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1. Introduction

Throughout the article, we assume that Γ = (V(Γ), E(Γ)) is simple and connected graph, where
V(Γ) = {v1, v2, . . . , vν} is the vertex set and E(Γ) is the set of edges. No multiple edges and loops are
allowed. The number of vertices in V(Γ) is denoted by ν and it is called the order, while the cardinality
of E(Γ) is the size of Γ. The number of edges emanating from vi is denoted by dΓ(vi) (or shortly di),
and it is called degree of a vertex vi. We denote the complement of Γ as Γ.

An ν × ν, (0, 1) matrix A(Γ) = (ai j) is the adjacency matrix of Γ, Deg(Γ) = diag(d1, d2, . . . , dν)
is the diagonal matrix of vertex degrees and L(Γ) = Deg(Γ) − A(Γ) is the Laplacian matrix of Γ.
The eigenvalues of semi-definite, symmetric matrix L(Γ): µ1(Γ) ≥ µ2(Γ) ≥ · · · ≥ µν(Γ) are called the
Laplacian eigenvalues of Γ. The Laplacian spectrum (briefly L-spectrum) of Γ is the set of all Laplacian
eigenvalues, including their multiplicities. For two vertices vi, v j ∈ V(Γ), d(vi, v j) denotes the length
of a shortest path between them. It is called the distance between vi and v j. The reciprocal distance
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matrix RD(Γ) (also called Harary matrix) of a graph Γ [1], is a matrix of order ν defined as

RDi j =

 1
d(vi,v j)

if i , j,

0 otherwise.

For relevant work regarding the Harary matrix, we refer the reader to [2–4].
Subsequently, we assume i , j when d(vi, v j) is considered. The reciprocal distance degree

RTrΓ(vi), (or shortly RTr(vi) ) of a vertex vi ∈ V(Γ) is defined as

RTrΓ(vi) =
∑

v j∈V(Γ)vi,v j

1
d(vi, v j)

.

The diagonal matrix diag(RTrΓ(v1), . . . ,RTrΓ(vν)) is denoted by RT (Γ).
The reciprocal distance Laplacian matrix RDL(Γ) = RT (Γ) − RD(Γ) was for the first time

introduced in [5]. It is a real, symmetric matrix with nonnegative eigenvalues. Its eigenvalues will be
given in non-increasing order as follows %1(Γ) ≥ %2(Γ) ≥ · · · ≥ %ν−1(Γ) > %ν(Γ) = 0. The reciprocal
distance Laplacian spectral radius is the largest eigenvalue %1(Γ). The reciprocal distance Laplacian
spectrum (briefly RDL-spectrum) of Γ refers to the multiset of all eigenvalues of RDL(Γ). The
multiplicity of the reciprocal distance Laplacian eigenvalue %i(Γ) of Γ is denoted by multRDL(%i(Γ)).
For the connected graph Γ of order ν, the largest eigenvalue of RDL(Γ) does not exceed ν. In addition,
the necessary and sufficient conditions for ν to be the eigenvalue of RDL(Γ) are known and are
presented in [5]. If ν is an eigenvalue of RDL(Γ), then its multiplicity provides an information on the
number of components in Γ (see [6]). Supplemental results related to the matrix RDL(Γ) can be found
in [7–9].

Graphs having a few distinct eigenvalues are usually of special interest due to their interesting
combinatorial properties. These graphs tend to have some kind of regularity and they have been studied
in relation to various matrices associated to graphs. In addition, to determine graphs with a given
spectrum, it becomes evident that a large number of distinct eigenvalues makes the problem extremely
complex. For this reason, the graphs with small number of distinct eigenvalues are usually the first
ones to be approached.

A plethora of different matrices have been associated with graphs. Most of them possess some
distinguishable property suitable for retrieving important information on a graph. In that sense, the
crucial contribution of RDL spectrum is on graph connectivity, as mentioned above. So far, the
reciprocal distance Laplacian spectrum of a graph has been subject of [5–8]. There, one can find
results on connectivity, bounds on the largest RDL eigenvalue, information on distribution of
eigenvalues, etc. Here, our focus is on the determination of connected graphs with small numbers of
distinct RDL eigenvalues. As a main tool in our approach, we employ an interplay between the
Laplacian and RDL spectra of a graph.

As usual, S ν and Kν are, respectively, the star graph and the complete ν-vertex graph. A complete
multipartite graph is denoted by Kt1,t2,...,tk , where k is the number of partite classes and t1+t2+· · ·+tk = ν.
If k = 2, then it is called a complete bipartite graph. Let Γ1 and Γ2 be the graphs with disjoint vertex
sets V(Γ1) and V(Γ2). Then the union Γ1 ∪ Γ2 is the graph whose vertex set is V(Γ1) ∪ V(Γ2) and edge
set is E(Γ1) ∪ E(Γ2). The join of Γ1 and Γ2 is the graph Γ1 ∪ Γ2 along with all the edges with one end
in V1 and the other one in V2. It is denoted by Γ1∨Γ2. By qΓ, we abbreviate the q copies of Γ, for some
positive integer q. For more important notions and definitions in graph theory, see [10].
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The organization on the remaining content of the paper is as follows. In Section 2, we determine the
graph with only two distinct reciprocal distance Laplacian eigenvalues and also completely determine
the classes of graphs with a RDL eigenvalue of multiplicity |V(Γ)| −2. In Section 3, we determine some
graph classes with the reciprocal distance Laplacian eigenvalues of multiplicity |V(Γ)| − 3.

2. Graph with RDL(Γ) eigenvalues of multiplicity ν − 1 and ν − 2

We begin this section with two observations: The multiplicity of 0 as an eigenvalue of L(Γ) equals
the number of components in Γ; for any connected graph Γ, 0 < %i(Γ) ≤ ν, for all 1 ≤ i ≤ ν − 1.

We first characterize the unique graph of given order with exactly two distinct reciprocal distance
Laplacian eigenvalues.

Theorem 2.1. Let Γ be a connected graph with ν ≥ 2 vertices. Then multRDL(%1(Γ)) ≤ ν − 1. The
equality holds if and only if Γ is a complete graph on ν vertices.

Proof. The RDL-spectrum of Kν is equal to {ν(ν−1), 0}, which proves that the equality holds for Γ = Kν.
Suppose further that multRDL(%1(Γ)) = ν − 1. We order the vertices of Γ so that RTmin = RTr(v1) ≤
RTr(v2) ≤ · · · ≤ RTr(vν) = RTmax, where RTmin and RTmax are the minimum and the maximum
reciprocal distance degrees in Γ, respectively. Since Γ has only two distinct eigenvalues, 0 and %1(Γ),
and 1 = (1, 1, . . . , 1)ᵀ is an eigenvector of RDL(Γ) afforded by 0, each vector y = (y1, y2, . . . , yν)ᵀ with
y1 = 1, y j = −1 and yi = 0 for i , 1, j is an eigenvector of RDL(Γ) associated to the eigenvalue
%1(Γ). By equating the first entries of RDL(Γ)y = %1(Γ)y, we obtain RTmin + 1

d(v1,v j)
= %1(Γ) or 1

d(v1,v j)
=

%1(Γ) − RTmin. The above equation holds for all 2 ≤ j ≤ n, that is,

1
d(v1, v2)

=
1

d(v1, v3)
= · · · =

1
d(v1, vν)

= %1(Γ) − RTmin.

It is clear that the above equalities are valid only if d(v1, v j) = 1 for all 2 ≤ j ≤ ν. This shows that the
vertex v1 is adjacent to every other vertex in Γ. Thus, RTmin = ν − 1 which is true if and only if Γ is Kν.

A class of graphs that do not contain a path on 4 vertices as an induced subgraph is known as a class
of cographs (see [11]). The following characterizations of cographs will be needed in the following.

Lemma 2.2. [11] Given a graph Γ the following are equivalent:

a) Γ is a cograph.
b) The complement of any nontrivial connected subgraph of Γ is disconnected.
c) Every connected subgraph of Γ is of diameter less than 3.

In order to make the paper self-contained, we include a useful observation on the structure of
eigenvectors corresponding to the multiple eigenvalues.

Lemma 2.3. [12] Let S be an ν × ν symmetric matrix and λ an eigenvalue of S with multiplicity k. If
γ ⊂ {1, 2, . . . , ν} with k − 1 elements, then there exists an eigenvector z = (z1, z2, . . . , zν)ᵀ of S afforded
by λ such that zi = 0 whenever i ∈ γ.

The subsequent result provides the relation between the existence of induced P4 in Γ and the RDL-
spectrum of Γ.
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Lemma 2.4. Let Γ be a connected graph that is not a cograph with ν ≥ 4 vertices, different from the
complete graph. Then multRDL(%1(Γ)) ≤ ν − 3.

Proof. Since Γ is not a cograph, Γ contains a path on 4 vertices as an induced subgraph. Assume
that the vertices v1, v2, v3, v4 induce P4. Denote by R the principal submatrix of RDL(Γ) induced by
the rows/columns corresponding to v1, v2, v3, v4. Let δ1 ≥ δ2 ≥ δ3 ≥ δ4 be the eigenvalues of R. If
possible, let multRDL(%1(Γ)) ≥ ν − 2. By Theorem 2.1, it follows that multRDL(%1(Γ)) = ν − 2, due
to Γ � Kν. Next, Cauchy interlacing theorem implies that δ1 = δ2 = %1(Γ). By Lemma 2.3, there
is an eigenvector r = (r1, r2, 0, r4, 0, . . . , 0)ᵀ of RDL(Γ) associated to the eigenvalue %1(Γ) with r⊥1.
Consequently, r∗ = (r1, r2, 0, r4)ᵀ is an eigenvector of R for %1(Γ) satisfying r1 + r2 + r4 = 0, as r⊥1.
We observe that there are only two possible choices R1 and R2 for the matrix R:

R1 =


RTr(v1) −1 −1

2 −1
3

−1 RTr(v2) −1 −1
2

−1
2 −1 RTr(v3) −1
−1

3 −1
2 −1 RTr(v4)

 ,
when there exists no vertex v5 such that Hi, 1 ≤ i ≤ 4, is an induced subgraph of Γ as can be seen in
Figure 2.1,

or

R2 =


RTr(v1) −1 −1

2 −1
2

−1 RTr(v2) −1 −1
2

−1
2 −1 RTr(v3) −1
−1

2 −1
2 −1 RTr(v4)

 ,
when Γ contains one of Hi, 1 ≤ i ≤ 4 as an induced subgraph.

Figure 2.1. Graphs H1,H2,H3 and H4.

The third entry of the equation R1r∗ = %1(Γ)r∗ gives − r1
2 − r2− r4 = 0 or r1

2 = 0, since r1 + r2 + r4 = 0.
Thus, r1 = 0 and r1 + r2 + r4 = 0 imply r2 = −r4. Let r2 = s. Then the vector r∗ has the form
r∗ = (0, s, 0,−s)ᵀ. Now, by comparing the first entries of the equation R1r∗ = %1(Γ)r∗, we obtain
−s + s

3 = 0 or −2s
3 = 0 or s = 0, which is a contradiction as r∗ = (0, s, 0,−s)ᵀ is an eigenvector. Similar

arguments lead to a contradiction when we take R2 instead of R1. These contradictions show that the
multiplicity of eigenvalue %1(Γ) cannot be greater than or equal to ν − 2. This completes the proof.

We recall two lemmas to be employed in the continuation.

Lemma 2.5. [5] Let Γ be a connected graph. Then, multRDL(0) = 1.

Lemma 2.6. [6] Let Γ be a connected graph of order ν. If ν is an eigenvalue of RDL(Γ), then its
multiplicity is equal to the number of components in the complement graph Γ minus 1.
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Next, we pursue the complete characterization of the graphs satisfying multRDL(%1) = ν − 2.

Theorem 2.7. If Γ � Kν is a connected graph with ν ≥ 4 vertices, then multRDL(%1(Γ)) ≤ ν − 2. The
equality holds if and only if Γ � Kν − e, where e is an arbitrary edge in Kν.

Proof. As Γ � Kν, multRDL(%1(Γ)) ≤ ν − 2, by Theorem 2.1. We will prove that Kν − e is the unique
graph that satisfies the equality. For that, assume that multRDL(%1(Γ)) = ν − 2. Lemma 2.5 implies
that 0 is a simple eigenvalue of RDL(Γ). Henceforth, the remaining eigenvalue %ν−1(Γ) is also simple
eigenvalue of RDL(Γ), that is, multRDL(%ν−1(Γ)) = 1. We distinguish two cases.
Case 1. Let %1(Γ) , ν. Then, RDL-spectrum of Γ is comprised of {(%1(Γ))(ν−1), %ν−1(Γ), 0}with %ν−1(Γ) ,
%1(Γ). Since %1(Γ) , ν, by Lemma 2.6, Γ is connected, which further shows, by Lemma 2.2, that Γ is
not a cograph. Additionally, by Lemma 2.4, multRDL(%1(Γ)) ≤ ν − 3, which is a contradiction to our
supposition that multRDL(%1(Γ)) = ν−2. Therefore, there exists no graph Γ having RDL-spectrum equal
to {(%1(Γ))(ν−1), %ν−1(Γ), 0} with %ν−1(Γ) , %1(Γ) and %1(Γ) , ν.
Case 2. Let %1(Γ) = ν. Then, RDL-spectrum of Γ is equal to {ν(ν−2), %ν−1(Γ), 0}with %ν−1(Γ) , %1(Γ) = ν.
By Lemma 2.6, Γ is disconnected with exactly ν−1 components. Thus, Γ � (ν−2)K1∪K2 or Γ � Kν−e.

The proof gets completed after observing (see [6]) that the RDL-spectrum of Kν − e is equal to
{ν(ν−2), ν − 1, 0}. �

Similar to Lemma 2.4, the following result relates the existence of the induced P4 in a graph Γ with
the RDL-spectrum of Γ.

Lemma 2.8. If Γ is a connected graph with ν ≥ 4 vertices that is not a cograph, then multRDL(%2(Γ)) ≤
ν − 3.

Proof. The proof follows by proceeding and using arguments similar to Lemma 2.4. �

We continue by recalling two important results on connected graphs that relate the L-spectrum and
RDL-spectrum for the graphs of diameter 2.

Lemma 2.9. [5] If Γ is a connected graph of order ν and diameter d = 2, then %i(Γ) =
ν+µi(Γ)

2 , for
i = 1, 2, . . . , ν−1. In addition, both ν+µi(Γ)

2 and µi(Γ) are of the same multiplicity for all i = 1, 2, . . . , ν−1
in L(Γ), RDL(Γ), respectively.

Lemma 2.10. [13] Let Γ be a graph with ν ≥ 3 vertices. Then, the Laplacian spectrum of Γ consists
of 0, α(ν−2), β, α < β if and only if Γ � K ν

2 ,
ν
2

if 2|ν or Γ � S ν.

Now we are in position to completely characterize the graphs with the multiplicity of the second
largest reciprocal distance Laplacian eigenvalues equal to ν − 2.

Theorem 2.11. Let Γ be a connected graph on ν ≥ 4 vertices. Then multRDL(%2(Γ)) ≤ ν − 2. The
equality holds if and only if Γ � S ν or Γ � K ν

2 ,
ν
2
.

Proof. According to Lemma 2.5, 0 is a simple eigenvalue of RDL(Γ). Therefore, multRDL(%2(Γ)) ≤ ν−2.
Next, we show that S ν and K ν

2 ,
ν
2

are the only two graphs for which the equality holds. Suppose that
multRDL(%2(Γ)) = ν − 2. We separate two cases.
Case 1. Let %1(Γ) , ν. Then, the RDL-spectrum of Γ consists of {%1(Γ), %2(Γ)(ν−2), 0}with %2(Γ) , %1(Γ).
Since %1(Γ) , ν, then by Lemma 2.6, Γ is connected, which further shows, by Lemma 2.2, that Γ is not
a cograph. Next, Lemma 2.8 implies multRDL(%2(Γ)) ≤ ν−3, which is a contradiction to our supposition
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that multRDL(%2(Γ) = ν− 2. From the above reasoning, we conclude that there exists no graph Γ having
RDL-spectrum equal to {%1(Γ), %2(Γ)(ν−2), 0} with %2(Γ) , %1(Γ) and %1(Γ) , ν.
Case 2. Assume that %1(Γ) = ν. Consequently, the RDL-spectrum of Γ is {ν, %2(Γ)(ν−2), 0} with %2(Γ) ,
%1(Γ) = ν. By Lemma 2.6, Γ is disconnected with exactly 2 components. This assures that the diameter
of Γ is 2. By Lemma 2.9, the L−spectrum of Γ is equal to {ν, (2%2(Γ) − ν)(ν−2), 0} with ν , 2%2(Γ) − ν.
Therefore, by Lemma 2.10, either Γ � K ν

2 ,
ν
2

or Γ � S ν.
We note (see [6]) that the RDL-spectrum of K ν

2 ,
ν
2

and S ν are respectively, {ν, (3ν
4 )(ν−2), 0} and

{ν, ( ν+1
2 )(ν−2), 0}. Thus, the proof is completed. �

Amalgamating Theorems 2.7 and 2.11, we obtain the complete characterization of the graphs that
have an RDL eigenvalue of multiplicity ν − 2.

Theorem 2.12. If Γ is a connected graph with ν ≥ 4 vertices having an RDL(Γ) eigenvalue less than ν
of multiplicity 2 , then either

(1) multRDL(%1(Γ)) = ν − 2 and Γ � Kν − e;
(2) multRDL(%2(Γ)) = ν − 2 and Γ � S ν or Γ � K ν

2 ,
ν
2
.

3. On graphs with an eigenvalue of RDL(Γ) with multiplicity ν − 3

We commence this section with the observation that the Laplacian eigenvalues of Γ are determined
by the corresponding eigenvalues of Γ. In particular, µν−i(Γ) = ν − µi(Γ), for all 1 ≤ i ≤ ν − 1,
where {µ1(Γ), . . . , µν(Γ)} is the Laplacian spectrum of Γ (see [14] for more details). Graphs with a few
Laplacian eigenvalues (up to four) have been determined in [15]. We revisit one of its results, needed
in the proof of the main result of current section.

Lemma 3.1. [15] Let Γ be a connected graph with ν ≥ 5 vertices. Then the L-spectrum of Γ is
{ν, α(ν−3), β, 0}, ν , α > β > 0, if and only if Γ � K1 ∪ S ν−1 or Γ � (K ν−1

2
∪ K ν−1

2
) ∨ K1 when 2|(ν − 1);

or Γ � ν
3 K1 ∨ (K ν

3
∪ K ν

3
) when 3|ν.

We continue with another auxiliary result.

Lemma 3.2. Let Γ be a connected graph with ν ≥ 5 vertices. Then the L−spectrum of Γ is
{ν, ν, α(ν−3), 0}, ν , α > 0, if and only if Γ � K ν

3 ,
ν
3 ,

ν
3

when 3|ν, or Γ � K ν−1
2 , ν−1

2
∨ K1 if 2|(ν − 1), or

Γ � (ν − 2)K1 ∨ K2.

Proof. Assume that Γ is a connected graph with ν ≥ 5 vertices whose L-spectrum is {ν(2), α(ν−3), 0}.
Therefore, the L-spectrum of Γ is equal to {(ν − α)(ν−3), 0, 0, 0}. Using the fact that the complete graph
is determined from its L-spectrum, we observe that every component in Γ is either an isolated vertex or
complete graph with the same order. Clearly, the number of isolated vertices in Γ can be at most 2, that
is, Γ � K ν

3
∪ K ν

3
∪ K ν

3
when 3|ν, and Γ has no isolated vertex, or Γ � K ν−1

2
∪ K ν−1

2
∪ K1 when 2|(ν − 1),

and Γ has one isolated vertex, or Γ � Kν−2 ∪ K1 ∪ K1 if Γ has two isolated vertices. Hence, Γ � K ν
3 ,

ν
3 ,

ν
3

if 3|ν, or Γ � (K ν−1
2 , ν−1

2
) ∨ K1 if 2|(ν − 1), or Γ � (ν − 2)K1 ∨ K2.

Conversely, it is straightforward to check that the L-spectra of K ν
3 ,

ν
3 ,

ν
3
, (K ν−1

2 , ν−1
2

)∨K1 and (ν−2)K1∨K2

are {ν(2), ( 2ν
3 )(ν−3), 0}, {ν(2), ( ν−1

2 )(ν−3), 0} and {ν(2), 2(ν−3), 0}, respectively. �
Next we state one of our main results. We determine some classes of graphs for which the second

largest eigenvalue of reciprocal distance Laplacian matrix appears in the corresponding spectrum
repeated ν − 3 times.
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Theorem 3.3. Let Γ be a connected graph with ν ≥ 5 vertices and multRDL(%2(Γ)) = ν − 3. Then
(a) %1(Γ) = ν with multiplicity 1 if and only if Γ � K1 ∪ S ν−1 or Γ � (K ν−1

2
∪K ν−1

2
)∨K1 when 2|(ν−1),

or Γ � ν
3 K1 ∨ (K ν

3
∪ K ν

3
) when 3|ν.

(b) %1(Γ) = ν with multiplicity 2 if and only if Γ � K ν
3 ,

ν
3 ,

ν
3

when 3|ν, or Γ � (K ν−1
2 , ν−1

2
) ∨ K1 when

2|(ν − 1), or Γ � (ν − 2)K1 ∨ K2.

Proof. (a) Given that %1(Γ) = ν is simple and multRDL(%2(Γ)) = ν − 3, we conclude that the RDL-
spectrum of Γ is equal to {ν, (%2(Γ))(ν−3), %3(Γ), 0}. As ν is simple eigenvalue of RDL(Γ), by Lemma 2.6,
Γ has exactly two components. This implies that the diameter of Γ is 2. By Lemma 2.9, we obtain
that the L-spectrum of Γ is equal to {ν, (2%2(Γ) − ν)(ν−3), 2%3(Γ) − ν, 0}. Consequently, according to
Lemma 3.1, Γ � K1 ∪ S ν−1 or Γ � (K ν−1

2
∪ K ν−1

2
)∨ K1 when 2|(ν− 1) or Γ � ν

3 K1 ∨ (K ν
3
∪ K ν

3
) when 3|ν.

(b) Suppose that %1(Γ) = ν is of multiplicity 2 and multRDL(%2(Γ)) = ν−3. Then the RDL-spectrum of
Γ is equal to {ν(2), (%2(Γ))(ν−3), 0}. By Lemma 2.6, Γ has exactly three components. This implies that the
diameter of Γ is 2. According to Lemma 2.9, the L-spectrum of Γ is equal to {ν(2), (2%2(Γ) − ν)(ν−3), 0}.
Thus, by Lemma 3.2, Γ � K ν

3 ,
ν
3 ,

ν
3

if 3|ν, or Γ � (K ν−1
2 , ν−1

2
) ∨ K1 if 2|(ν − 1), or Γ � (ν − 2)K1 ∨ K2.

Conversely, by Lemmas 2.9 and 3.2, we see that the RDL-spectrum of K ν
3 ,

ν
3 ,

ν
3
, (K ν−1

2 , ν−1
2

) ∨ K1 and
(ν − 2)K1 ∨ K2 are, respectively, {ν(2), (5ν

6 )(ν−3), 0}, {ν(2), ( 3ν−1
4 )(ν−3), 0} and {ν(2), ( ν+2

2 )(ν−3), 0}. �
Finally, we completely determine the graphs having ν as the largest reciprocal distance Laplacian

eigenvalue of multiplicity ν − 3.

Theorem 3.4. If Γ is a connected graph on ν ≥ 5 vertices, then %1(Γ) = ν is of multiplicity ν − 3 if and
only if Γ � K3,1,1,...,1 or Γ � K2,2,1,1,...,1 or Γ � (ν − 3)K1 ∪ S 3.

Proof. Let %1(Γ) = νwith multRDL(%1(Γ)) = ν−3. Then the RDL-spectrum of Γ is {ν(ν−3), %2(Γ), %3(Γ), 0}.
We separate two cases:
Case 1. Let %2(Γ) = %3(Γ). Since the eigenvalue ν is of multiplicity ν − 3, Γ has ν − 2 components,
by Lemma 2.6. This also implies that the diameter of Γ is 2. Using Lemma 2.9, we obtain that the
Laplacian spectrum of Γ is equal to {ν(ν−3), (2%2(Γ)− ν)(2), 0}, which further shows that L-spectrum of Γ

is equal to {(2ν − 2%2(Γ))(2), 0, . . . , 0}. Therefore, every component of Γ is either an isolated vertex or
complete graph of the same order. Furthermore, Γ has either ν − 3 or ν − 4 isolated vertices, because
Γ has ν − 2 components. Thus, the only two possibilities for Γ are either Γ � (ν − 3)K1 ∪ K3 or
Γ � (ν − 4)K1 ∪ K2 ∪ K2, and therefore Γ � K3,1,1,...,1 or Γ � K2,2,1,1,...,1.

Case 2. Let %2(Γ) , %3(Γ). By following the same arguments as in the above case, we see that the
Laplacian spectrum of Γ is equal to {2ν − 2%3(Γ), 2ν − 2%2(Γ), 0, . . . , 0}. Since %2(Γ) , %3(Γ) and Kν is
determined by its Laplacian spectrum, then the only possibility for Γ is that Γ � (ν−3)K1∪S 3. Hence,
Γ � (ν − 3)K1 ∪ S 3.

Conversely, we see that the RDL−spectrum of K3,1,1,...,1, K2,2,1,1,...,1 and (ν − 3)K1 ∪ S 3 are,
respectively, {ν(ν−3), ( 2ν−3

2 )(2), 0}, {ν(ν−3), (ν − 1)(2), 0} and {ν(ν−3), 2ν−1
2 , 2ν−3

2 , 0}. �

4. Conclusions

The problem to determine graphs with small numbers of distinct eigenvalues has been considered
in the literature for different types of spectra. Recently, it has been extended to signed graphs (see [16]
and references therein). No matter what kind of spectra is considered, most graphs with a few distinct
eigenvalues show some type of regularity. The results of this paper can be seen as contributions to this

AIMS Mathematics Volume 8, Issue 12, 29008–29016.
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topic with respect to the reciprocal distance Laplacian matrix. As expected, the obtained graphs are
either regular or close to being regular.
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