder Hill 
Clean Energy Index. The authors concluded the absence of significant short- and long-run interactions 
between the two variables. Moreover, [22] employed the connectedness approach proposed by [27,28] 
to examine the correlation between various fossil fuel energy sources, such as oil, coal and natural gas, 
and the return and volatility of RE stocks. Two important conclusions have been drawn from the 
empirical investigation. First, the impacts of oil prices dominate those of RE stocks. Second, volatility 
transmission between the oil and RE markets is more pronounced than the transmission of returns. A 
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study by [45] investigated the linkages between crude oil prices, gold prices and five sector stock 
indexes related to new energy vehicles in China using the TVP-VAR of [27,28]. The results confirm 
that the different stock markets are net transmitters of shocks, while oil and gold markets are net 
receivers. Finally, [46] investigated the relationship between fossil fuel markets and the RE stock 
market and concluded a significant linkage between them. Moreover, the policy measures implemented 
during the Conference of the Parties (COP) meetings have been found to enhance the linkages between 
the two markets.  

It is worth mentioning that an inspection of the existing literature suggests that scarce studies 
concentrated on the volatility spillover between the oil market and regional renewable stock markets. [23] 
analysed the connectedness between WTI crude oil prices, on the one hand, and the US Wilder Hill 
Clean Energy Index (ECO) and the European Renewable Energy Index (ERIX), on the other hand. 
The analysis suggests that the return and volatility spillovers from the fossil energy markets to US 
renewable stocks are more pronounced than their European counterparts. Furthermore, [24] 
investigated the connectedness between traditional energy prices (crude oil and natural gas) and 
regional renewable energy stock markets (US, Europe and Asia) using the TVP-VAR model. The 
findings demonstrate a significant spillover between green energy stocks and conventional energy 
prices. More specifically, it has been observed that there is a spillover effect from green energy stocks 
to traditional energy stocks, which implies that the renewable energy stock market is a net transmitter 
of volatility, while the oil and gas markets are net receivers. 

3. Methods 

The present research follows a two-stage procedure. The first stage involves estimating volatility 
series using a GARCH-type process, deemed the most suitable approach given the data at hand. The 
constructed volatility series are then decomposed into good and bad to conduct the asymmetric 
spillover analysis. The next stage entails using the TVP-VAR model to estimate the symmetric and 
asymmetric volatility spillover indices based on [27,28].  

3.1. Computing good and bad volatility series 

According to the literature on financial markets, the concept of asymmetry refers to the idea that 
the impacts of good and bad news on the price and volatility of a given asset are different. Many 
approaches have been used to account for the asymmetry in the volatility, including copulas theory, 
smooth transition GARCH models and high-frequency data, among others. However, the high-
frequency data approach, among others, may suffer from some drawbacks, such as microstructure 
noise in high-frequency data, the jump component contained in stock returns, and the problem of 
availability of high-frequency data for most financial markets. To overcome these drawbacks, we 
follow [15] by inferring the good and bad volatilities of the RE stock indices based on the GJR-
GARCH model developed by [36]. This model exhibited a robust performance in financial time series 
volatility modelling. This is attributed, among others, to its ability to incorporate different volatility 
features, including volatility clustering and the leverage effect.  

Let 𝑅  be the return of oil price or a regional RE index at time 𝑡. We define the ARMA(𝑝, 𝑞)-
GJR-GARCH(1,1) model by the following set of equations: 

𝑅 = 𝜇 + 𝜀 ,     𝜀 = ℎ 𝑧 ,         (1) 
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ℎ = 𝑤 + 𝛼𝜀 + 𝛾𝐼 𝜀 + 𝛽ℎ ,        (2) 

𝜀 \𝛺 ~𝑆𝑘𝑡( 𝜀 , 𝜂, 𝑣),          (3) 

where 𝐼 =
  1 𝑖𝑓  𝜀 < 0 
 0 𝑖𝑓  𝜀 ≥ 0

.         (4) 

ARMA stands for the AutoRegressive Moving Average process and GJR-GARCH is the Glosten 
Jagannatan Runkle-Generalized AutoRegressive Conditional Heteroscedasticity model. The term 𝜇  
follows an ARMA(𝑝,𝑞) process with orders 𝑝 and 𝑞, which will be determined based on the AIC 
information criterion, while 𝜀  is the error term. Equation (1) allows for a filtered series 𝑧 =  𝜀 /ℎ  
from the return series 𝑅 . Equation (2) describes the dynamics of conditional volatility following a 
GJR-GARCH process, which accounts for the volatility asymmetry. Furthermore, according to Eq (2), 
it is possible to distinguish the volatility series into two components: good volatility and bad volatility, 
following the sign of shock indicated by the error term. To account for the skewed and fat-tailed 
properties observed in the return series, we assume that the error term follows a Skewed Student-t 
distribution Skt( 𝜀 , 𝜂, 𝑣), where ξ represents the asymmetry parameter (skewness), and 𝑣 represents 
the tail parameter (degree of freedom or Kurtosis). 

Based on Eq (2), one can infer the good and bad volatility series corresponding to the positive 
and negative shocks, denoted by ℎ  and ℎ , respectively, as follows:  

ℎ = ℎ 𝕀[ ]

ℎ = ℎ 𝕀[ ]
,          (5) 

where ℎ = ℎ +  ℎ . 

3.2. The TVP-VAR approach 

[34] suggested that connectedness measures derived from the TVP-VAR model are preferred over 
the rolling-window approach, owing to the benefits of analyzing VAR modelling from a time-varying 
standpoint. This methodology employs the TVP-VAR model proposed by [32] in conjunction with the 
connectedness approach developed by [27,28]. This study employs the abovementioned approach to 
examine the spillovers between the different prices. Let 𝑌  be (𝑁 × 1) a vector (N=4) of good oil 
price volatility, and the three regional RE indices measuring good volatilities. The TVP-VAR(𝑝) 
model is mathematically represented in the following manner: 

𝑌 = 𝑐 +  ∑ 𝛷 , 𝑌 + 𝑢 ; 𝑢 ∖ 𝛺 ∽ 𝑁(0, 𝑆 ),     (6) 

𝛷 = 𝛷 + 𝑣 ; 𝑣 ∖ 𝛺 ∽ 𝑁(0, 𝑅 ).      (7) 

Similarly, for the bad volatilities vector, denoted by 𝑌 , the TVP-VAR(𝑝) model is defined by: 

𝑌 = 𝑐 +  ∑ 𝛷 , 𝑌 + 𝑢 ; 𝑢 ∖ 𝛺 ∽ 𝑁(0, 𝑆 ),    (8) 

𝛷 = 𝛷 + 𝑣 ; 𝑣 ∖ 𝛺 ∽ 𝑁(0, 𝑅 ),       (9) 

where 𝑌  and 𝑌  are a (𝑁 × 1) lagged vector at order 𝑖  of 𝑌  and  𝑌 , respectively. 𝑢  and 
𝑢  denote the error terms, which are supposed to be normally distributed with time-varying variance-
covariance matrices 𝑆  and 𝑆 , respectively. 𝛺  and 𝛺  are the information set available at 
𝑡 − 1 provided by good and bad volatility, respectively. 𝛷  and 𝛷  are (𝑁 × 𝑁𝑝) time-varying 
parameter matrices. The time-varying feature of these two matrices is described by Eqs (7) and (9) as 
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a random walk. The vector with the error terms denoted 𝑣  and 𝑣 , respectively, are also supposed 
to be normally distributed.  

3.3. Good and Bad volatility spillover measures 

In order to define spillover measures based on TVP-VAR following the methodology developed 
by [27,28], it is important to transform the VAR model into a moving average representation, as 
recommended by [47,48]. Let 𝑌  be the good or bad volatility vector. This representation is expressed by:  

𝑌 = 𝐴 𝑢 ,           (10) 

where the matrix 𝐴 = (𝐴 , 𝐴 , , … 𝐴 , )′ is a (𝑁 × 𝑁𝑝) matrix of parameters, which verifies 
𝐴 , = 𝐼  if 𝑖 = 0 and 𝐴 , = ∑ 𝛷 , 𝐴 ,   if 𝑖 ≠ 0. 

Based on Eq (10), one can decompose the forecast error variance as recommended by [27,28]. 
We use the generalized impulse response functions (GIRF) and the generalized forecast error variance 
decompositions (GFEVD) to compute the spillover index. The GIRF, denoted by 𝛹 , (𝐽), can be 

obtained via the following equations: 

𝐺𝐼𝑅𝐹 𝐽, 𝛿 , , 𝛺 = 𝐸 𝑌 {𝑢 𝑗, 𝑡 = 𝛿 , , 𝛺 − 𝐸 𝑌 {𝛺 𝑡 − 1 ,    (11) 

𝛹 , (𝐽) = 𝑆
,

𝐴 , 𝑆 𝑢 , ,         (12) 

where J represents the forecast horizon and 𝛿 ,  is the selection vector, which is equal to 1 on the 
𝑗 position, and 0 otherwise. The GFEVD, denoted by 𝛱 , (𝐽), can be written as: 

𝛱 , (𝐽) =
∑

,
,

∑ ∑
,
, .         (13) 

The expression 𝛱 , (𝐽)  can be understood as the proportion of variance that one variable 

contributes to the others. The GFEVD verifies ∑ 𝛱 , (𝐽) = 1 and ∑ 𝛱 , (𝐽), = 𝑁. Therefore, 

the GFEVD allows the construction of different connectedness indices.  

4. Materials 

The present research investigates the (a)symmetric volatility spillover between oil prices and 
renewable energy stocks. Unlike most works on the subject, the empirical analysis intends to check 
the regional interdependence between various renewable energy stock markets. To do so, it employs 
daily data on the WTI oil prices and the NASDAQ OMX Green Economy indices across different 
regions: the United States, Asia and Europe. The empirical research focuses on these three indexes as 
stand-ins for the renewable energy markets in each geographic region. The data were collected on a 
daily basis, spanning from November 10, 2010, to November 15, 2022. The WTI oil price series is 
obtained from the US Energy Information Administration, and the RE data is extracted from 
investing.com. By omitting data points during which at least one market was closed, a total of 3010 
observations were obtained. The evolution of the return and volatility of oil prices and the RE index 
of each region are presented in Figure 1. 
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Figure 1. Return and volatility of oil prices and regional RE stock indices. 

A close look at both returns and volatility series shows that the oil prices and RE stock markets 
exhibit high variability periods followed by stable phases supporting the effects of some political and 
economic events on the oil and RE stock markets. The volatility of oil prices was notably pronounced 
during the 2015 oil price collapse and the COVID-19 pandemic. Concerning the regional stock indices 
of RE, it can be observed that the Asian stock index displays a higher degree of volatility than the 
European and US stock indices. It can be observed that the COVID-19 outbreak has significantly 
affected both returns and volatility series across all regions. To obtain the good and bad volatility series, 
we estimate the AR(1)-GJR-GARCH (1,1) model and extract the total conditional volatility series 
based on Eq (2). Then, the good and bad volatility series are obtained based on Eq (5). The descriptive 
statistics of the return, full, good and bad volatility series are provided in Table 1. The US RE stock 
market has the highest return (0.048%), while the Asian RE stock market exhibits a negative return 
(−0.001%). The oil market displays the highest level of risk, as evidenced by its variance value of 
7.334%. All returns series have non-null skewness and kurtosis significantly different from 3, 
indicating that series deviates from the normal distribution. 
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Table 1. Descriptive statistics and preliminary tests for returns and volatilities. 

 Oil Asia Europe US 
Panel A: Returns     

Mean 0.0210 −0.0010 0.0160 0.0480 
Variance 7.3340 1.2530 1.5950 1.8480 
Skewness 0.113** −0.439*** −0.791*** −0.565*** 
Ex.Kurtosis 25.281*** 5.663*** 9.809*** 8.568*** 
JB 0.0000*** 0.0000*** 0.0000*** 0.0000*** 
ERS −11.976*** −9.823*** −13.770*** −19.304*** 
Q(10) 25.532*** 25.165*** 22.418*** 72.870*** 
Q2(10) 1033.970*** 207.183*** 415.863*** 2022.191*** 
Panel B: Volatility       
Mean 7.2260 1.2890 1.6810 1.9920 
Variance 251.2910 1.4400 6.7010 14.9560 
Skewness 7.709*** 3.968*** 7.906*** 8.762*** 
Ex.Kurtosis 67.802*** 24.449*** 89.321*** 104.471*** 
JB  0.0000*** 0.0000*** 0.0000*** 0.0000*** 
ERS −6.037*** −9.838*** −9.402*** −8.464*** 
Q(10) 13575.094*** 9802.638*** 11594.670*** 12505.740*** 
Q2(10) 10182.280*** 5542.408*** 7588.899*** 8966.033*** 
Panel C: Good volatility        
Mean 3.8930 0.6550 0.8930 1.1060 
Variance 157.6900 1.0180 4.7700 9.6070 
Skewness 10.126*** 3.220*** 9.589*** 10.833*** 
Ex.Kurtosis 120.372*** 15.970*** 134.818*** 167.842*** 
JB  0.0000*** 0.0000*** 0.0000*** 0.0000*** 
ERS −12.047*** −12.229*** −9.421*** −9.839*** 
Q(10) 3018.774*** 801.169*** 2118.537*** 2261.264*** 
Q2(10) 3039.616*** 1887.965*** 2409.057*** 2062.904*** 
Panel D: Bad volatility        
Mean 3.3330 0.6330 0.7880 0.8860 
Variance 119.5590 1.2520 3.3400 7.3090 
Skewness 10.212*** 4.525*** 8.835*** 11.544*** 
Ex.Kurtosis 127.079*** 34.618*** 130.662*** 190.531*** 
JB  0.0000*** 0.0000*** 0.0000*** 0.0000*** 
ERS −11.512*** −11.761*** −8.966*** −10.142*** 
Q(10) 2174.138*** 1777.100*** 1464.114*** 2002.040*** 
Q2(10) 1594.155*** 2628.583*** 996.457*** 1796.430*** 

JB is the p-value of the Jarque-Bera normality test, while ERS is the 
Elliot-Rothenberg-Stock unit root test. Q(10) and Q2(10) are the Ljung-

Box tests for 10th-order serial correlations for levels and squared 
volatilities series, respectively. *** and ** indicate the statistical 

significance at the 1 and 5% levels, respectively. 
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Moreover, the Jarque-Bera p-values are null for all returns series, allowing the rejection of the 
normality hypothesis. The ERS unit root test rejects the null hypothesis of a unit root for all considered 
series. Furthermore, the Ljung-Box test statistics results suggest the presence of serial correlations in 
both the oil and RE stock markets. This suggests that a GARCH model is suitable for accurately 
modelling the data. Regarding the full and decomposed conditional volatility series, results show that 
oil prices exhibit the highest mean conditional volatility. These findings remain valid when the 
volatility is decomposed into good and bad volatilities. Additionally, the average values of good 
volatility tend to be higher than those of bad volatility. We also observe that total, good and bad 
volatility series have skewness and kurtosis excess different from the normal distribution. This result 
is confirmed by the Jarque-Bera test, rejecting the normality hypothesis for oil and RE stock indices.  

5. Empirical results  

5.1. Symmetric volatility spillover results 

To explore the volatility spillovers among oil prices and regional RE stocks, we employ the TVP-
VAR based on the spillover indices of [27,28]. Before distinguishing positive and negative volatilities, 
we check the spillover effects within the overall conditional volatility as a benchmark analysis. Table 2 
reports the estimation outcomes of the average dynamic spillover measures among oil prices, Asian, 
European and US RE stock index volatility. The results are derived from a TVP-VAR model that 
employs a lag length of order one chosen through the AIC and a 10-step-ahead forecast error. 

Table 2. Connectedness matrix—full volatility. 

 Oil Asia Europe US FROM 
Oil 79.12 2.42 6.86 11.6 20.88 
Asia 1.67 73.8 13.12 11.42 26.2 
Europe 3.28 6.1 65.48 25.13 34.52 
US 5.43 4.48 21.19 68.9 31.1 
TO 10.39 13.01 41.16 48.15 112.7 
INCLUDING OWN  89.51 86.8 106.64 117.04 TCI 
NET -10.49 -13.2 6.64 17.04 28.18 
The variance decompositions are based on 10-step-ahead forecasts and a TVP-VAR lag length of 

order one based on AIC. ‘TO’: directional connectedness transmitted to all other variables; ‘FROM’: 
directional connectedness received from all other variables; ‘INCLUDING OWN’: Sum of ‘TO’ 
index and the diagonal element; ‘NET’: difference between the two directional connectedness; 

‘TCI’: total connectedness. 

The data presented in the table demonstrate that the own-volatility spillover explains the highest 
share of forecast error variance. This is evident from the higher values of the diagonal elements 
compared to other elements (from 65.48% for the European index volatility to 79.12% for oil price 
volatility). On average, the TCI is medium (about 28%). The American RE stock index contributes 
more to other markets (48.15%), followed by the European index (41.16%). The oil market exhibits a 
relatively low level of shock transmission to the overall system, accounting for 10.39%. On the other 
hand, the European RE stock market receives the highest amount of information (about 35%), while 
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the oil market is the lowest receiver of shocks at only 20.88%. The bottom line in Table 2 reports the 
total net spillovers, defined as the difference between the transmitted and received spillovers by oil 
prices and each regional RE stock index. A surprising result emphasizes that the oil market is a net 
receiver of volatility shocks. This suggests that this market is more susceptible to receiving spillovers 
than transmitting them. These findings support the findings of [24,45], who showed that the oil market 
is a net receiver of shocks from RE markets. A plausible explanation of such results can be attributed 
to the expanding RE market, which significantly affects the strategic energy markets like oil. Indeed, 
the volatility of RE stocks may indirectly impact crude oil price volatility through some channels, such 
as investor sentiment operating in these markets, the energy market competition1 and government 
policies and regulations2, among others. The findings also suggest that, among the RE stock indices, 
the Asian RE stock market is found to be a net receiver of shocks, while the European and US markets 
are, on average, net transmitters of shocks.  

The findings discussed above are derived from the averaged analysis conducted over the entire 
sample period. It is worth noting that such an analysis may hide the dynamic nature of spillover effects 
and could not identify the underlying mechanism that connects oil prices and RE stock market 
volatilities. In addition, static spillover analysis assumes that the degree of volatility transmission is 
constant over time, ignoring the potential changes in the magnitude and direction of spillover effects. 
In addition, the level of volatility and channels through which it propagates can vary significantly over 
different periods. Consequently, analyzing time-varying volatility spillover rather than static spillover 
seems essential, as it allows for a more accurate understanding of how volatility transmits between the 
different markets over time. Figure 2 plots the evolution of the total connectedness index (TCI) for the 
full conditional volatility spillovers of oil prices and the different regional RE stocks. Significant 
fluctuations in the total connectedness index are observed throughout the full period, indicating that 
the volatility spillover is subject to temporal variations. Therefore, investors actively involved in oil 
and RE stock markets are recommended to assess their portfolios and make dynamic decisions over 
time. Following Figure 2, it is evident that the TCI exhibited higher levels during major economic and 
political events that impacted the oil and RE markets. Indeed, total volatility spillovers decreased from 
more than 40% to 10% following the 2015 Paris Climate Agreement on climate change, which 
mandated, among others, the gradual substitution of fossil fuel–based energy systems with RE sources. 
Such an agreement may indirectly influence the volatility spillovers between the two markets since it 
aims to reduce greenhouse gas emissions and promote the transition to a low-carbon economy. 

 

 
1 The adoption of RE sources has the potential to generate competition for conventional fossil fuel energy 
sources, including oil. More precisely, the increased deployment of RE technologies, such as solar and wind 
power, can reduce the overall oil demand, particularly in the power generation sector. 
2 RE stock volatility can be influenced by changes in government policies and regulations, such as subsidies, 
tax incentives and energy transition targets. These policies can affect the growth and profitability of RE 
companies, which, in turn, might impact their stock volatility. 
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Figure 2. Dynamic total connectedness index (TCI). 

The highest volatility spillovers are approximately 65% and were observed during the initial 
phase of the COVID-19 outbreak, coinciding with the official declaration of the pandemic status of 
COVID-19. Additionally, there are several other significant peaks in the total spillover index. These 
peaks correspond with major events, such as the intensification of the European debt crisis in the third 
quarter of 2011, the global stock market crash in the third quarter of 2015, the vote in favour of Brexit 
in the second quarter of 2016 and the US stock market crash in the first quarter of 2018. It is worth 
mentioning that most of the peaks depicted in Figure 2 align with the findings of [24]. This result is 
unsurprising because oil prices and RE stock markets are interlinked over stress periods, and crisis 
periods increase the interdependence of global stock markets [49]. The findings can also be attributed 
to the impact of the COVID-19 outbreak and its rapid global propagation, which led to a decline in 
economic activity and elicited unfavourable shifts in investor sentiment. These factors can significantly 
influence investment choices and, in turn, stock market valuations [50]. In addition, during the initial 
phase of the COVID-19 outbreak, global financial markets experienced significant volatility and 
disruptions. The results above are consistent with prior research by [24,51], which revealed a 
significant effect of the COVID-19 outbreak-induced uncertainty on the RE stock market. At the same 
time, [52,53], among others, have also proven the significant impact of the COVID-19 outbreak on the 
oil market. Moreover, [54] showed that the degree of connectedness between crude oil markets 
increased during COVID-19. 

We then compute the time-varying spillover indices “TO” and “FROM”, defined as the amount of 
volatility transmitted and received by each RE and oil price volatility to and from the system, respectively. 
The spillover indices “TO” and “FROM” results in Figures 3 and 4 provide evidence of time-varying 
fluctuations of the two indices.  
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Figure 3. Dynamic directional connectedness indices (TO). 

 

 

Figure 4. Dynamic directional connectedness indices (FROM). 

The US renewable energy stock market is the highest transmitter over almost the entire study 
period. Moreover, the highest amount of volatility shocks emitted to the system was in 2015, when the 
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Paris Climate Agreement occurred and in 2018, when solar-plus-storage systems gained wide 
popularity in the US. In addition, some other factors may explain the fact that the US RE stock market 
acted as a net transmitter of shocks, including the robust economic expansion and the rising value of 
the US Dollar experienced in 2018. Oil price volatility appears to be the lowest transmitter of shocks 
to others in almost all periods, with the highest values between mid-2011 and mid-2014. Finally, the 
graphs show that the European RE stock index volatility transmitted its maximum amount of shocks 
over the first stage of the last COVID-19 pandemic in 2020. The above results suggest that the 
transmission of volatility shocks is done differently among the energy sector (brown or green energy) 
and regions. Some factors can make this difference in the shock transmission regarding the region, 
including policy frameworks, regulatory environments, market conditions, technological 
advancements and regional energy mix. Regarding the time-varying “FROM” volatility spillover index 
in Figure 4, results show that the volatility spillover among oil prices and RE is time-varying, justified 
by periods of high connectedness followed by low connectedness periods. By comparing the different 
regions regarding the received volatility shocks, results from Figure 4 suggest that the European RE 
market is the best at receiving volatility shocks, followed by the US index. The highest amount of 
shocks received was around the pandemic (about 50%). During this period, the highest amount of 
volatility shocks was received by the Asian RE stock market, with values exceeding 60%. The oil 
market experienced time-varying volatility spillover, with values ranging from less than 10% in 2014–
2015 to more than 60% at the onset of the health crisis in March 2020. Moreover, the Asian RE stock 
market appears to be the best receiver of volatility shocks during the outbreak, justified by the fact that 
COVID-19 originated in China, which has the most developed RE market. This market faced 
significant volatility and uncertainty when the pandemic hit in early 2020. The RE sector in China was 
not immune to these events, and many RE sector stocks experienced sharp declines in value as 
investors reacted to the economic downturn and uncertain prospects. 

To better visualise the volatility spillovers transmitted and received by each RE market and oil 
market, Figure 5 provides the time-varying “NET” spillover indices. The results suggest that the Asian 
RE stock index is a net receiver of volatility during most of the study period. A plausible explanation 
of these results is that volatility in European and US renewable stock markets exerts volatility 
transmission to the Asian RE stock market to some extent. This is because the RE industry is a global 
market, and developments in one region can affect others. For instance, if there is positive (negative) 
news or strong (poor) performance in the European or US RE sector, it could generate investor interest 
and capital inflows (outflows). This increased demand may lead to higher valuations and potentially 
increased volatility in the Asian RE stock market as investors reallocate their investments towards RE 
markets that are performing better. 
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Figure 5. Dynamic NET connectedness. 

The oil market is a net receiver of volatility throughout the study period, except for some limited 
periods during the 2014 and pre-COVID-19 periods. These results corroborate those of [45], who 
analysed the volatility spillover between WTI crude oil, gold and the Chinese stock markets of new 
energy vehicles using the TVP-VAR. Moreover, our results are in line with [24], who studied the 
volatility spillover among WTI crude oil prices, US, European and Asian green energy stocks. These 
studies confirmed that the oil market is a net receiver of volatility from the renewable energy market. 
Factors like market dynamics and investor sentiment can explain these findings. Furthermore, 
government policies may have a substantial contribution to the occurrence of this situation in the oil 
market. While political pressure, subsidies, ESG initiatives and taxes can enhance the impact of 
renewable energy dynamics on the oil market, they can also lead to unintended adverse consequences 
and increased market volatility.  

On the other hand, the European and US RE markets switch between being net transmitters and 
receivers of shocks. The US RE stock market is a net transmitter over most of the period. This result 
is expected because the US renewable energy stock market is the most developed and mature, making 
it the most influential among the others. Moreover, the findings show that the European RE stock 
market is a net transmitter between 2018 and 2022. Possible explanations for this finding include the 
occurrence of Brexit, trade tensions with the United States, and political events in some European 
countries. These factors could contribute to increased financial market volatility in Europe. Figure 6 
presents the dynamic pairwise spillover from each variable to each other. A positive (negative) value 
indicates that the variable transmits (receives) more than it receives (transmits).  
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Figure 6. Dynamic pairwise connectedness. 

Focusing on the first column of Figure 6, it appears that oil prices received volatility shocks from 
all regional RE markets during almost the entire study period. These findings are consistent with 
previous research, including [17], who used wavelet and non-linear Granger causality to conclude that 
the impact of RE stocks on oil prices is more significant than the opposite effect. This can be attributed 
to the substantial expansion and attention devoted to the RE sector in recent years as a potential 
alternative that reduces reliance on fossil fuels. On the other hand, RE sources, such as solar, wind and 
hydroelectric power, are typical alternatives for fossil fuels, particularly oil. Therefore, the growing 
demand for renewables leads to a decline in the demand for oil, which may lead to lower oil prices 
over the long term. To enhance the understanding of spillover and pairwise directions, Figure 7 depicts 
the network connectedness between the full volatilities of different RE indices and oil prices. Among 
the three considered regional RE indices, the US RE stock market is a net transmitter to the oil market 
and the two other RE stock markets (Europe and Asia). Furthermore, the European RE stock market 
transmits shocks only to the oil market and the Asian RE stock market. Regarding the Asian RE stock 
market, results show that it is still, on average, a receiver of shocks from the two other RE stock 
markets. A potential explanation of these findings is that the Asian RE market is underdeveloped 
compared to the United States and Europe. This is despite China being considered the largest producer 
of RE globally and the largest consumer of fossil fuels.  
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Figure 7. Network connectedness for the full volatility spillover. 

5.2. Asymmetric volatility spillover results  

To thoroughly analyse the volatility spillover between oil prices and RE stock markets across 
various regions, we estimate the different spillover indices of [27,28] based on the TVP-VAR (1), but 
this time by considering the good and bad volatility. The averaged indices are provided in Table 3. 
The table shows that, on average, the spillovers for good and bad volatilities are not very different 
from the total conditional volatility spillovers. Indeed, the TCI is 32.52% for good volatility against 
32.31% for bad volatility. Furthermore, the contributions received or transmitted by each market to 
the system exhibit slight variations, supporting the idea that volatility spillovers tend to be symmetric. 
Oil and Asian RE markets are net receivers of both good and bad volatility, while the other markets 
are net transmitters. The observed closed values among good and bad volatilities (indicating symmetric 
spillovers) can be because the spillover effects are considered in averaged values, which could hide 
asymmetry occurring in different specific periods.  

To enhance the understanding of volatility spillover, we consider the time-varying spillover 
indices and compute the asymmetry as the difference between good and bad volatility indices. The 
dynamic TCI for both good and bad volatilities are provided in Figure 8. It can be observed that the 
TCI for good (TCI_g) and bad (TCI_b) volatility exhibits high values, followed by medium levels. 
Despite the symmetric transmission detected in the case of averaged spillover indices, the figure 
generally shows different patterns, supporting the asymmetric and time-varying character. Particularly, 
the TCI values were somewhat high during 2015, 2018 and 2020, reaching more than 60% at the 
beginning of the COVID-19 crisis over the first quarter of 2020. On the other hand, the asymmetry 
measure (TCI_As) clearly shows an asymmetric behaviour in total volatility connectedness, which 
cannot be observed in the static spillover measure, supporting the usefulness of a time-varying analysis 
instead of a static one. The highest positive values were observed between 2014 and 2016, indicating 
that good volatility is transmitted more than bad volatility. After that, a negative asymmetry is observed 
until mid-2018, supporting that bad news transmits more market risk than good news. The same pattern 
is observed from the beginning of the COVID-19 pandemic until the first quarter of 2021 with the 
implementation of the vaccination program. The negative asymmetric transmission observed during 
the COVID-19 crisis is mainly due to the propagation of the pandemic. Indeed, during turmoil periods, 
bad news dominates the good ones, suggesting that bad volatility is transmitted more than good 
volatility. On the other hand, the health crises caused a risk, especially for small and medium 
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companies operating in the RE sector. More specifically, the pandemic resulted in the postponement 
or cancellation of RE projects due to the measures implemented by many countries, leading to 
heightened uncertainty in economic activity, particularly in implementing RE projects. Moreover, the 
economic dysfunction that followed the beginning of the health crisis suggested a decreased demand 
for energy. Therefore, the RE sector is affected because it is still used only for limited domestic uses 
compared to other economic activities, including industry and transport.  

Table 3. Asymmetric connectedness matrix and asymmetry measure. 

 Oil Asia Europe US FROM 
Good volatility    

Oil 73.97 3.26 8.83 13.94 26.03 
Asia 5.14 67.05 10.79 17.03 32.95 
Europe 8.03 4.00 62.50 25.47 37.50 
US 11.22 3.57 18.80 66.41 33.59 
TO 24.39 10.83 38.42 56.43 130.08 
INCLUDING OWN  98.36 77.88 100.92 122.85 TCI 
NET −1.64 −22.12 0.92 22.85 32.52 

Bad volatility    

Oil 73.49 3.91 9.46 13.14 26.51 
Asia 4.86 67.66 11.28 16.20 32.34 
Europe 6.89 4.84 63.59 24.67 36.41 
US 10.28 4.35 19.35 66.02 33.98 
TO 22.04 13.10 40.08 54.01 129.23 
INCLUDING OWN  95.53 80.76 103.68 120.03 TCI 
NET −4.47 −19.24 3.68 20.03 32.31 

Asymmetry    

Oil 0.48 −0.65 −0.63 0.80 −0.48 
Asia 0.28 −0.61 −0.49 0.83 0.61 
Europe 1.14 −0.84 −1.09 0.80 1.09 
US 0.94 −0.78 −0.55 0.39 −0.39 
TO 2.35 −2.27 −1.66 2.42 0.85 
INCLUDING OWN  2.83 −2.88 −2.76 2.82 TCI 
NET 2.83 −2.88 −2.76 2.82 0.21 

The variance decompositions are based on 10-step-ahead forecasts and a TVP-VAR lag 
length of order one based on AIC. ‘TO’: directional connectedness transmitted to all 

other variables; ‘FROM’: directional connectedness received from all other variables; 
‘INCLUDING OWN’: Sum of ‘TO’ index and the diagonal element; ‘NET’: difference 

between the two directional connectedness; ‘TCI’: total connectedness. 

During the COVID-19 pandemic, it was observed that bad volatility was transmitted more than 
good volatility between the oil market and RE stock markets. This phenomenon can be attributed to 
several factors. First, the pandemic has caused economic uncertainty, resulting in a decrease in global 
oil demand and a sharp decline in oil prices. The renewable energy sector has also experienced 
decreased profitability and investment and has shown a higher sensitivity to negative news and 
uncertainties. Therefore, RE market investors exhibited an increased aversion to risk, resulting in a 
higher propagation of bad volatility. Additionally, the global supply chains were disrupted by the 



30658 

AIMS Mathematics  Volume 8, Issue 12, 30639–30667. 

pandemic, which impacted both the oil and renewable energy sectors. This resulted in fluctuations in 
oil prices and disruptions in the supply chains of the renewable energy sector. These disruptions 
increased uncertainty and amplified the transmission of negative volatility among markets. In addition, 
governments and policymakers encountered many challenges throughout the pandemic. These 
challenges required them to shift their focus and allocate resources to manage the health crisis and 
stabilize economies effectively. This shift in priorities could have reduced focus on RE policies and 
incentives, further exacerbating the transmission of bad volatility from the oil market to the RE sector. 

 

Figure 8. Dynamic asymmetric total connectedness index (TCI). 

Regarding the directional asymmetric spillovers between the different markets, results emphasize 
a slight difference between the case of symmetric and asymmetric spillovers. The findings supporting 
the symmetric feature characterizing the volatility spillovers should not be relied upon  and cannot be 
considered a conclusion. In this case, further analysis in a time-varying context should be considered 
to provide complete information regarding RE stocks volatility transmission. Figure 9 presents the 
good and bad volatility transmitted by the system to each RE regional index. In the third column, we 
also provide the asymmetry measure (in blue). Results show evidence of asymmetric behaviour in the 
volatility transmission. This pattern is justified by a positive asymmetry followed by a negative one. 
Moreover, this asymmetry is more pronounced in European and US RE stock markets, which receive 
and transmit more than the others. Particularly, the asymmetry in the European market reached its 
maximum positive values in 2015, when the Paris Agreement was signed. Following this event, many 
countries have made ambitious commitments to reduce emissions and shift to a low-carbon economy. 
Therefore, RE sources hold a significant position in different economies, resulting in the appreciation 
of RE stock markets. Indeed, the Paris Agreement has encouraged investment in RE by transmitting a 
market signal, promoting climate diplomacy, reinforcing the urgency of action, identifying investment 
opportunities and supporting the accelerated deployment of renewables. 
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Figure 9. Dynamic asymmetric directional connectedness indices (TO). 

Figure 10 plots the index “From” for good and bad volatility and the asymmetry index (in blue). 
The asymmetry index indicates different periods of positive asymmetry followed by negative ones, 
showing a dynamic and asymmetric feature in the volatility transmission. This finding implies that the 
sources of transmission change among the types of news. Therefore, investors and policymakers 
operating in these markets should pay more attention to this reality. Moreover, the examination of 
Figure 10 shows that the COVID-19 period generally induced a negative asymmetry in the volatility 
transmission, implying that the bad news was dominant during this period due to the increased 
uncertainty. After that, a positive asymmetry is observed over the vaccination phase, indicating that 
the good news becomes more influential than the bad news. Furthermore, the observed positive 
asymmetry during the vaccination phase can be attributed to the asymmetry in the impact of news, the 
shock value of good news during crises, changes in market sentiment and shifts in risk appetite.  
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Figure 10. Dynamic asymmetric directional connectedness indices (FROM). 

To be more intuitive in visualising the good and bad volatility transmission, we analyse the net 
transmission index and asses the asymmetry index for oil price and each regional RE stock market 
volatility. As shown in Figure 11, the US RE market is a net transmitter of good and bad volatilities, 
and the Asian market is a net receiver during the period. However, the oil and European RE stock 
market switched between a net transmitter and a net receiver of good and bad volatilities. More 
specifically, by comparing good and bad volatility transmission in the oil market and the US RE stock 
market, we find that good volatility is transmitted more than bad volatility in almost the entire sample 
period, suggesting that good news is more frequent in the risk spillover of the oil market. However, 
for Asian and European RE stock markets, the results show a different picture in which the bad news 
dominates the good news most of the time. This result can be explained by the US RE markets being 
more developed and investors being more experienced. Furthermore, the US has emerged as a leader 
in renewable energy innovation and technology development. This leadership position has the potential 
to shape and impact the renewable energy markets, including those in Europe and Asia. In addition, 
US institutional investors and funds may have holdings in European and Asian RE stock markets as 
part of their stock market investments. Hence, changes in investment strategies within the US can 
result in spillover effects on these markets. On the other hand, by focusing on COVID-19, we observe 
different patterns regarding the asymmetry in the volatility spillovers. Indeed, the US and oil markets 
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exhibit a positive asymmetry, while the other markets transmit with a negative asymmetry (bad 
volatility transmission is higher than good volatility).  

 

Figure 11. Dynamic asymmetric NET connectedness. 

Figure 12 presents the network connectedness for good and bad volatility. Since the two networks 
provide an averaged picture of the interaction between the considered markets, there are no significant 
differences regarding the good and bad volatility transmission. The difference between good and bad 
volatility transmission can be observed in the time-varying spillovers more than in static spillovers.  
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Figure 12. Network connectedness for the good and bad volatility spillovers. 

6. Policy implications 

Findings regarding the good and bad volatility spillovers between the oil market and regional RE 
stock markets are important and carry various policy implications for investors and policymakers.  

First, regarding the diversification and risk management issues, the low spillover effects of good 
and bad volatility transmission imply that investors should emphasize the importance of diversifying 
different energy assets in the same portfolio. Such diversification may lead to a significant share of 
RE, which can help mitigate the risks associated with fluctuations in oil prices.  

Second, the results indicate that policymakers should consider implementing supportive 
mechanisms to mitigate the bad volatility spillover effects and promote the growth of the RE sector.  
This can include providing financial incentives, such as tax credits, subsidies and grants, to RE 
companies. Indeed, the existing policies may mitigate some of the risks and volatility in the RE sector. 
However, it is important to acknowledge that the RE sector can still experience volatility even with 
existing policies, especially during market and/or economic uncertainty. Furthermore, the 
effectiveness of risk mitigation can be influenced by the magnitude and structure of incentives, which 
may vary from region to region. Policymakers should adjust their policies to ensure they remain 
effective in promoting the development and stability of the RE sector.  

Third, given the spillover effects between oil prices and RE stock volatilities in different regions, 
policymakers should emphasize international cooperation and collaboration in the RE sector. 
Collaborative efforts can include knowledge sharing, joint research and development initiatives, and 
coordinated policy frameworks. Through collaborative efforts, countries may mitigate the adverse 
effects of fluctuating oil prices on the performance of RE stocks, thereby promoting a more solid and 
environmentally sustainable energy framework.  

Fourth, given the dynamic spillovers of volatility that change from one period to another, energy 
market operators should conduct dynamic risk assessments and develop contingency plans to mitigate 
the potential adverse effects of oil price volatility on RE stocks. This involves identifying 
vulnerabilities and designing strategies to address market fluctuations. Policymakers can effectively 
mitigate disruptions and foster the growth of the RE sector by proactively anticipating potential 
adverse volatility spillovers.  

Finally, reducing the asymmetry of volatility transmissions between energy markets is a complex 
challenge that requires a combination of monetary, fiscal and regulatory policies. In this way, 
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policymakers can implement a diversified energy mix and investment strategies, maintain and enhance 
policies that support the renewable energy sector, and develop and implement climate resilience plans. 
While mitigating the adverse effects of volatility spillovers from oil to the RE sector is important, 
policymakers should also consider the potential spillovers in the other direction. It is essential to 
recognize that a developed renewable energy stock market and a successful transition to cleaner energy 
sources require careful consideration of the interactions between traditional and renewable energy 
markets. By adopting proactive measures and fostering a supportive policy environment, policymakers 
can create a resilient and sustainable energy system that is less reliant on oil and more resilient to 
market fluctuations. 

7. Concluding remarks 

In conjunction with the rapid growth of the renewable energy sector and the implementation of 
policies aimed at facilitating the shift towards environmentally sustainable economies, there has been 
a surge of interest in examining the interplay between conventional and clean energy sources. The 
analysis of good and bad volatility spillovers between stock indices of RE and crude oil prices holds 
significant importance. In this context, the present study aimed to investigate the symmetric and 
asymmetric volatility transmission between the oil market and RE stock markets across various regions, 
namely the United States, Europe and Asia. To do so, we employed a TVP-VAR framework based on 
the forecast error decomposition developed by [27,28]. 

Many conclusions can be drawn from the analysis. First, the full volatility connectedness between 
the considered variables exhibits a medium level of volatility spillover on average, amounting to 
approximately 28%. Moreover, the results show that the US renewable energy stock market is the most 
significant contributor to other markets, followed by the European market. The oil market has been 
identified as the least significant transmitter of shocks to the overall system. In addition, the European 
RE stock market receives the highest amount of shocks, while the oil price receives the least. An 
analysis of the net spillover index shows that the oil market and the Asian RE stock markets tend to 
receive volatility shocks. In contrast, the remaining markets (US and Europe) tend to transmit volatility 
shocks. In order to better understand volatility spillover, we proceeded with a time-varying spillover 
framework to estimate the amount of volatility shock transmission over time. The findings indicate 
evidence that the volatility spillover is subject to temporal variations in response to some major events. 
Specifically, the spillover effects are affected by the Paris Climate Agreement on climate change, the 
global financial crisis and the COVID-19 health crisis.  

To conduct an asymmetric analysis of the volatility spillover between oil prices and regional RE 
stock markets, we estimate the different spillover indices by separating the volatility series into good 
and bad volatility series. By analysing the averaged spillover indices, results emphasize similar total 
connectedness between the different variables. However, by extending the analysis to the time-varying 
framework, results show different patterns, supporting the asymmetric volatility transmission between 
oil prices and RE stock markets. The total connectedness was particularly high during 2015, 2018 and 
2020. Moreover, the highest positive values of the asymmetry measure were observed between 2014 
and 2016, indicating that good volatility is transmitted more than bad volatility. After that, a negative 
asymmetry is observed until mid-2018, supporting that bad news transmits more market risk than good 
news. The same pattern is observed from the beginning of the COVID-19 pandemic until the first 
trimester of 2021 with the propagation of the vaccination program. This study also focused on the 
pairwise asymmetric spillovers between the volatility of oil prices and regional RE stock markets. 
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Results show evidence of an asymmetric behaviour in the pairwise volatility transmission. Accordingly, 
positive asymmetry is found to be followed by a negative one. This asymmetry is more pronounced 
between oil prices in the European and US RE stock markets, which receive and transmit more than 
the others. The asymmetry in the European market notably reached its maximum positive values in 
2015, when the Paris Agreement was signed.  

Although the present study provided some novel insights into the static and dynamic (a)symmetric 
interconnections between the crude oil market and different renewable stock markets, it has some 
limitations and could be improved in future research. First, the analysis may be extended by 
considering alternative fossil fuels, including natural gas and coal. Second, the RE markets considered 
in the analysis could also be extended to include other markets. Finally, it would also be interesting to 
investigate the volatility spillover between the oil and renewable energy markets for different time 
horizons (short-, medium- and long-term). 
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