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1. Introduction

O’Neill [26] and Gray [16] were the ones who first proposed and developed the concept of
submersions and immersions. For Riemannian manifolds, they discovered certain Riemannian
equations by studying the geometrical characteristics. Submersions theory is an important topic in
differential geometry that discusses the properties between differentiable structures. Riemannian
submersions is the subject of study throughout both mathematics and physics since it has numerous
applications, most notably in the Kaluza-Klein theory and Yang-Mills theory (see [10, 20, 24, 40]).
Watson [39] investigated the Riemannian submersions from almost Hermitian manifolds onto
Riemannian manifolds in the year 1976. Later, Sahin [32] studied geometric characteristics and
Riemannian submersions geometry. Using an almost Hermitian manifold, he defined anti-invariant
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Riemannian submersions onto Riemannian manifolds. “He demonstrates that, under the almost
complex structure of the total manifold, their vertical distribution is anti-invariant.” Many authors
looked into and expanded on this research by studying anti-invariant submersions [3, 32],
semi-invariant submersions [33], slant submersions [13, 34] and semi-slant submersions [19, 27],
among other topics. Tastan et al. [37] defined and investigated hemi-slant submersions from almost
Hermitian manifolds as a generalization case of semi-invariant and semi-slant submersions.

From almost Hermitian to almost contact metric manifolds, Chinea [11] expanded the notion of
Riemannian submersions. He examined base space, total and fibre space from an intrinsic geometric
perspective point. Prasad et al. extended the concept of hemi-slant submersions a step further, by
defining quasi-bi-slant submersions from an almost contact metric manifold [28,29]. The results he
obtained for submersions were interesting and he also discovered some decomposition theorems.

Fuglede [14] and Ishihara [21] introduced the concept of conformal submersion as a generalization
of Riemannian submersions and talked about some of their geometric characteristics. If the positive
function A = 1, which is dilation, then the conformal submersions become Riemannian submersions.
Gudmundsson and Wood [18] investigated conformal holomorphic submersion as a generalization of
holomorphic submersion. They were able to obtain the necessary and sufficient conditions for
harmonic morphisms of conformal holomorphic submersions. Later on, conformal anti-invariant
submersions, [2, 30], conformal semi-invariant submersions [4], conformal slant submersions [6] and
conformal semi-slant submersions [5] were studied and defined by Akyol and Sahin. A number of
researchers have recently explored the geometry of conformal hemi-slant submersions [1, 23, 35],
conformal bi-slant submersions [7] and quasi bi-slant conformal submersions [8] and they have
discussed some decomposition theorems. Additionally, they expanded the idea of pluriharmonicity
from almost Hermitian manifolds to almost contact metric manifolds. The present paper is a
complement of [7]. In [7], € is horizontal and in the present paper it is vertical.

In this paper, we investigate conformal bi-slant submersions from a Kenmotsu manifold onto a
Riemannian manifold with vertical vector field £&. The structure of the paper is as follows. Section 2
introduces almost contact metric manifolds, precisely the Kenmotsu manifolds with the properties
required for this study. Section 3 includes a definition of conformal bi-slant submersion as well as
some noteworthy discoveries. Section 4, details the conditions needed for distribution integrability as
well as the total geodesicness of its leaves. This section also discusses how a total space Kenmotsu
manifold becomes a locally twisted product manifold. Finally, at the end of the study, the concept of
¢-pluriharmonicity is addressed.

2. Preliminaries

We start off by providing a few definitions and findings that will be quite helpful for our research
and will aid in exploring the central idea of the research paper.
Let (O, g1) and (O, g») be Riemannian manifolds, where dim(0;) = m, dim(O,) = n and m > n.
A Riemannian submersion J: O; — O, is a surjective map of O; onto O, satisfying the following
axioms:
(1) 9 has maximal rank.

(i1) The differential . preserves the lenghts of horizontal vectors.

For each g € 0,, 9'(g) is an (m—n) dimensional submanifold of O,. The submanifolds J~!(¢), g € O,
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are called fibers. A vector field on O is called vertical if it is always tangent to fibers. A vector field
on O is called horizontal if it is always orthogonal to fibers. A vector field X on O is called basic if X
is horizontal and 7 - related to a vector field X, on O,, i.e., J.X » = X.g(p, forall p € O,. Note that we

denote the projection morphisms on the distributions ker 7, and (kerJ.)" by V and H, respectively.

Definition 2.1. /9] Let J be a Riemannian submersion from an ACM manifold (01, $,&,1, g1) onto
a RM (O», g,). Then J is called a horizontally conformal submersion, if there is a positive function A
such that

1
gi(U, V) = ﬁgZ(j*Ul,j*Vl) (2.1)

for any U,V € T'(kerJ.)". It is obvious that every Riemannian submersions is a particularly
horizontally conformal submersion with A = 1. This A is usually called the dilation function.

The formulae of (1, 2) tensor fields 7 and A are
T(L], Lz) = TLILZ = WV(VLI(VLz + (VVq/qu’{Lz, (22)

ﬂ(L], Lz) = ﬂLl L2 = (VV7-(L17‘{L2 + WV?—[Ll (VLZ (23)

for all vector fields L, L, € I'(T'O;) [15].
It is obvious that a Riemannian submersion [J: O; — O, has totally geodesic fibers if and only if
7 vanishes identically. Taking account the fact from (2.2) and (2.3) we may have

Vle_l = TWIZ_l + VWIZ_l, (24)
VW1X1 = TWle + WVWle, (25)
VXI W] = .?()Zl W] + (VV;ZI W], (26)
Vi, 7y = HVg ¥, + Ag, T @.7)

for all W;,Z, € I'kerJ,) and X,, Y, € I'(ker.J.)* where
Vi Zi = VVi Zi.
Then we can easily see that 7 and Ay are skew-symmetric, i.e.,
g(AwF, Fr) = —g(F1, Ay F2), g(TzF1, F2) = —g(F\,T;F>) (2.8)

for all F,F, € F(T,,O_l)
Here, we recall the proposition as follows:

Proposition 2.1. [I17] Let J: O, — O, be horizontally conformal submersion with dilation A and
Z,W eT'(kerJ.)*, then

| - - - = 1
AyZ = 5{(V[W, 7] - g (W, Z)gradvﬁ}. (2.9)
Then the second fundamental form of J is given by
VIIW.2) =V T.Z - TV Z. (2.10)

A map is said to be totally geodesic if (V.7.) (W, Z) = 0 for all W, Z € I'(T,0,), where Levi-Civita and
pullback connections are V and V¥ [38].
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Lemma 2.1. Let J: O, — O, be a horizontal conformal submersion. Then, we have
(i) (VIIW1,Z) = Wiln D F(Z)) + Zi(In DT (W) = g1(W1, Z)) T .(grad In 2),
(it) VI)U, V) = =TTy, V1),

(iii) (VTIW1, U)) = =F.(Vy, Up) = =T (A, U1)

for any W\, Z, € T'(kerJ,)* and U,,V, € T'(kerdJ.) [9].

Let M be a differentiable manifold of dimension n, is said to be having an almost contact structure
(¢, &,m) if, it carries a tensor field ¢, vector field £ and 1-form 7 on M satisfying

¢ =-1+n®& ¢6=0, nop=0, n& =1, (2.11)

where, [ is identity tensor. The almost contact structure (¢, &, n7) is said to be normal if N + dnp® &€ = 0,
where N is the Nijenhuis tensor of ¢. Suppose that a Riemannian metric tensor g is given in M and
satisfies the condition

§(PW,¢Z) = g(W,2) - n(Wn(VZ), n(W) = g(W, &) (2.12)

for all Z, W € I'(TM). Then (¢, &,1m, g)-structure is called an ACM structure, Tanno [36] determined
connected ACM manifolds with the largest automorphism groups. The sectional curvature of a plane
section containing £ for such a manifold is constant c. The characterizing equations of these manifolds
are
(Vad)Z = g(@W,2)¢ = n(2)pW . (2.13)
These spaces are referred to as Kenmotsu manifolds, since Kenmotsu investigated some of these
manifolds’ basic differential geometric features [22]. On a KM, we can deduce that

Vié = "W = W —n(W)é (2.14)
and the covariant derivative of ¢ is defined by
(Vad)Z = VypZ — ¢VyZ (2.15)
for any W,Z € I(T M).

Definition 2.2. Suppose © is a k-dimensional smooth distribution on O,. Then an immersed
submanifold i: O, < O, is called an integral manifold for D if for every x € O, the image of d;0,:
T,0, — T,0, is D,. We say the distribution D, is integrable if through each point of O there exists
an integral manifold of D.

Further, a distribution © is involutive if it satisfies the Frobenius condition such that if
X,Y e (T O)) belongs to D, so [X,Y] € D. Frobenius theorem states that an involutive distribution is
integrable.

Definition 2.3. Let O, be n-dimensional smooth manifold. A foliation § of O, is a decomposition of
O, into a union of disjoint connected submanifolds O, = U czL called the leaves of the foliation, such
that for each m € O,, there is a neighborhood U of O, and a smooth submersion fy: U — R* with
11 (x) a leaf of §ly the restriction of the foliation to U, for each x € R*.

Definition 2.4. Let O, be a Riemannian manifold, and let & be a foliation on O,. § is totally geodesic
if each leaf L is a totally geodesic submanifold of O,; that is, any geodesic tangent to L at some point
must lie within L.
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3. Conformal bi-slant submersions

Definition 3.1. Let (Oy, ¢, &, 1, g1) be an ACM manifold and (O, g,) be a RM. A conformal submersion
Y is said to be a CBSS with vertical & if Dy, and Dy, are slant distributions with slant angel 6, and 6,
such that kerJ. = Dy, ® Dy, ® < & >, where < & > is a 1-dimensional distribution spanned by & and ;J
is called proper if 6,,6, # 0, 7.

Ifn, n#0, 0<0; < % and0 < 6, < g, then, 7 is said to be a proper CBSS with vertical &, where
ny, n, are the dimensions of Dy, and Dy, respectively.
In this part, we provide a non-trivial example to support our research.

Example 3.1. Let (x;,;,z) be Cartesian coordinates on R**! fori =1,2,3,--- ,n. An ACM structure
(¢,&,1, 8) is defined as follows:

¢ai+ai+ +a 9 +bi+bi+ +bi+cg
1ax1 2(9)62 ...... naxn 16_))1 2(9)/2 ....... nayn 3Z
0 0 0 0 0 0
=|\-bj—-by——...... —-by—+ta—+a—+...... +a, ,
( Yox,  ox o0x, a]0y1 a26y2 . 6y,,)

where & = % and a;, b;, ¢ are C*- real valued functions in R**'. Let n = dz, g is Euclidean metric and

6 06 09 0 29
a5

is orthonormal base field of vectors on R**'. Then, it can be easily seen that (¢,&,1, gpan) is a
Kenmotsu structure on R*"*1,
Define a conformal submersion J: R® — R* such that

(X105 X4, Y150+, Y4,2) — (X1, (COs 0))x2 + (Sin €) x4, (— cos 61)y; + (sinby)ys, y2) ,

where (X, ..., X4, 1, ..,V4,2) are natural coordinates of R° and (R, ggo) is a KM with above defined
structure and A = n°. Then it follows that

k *J': Y:—, 0, — .9_’_ O — ‘9_’_’
(ker J.) { o cos lc')xz + sin 16x4 cos 28y1 + sin 28y3 Oyz}

- 0 - 0 J0 - 0 - 0 0 - 0
k =W =— W, =sin,— —, W3 = — W4 =sinf)— — 0—,Ws=—>,
(ker J.) { 1 o H» =sin6, o, + cos 6, o, 3 e 4 = sin 6, o cos 6, o 5 BZ}

- 0 - 0 0 - 0
Dy =W, = _— W, =sin 6, — 4 —_—, Ws: = —
0, { 1 o3 2 = SIn6p o + COs 02 By, 5 Bz}

and

- 0 - ) 0 0
D92 = {W3 = a—y4,W4 = Sll’lela—x2 —cos@la—x“}.

Thus, J is a CBSS with vertical ¢ and slant angle 6, and 6> with A = r°.
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Suppose that J is a CBSS with vertical £ from KM (O, ¢, &, 7, g1) onto a RM (O-, g>), then for any
U € kerd.,
U= QU + U +n0)é, (3.1

where RU € I'(Dg,) and LU € I'(Dy,).
Also, for U € T'(kerJ,)
oU =yU + (U, (3.2)

where YU € I'(kerJ,) and U € I'(kerJ,)*. For any X € I'(kerJ.)*, we have
oX =tX + fX, (3.3)

where tX € I'(kerJ,) and X € I'(kerJ,)*.
The horizontal distribution (kerJ.,)* is decomposed as

(ker.J.)* = {Dy, ® Dy, & 11, (3.4)

such that u is the complementary distribution to Dy, ® {Dy, in I'(kerJ.)*.
Given that J: O; — O, is a CBSS with vertical &, let’s present some insightful findings that will
be used throughout the work.

Theorem 3.1. Let J: (01, ¢,&,1,81) — (02, g2) be a CBSS with vertical ¢ from ACM manifold onto a
RM with slant angles 0, and 6,. Then we have

(i) *U = —(cos* 6)U,
(ii) &1 U,y V) = cos*0,6:(U, V),
(iii) (LU, V) = s5in*0,g,(U, V)
for any vector fields U,V € T(Dy,), where i = 1,2.

Due to similarities with the proof of [12, Theorem 3.4], we omit the proof of the aforementioned
result.

Lemma 3.1. Let (Oy,¢,&,1,81) be a KM and (0-, g,) be a RM. If : O, — O, is a CBSS with vertical
&, then we have

(X + X ==X, ytX+tfX =0, —U+nO)¢=y*U+tU, yU+ fi0=0
forany U € I'(kerJ+) and X € T'(kerJ.)" .
Proof. Equations (2.14), (3.2) and (3.3) are used to obtain outcomes from simple calculations. O

Let (O,, g») is aRM and that (O, ¢, &, 17, g1) is a KM. Now, let us check how the Kenmotsu structure
on O, affects the tensor fields 7~ and A of a BSCS J: (01, 8,&,1,81) — (02, 82)

Lemma 3.2. If J: O, — O, is a CBSS with vertical & where (01, ¢,&,1,g1) be a KM and (O, g,) be
a RM, then we have

(i) AgtY + HV3fY = fHVRY + (AzY,
(ii) VVgtY + AgfY = tHVY + yAgY — g1(¢X, V),
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(iii) VgV + ALV = tAzV + yVVV + g1(¢X, V)E — n(V)tX,
(iv) AgyV + HV3V = fAZV + VIRV —n(V)fX,
(v) VVutX + Ty fX = yTvfX + tHV X + g1(¢X, V)E,
(vi) Tvt)_( + WVVfX = 5‘7-‘7}2 + f?‘(VVX,
(vii) VVgyV + TV + (VWU = tT5V + VGV + g1(¢U, V)&,
(viii) TgyV + HV 5V + (VYU = fTgV + VGV
forany U,V € T'(ker J,) and X, Y € I'(kerJ«)*.

Proof. By some simple steps of calculation with using (2.7), (2.15) and (3.3), (i) and (i) are easily

obtained. In the same manner, from Eqs (2.4)—(2.6), (2.15), (3.2) and (3.3), we will get the desired
results. O

We will now go through some fundamental findings that can be used to investigate the conformal
bi-slant submersions J: O; — O, geometry. Define the following in this regard:

(@) Vo)V = VVgyV -y VV5V,
(b) (Vo)V = HYGLV = VGV,
(c) (Vg)Y = VVgtY —tHVY,
(d) (V)Y = HVY3fY - fHVzY

forall U,V € I'ker ) and X, Y € I'(ker J,)*.

Lemma 3.3. Let (01, ¢,&,1,81) be a KM and (O,, g,) be a RM. If T : O; — O, is a CBSS with vertical
&, then we have

(i) Vo)V = 1TgV = TolV + g1(9U, V)é = n(V)yU,
(ii) (VgO)V = fToV = ToyV - n(V)U,
(iii) (V)Y = yAzY — Az fY,
(iv) (Vi f)Y = (AzY — AgtY
forany U,V € T'(kerJ«) and X, Y € I'(kerJ+)*.

Proof. By taking account the fact from (2.4)—(2.7), (2.13), (i), (ii) part from Lemma 3.2 and from part
(a)—(d), it is easy to get the proof of the lemma. O

It is given that V is the Levi-Civita connection of Kenmotsu manifolds O;. Let us suppose that the
tenors ¥ and ¢ are parallel, we can write

(ToV =TolV - 819U, VIE+n(VWWU, fToV =ToyV +n(V){U

forany X, Y € I(TO,).
4. Geometry of leaves of distributions

We will talk about the geometry of distribution leaves and integrability conditions in this section.
We begin with the prerequisites that must be met in order for the slant distributions to be integrable.
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Theorem 4.1. Let J: (01, ¢,&,1,81) — (02, 82) be a proper CBSS with vertical & with slant angles
01 and 6,, where (O, ¢,&,1, 81) is a KM and (O», g>) is a RM. Then the distribution Dy, is integrable if
and only if
A2 (VIN UL, V), TL00) - 81U, — ¢V, UonwUy) — g1(¢U; — ¢V, yVy =y Un(Us)
= @V TLV) = V] T.L0D, TL0)) + 81(To, {0y = T, gV, On)
+ 21T, Vi — Ty, lU Ly Us) + A2 g2(VT DV, L0, T.LUs)
forany U, Vy € T(Dy,) and U, € T(Dy,).
Proof. For any U}, V| € I'(Dy,) and U, € I'(Dg,) and on using (2.12), (2.13) and from (3.2), we have
§1([0, V11,02 = g1(Vyp* Uy, Us) — 61(V g, 0* Vi, Ua) — 61(V g, Ly Vi, Us)
+81(Vy, oy U1, Un) + 61(V5,{ V1, ¢Us) — 81(Vi, (UYL 9U,).
Considering Theorem 3.1, we have
sin 0181([01, Vi1, U2) = - g1(V 5,84 V1, U2) + g1(Vi, (U1, Ua) + 81(V 5, d Vi, 602) — 81(Vi, LU, ¢ 0)
+ 21U = ¢V, yV —yUn(U,) + g1(¢U — ¢V, Uy U).
By using (2.5), we have
sin® 011U, V11, 02) = g1(T3, 49Uy = T, 86V, Un) = g1(T0,{Vi = T, UL w0n)
+ g1(HV 5, (Vi — HV 3,00 LU0L) + 819U — ¢V, V — g Un(Us)
+21(¢U = ¢V, Uy 0).
Now considering Lemma 2.1 and (2.10), we have
sin’ 01g1(L0, Vi1, U2) =47°:((V] J4Vi = V9 T.L00, TLO + 81(T3, 89U = T5,80V1, 02)
— 81T 0,{Vi = T3,{ U1, U2) = 72 go(VT (UL, (V) T L 02)
+A78(VI)(V1,601), T.L02) + 818U = ¢V, Unn(y0)
+ 81U — ¢V, yV =y U)n(U>).

O
Studying distribution leaves will be significant since they are crucial to the geometry of conformal

bi-slant submersions from the Kenmotsu manifold. In order to do this, we are determining the
circumstances in which distributions define total geodesic foliation on M.

Theorem 4.2. Let J: (01, $,&,1,81) — (0, 82) be a CBSS with vertical & from a KM onto a RM O,.
Then Dy, is not totally geodesic on O.

Proof. For any vector field U, V € I'(D,) with the fact that V and & are orthogonal, we have
gl(vU‘_/9 f) = _gl(‘_/9 VUé:)
By considering the (2.14), we get
gl(VUV, g) = _gl(Ua V)

Since,
U’ V € F(Del)’ _gl(U’ ‘7) * O,

that is g,(VyV, &) # 0. Hence, the distribution is not defines totally geodesic foliation on O;. O
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Since the Reeb vector field £ is assumed to be vertical, the slant distribution D, does not define total
geodesic foliation. In order to deal with this issue, the geometry of the leaves of the slant distribution
Dy @ < € > is being examined here.

Theorem 4.3. Let (O, $,&,1,81) be a KM and (O,, g») be a RM such that J is a CBSS with vertical ¢
from M onto O,. Then the distribution Dg,® < & > defines totally geodesic foliation on O, if and only

if
(VT )NUL LV, T.LUs) = 81(T0,LVi, 0 Us) — 1(T 5,9V, Ua)

] . 4.1
+A782(V] T4V, T.800) b

and

(VI TL0LTLV) + g1(AL ULy V)
= sin” 0g,([U, X1, V}) + g1(Axy U, V1) + gi(gradIn A, X)g, (U4, V) (4.2)
+ gi(gradIn A, LU )g (X, ¢V)) — gi(gradIn 4, £ V) g (X, LUy)

forany U,,V, € T(Dg,® < & >), U, € ['(Dy,) and X € T'(kerJ.)*.
Proof. For any Uy, V| € [(Dy,® < & >) and U, € I'(Dy,) with using (2.12), (2.13) and (3.2), we have
g1V, V1, 02) = g1(V, Vi, ¢00) — g1(V g,y Vi, Un) — g1(V g, 2 Vi, 0s).
From Theorem 3.1, we can write
sin® 0181(V, Vi, U2) = —=g1(V, uVi, Ua) + 81(V, (V1L 0 00).
On using (2.5), we have
sin® 011(Vg, Vi, 02) = g1(T0,{Vi,w0) — g1(T 0,8 Vi, Un) + g1 (HV ,{ Vi, L0).
Considering (2.10) and Lemma 2.1, we obtain

Sin2 ngl(VUl ‘_/1’ 02) = gl(TUlg‘_/l’ lﬂUz) - gl(TUlngI’ Uz) - /l_ng((Vj*)(Ul’ {‘71)’ j*{l_jz)
+ /l_zgz(vfjlj*g‘_/la jngZ)a

this proves first part of theorem.
On the other hand, U;, V| € T(Dy,) and X € I'(kerJ,)* with using (2.12), (2.13) and (3.2), we can
write

§1(Vg, Vi, X) = =110, X1, V1) + g1(@Vxy U1, Vi) = g1(VL Uy, V).
Considering Theorem 3.1, we obtained
sin’ 6181(V, V1, X) = —g1(101, Vi1, X) + 81(Vs5y U1, V1) = 81(V5£ U1, ¢V,
On using (2.7), we have

sin® 611(Vg, V1, X) =sin’ 6,¢1(101, X1, V1) + ¢1(Axly U1, Vi) = g1(AzL 01, V1)
— 179 J.V5(UL T.L0Y).
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Using Lemma 2.1, we yields

sin® 01¢1(Vg, V1, X) = sin® 0181101, X1, Vi) + g1(AxLp Uy, V1) = 172 g0(V LU0, Tl W)
+ gi(gradIn A, X)g1(¢U,, {Vy) + gi(grad In A, LU gy (X, (V1)
— gi(gradIn A, {V)gi(X, (UY) — g1(AgLULL YY)

This completes the proof of the Theorem. O

It is obvious that the Theorems 4.1-4.3 hold for distribution Dy,. Now, we look at certain
circumstances that allow horizontal and vertical distributions to be totally geodesic. We commence by
giving the findings for vertical distribution.

Theorem 4.4. Let (O, ¢,£,1,81) be a KM and (O,, g,) be a RM such that J is a CBSS with vertical ¢
from O, onto O,. Then vertical distribution (ker.J,) defines totally geodesic foliation on O, if and only

if
/l‘zgz(V;%J;{Ul,J;{Vl) = (cos® 6, — cos® 01)g1(Vx, U, Vi) + g1(A, V1, LU — g1(Ax, Vi, (pTy)
+ gi(gradIn A, X)g (LU, {V)) + gi(grad In A, LU g1 (X1, £ V)
— gi(grad1n A, {V)g (X, £T)) — sin® 0,g,({ U1, X111, V1)
— 21X,y Un(V) + g1(¢X, Vin(ywU)

4.3)

for Uy, V, € T(kerd,) and X, € T'(kerJ,)*.
Proof. On taking Uy, V| € T'(kerJ,) and X, € I'(kerJ,)* with using (2.12), (2.13) and (3.2), we have

g1V, Vi, X)) = -g1((U, X1, Vi) + g1(Vx, 00Uy, Vi) — 61(V5, LU ¢ V).
On using decomposition (3.1) and Theorem 3.1, we get

g1V, Vi, X1) = =110, X1, V1) — cos® 0,1 (V, KU, V) — cos® 0rg1(Vg, €U, V1)
+81(Vx, &y U, Vi) — g1(Vx, (UL Y V) — 1(V5, (UL EVY)
= &u(@X,yUn(V) + 818X, Vinw 0).
On using (2.7), we can write
sin® 61g1(Vg, V1, X)) = (cos’ 6, — cos® 01)g1(Vx, 2Ty, V) = sin” 6,g([01, X1, V)
+ g(( A YV, LUY) = g1(Ax, Vi, Ly Uy) = g1(HV 5, LU, LV
~ 81(@X, yUm(V) + g1(8X, VI U).
Using (2.10), we get
sin® 6¢1(V, V1, X)) = (cos 6, — cos® 6)g1(Vx, LU, V) + g1(Ax, ¥ V1, L0))
- 1A, V1, U0 + 7 a(VI )X, L0, T oL V)
— A72(V] J.L0L T LV = sin 61g1(10, Xi1, V)
— gu@X,yUn(V) + g1(¢X, VIn(yU).
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Considering Lemma 2.1, we have
sin® 0181(Vg, Vi, X1) = (cos® 6, — cos” 01)g1(Vx, LUy, Vi) + g1(Ax, ¢ V1, (UY) — g1(Ax, Vi, Ly Ty)
+gi(gradIn A, X))g (¢U,, V) + gi(gradIn A, LU g (X, £V))
—gi(gradIn 4, {VDg1 (X1, 00 = A72g2(V] T.LUL TV
—sin” 616:(L01, Xi1, V1) = 18X,y O(V) + g1(¢X, VIn(O).

This completes the proof of the Theorem. O
Similarly, we examined the totally geodesic prerequisite for horizontal distributions.

Theorem 4.5. Let (O, $,&,1,81) be a KM and (O,, g») be a RM such that J is a CBSS with vertical ¢
from Oy onto O,. Then horizontal distribution (kerJ,)* is totally geodesic if and only if

ﬂ‘zgz(V%J*CUl,j*sz) = —g1(Ax, (U, 1X5) — n(X>)g1(¢X1, Uy) + gi(gradIn A, X1)g1 (¢ Uy, fX)
+gi(gradIn A, LU g1 (X, fX5) — gi(gradIn A, fX5)g1(X1,{UY)
- gi(gradIn 2, X1)g1({y Uy, X5) — gi(grad In 4, {YU)g1(Xy, fX)
+gi(grad In 4, X)g1 (X1, Gy 0)) + 17282V T.09 01, J.%0)
for any X, X, € T'(kerJ,)*, U, € I'(KerJ,).
Proof. For any X, X, € I'(kerJ.)* and U, € I'(kerJ,) with using (2.12), (2.13) and (3.2), we have

81V, X5, U)) = e1(Vg, ov U1, Xo) — 1(Vx, UL ¢X5) — n(U))g1 (X1, Xo).

By using Theorem 3.1, we can write

sin® 0181 (Vz, X2, Uy) = g1(Vx, (YU, Xo) — g1(Vx, (U4, 0X2) — n(01)g1 (X1, Xo) + n(wU,)g1(9X1, Xo).
From (2.7), we get
sin® 0,g1(Vg, X2, U)) = —g1(Ax, LU, 1X0) — 17262(T. V5, (UL T fX0)
+ 17280 T. V5,0 U, T.%) — n(U)g1 (X1, Xo) + n(wU)g1(¢X1, Xo).
Considering Lemma 2.1, we have
sin® 0181(Vx, X2, U)) = —g1(Ag, LUy, X)) — n(U)g1(X1, Xa) + n(wU g1 (96X, Xa)

- ga(V3 T UL T fXa) + g1(grad In 1, X)g1(L U1, fXo)
+gi(gradIn A, LU g1 (X, fX) — gi(gradIn A, fX5)g1 (X, {UY)
— gi(gradIn 4, X))g1({y U1, X,) — gi(grad In A, Ly U1)gi (X, fX2)
+gi(gradIn 4, X2)g1(X1, sy 01) + 17°82(Vg To(w U1, T Xo).

4.4)

O

It is now fascinating to investigate if the whole space O; can become a locally twisted product
manifold under specific circumstances. We find some criteria that make total space O, a locally twisted
product manifold in the following result. Here, we give the definition of the twisted product manifold
defined by Ponge [31]. Let gz be a Riemannian metric tensor on the manifold B = O; X O, and assume
that the canonical foliations Dy, and Dy, intersect perpendicularly everywhere. The gp is a metric
tensor of
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(1) a twisted product if and only if Dy, is totally geodesic foliation and Dy, is totally umbilical
foliation,
(i1) a usually product of Riemannian manifolds if and only if Dy, and Dy, are totally geodesic
foliations,
(i11) a warped product if and only if Dy, is totally geodesic foliation and Dy, is a spheric foliation, i.e.,
it is umbilical and its mean curvature vector field is parallel.

'I_‘heorem 4.6. Let J be a CBSS with vertical ffrom_a KM (0_1,_¢, £,1,81) onto a RM (O,, g,). Then
O, is a locally twisted product manifold of the form O e,y X4 O1erg,)- if and only if
VTV, T.0FK) = 210V, oWz (erad A, T.0f V) - &1 (Voo W, 1K) @45)
and
21X, V)H = tAztY — tX(In A)fY + t(gradIn D) g, (X, fY) + ¢j*(V‘;j*fY) +g1(X, Y)é, (4.6)
where H is mean curvature vector and for any V,W € I'(kerJ,) and X, Y € I'(kerJ,)™ .
Proof. For any V, W € I'(kerJ,) and X, Y € I'(ker.J,)*, we have
§i(VyW,X) = gi((HV W, fX) + g((TypW, tX).
Since V is torsion free, [V, W] € I'(ker.J,), we have
si(ViW, X) = gi(VipW, tX) + g1 (VywoV, o f X).

Since J is CBSS with vertical &, by using Lemma 2.1 and from the fact that g,(fX,$V) = 0 for
X € (kerJ.)* and V € (ker.J,), we have

o o1 _ _
g1(VyW,X) = g1(VygpW, 1X) + ﬁgz(Vng*¢V, NE(72.9))
— g1(¢V, ¢W)gi(gradIn 4, T ($f V).

It follows that O ,,.q. is totally geodesic if and only if the (4.5) holds good. Now, for X, Y €
I'(kerJ.)*, V € I'(kerJ.), we have

21(VgY, V) = gi(AgtY + VVztY, V) + g1 (AzfY + HVfY, V) + g1(X, V)n(V).
From above equation, we get
81(VxY, V) = gi(AxtY, ¢V) + g1(HV 2 fY,¢V) + g1(X, V)n(V).

Since 7 is a CBSS with vertical &, from (2.4) and on using Lemma 2.1, we get
GT57.9) = 61 A5tT, 97) — a(erdIn 4, )15 7, .67)
- %gz(grad In 4, f?)%gz(jj(, J.BV)
b 5K, )T grad In 4.T.07)

1 _ _ o
+ 5 8(VL TSV T8V + (X, (V).
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Moreover using the fact that g,(fX, ¢V) = 0, for X € I'(ker J,)*, V € I'(ker ), we arrived at
_ _ 1 _ _
§1(Vx¥, V) =g1(AtY, 6V) + (VLT fV, T4V
1 _ 1 _ -
- Egz(grad In4, f Y)Egz(ﬂ’ X, TpV)

| N | _ _
+ 28X, fY)58:(T.gradIn 4, J.¢V) + g1(X, Yn(V).

With the last equation, we can say that O}, g, is totally umbilical if and only if the (4.6) satisfied.
This proves the theorem completely. m|

5. ¢-Pluriharmonicity of CBSS with vertical ¢

Now, we recall the concept of J-pluritharmonicity which is defined by Ohnita [25] and extend the
notion from a almost Hermitian manifold to ACM manifold.

Let J be a CBSS with vertical & from KM (O, ¢,&,7,g1) onto a RM (0., g,) with slant angles
6, and 6,. Then conformal bi-slant is ¢-plurtharmonic, Dy,-¢-pluritharmonic, kerJ.-¢-pluriharmonic,
(kerJ.)*-¢-pluriharmonic and ((kerJ,)* — kerJ.)-¢-pluriharmonic if

(VTIW.2Z) + (VT )¢W,¢Z) = 0 (S.D

for any W,Z € I(D%, for any W,Z € T(kerd.), for any W,Z € T(kerJ,)* and for any
W e T'(kerJ.)* . Z € T'(kerd.).

Theorem 5.1. Let J be a CBSS with vertical & from KM (O, ¢,&,1, g1) onto a RM (O-, g,) with slant
angles 0, and 6,. Suppose that J is D%-¢-pluriharmonic. Then Dy, defines totally geodesic foliation
O, if and only if

T LT yolV + fHV gl V) = T ( Aoy V + HV 5L V)
= cos’ O T.(fTyoV +{VVyp V) + V5 T.0V
forany U,V € T'(Dg,).

Proof. For any U,V € I'(Dy,) and since, J is Dg,-¢-pluriharmonic, then by using (2.3) and (2.4), we
have

0 =(VINU, V) +(VT.)(U,¢V),
T (V5V) == T.(Vy58V) + V. T (V)
= — J(AYV + VV gV + TyglV + HV 5l V) + T(@V yydyV
+ (VIO (V) =V T4V + V], T8V
By using (2.10), (3.1) with Theorem 3.1, the above equation finally takes the form
J.(VgV) == cos> 0 T.(T oV + [Ty V +yVVygV + LVV,0V) + vjl.]j*m‘/

+ JWT oV + LT 4ol V + tHV g LV + fHV 5Ly V)

— J( AWV + VbV + Tyl V + HV L V) - Vfgj*g\'/

+ LU DTLV + {V(In DT LU ~ (LU, {V) T (grad In 2)
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from which we get the desired result. O

Theorem 5.2. Let J be a CBSS with vertical & from KM (O, ¢,&,1, g1) onto a RM (O,, g>) with slant
angles 6, and 0,. Suppose that J is Dy,-¢-pluriharmonic. Then Dy, defines totally geodesic foliation

O, if and only if
T LT 7200 W + fHV 200 W) = T (AW + HV y2d W)
= o8’ T (fTyzW + LWV W) + V7 T oW
~ {Z(In DT LW — (W DT LZ + 81({Z,{W) T (grad In 2)
for any Z,W € T(Dy,).
Proof. Due to the similarity of proof of above result to Theorem 5.1, we omit it. O

Theorem 5.3. Let J be a CBSS with vertical ¢ from KM (O, ¢,&,1,81) onto a RM (0,, g,) with
slant angles 0, and 0,. Suppose that J is (kerJ.)*" — kerd.)-¢-pluriharmonic. Then the horizontal

distribution (kerJ.,)* defines totally geodesic foliation on O, if and only if
cos*O T AT g QU + (VKU + fAxKU + V58] U)
+ cos’ T fTxQU + (VY LU + FAzLU + LV 32U + n(yU) fX}
= JALTxYRU + fHY 3 YRU + (T3 8U + fHY {y LU}
+ TN AYKU + LAy LU — HY 5L U + V. 9.00
— fXUn DT LYKRU = pRUn DT fX + g1(fX, {yKRU)T.(grad In 2)
— FR(n VT.Ly LU — LpQUIn VT, fX + g1(fX, {wLT) T (grad In )

+J.(V30) + VLT.LU + VL TR0 + VI T.0920

for any X € T'(kerJ,)* and U € I'(kerJ,)

Proof. For any X € I'(kerJ.)* and U € I'(kerd.), since J is ((kerJ.)* — kerJ.)-¢-pluriharmonic,
then by using (2.4), (2.10) and (3.1), we get

TJ(VxlU) = - (VU + V5L U + V sy U) + J.(VU) + ij)—(j*ﬁ_]-

By using (2.11), we have

J(Vyx{0) = ~J(Tix{U + HV x{0) + J.(V50) + V;ZXJ'*KU
+ T AVixpy U = n(V sy U)¢ = n X + n(p Un(tX)é}
+ TASV iz YU = (V iz UYE = n U)X + (i Un(fX)E}.
Now on using decomposition (2.8), Theorem 3.1 with (2.10), we may yields
T (V3L0) = JA=cos® 61¢V g RU ~ cos® ¢V x U + nwU) fX)
+ TASVixLURU + ¢V 3 lY LU + ¢V x{YKU + ¢V 3y LU
+ J{— cos? 0,9V ;g KRU — cos® 6,0V 32U}
- J(HV 3(0) + T.(Vx0) + VT4 0.
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From (2.4)—(2.7) and after simple calculation, we may write

TV 5L0) = o’ TAfTixRU + LV KU + fAKU + LVV 5] U)
— cos” T AfT 38U + {VV 38U + fALU + LVV ;52U + nyU) £ X}
+ T AT YRU + fHY 3 QY RU + {T 5y U + fHY 3y LU}
+ TN AYKU + LAy U — HV 5L 0 + V1. T.L0
+ J(fHV 3y RU + fHY 3Ly RUO) + J.(V0).

On using the conformality of 4 with (2.4) and from Lemma 2.1, we finally have

J.(V5LU0) = o’ TAfTix8U + (VV KU + fAxKU + (VKUY
— cos” T AfTx QU + {VV g U + fALU + {VV 58U + n(yU) fX}
+ JMT 2 GURU + fHY 3 YRU + (T 3y LU + fHYV 3Ly LU}
+ TN AYKU + LAy U — HY 5L 0 + V. T.L0
— fX(An DF.LYKRU - YQRUIn DT X + g1(fX, LYK O)T.(grad In 2)
— fX(In D T.LYLU — LU DT, fX + g1(fX, {yLU)J.(grad In 2)
+JVx0) + VL T.L0 + VET.RU + V7, J.0920,

which completes the proof of theorem. O

Now, we are giving some definitions of integrablity and totally geodesic of leaves of distributions.

Definition 5.1. Suppose D is a k-dimensional smooth distribution on M. Then An immersed
submanifold i: N — M is called an integral manifold for D if for every x € N, the image of d;N:
T,N — T,M is D,. We say the distribution D, is integrable if through each point of M there exists an
integral manifold of D.

Further, a distribution D is involutive if it satisfies the Frobenius condition such that if X, Y € I'(T M)
belongs to D, so [X, Y] € D. Frobenius theorem states that an involutive distribution is integrable.

Definition 5.2. Let M be n-dimensional smooth manifold. A foliation § of M is a decomposition of M
into a union of disjoint connected submanifolds M = U, 5L called the leaves of the foliation, such that
for each m € M, there is a neighborhood U of M and a smooth submersion fy: U — R with fljl(x) a
leaf of &y the restriction of the foliation to U, for each x € R*.

Definition 5.3. Let M be a Riemannian manifold, and let § be a foliation on M. § is totally geodesic
if each leaf L is a totally geodesic submanifold of M; that is, any geodesic tangent to L at some point
must lie within L.

6. Conclusions

The properties of submersions between Riemannian manifolds have emerged as an interesting area
of study in contact as well as complex geometry. The geometry of conformal bi-slant submersion,
whose base manifold is a Kenmotsu manifold, was examined in this study. We suppose that the Reeb

vector field £ is vertical and establishes the condition of integrability of slant distributions because the
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Reeb vector field € plays a crucial role in the geometry of leaves of the distributions. Additionally, the
total geodesics of the leaves of distributions were determined.  Furthermore, the idea of
pluriharmonicity from the Kenmotsu manifold was explored.
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