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Abstract: In this paper, we showed some generalized refinements and reverses of arithmetic-
geometric-harmonic means (AM-GM-HM) inequalities due to Sababheh [J. Math. Inequal. 12 (2018),
901-920]. Among other results, it was shown thatif a,b > 0,0 < p <t < 1 and m € N*, then

(@V,b)" - (a!,b)" . pd-p
av,by" — (al,b)y» = t(1-1)

and

(af,b)" — (al,b)" . pd-p
(atby" — (albym — (1 -1)

for b > a, and the inequalities are reversed for b < a. As applications, we obtained some inequalities
for operators and determinants.
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1. Introduction

Let M, (C) denote the algebra of all nxn complex matrices and M, *(C) be the set of positive definite
matrices in M, (C). For A and B are two Hermitian matrices, A > B means that A — B € M*(C). Let
B(‘H) denote the C*-Algebra of all bounded linear operators on a complex Hilbert space H. An operator
A € B(H) is called positive if (Ax, x) > 0 for all x € H, denoted by A > 0. The set of all positive
invertible operators is denoted by B**(H). For two self-adjoint operators A, B € B(H), A > B means
(A—B) e B**(H).

As usual, we denote the arithmetic-geometric-harmonic means (AM-GM-HM) as AV,B = (1 -
P)A + pB, Af,B = A*(A"2BA"2)?A? and A!,B = ((1 — p)A™" + pB~')"' for A,B € B**(H) and
0 < p < 1. Similarly, we define the weighted AM-GM-HM as aV,b = (1 — p)a + pb, af,b = a' "b”
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anda!,b = ((1-p)a + pb™")" fora,b>0and0 < p < 1.
The scalars AM-GM-HM means reads

a!,b < aff,b < aV,b,

where a,b > 0 and p € [0, 1]. In 2015, Alzer, Fonseca and Kovacec [1] presented the following
AM-GM means inequalities

() < T b1y o

1] = (@Vbyn - (afbyr ~\1-1t

for 0 < p <t < 1and m > 1. In fact, Alzer-Fonseca-Kovacec’s inequalities have become one

of the most important extensions to Young’s inequalities for the past few years. Liao and Wu [5]
replicated (1.1) as follows

(E)m L @vpb)y" — (@) (1 _p)m

t) — (@v.,p)yn —(al;byr \1-t (1.2)

fora,b > 0,0 < p <t < 1andm > 1. Sababheh [7] improved (1.2) under some conditions: For
a,b>0and k=1,2,
(1) if (b —a)(t — p) = 0, then

(@vyb)' = (alyb) _ p(l—p)

; 1.3
@V,b)x — (a!,b)* — t(1—1) (1.3)
(1) if (b — a)(t — p) < 0, then
k_ (a! b -
(aV,b)* —(a!,b) S p(1 p)' (1.4)
(aV,b)k — (a!,b) (1 -1
In the same paper [7], the author also showed that: If (b — a)(t — p) > 0, then
—q _
affyb —al,b < p(d-p) (15)

atb—alb ~ t(1-1) "

We refer the readers to [3, 4, 8, 9] and references therein for some other results about the AM-GM-
HM means inequality.

Following the ideas of Yang and Wang [10], we will give some generalizations of inequalities (1.3)—
(1.5) and a generalized reverse of inequality (1.5). As applications, we obtain some inequalities for
operators and determinants.

2. Main results

Firstly, we give the generalization of inequalities (1.3) and (1.5). Without loss of generality, we may
assume 0 < p <t < 1 in the following theorem.
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Theorem 1. Leta,b > 0,0< p <t<1andm e N*. Ifb > a, then we have

(@vp,b)" —(a!,b)y" - p(1-p)
@v,byr — (al;,b)y" — t1-1)

2.1)

and

(a,b)" = (a!,0)" _ p(1 - p)

@by — @by - =1 2.2)

Proof. Letting f(p) = (1-p+px)"=((1-p+px")™")", then f(p) = (1-p+px)—(1—p+px~")h(p),
where h(p) = (1 —=p+px)" '+ (1 = p+px)" 2 —p+px DN+ + A =p+px)(1 —p+px )"+
(1= p+ pxHl=" Thus, we have i'(p) = (x — D)[(m = 1)(1 = p + px)" 2+ (m = 2)(1 = p + px)"3(1 -
prpx D)+ + (U =p+px )+ (1 =x DA =p+p)" (L =p+px )2+ +(1-p+
px)m —2)(1 = p+ px D™ + (m — 1)(1 — p + px~1)™]. It is clear that #’'(p) > 0 when x > 1, which
means that 4(p) < h(t). Therefore,

f(p) A=p+p)"—(A-p+px)")"
(@) (I—t+t0)m— (1 —t+tx )"
(I=p+px)—(1—p+px ) Hh(p)
((I=t+1x)— (A =1+ tx)"h(2)
U=p+p-(d=-p+px)!
(1I=t+tx)— (1 —t+txH!

p(l —p)
< FTETR (by (1.3))

Taking x = 2, we complete the proof of (2.1). Similarly, letting f(p) = (x*)" = ((1-p+px")™")", then
f(p) = (& =(1=p+px)"h(p), where h(p) = (x?)" ' +(x?)"2(1=p+px )" 4 4+xP(1=p+px~') >+
(1-p+px~H'=" Thus, we have /'(p) = In x[(m—D)x"" D7 + (m—-2)x"2P(1—p+px )+ +xP(1 -
p+px D>+ (1=x H[x"2P(1-p+px )2+ +(m=2)x"(1-p+px )" +(m—-1)(A - p+px~H)™].
It is clear that #’(p) > 0 when x > 1, which means that 4(p) < h(t). Therefore,

fp) _ X" —(A—p+px )"
f@  xm— (1=t + )"
(=1 =p+px) DHh(p)
(= (1 =+ tx D)D)
W =(1-p+px )’
xX =1 —-t+x 1!

p(1-p)

taking x = Z, as desired. O

Lettinga=b,b=a,p=1—-tandt =1 — p in Theorem 1, we have the following results:
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Corollary 2. Leta,b >0,0< p<t<1andm e N*. If a > b, then we have

(aVib)" — (alb)" _ (1-1)
(@v,by" = (a!,by" — p(1 - p)

and

(af,b)" — (a!b)" < (1 —1)

(ati,by" — (a!,b)" ~ p(1 - p)
That is

@v,b)" —(a!,by"  p(l - p)

(aV;b)" — (a!;b)" z t(1—1) 2:3)
and

(ahyb)" = (ayb)"  p(l = p) (2.4)

(aby" = (aliby™ — t(1-1)°

We notice that inequality (2.3) is the generalization of (1.4), and inequality (2.4) is the reverse
of (1.5) whenm = 1.
Next, we explain that Theorem 1 and Corollary 2 improved inequalities (1.2).

Remark 3. Leta,b>0,0< p <t<1andme N",
(i) If b > a, we have

(av,by" —(a!,b)y" <p(1—p)<p(1—p)’”<(1—p)’”_
@v,by" — @by =~ t1-1 ~ t1-pm ~\1-¢

(ii) If a > b, we have

(3)’" cp=p) _pld-p) _(@v,b)"—(al,b)"
t) T (-1 T t(1-1 = (aVb)y" - (al,b)"
Next, we give some inequalities for operators and determinants by Theorem 1 and Corollary 2. We

will list some necessary lemmas in front of each theorem.

Lemma 4 ([6, p.3]). Let X € B(H) be self-adjoint and f and g be continuous real functions such that
f(t) > g(t) forall t € S p(X) (the spectrum of X), then f(X) > g(X).

Theorem 5. Let A € BT*(H),0< p <t <1andm e N*,
(i) If A > I, then we have

m m p(l_p) m m
IV, A" — (I!,A) sm((mm —(I!,A)) 2.5)
and
m m o PA=p) m m
L ((Iﬁ,A) — (I1A) ) (2.6)

(ii) The inequalities (2.5) and (2.6) are reversed if A < I.
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Proof. We only prove the first inequality. The other inequalities are shown similarly. Let a = 1 in
inequality (2.1), then we get

p(1—p)

(1V,b)" — (11,b)" < =0

((IV,b)’” —qa !,b)'"). 2.7)

The operator A has a positive spectrum, then by Lemma 4 and inequality (2.7) we get

p(1-p)

(VA" = (11pA)" < S

((IV,A)’" - (I!,A)’”). 2.8)

Finally, multiplying inequality (2.8) by A> on both left and right sides, we can get (2.5) directly. O

Before we give some inequalities for determinants as promised, we should recall some basic signs.
The singular values of a matrix A are defined by s;(A),j = 1,2,--- ,n, and we denote the values of
{s;(A)} as a nonincreasing order. To obtain our results, we need a following lemma.

Lemma 6 ([2], p.26). (Minkowski inequality) Let a = [a;], b = [b;], i = 1,2,--- ,n be such that a;, b;
are two sets of positive numbers, then

n n 1

NERlIBR

With equation if and only if a = b.
Theorem 7. Let A,Be M;*(C),0 < p<t<landmeN". If B> A, then we have

- . . )
20 4 (AV,B= A1, B)" + det(ALB)? < det(AV,B) 2.9)
p(l=p)

and
o det (A, B~ ALB)” + det(ALB)T < det(Af,B)" 2.10)

Proof. Under the conditions, we have 1 < Sj(A_%BA_%) for B> A. Puttinga = 1 and b = 5,(T), where
T = A2BA™? in the inequality (2.1), then we have

(IVij(T))m - (“psj(T))m < p(1—-p)
(V5,0 — (s, @)~ 10 =1)

2.11)

for j = 1,2,---,n. It is a fact that the determinant of a positive definite matrix is a product of its
singular values, and we have

n

det(IV,T)* = (]—[ (19, j(T))’")'l’
j=1

n (1 -t m " BT
> ];[[pil_;)((lvps;(ﬂ) — (11,5/T)) )+(1!,sj(T)) ] (by (2.11))
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1 n

T [;8 ((1v SAT))" (1!psj(T))’")]"+ ((l'ts](T)) ) (by Lemma 6)
=1

j=1

H(W s/(T) = 1ys{(T))" + l_[(l';s](T))”

p(l

- : .
= det (IV,T — I,T)" + det(I!,T)?,

p(1 =y ST = )"+ deul

where the last inequality is by (@” — b™) > (a — b)" for a > b > 0 and m € N*. Multiplying (detA%)%
on both sides of the inequalities above, we can get the desired inequality (2.9).

Using the same technique above in (2.2), we can obtain inequality (2.10) easily, so we omit the
details. |

Corollary 8. Let A,Be M;"(C),0 < p<t<landmeN*. If B< A, then we have

% det (AV,B — A!,B)" + det(A!,B)" < det(AV,B)"
and
‘; 8 l;) det (A#,B — AL,B)" +det(A!,B)} < det(Af,B)".
Proof. The proof comes from Corollary 2 and Theorem 7 directly. O
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