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1. Introduction

In the presence of an additional cubic nonlinearity, the Abel’s first-order differential equation bears
resemblance to Riccati equations and, consequently, it has the form

ẏ (t) = a (t) y3 (t) + b (t) y2 (t) + c (t) y (t) + d (t) , (1.1)

where t ≥ t0 ∈ R, the solution is y(t) ∈ R, and the continuous real functions are a, b, c, d ∈ C0 (R,R). It
is noteworthy that when d is uniformly zero and exactly one of the functions a and b is uniformly zero
as well, (1.1) transforms into a Bernoulli equation.

The system’s widespread importance originates from its significance in numerous applications in
physics [13, 17], fluids [19], control theory [28], finance [33], cosmology [8], cancer therapy [10],
biology [9] and the M-theory [37]. Owing to this relevance, numerous mathematical characteristics of
the system’s states have been studied in the literature. For instance, various analytical solutions have
been obtained in [16,18,29–31] under restricted conditions. Due to the nonlinearity of the system, it is
arduous to generalize these restricted forms. Therefore, many researchers have chosen to numerically
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solve the system as in [3–5, 32]. The presence of limit cycles in certain classes of the system has also
been conducted in [14, 27].

Stability analysis is an essential approach across a wide spectrum of fields within control
theory [2,6,24,35] and the qualitative theory of differential equations [11,26,34]. This analysis opens
the routes for additional knowledge on the behavior patterns of many real-world nonlinear
systems [12, 15, 20, 21, 36]. Despite the aforementioned importance of stability analysis in the various
fields, there is no existing study in the literature; according to our knowledge, that considers the
stability of the celebrated equation (1.1). Therefore, we have dedicated this study to explore that
topic. To delve further into the specifics, we focus on the positivity and boundedness of solutions and
study some asymptotic behaviors, including uniform stability, attractivity, asymptotic stability and
instability of the system in both its homogeneous and nonhomogeneous forms. For the prior notions,
we have obtained precise conditions that are related to the signs and asymptotic behaviors of the
time-varying coefficients. To demonstrate the proposed results, numerical simulations have been
conducted.

The paper is organized as follows. A compilation of mathematical results obtained from the
literature has been presented in section two. Conditions for the positivity of solutions have been
introduced in section three. The case when d is uniformly zero has been considered in section four in
which the instability and the asymptotic stability are investigated. Section five provides sufficient
conditions for the origin attractivity and the state convergence of the system. The conclusion section
is included at the end of the paper.

2. Background results

For a Lebesgue measurable function q : R+ → Rm, let ∥q∥∞ be the essential supremum of |q| on
R+ where | · | is the Euclidean distance [1]. A strictly increasing function γ ∈ C0 (R+,R+) is of class
K if γ(0) = 0. It belongs to class K∞ when we have lims→∞ γ (s) = ∞. Consider the n-dimensional
differential equation u̇ (t) = f (t, u (t)), t ≥ t0. We assume the continuity of the function f . Furthermore,
we assume that f (t, 0) = 0 for every t ≥ t0 (hence, the origin is an equilibrium point). The origin is
uniformly stable if there is some γ of class K and a positive number c; that is independent of t0, such
that for every initial value with |u0| < c, each solution is continuable on [t0,∞) and |u (t)| ≤ γ (|u0|) for
all t ≥ t0. The origin is locally attractive if for every t0 ∈ R, there is some c > 0; that may depend on
t0, such that for every |u0| < c, each solution is continuable on [t0,∞) with limt→∞ u (t) = 0. If the prior
conditions are satisfied for every u0 ∈ R

m, the origin is globally attractive. On the other hand, the zero
solution is asymptotically stable if it is stable and attractive [2].

In the presence of unbounded perturbations, the asymptotic stability of differential equations-based
systems is studied in the next theorem.

Theorem 2.1. [22, Theorem 6.2] Consider the first order class of differential equations
u̇(t) = f

(
t, u(t)

)
, where t ≥ t0, u(t) ∈ Rm is the state and f : [t0,∞) × Rm → Rm is a well-defined

function that satisfies f (·, 0) = 0. We suppose that all of the classical Carathéodory conditions are
satisfied (thus, there exists a solution that is locally absolutely continuous [2, Section 1.1]).
Furthermore, we assume that

(1). Two constants α, β exist such that β > α > 0 and (−1)α = −1. Moreover, there exist continuous
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real functions Q ∈ C0 (R,R), E ∈ C0 (R,R) such that Q(·) > 0, E(·) > 0, limt→∞
E(t)
Q(t) = ∞ and a

Lebesgue measurable function µ : R→ R that satisfies
∫ ∞

t0
Q (t) µ (t) dt = ∞.

(2). limt→∞Λ (t) = 0, where

Λ (t) =
Q (t) Ė (t) − Q̇ (t) E (t)

µ (t) (Q (t))
2β−α−1
β−α (E (t))

β−2α+1
β−α

, for almost all t ∈ (t0,∞). (2.1)

(3). For each solution u : [t0, ω) → Rm ([t0, ω) is maximal interval of existence), there exist positive
constants σ, c1, c2, δ and a continuously differential function V ∈ C1 (R × Rm,R+), satisfying

c1 |α|
σ
≤ V (t, α) ≤ c2 |α|

σ , for all t ∈ R and all α ∈ Rm, (2.2)

∂V (t, η)
∂η

∣∣∣∣∣
η=u(t)
· f (t, u (t)) +

∂V (t, η)
∂t

∣∣∣∣∣
η=u(t)

≤
(
−Q (t) Vα (t, u (t)) + E (t) Vβ (t, u (t))

)
µ (t) , (2.3)

for almost all t ∈ (t0, ω) with V (t, u (t)) < δ.

Then, there exists r > 0 such that for any |y(t0)| < r, each solution y(t) is continuable on [t0,∞)
and is bounded with |y (t)| ≤ σ

√
c2
c1
|y (t0)| for every t ∈ [t0,∞) (so that the origin is uniformly stable).

Additionally, the origin exhibits asymptotic stability.

Lemma 2.1. [22, Theorem 6.1] In addition to the results of the previous theorem, the mapping t →
V (t, u (t)) is monotonically decreasing.

The perturbation term E(·) in the inequality (2.3) is considered unbounded because it is assumed
that limt→∞

E(t)
Q(t) = ∞. In the next theorem, we consider bounded perturbations.

Theorem 2.2. [23, Theorem 2.1] For the differential equation u̇ (t) = E (t)−Q (t) β (u (t)), where t ≥ t0,
u ∈ R is the output, β ∈ C0 (R,R) exhibits strict increase with β (0) = 0, and e, q ∈ C0 (R,R+) are
continuous real-valued functions, if Q (·) > 0,

∫ ∞
t0

Q (t) dt = ∞ and limt→∞
E(t)
Q(t) = l ∈ Range {β}. Then

for every u(t0) ≥ 0, each solution u(t) is global with limt→∞ u (t) = β−1 (l).

An invariance principle derived from reference [25] is now being presented in the next proposition.

Proposition 2.1. [25, Proposition 3.2] For some ω ∈ (t0,∞], let v : [t0, ω) → R+ be a nonnegative
locally absolutely continuous function and let g1 ∈ C0 ([t0,∞),R+), g2 ∈ C0 ([t0,∞),R+) be nonnegative
continuous functions that satisfy the following

(1). v(t0) < g2 (t0).
(2). g1 (t) < g2 (t), for every t ≥ t0.
(3). One has

v̇ (t) ≤ ġ2 (t) for almost all t ∈ (t0, ω) with g1 (t) < v(t) < g2 (t) . (2.4)

Then v(t) < g2 (t), for all t ∈ [t0, ω).

AIMS Mathematics Volume 8, Issue 12, 30574–30590.



30577

3. Positivity of solutions

Since all of the functions a, b, c and d are continuous, the existence of a continuously differentiable
solution of (1.1) is guaranteed. This solution has a maximal interval of existence of the form [t0, ω)
where ω can be infinite [7].

Now, we introduce several conditions for the positiveness of solutions.

Proposition 3.1. If d(t) > 0 for every t > t0, then for each y(t0) ≥ 0, the positivity of solutions is
guaranteed; i.e. y (t) ≥ 0 for every t ∈ [t0, ω).

Proof. By the Eq (1.1), we deduce that

ẏ (t) = d (t) for every t ∈ (t0, ω) that satisfies y(t) = 0,

and, thus, the fact that d(·) > 0 gives

ẏ (t) > 0 for every t ∈ (t0, ω) that satisfies y(t) = 0. (3.1)

Let y (t0) ≥ 0. Suppose that there exists t1 ∈ [t0, ω) such that y (t1) < 0, then t0 < t1 because y (t0) ≥ 0.
Consider the set A =

{
γ ∈ [t0, t1)/y (t) ≥ 0,∀t ∈

[
t0, γ

]}
. A is nonempty because t0 ∈ A. Let t2 = sup(A).

We have t0 ≤ t2 < t1 because y (t1) < 0. The definition of t2 ensures the existence of two sequences
{tm < t2}

∞
m=1 and

{
t′m > t2

}∞
m=1, satisfying limm→∞ t′m = limm→∞ tm = t2, y (tm) ≥ 0 and y

(
t′m

)
< 0 for each

positive integer m. Thus, the continuity of the state y gives y (t2) = limn→∞ y (tn) ≥ 0 ≥ limn→∞ y
(
t′n
)
=

y (t2) so that y (t2) = 0. Let B = {t ∈ [t2, t1)/y (t) = 0}. The set B is nonempty because t2 ∈ B. t3 :=
sup B. One can easily verify that y (t3) = 0 and t2 ≤ t3 < t1. We claim that y (t) < 0 for all t ∈ (t3, t1). To
prove this claim, let us assume that there exists some τ ∈ (t3, t1) such that y (τ) ≥ 0. By the definition
of t3, we have y (τ) > 0. Since y (τ) > 0 > y (t1), one can see by the intermediate value theorem, the
continuous function y has a root in the interval (τ, t1) so that there is some constant τ′ ∈ (τ, t1) with
y (τ′) = 0. This contradicts the facts that t3 = sup B, y(t3) = 0 and ends the proof of our claim that
states that y (t) < 0 for all t ∈ (t3, t1). Therefore, we have y (t3 + h) < 0 for all h ∈ (0, t1 − t3) so that the
result y (t3) = 0 gives y(t3+h)−y(t3)

h < 0 for all h ∈ (0, t1 − t3). This implies that ẏ+ (t3) = ẏ (t3) ≤ 0, which
contradicts the inequality (3.1) and ends the proof of the proposition. □

Simulation 1. Pick t0 = 0. For every t ≥ 0, let a(t) = cos (t), b(t) = sin (t), c(t) = −t and d(t) =
sin (t) + 2. Since d(t) > 0 for all t > t0, for each y(t0) ≥ 0 the positivity of solutions is guaranteed by
Proposition 3.1. These solutions can be global or nonglobal. Figure 1 illustrates the solutions y(t) for
the initial values y(0) = 1, y(0) = 2, y(0) = 3, y(0) = 4 and y(0) = 5 where the positiveness of solutions
can be easily observed.

Proposition 3.2. Suppose that d(t) ≥ 0 for every t ≥ t0. If one of the following sets of conditions is
satisfied

(i) a (t) ≤ 0, b (t) ≥ 0, c (t) ≤ 0 for all t ∈ [t0,∞) and y (t0) ≥ 0.
(ii) a (t) ≥ 0, b (t) < 0, c (t) > 0 for all t ∈ [t0,∞) and y (t0) > 0.

(iii) a (t) < 0, b (t) ≥ 0, c (t) ≥ 0 for all t ∈ [t0,∞) and y (t0) > 0. Furthermore, suppose that at least
one of the functions b and c is nonzero for each t ∈ [t0,∞).

Then, the positivity of solutions is guaranteed.
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Figure 1. y(t) versus t for the different initial values y(0) = 1, y(0) = 2, y(0) = 3, y(0) = 4
and y(0) = 5. Observe that all solutions are nonglobal and positive.

Proof. We show each case individually.

Proof for the set of conditions (i). Let y(t0) ≥ 0. Let us suppose that for some t∗ ∈ [t0, ω), we have
y(t∗) < 0. Thus, t∗ ∈ (t0, ω) because y(t0) > 0. Let A = {t ∈ [t0, t∗)/y (t) = 0}. A is nonempty because
y is continuous, t0 < t∗, y(t0) ≥ 0 and y(t∗) < 0. Let t∗∗ = sup(A). We have t∗∗ ∈ A so that y(t∗∗) = 0
because y is continuous. Furthermore, one can show that y (t) < 0 for every t ∈ (t∗∗, t∗). Thus, we
obtain by (1.1) and the facts that a (·) ≤ 0, b (·) ≥ 0 and c (·) ≤ 0 that ẏ (t) ≥ 0 for every t ∈ (t∗∗, t∗).
Hence, y (t∗∗) ≤ y (t∗). This contradicts the results y(t∗) < 0 and y(t∗∗) = 0. □

Proof for the set of conditions (ii). Let y(t0) > 0. Since a(·) ≥ 0, b(·) < 0, c(·) > 0 and d(·) ≥ 0, we
obtain by (1.1) that

ẏ (t) ≥ b (t) y2 (t) + c (t) y (t) , for every t ∈ (t0, ω) that satisfies y (t) > 0,

so that
ẏ (t) ≥ 0, for all t ∈ (t0, ω) that satisfies 0 < y (t) <

c (t)
|b (t)|

. (3.2)

Suppose that there exists some t∗ ∈ [t0, ω) with y(t∗) < 0. We get t∗ ∈ (t0, ω) because y(t0) > 0. One
can use the facts that y(t∗) < 0, y(t0) > 0 along with the intermediate value theorem to show that the
set S = {t ∈ (t0, t∗) : y (t) = 0} is nonempty. The continuity of the solution y gives t∗∗ := inf S ∈ S that
is y (t∗∗) = 0 and t0 < t∗∗. Additionally, it is easy to show that y (t) > 0 for every t ∈ (t0, t∗∗). Thus,
since c(·)

|b(·)| > 0, y(t∗∗) = 0 and the mapping t → c(t)
|b(t)| is continuous, one can prove the existence of some

t∗ ∈ [t0, t∗∗) such that 0 < y (t) < c(t)
|b(t)| for all t ∈ (t∗, t∗∗). We get y (t∗) > 0 by the definition of t∗∗.

Hence, we get by the inequality (3.2) that ẏ (t) ≥ 0 for all t ∈ (t∗, t∗∗) so that y (t∗∗) ≥ y (t∗), which is a
contradiction because y (t∗∗) = 0 and y (t∗) > 0. □

Proof for the set of conditions (iii). Pick y(t0) > 0. Assume, without loss of generality, that b(·) > 0.
We deduce by (1.1) that (noting that it is assumed that a(·) < 0):

ẏ (t) ≥ a (t) y3 (t) + b (t) y2 (t) , for every t ∈ (t0, ω) that satisfies y (t) > 0,

so that
ẏ (t) ≥ 0, for all t ∈ (t0, ω) that satisfies 0 < y (t) ≤

b (t)
|a (t)|

. (3.3)
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As in the proof of Case (ii), we can show the existence of some instants t∗ and t∗∗ such that t0 ≤ t∗ < t∗∗,
y (t∗∗) = 0, y (t∗) > 0 and 0 < y (t) < b(t)

|a(t)| , for all t ∈ (t∗, t∗∗). Thus, a contradiction can be concluded
by (3.3). □

□

4. Asymptotic behavior of the system associated with unbounded perturbations: Homogeneous
form analysis

This section focuses on studying the case when the function d(t) is uniformly zero. In this case the
origin y = 0 is a rest point for (1.1).

Applying the Lyapunov stability technique on the system under study in its homogeneous form may
lead to a differential Lyapunov inequality with an unbounded perturbation. The next theorem proves
that; even with the existence of unbounded perturbations, the system is still able to exhibit notions like
uniform stability, asymptotic stability and instability depending on the asymptotic properties of the
coefficient functions.

Theorem 4.1. We consider the following two distinct results:

(i) Suppose that d(t) = 0, c(t) < 0 for each t ≥ t0 and
∫ ∞

t0
c (t) dt = −∞. Suppose that for every

t > t0, at least one of a(t) and b(t) is nonzero. Define the function λ : [t0,∞) → R+ as λ (t) =
max (|a (t)| , |b (t)|) for each t ≥ t0. Assume that limt→∞

λ(t)
|c(t)| = ∞ and

lim
t→∞

c (t) λ̇ (t) − ċ (t) λ (t)
c2 (t) λ (t)

= 0. (4.1)

Then, there is some r > 0 such that when |y (t0)| < r, each solution y(t) is continuable on [t0,∞).
Besides, the mapping t → |y (t)| is monotonically decreasing with |y (t)| < |y (t0)| for every t >
t0 (and, thus, y = 0 is uniformly stable). Furthermore, the equilibrium point y = 0 exhibits
asymptotic stability.

(ii) If d(t) = b(t) = 0, c(t) > 0, a(t) < 0 for each t > t0,
∫ ∞

t0
a (t) dt = −∞ and limt→∞

c(t)
a(t) = −∞, then

for each y(t0) ∈ R, each nontrivial solution y(t) is global with limt→∞ |y (t)| = ∞ (observe that in
this case, (1.1) reduces to a Bernoulli equation).

Proof. Since for every t > t0 at least one of a(t) and b(t) is nonzero, we have λ (t) > 0 for each t > t0.
Let V(t) = y2(t) for each t ∈ [t0, ω). We show each case individually.

Proof of (i). For all t ∈ (t0, ω), system (1.1) gives

V̇ (t) = 2c (t) y2 (t) + 2b (t) y3 (t) + 2a (t) y4 (t)

≤ 2c (t) V (t) + 2 |b (t)|V
3
2 (t) + 2 |a (t)|V2 (t)

≤ 2c (t) V (t) + 2 max (|b (t)| , |a (t)|)
(
V

3
2 (t) + V2 (t)

)
.

Thus, we get

V̇ (t) ≤ 2c (t) V (t) + 4λ (t) V
3
2 (t) for every t ∈ (t0, ω) with V(t) < 1. (4.2)
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Therefore, inequality (2.3) is satisfied with Q (·) = −2c (·), E (·) = 4λ (·), α = 1, β = 3
2 , δ = 1 and

µ is the identity function. Observe that 0 < α < β and that Q(·) > 0, E(·) > 0. Since V(·) = y2(·),
inequality (2.2) is satisfied with c1 = c2 = 1 and σ = 2. The function Λ defined in (2.1) satisfies

Λ (t) =
ċ (t) λ (t) − c (t) λ̇ (t)

2λ (t) c2 (t)
, for almost all t > t0.

Thus, we conclude by (4.1) that limt→∞Λ (t) = 0. On the other hand, limt→∞
E(t)
Q(t) = ∞ because it

is assumed that limt→∞
λ(t)
|c(t)| = ∞ and

∫ ∞
t0

Q (t) µ (t) dt = ∞ (note that
∫ ∞

t0
c (t) dt = −∞). Therefore,

Theorem 2.1 ensures that when the initial value is small enough, each solution y(t) is continuable on
[t0,∞). Moreover, y = 0 is uniformly stable and is asymptotically stable. In addition, Lemma 2.1
implies that the mapping t → |V (t)| is strictly decreasing and, hence, t → |y (t)| exhibits the same
behavior because V = y2. □

Proof of (ii). Consider an initial condition y(t0) ∈ R. Let y(t) be a nontrivial solution of (1.1) and let
[t0, ω) be the maximal interval of existence. To prove ω = ∞, assume that ω < ∞ and limt→ω− |y (t)| =
∞. Consider the Lyapunov function V = y2. We have V̇ (t) = 2v (t) v̇ (t) and (1.1) gives (observe that b
and d are uniformly zero)

V̇ (t) = 2a (t) V2 (t) + 2c (t) V (t) , for all t ∈ (t0, ω) . (4.3)

Since limt→ω− |y (t)| = ∞, we have limt→ω− V (t) = ∞. Thus, one can utilize the fact that ω < ∞ to
prove that there exists some t′ ∈ (t0, ω) with V (t) > − c(t)

a(t) for all t ∈ (t′, ω) (note that − c(·)
a(·) > 0).

Therefore, (4.3) yields V̇ (t) < 0 for every t ∈ (t′, ω), which is a contradiction because
limt→ω− V (t) = ∞. Thus, ω = ∞. Now, we need to prove that limt→∞ |y (t)| = ∞. To this end, define
Ψ ∈ C0 ([t0,∞),R+) as Ψ (t) = − c(t)

2a(t) for all t ≥ t0. Observe that Ψ (·) > 0, and it is assumed that
limt→∞Ψ (t) = ∞. We obtain by (4.3) that

V̇ (t) ≥ −2a (t) V2 (t) for almost all t > t0 with V (t) ≤ Ψ (t) . (4.4)

Next, let us consider the following three subcases.

Subcase (ii-1): There exists t∗ > t0 in a way that V (t) ≥ Ψ (t) for each t ≥ t∗.
Since limt→∞Ψ (t) = ∞ and V (·) ≥ Ψ (·), the result limt→∞ V (t) = ∞ comes true so that limt→∞ |y (t)| =
∞.

Subcase (ii-2): There exists t∗ > t0 in a way that V (t) ≤ Ψ (t) for every t ≥ t∗.
We conclude by (4.4) and the fact that a (·) < 0 that V̇ (t) ≥ 0 for almost all t > t∗ so that V is
nondecreasing. Since y(t) is not the trivial solution, the Lyapunov function is not uniformly zero.
Thus, there exists t∗ > t0 such that V(t∗) > 0 and, hence, V (t) ≥ V (t∗) for all t ≥ t∗. Thus, (4.4) gives
V̇ (t) ≥ −2a (t) V2 (t∗) for all t > t∗ (noting that a(·) < 0). Therefore, the Fundamental Theorem of
Calculus leads to

V (t) = V (t∗) +

t∫
t∗

V̇ (τ) dτ ≥ V (t∗) − 2V2 (t∗)

t∫
t∗

a (τ) dτ,∀t ≥ t∗.

Thus, we get limt→∞ V (t) = limt→∞ |y (t)| = ∞ because
∫ ∞

t0
a (t) dt = −∞.

AIMS Mathematics Volume 8, Issue 12, 30574–30590.
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Subcase (ii-3): Both Subcases (ii-1) and (ii-2) are incorrect.
Given ε > 0, the fact that limt→∞Ψ (t) = ∞ ensures the existence of T0 > t0 such that Ψ (t) > ε for
every t ≥ T0. In accordance with the present subcase, there must be {tm ≥ T0}

∞
m=1 and

{
t′m ≥ T0

}∞
m=1 such

that limm→∞ tm = limm→∞ t′m = ∞ and for each positive integer m, we have

V (tm) < Ψ (tm) and V
(
t′m

)
> Ψ

(
t′m

)
.

This guarantees the presence of two numbers t1 > T0 and t2 > T0 satisfying t1 < t2, Ψ (t1) < V (t1) and
Ψ (t2) > V (t2). By applying the intermediate value theorem on the continuous function χ := V − Ψ
and the compact interval [t1, t2], we conclude that there exists some T1 ∈ (t1, t2) such that χ (T1) = 0 so
that Ψ (T1) = V (T1).

We claim that V (t) > ε for every t > T1. To prove it, we use the contradiction technique and
assume that there is some T2 > T1 with V (T2) ≤ ε. Since Ψ (T1) = V (T1), the set
S = {t ∈ [T1,T2)/ Ψ (t) = V (t)} is nonempty. Thus, the continuity of V and Ψ imply that
T3 := sup S ∈ S (note that T3 < T2 because V (T2) ≤ ε and Ψ (·) > ε on [T0,∞)). Therefore, one can
verify that V (t) < Ψ (t) for all t ∈ (T3,T2). Thus, we get by (4.4) and the fact that a (·) < 0 that
V̇ (t) ≥ 0 for all t ∈ (T3,T2). This means V is nondecreasing on (T3,T2) and, hence, V (T2) ≥ V (T3).
Thus, the facts that Ψ (t) > ε, for every t ≥ T0, T3 ∈ S and V (T2) ≤ ε give the contradicted statement
Ψ (T3) > ε ≥ V (T2) ≥ V (T3) = Ψ (T3). This finishes the proof of our claim, which states that
limt→∞ V (t) = ∞ so that limt→∞ |y (t)| = ∞. □

□

Comment 1. The inequality (4.2) in the proof of Result (i), indicates the unbounded nature of the
perturbation because it is assumed that limt→∞

λ(t)
|c(t)| = ∞ and c(·) < 0. The same holds true for the

inequality (4.3) (in the proof of Result (ii)) based on the assumptions limt→∞
c(t)
|a(t)| = ∞ with a(·) < 0.

Simulation 2. Given t0 = 1, let b and d be uniformly zero.
For the case a(t) = t2 and c(t) = −t for every t ≥ t0 = 1, we have a(·) , 0, c(·) < 0 and∫ ∞

t0
c (t) dt = −∞. Also, we get λ (t) = max (|a (t)| , |b (t)|) = max

(
t2, 0

)
= t2 for all t ≥ t0 = 1. We obtain

lim
t→∞

λ (t)
|c (t)|

= lim
t→∞

t2

t
= ∞

and

lim
t→∞

c (t) λ̇ (t) − ċ (t) λ (t)
c2 (t) λ (t)

= lim
t→∞

(−t) (2t) − (−1)
(
t2
)(

t2) (t2) = 0,

so that condition (4.1) is satisfied. Therefore, by Result (i) of Theorem 4.1, we conclude that there is
some r > 0 such that when |y (t0)| < r, every solution is global and bounded with |y (·)| < |y (t0)|, y = 0
exhibits uniform stability and asymptotic stability and the mapping t → |y (t)| is strictly decreasing.
This is shown in Figure 2.

For the case a(t) = −t and c(t) = t2 for all t ≥ t0 = 1, note that a(·) < 0, c(·) > 0 and b(·) = 0
and, thus, the positivity of solutions is guaranteed for all y(t0) ∈ R by Item (iii) of Proposition 3.2. We
have

∫ ∞
t0

a (t) dt = −∞ and limt→∞
c(t)
a(t) = limt→∞

t2
−t = −∞. Therefore, we conclude by Result (ii) of

Theorem 4.1 that for any y(t0) ∈ R, each nontrivial solution y(t) is globally defined and limt→∞ |y (t)| =
∞. This is demonstrated in Figure 3.
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Figure 2. y(t) versus t for the initial values ±0.2,±0.4,±0.6,±0.8. Resulting from
Theorem 4.1, these simulations have been created incorporating the conditions stated in
Result (i), which includes the assumption c(·) < 0. Take note that each solution y(t) is
continuable on [t0,∞) and converges to zero as t goes to infinity. Moreover, the mapping
t → |y (t)| is monotonically decreasing so that |y (t)| < |y (t0)| for every t ≥ t0. This
empathizes the uniform stability and the asymptotic stability, even though this particular
case is associated with a Lyapunov inequality involving an unbounded perturbation.
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Figure 3. y(t) versus t for the initial value five. This simulation has been created based on the
conditions outlined in Result (ii) of Theorem 4.1, including the assumption a(·) < 0. Observe
that the nontrivial solution y(t) is continuable on [t0,∞), nonnegative and diverges to infinity.

5. Sufficient conditions for the attractivity

The next theorem introduces two sets of conditions for the local and global attractivity of the
nonhomogeneous differential equation under study where the system has been transformed into linear
and nonlinear nonautonomous differential Lyapunov inequalities with vanishing perturbations.

Theorem 5.1. We introduce the following separate results:

(i) Suppose that a (t) < 0 for all t ≥ t0,
∫ ∞

t0
a (t) dt = −∞ and

lim
t→∞

b (t)
a (t)

= lim
t→∞

d (t)
a (t)

= 0. (5.1)
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Furthermore, assume that either limt→∞
c(t)
a(t) = 0 or c (t) < 0 for all t ≥ t0, then for every initial

value y(t0) ∈ R, each solution y(t) of (1.1) is continuable on [t0,∞) with limt→∞ y (t) = 0 (so that
the origin is globally attractive).

(ii) Assume that c (t) < 0 for all t ≥ t0,
∫ ∞

t0
c (t) dt = −∞,

lim
t→∞

a (t)
c (t)
= lim

t→∞

b (t)
c (t)
= lim

t→∞

d (t)
c (t)
= 0, (5.2)

and the initial time t0 is sufficiently large to satisfy∥∥∥∥∥max (|a| , |b| , |d|)
|c|

∥∥∥∥∥
∞

<
1
3
. (5.3)

Then there is some r > 0 such that for every |y(t0)| < r, each solution y(t) of (1.1) is continuable on
[t0,∞) with |y(·)| < r and limt→∞ y (t) = 0 (so that the origin is locally attractive). Additionally, it
is worth mentioning that if a (t) < 0 for every t ≥ t0, the conditions (5.2) and (5.3) can be relaxed
to be limt→∞

b(t)
c(t) = limt→∞

d(t)
c(t) = 0 and

∥∥∥∥max (|b|,|d|)
|c|

∥∥∥∥
∞
< 1

2 , respectively.

Proof. Let V(t) = y2(t) for each t ∈ [t0, ω).

Proof of Result (i). Consider the case limt→∞
c(t)
a(t) = 0. We get by (1.1) that for all t ∈ (t0, ω):

V̇ (t) = 2y (t) ẏ (t)

= 2a (t) y4 (t) + 2b (t) y3 (t) + 2c (t) y2 (t) + 2d (t) y (t)

≤ 2a (t) V2 (t) + 2 |b (t)|V
3
2 (t) + 2 |c (t)|V (t) + 2 |d (t)|

√
V (t)

≤ 2a (t) V2 (t) + e (t)
(
V

3
2 (t) + V (t) +

√
V (t)

)
, (5.4)

where e (t) = 2 max (|b (t)| , |c (t)| , |d (t)|) for each t ≥ t0. Given an initial value y(t0) ∈ R, set δ >

max
(
1,V (t0) ,

∥∥∥∥ 3e
2|a|

∥∥∥∥4

∞

)
> 0 so that V(t0) < δ and

(
3e(t)
2|a(t)|

)4
< δ for every t ≥ t0 and, hence,

√
3e (t)

√
δ3

2 |a (t)|
< δ, for every t ≥ t0. (5.5)

We conclude by (5.4) that

V̇ (t) ≤ 2a (t) V2 (t) + e (t)
(
δ

3
2 + δ +

√
δ
)
, for every t ∈ (t0,∞) with V(t) < δ,

and, thus, using the fact δ > 1 gives

V̇ (t) ≤ 2a (t) V2 (t) + 3δ
3
2 e (t) , for every t ∈ (t0,∞) that satisfies V(t) < δ, (5.6)

so that (see (5.5))

V̇ (t) ≤ 0, for all t ∈ (t0, ω) that satisfies

√
3e (t)

√
δ3

2 |a (t)|
< V (t) < δ.
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Therefore, since V (t0) < δ, we conclude that all assumptions of Proposition 2.1 are fulfilled with

g1 (t) =
√

3e(t)
√
δ3

2|a(t)| and g2 (t) = δ for every t ≥ t0. Therefore, V(t) < δ for all t ∈ [t0, ω) and thus

|y (·)| < r :=
√
δ. Furthermore, (5.6) implies

V̇ (t) ≤ 2a (t) V2 (t) + 3δ
3
2 e (t) , for all t ∈ (t0, ω) .

Consider the differential equation v̇ (t) = 2a (t) v2 (t)+3δ
3
2 e (t). We have limt→∞

e(t)
a(t) = 0 by (5.1) and the

definition of the function e. Since we have a (t) < 0 for all t ≥ t0 and
∫ ∞

t0
a (t) dt = −∞, all assumptions

of Theorem 2.2 are met with l = 0, Q (·) = −2a (·), E (·) = 3δ
3
2 e (·) and β (α) = α2 for all α ∈ R (observe

that limt→∞
E(t)
Q(t) = 0 because limt→∞

e(t)
a(t) = 0 and that

∫ ∞
t0

Q (t) dt = ∞ because
∫ ∞

t0
a (t) dt = −∞). As

a result, the classical comparison principle along with Theorem 2.2 guarantee that for any y(t0) ∈ R,
each solution y(t) is global and the origin is globally attractive.

Consider the case c (t) < 0 for all t ≥ t0. Since c(t) < 0 for all t ∈ (t0, ω) we obtain by (1.1) that

V̇ (t) = 2a (t) V2 (t) + 2 |b (t)|V
3
2 (t) + 2 |d (t)|

√
V (t)

≤ 2a (t) V2 (t) + 2 max (|b (t)| , |d (t)|)
(
V

3
2 (t) +

√
V (t)

)
. (5.7)

Pick δ > max
(
1,V (t0) ,

∥∥∥∥ 2 max (|b|,|d|)
|a|

∥∥∥∥4

∞

)
> 0 and let |y(t0)| < r :=

√
δ. One can use Proposition 2.1 to

show that V(t) < δ for all t ≥ t0 and, hence, (5.7) leads to

V̇ (t) ≤ 2a (t) V2 (t) + 4δ
3
2 max (|b (t)| , |d (t)|), for all t ∈ (t0, ω) .

As we have done in the proof of the case limt→∞
c(t)
a(t) = 0, Theorem 2.2 and the comparison principle

can end the proof of this case. □

Proof Result (ii). For each t ∈ (t0, ω), the equation (1.1) leads to

V̇ (t) = 2c (t) y2 (t) + 2b (t) y3 (t) + 2a (t) y4 (t) + 2d (t) y (t)

≤ 2c (t) V (t) + 2 |b (t)|V
3
2 (t) + 2 |a (t)|V2 (t) + 2 |d (t)|

√
V (t)

≤ 2c (t) V (t) + e (t)
(
V

3
2 (t) + V2 (t) +

√
V (t)

)
, (5.8)

where e (t) = 2 max (|a (t)| , |b (t)| , |d (t)|) for all t ≥ t0. (5.3) ensures the existence of some δ > 0 such
that ∥∥∥∥∥ 3e

2 |c|

∥∥∥∥∥2

∞

< δ < 1,

and, hence,
3e (t)

√
δ

2 |c (t)|
< δ, for all t ≥ t0. (5.9)

We get by (5.8) that

V̇ (t) ≤ 2c (t) V (t) + e (t)
(
δ

3
2 + δ2 +

√
δ
)
, for every t ∈ (t0, ω) with V (t) < δ,

and, thus, since δ < 1, one has

V̇ (t) ≤ 2c (t) V (t) + 3
√
δ e (t) , for every t ∈ (t0, ω) with V (t) < δ, (5.10)
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which leads to (see (5.9))

V̇ (t) ≤ 0, for all t ∈ (t0, ω) with
3e (t)

√
δ

2 |c (t)|
< V (t) < δ. (5.11)

Consider an initial value |y(t0)| < r :=
√
δ so that V (x0) < δ. We observe by (5.11) that all assumptions

of Proposition 2.1 are satisfied with g1 (t) = 3e(t)
√
δ

2|c(t)| and g2 (t) = δ for every t ≥ t0 and, thus, V(t) < δ for
all t ∈ [t0, ω) so that |y (·)| < r. Moreover, (5.10) leads to

V̇ (t) ≤ 2c (t) V (t) + 3δ
1
2 e (t) , for all t ∈ (t0, ω) .

The system v̇ (t) = 2c (t) v (t) + 3δ
1
2 e (t) has the form of the system mentioned in Theorem 2.2 with

Q (·) = −2c (·), E (·) = 3δ
1
2 e (·), and β is the identity mapping. We have Q (t) > 0 because c (t) < 0 for

all t ≥ t0. Note that by (5.2) and the definition of the function e, one has limt→∞
E(t)
Q(t) = 0 so that l = 0.

Furthermore,
∫ ∞

t0
Q (t) dt = ∞ because

∫ ∞
t0

c (t) dt = −∞. All premises of Theorem 2.2 are fulfilled.
Therefore, a comparison principle can show that V (·) ≤ v (·) so that y(t) is global and the zero solution
is locally attractive.

Finally, if a (t) < 0 for every t ≥ t0, we replace the conditions (5.2) and (5.3) by limt→∞
b(t)
c(t) =

limt→∞
d(t)
c(t) = 0 and

∥∥∥∥max (|b|,|d|)
|c|

∥∥∥∥
∞
< 1

2 , respectively. For all t ≥ t0, equation (1.1) leads for all t ∈ (t0, ω) to

V̇ (t) = 2c (t) y2 (t) + 2b (t) y3 (t) + 2d (t) y (t)

≤ 2c (t) V (t) + 2 |b (t)|V
3
2 (t) + 2 |d (t)|

√
V (t)

≤ 2c (t) V (t) + 2 max (|b (t)| , |d (t)|)
(
V

3
2 (t) +

√
V (t)

)
. (5.12)

Let δ be a positive number such that
∥∥∥∥ 2 max (|b|,|d|)

|c|

∥∥∥∥2

∞
< δ < 1. The existence of δ can be seen by the

assumption
∥∥∥∥max (|b|,|d|)

|c|

∥∥∥∥
∞
< 1

2 . Let |y(t0)| < r :=
√
δ. Proposition 2.1 ensures that V(t) < δ for all

t ∈ (t0, ω) and, hence, (5.12) gives

V̇ (t) ≤ 2c (t) V (t) + 4
√
δ (max (|b (t)| , |d (t)|)) for all t ∈ (t0, ω) .

As in the prior analysis, one can use Theorem 2.2 to end the proof of the present case. □

□

Simulations. Let t0 = 0, y(t0) = 1, a(t) = −1 − t3, b(t) = sin(t), c(t) = cos(t) and d(t) = sin (t) + 2 for
every t ≥ t0 = 0. Since d(·) > 0, we deduce by Proposition 3.1 that y(t) is nonnegative. In addition,
observe that a (·) < 0 and

∫ ∞
t0

a (t) dt = −∞, and we get

lim
t→∞

c (t)
a (t)

= lim
t→∞

cos(t)
−1 − t3 = 0,

lim
t→∞

b (t)
a (t)

= lim
t→∞

sin(t)
−1 − t3 = 0,

lim
t→∞

d (t)
a (t)

= lim
t→∞

sin (t) + 2
−1 − t3 = 0.
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Thus, assumption (5.1) is satisfied. Therefore, we have by Result (i) of Theorem 5.1 that for every
y(t0) ∈ R, each solution y(t) of (1.1) is global and the origin is globally attractive. This is illustrated in
Figure 4.
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Figure 4. The positivity of the global solution and the attractivity of the origin can be readily
observed.

In the subsequent lemma, we utilize Theorem 5.1 to deduce conditions for the convergence of the
system’s state.

Lemma 5.1. Suppose that a (t) < 0 for all t ≥ t0,
∫ ∞

t0
a (t) dt = −∞ and

−
1
3

lim
t→∞

b (t)
a (t)

= −
3

√
lim
t→∞

d (t)
a (t)

= L ∈ R. (5.13)

Furthermore, we assume that either limt→∞
c(t)
a(t) = 3L2 or 3L2 a (·) + 2L b (·) + c (·) < 0. Then, for every

initial value y(t0) ∈ R, each solution y(t) of (1.1) is globally defined and limt→∞ y (t) = L.

Proof. First. we consider the case limt→∞
c(t)
a(t) = 3L2. Let z(·) = y(·) − L. We get by (1.1); for all

t ∈ (t0, ω), that

ż (t) = ẏ (t)

= a (t) (z (t) + L)3 + b (t) (z (t) + L)2 + c (t) (z (t) + L) + d (t)

= a∗ (t) z3 (t) + b∗ (t) z2 (t) + c∗ (t) z (t) + d∗ (t) , (5.14)

where (for every t ∈ [t0,∞))

a∗ (t) = a (t)

b∗ (t) = 3L a (t) + b (t)

c∗ (t) = 3L2 a (t) + 2L b (t) + c (t)

d∗ (t) = L3 a (t) + L2 b (t) + Lc (t) + d (t) .

We deduce by (5.13) that limt→∞
b(t)
a(t) = −3L and, hence,

lim
t→∞

b∗ (t)
a∗ (t)

= lim
t→∞

3L a (t) + b (t)
a (t)

= lim
t→∞

(
3L +

b (t)
a (t)

)
= 3L − 3L = 0. (5.15)
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Since limt→∞
c(t)
a(t) = 3L2 and limt→∞

b(t)
a(t) = −3L, we get

lim
t→∞

c∗ (t)
a∗ (t)

= lim
t→∞

3L2 a (t) + 2L b (t) + c (t)
a (t)

= lim
t→∞

(
3L2 + 2L

b (t)
a (t)
+

c (t)
a (t)

)
= 3L2 + 2L (−3L) + 3L2

= 0. (5.16)

We get by (5.13) that limt→∞
d(t)
a(t) = −L3 so that

lim
t→∞

d∗ (t)
a∗ (t)

= lim
t→∞

L3 a (t) + L2 b (t) + Lc (t) + d (t)
a (t)

= lim
t→∞

(
L3 + L2 b (t)

a (t)
+ L

c (t)
a (t)
+

d (t)
a (t)

)
= L3 + L2 (−3L) + L

(
3L2

)
− L3

= 0. (5.17)

On the other hand, since a∗(·)=a(·), we have a∗ (t) < 0 for all t ≥ t0 and
∫ ∞

t0
a∗ (t) dt = −∞ because it is

assumed that a (t) < 0 for all t ≥ t0 and
∫ ∞

t0
a (t) dt = −∞. These facts along with (5.15)-(5.17) ensure

that; when considering the differential equation (5.14), all conditions of Item (i) in Theorem 5.1 are
satisfied. Therefore, for any initial condition z(t0) ∈ R, each solution z(t) of (5.14) is globally defined
and limt→∞ z (t) = 0; thus, the solution y(t) of (1.1) is global and limt→∞ y (t) = L.

Second; for the case 3L2 a (·) + 2L b (·) + c (·) < 0, we have c∗(·) < 0. One can derive analogous
arguments to the first case to prove that Item (i) of Theorem 5.1 ends the proof. □

Comment 2. Observe that when L = 0, Lemma 5.1 reduces to Item (i) of Theorem 5.1.

Simulation 3. Set t0 = 0, y(t0) = 1, a(t) = −1 − t, b(t) = 6t + 1, c(t) = −12t and d(t) = 8t for every
t ≥ t0 = 0. We have a (·) < 0, b (·) ≥ 0, c (·) ≤ 0 and y (t0) ≥ 0. Thus, the positivity of the solution is
guaranteed by Item (i) of Proposition 3.2. Moreover, we get

∫ ∞
t0

a (t) dt = −∞ and

lim
t→∞

c (t)
a (t)

= lim
t→∞

−12t
−1 − t

= 12,

lim
t→∞

b (t)
a (t)

= lim
t→∞

6t + 1
−1 − t

= −6,

lim
t→∞

d (t)
a (t)

= lim
t→∞

8t
−1 − t

= −8.

Thus, assumption (5.13) is satisfied with L = 2 (note that limt→∞
c(t)
a(t) = 3L2) and, hence,

Lemma 5.1 guarantees that for any initial value y(t0) ∈ R, the solution y(t) of (1.1) is global and
limt→∞ y (t) = L = 2, as shown in Figure 5.
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Figure 5. This simulation provides clarity that the solution y(t) is global, nonnegative and
converges to L = 2 as t goes to infinity.

6. Conclusions

Stability analysis of Abel’s differential equation of the first kind has been conducted. More
precisely, conditions for the positivity of solutions have been derived in Propositions 3.1 and 3.2.
Additionally, it has been clarified in section four that applying the Lyapunov technique to the
homogenous form of the equation may give a differential inequality with an unbounded perturbation.
For the prior case, Theorem 4.1 has derived sufficient conditions for the continuation and
boundedness of solutions, the uniform stability, the asymptotic stability and the instability of the
equation. In addition, the local/global origin attractivity has been investigated in Theorem 5.1. Based
on the results of the aforementioned theorem, conditions have been provided for the state convergence
in Lemma 5.1.
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