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1. Introduction

Let Ω ⊆ RN , N ≥ 2 be a bounded open set with regular boundary Γ = ∂Ω. A coupled wave equation
through second order terms with just one viscoelastic infinite memory term is considered:

ytt(x, t) − a∆y(x, t) + c∆z(x, t) +

∫ ∞

0
g(s)∆y(x, t − s)ds = 0, in Ω × (0,∞),

ztt(x, t) − ∆z(x, t) + c∆y(x, t) = 0, in Ω × (0,∞),

y = z = 0, on Γ × (0,∞),

y(x, 0) = y0(x), z(x, 0) = z0(x), yt(x, 0) = y1(x), zt(x, 0) = z1(x), in Ω,

y(x,−t) = f (x, t), in Ω × (0,∞),

(1.1)

where y0, y1, f , z0 and z1 are known functions belonging to appropriate space, a > 0 and c ∈ R∗ such
that a > c2 and

a = b + c2, (1.2)
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where b is a positive constant satisfying

l = b −
∫ ∞

0
g(s)ds > 0. (1.3)

The function g verifies some assumptions that will be given in the next section.
The aforementioned model can be used to describe the motion of two elastic membranes subject to

an elastic force that pulls one membrane toward the other. This model takes the memory effect into
account, which may exist in some materials particularly in low temperature [12].

Note here that (1.1) is stabilized by the infinite memory term
∫ ∞

0
g(s)∆y(x, t − s)ds, which appears

in only one equation. It is the concept of indirect stabilization that was first introduced by Russell [24]
and later on was developed in [2]. Many researchers have been interested in this topic. We start off

by reviewing some works related to wave equation with an infinite memory term. Dafermos, in his
pioneer paper [9], studied the equation

ρutt = cuxx −

∫ t

−∞

g(t − τ)uxxdτ, x ∈ [0, 1], t ≥ 0, (1.4)

where ρ and c are positive constants. Under the assumption that g is non-negative, monotonically
nonnegative and satisfies a condition likewise (1.3), the author proved that the solutions of (1.4) are
asymptotically stable. In [13], Giorgi et al. analyzed the longtime behavior of solutions and proved the
existence of a global attractor for solutions (in the autonomous case) in a bounded domain of R3 of the
following semi-linear hyperbolic equation

utt − k(0)∆u −
∫ ∞

0
k′(s)∆u(s)ds + g(u) = f , (1.5)

where k, g and f are assumed to satisfy certain conditions. By adding a frictional dissipation in (1.5) of
the form αut, Conti and Pata [8] proved the existence of a regular global attractor. In [6,21], the authors
gave necessary and sufficient conditions (on the relaxation function) for the exponential stability of an
abstract equation of the form

utt + Au −
∫ ∞

0
k(s)Au(t − s)ds = 0, (1.6)

where A is a self-adjoint strictly positive linear operator with compact inverse. Later on, Guesmia [14]
examined (1.6) by considering another self-adjoint and strictly positive operator B (in the integral term)
instead of A and by assuming that D(A) ⊂ D(B), such that the embedding is dense and compact. He
proved the stability of the system for a wide class of the relaxation function. For more results about
stability of the wave equation with past history, we refer the reader to the references [3, 4, 7, 11, 16,
17, 20, 22, 23]. For a coupled system with infinite memory, we mention the work of Almeida and
Santos [5] in which the authors studied a coupled system of wave equations and proved a polynomial
decay estimate. Guesmia [15] considered a coupled system of two linear abstract evolution equations
of second-order with one infinite memory acting only on the first equation: utt + Au −

∫ ∞

0
g(s)Bu(t − s)ds + B̃v = 0, ∀ t > 0,

vtt + Ãv + B̃u = 0, ∀ t > 0,
(1.7)
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where A, Ã and B are unbounded self-adjoint linear positive definite operators in a Hilbert space H,
with domains D(A) ⊂ D(B) ⊂ H and D(Ã) ⊂ H, such that the embeddings are dense and compact, and
B̃ is a self-adjoint linear bounded operator in H. The author proved a stability result of (1.7) for a wide
range of integrable kernels that can decay slower than exponential one. Later, Jin et al. [19] improved
the result obtained in [15] by assuming much weaker conditions on the convolution kernel. We also cite
the works [18, 25] in which the authors studied an abstract system like (1.7) and considered additional
terms of the form αu and external forces. We note here that our system does not fit in the framework
of the works mentioned above, and their general result does not apply because the condition on the
coupling operator fails (in our case, it is an unbounded operator in the state space whereas in the other
works it is bounded). We finish this part by citing the recent work of Akil and Hajjej [1] in which the
authors studied a similar problem to (1.1), but with only one localized frictional damping instead of a
memory term and proved the exponential stability of the system.

The main innovation points of the paper are:
(1) Extending exponential decay outcomes, which have previously been established for the coupling

of two viscoelastic wave equations through zero-order or first-order terms, to the realm of coupling by
second-order terms.

(2) Removing the assumption of equal wave propagation speeds, a common feature in numerous
prior studies.

It’s worth noting that (1.1) carries a real-world physical interpretation. For instance, in one
dimension, (1.1) describes the behavior of a piezoelectric material exhibiting magnetic effects.

The paper is subdivided as follows: In Section 2, we establish the existence and uniqueness of a
solution to (1.1) in an appropriate Hilbert space. By using the perturbed energy method, we prove the
exponential decay of the energy associated with (1.1) in the last section.

2. Well-posedness

We use the standard Lebesgue space L2(Ω) with its usual norm ‖·‖. We denote by Cp the embedding
constant of H1

0(Ω) ↪→ L2(Ω), i.e.

‖y‖ ≤ Cp‖∇y‖, ∀ y ∈ H1
0(Ω).

In this paper, we take into account the following conditions:

(H1): g ∈ C1(R+) ∩ L1(R+) satisfies l0 =

∫ ∞

0
g(s)ds > 0 and g(s) > 0, ∀ s ∈ R+.

(H2): For any s ∈ R+, g′(s) < 0 and there exists two positive constants, b0 and b1, such that

− b0g(s) ≤ g′(s) ≤ −b1g(s). (2.1)

As in [9], we define η(x, s, t) = y(x, t) − y(x, t − s), ∀ (x, s, t) ∈ Ω × (0,+∞) × (0,+∞),

η0(x, s) = η(x, s, 0) = f (x, 0) − f (x, s), ∀ (x, s) ∈ Ω × (0,+∞).
(2.2)

It is clear that
ηt(x, s, t) + ηs(x, s, t) = yt(x, t), x ∈ Ω, s, t > 0.
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Moreover, we have η(x, 0, t) = 0, x ∈ Ω and t > 0. Then, (1.1) is equivalent to

ytt(x, t) − l1∆y(x, t) + c∆z(x, t) −
∫ ∞

0
g(s)∆η(x, s, t)ds = 0, in Ω × (0,∞),

ztt(x, t) − ∆z(x, t) + c∆y(x, t) = 0, in Ω × (0,∞),

ηt(x, s, t) + ηs(x, s, t) = yt(x, t) in Ω × (0,∞) × (0,∞),

y = z = 0, on Γ × (0,∞),

y(x, 0) = y0(x), z(x, 0) = z0(x), yt(x, 0) = y1(x), zt(x, 0) = z1(x), in Ω,

y(x,−t) = f (x, t), in Ω × (0,∞),

(2.3)

where
l1 = l + c2. (2.4)

We define the space Σ by

Σ = L2
g(R+; H1

0(Ω)) =
{
η : R+ → H1

0(Ω);
∫ ∞

0
g(s)‖∇η(s)‖2ds < ∞

}
,

equipped with the inner product

〈η, η̃〉Σ =

∫ ∞

0

∫
Ω

g(s)∇η(s) · ∇η̃(s)ds.

The state space is given by

H = H1
0(Ω) × L2(Ω) × H1

0(Ω) × L2(Ω) × Σ, (2.5)

which is a Hilbert space under the scalar product〈
Z, Z̃

〉
H

=

∫
Ω

(l∇u · ∇ũ + vṽ + (c∇u − ∇p) · (c∇ũ − ∇ p̃) + qq̃)dx + 〈η, η̃〉Σ, (2.6)

for all Z = (u, v, p, q, η)> and Z̃ = (ũ, ṽ, p̃, q̃, η̃)> inH . The norm inH is denoted by ‖ · ‖H and given by

‖(u, v, p, q, η)‖2H =

∫
Ω

(
|v|2 + l|∇u|2 + |q|2 + |c∇u − ∇p|2

)
dx +

∫ ∞

0
g(s)‖∇η(s)‖2ds.

We define the unbounded operatorA inH by

A(u, v, p, q, η)> =

(
v, l1∆u − c∆p +

∫ ∞

0
g(s)∆η(s)ds, q,∆p − c∆u, v − ηs

)>
, (2.7)

with domain

D(A) :=
{
Z := (u, v, p, q, η)> ∈

(
H2(Ω) ∩ H1

0(Ω)
)
× H1

0(Ω) ×
(
H2(Ω) ∩ H1

0(Ω)
)
× H1

0(Ω) × Σ;

ηs ∈ Σ, l1∆u +

∫ ∞

0
g(s)∆η(s)ds ∈ L2(Ω)

}
.

If we set Z = (y, yt, z, zt, η)>, then (2.3) may be written as:

Zt = AZ, Z(0) = Z0, (2.8)

where Z0 = (y0, y1, z0, z1, η0)>.
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Theorem 2.1. Assume that the assumptions (H1)-(H2) hold. Then, the operator A generates a C0

semigroup of contractions eAt onH .

Proof. We start by proving thatA is dissipative; that is

〈AZ,Z〉H ≤ 0, ∀ Z = (u, v, p, q, η) ∈ D(A).

In fact, we have for any Z = (u, v, p, q, η) ∈ D(A) that

〈AZ,Z〉H = l
∫

Ω

∇v∇udx +

∫
Ω

(
l1∆u − c∆p +

∫ ∞

0
g(s)∆η(s)ds

)
vdx +

∫
Ω

(c∇v − ∇q) (c∇u − ∇p) dx

+

∫
Ω

(−c∆u + ∆p) qdx +

∫ ∞

0

∫
Ω

g(s)∇(v − η(s))∇η(s)dxds.

Integrating by parts, the righthand side of the last equality yields to

〈AZ,Z〉H =
1
2

∫ ∞

0

∫
Ω

g′(s)|∇η(s)|2dxds ≤ 0,

which implies thatA is dissipative.
Next, we shall show that 0 ∈ ρ(A) (where ρ(A) represents the resolvent set of A). Given a vector

F = (ξ1, ξ2, h, k, ν) ∈ H , we look for Z = (u, v, p, q, η) ∈ D(A), such that

AZ = F.

By the definition ofA, we obtain
v = ξ1, (2.9)

l1∆u − c∆p +

∫ ∞

0
g(s)∆η(s)ds = ξ2, (2.10)

q = h, (2.11)

− c∆u + ∆p = k, (2.12)

v − ηs = ν. (2.13)

Inserting (2.9) in (2.13) and using the fact that η(x, 0, t) = 0, we have

η =

∫ s

0
(ξ1 − ν(r)) dr.

It is easy to see that since v ∈ H1
0(Ω), then η, ηs ∈ Σ.

Now, using (2.4) and combining (2.10) and (2.12), we infer that

∆u =
1
l

(
ck + ξ2 −

∫ ∞

0
g(s)∆η(s)ds

)
, (2.14)

∆p =
1
l

(
l1k + cξ2 − c

∫ ∞

0
g(s)∆η(s)ds

)
. (2.15)
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Let (ϕ, ψ) ∈ H1
0(Ω)×H1

0(Ω). Multiplying (2.14) and (2.15) by ϕ and ψ, respectively, and then integrating
by parts over Ω, one has∫

Ω

∇u∇ϕdx +

∫
Ω

∇p∇ψdx = −
1
l

∫
Ω

(
ck + ξ2 −

∫ ∞

0
g(s)∆η(s)ds

)
ϕdx

−
1
l

∫
Ω

(
l1k + cξ2 − c

∫ ∞

0
g(s)∆η(s)ds

)
ψdx. (2.16)

(2.16) can be rewritten as:
a ((u, p), (ϕ, ψ)) = L(ϕ, ψ),

where a is the bilinear functional defined by

a ((u, p), (ϕ, ψ)) =

∫
Ω

∇u∇ϕdx +

∫
Ω

∇p∇ψdx,

and L is the functional defined on H1
0(Ω) × H1

0(Ω) by

L(ϕ, ψ) = −
1
l

∫
Ω

(
ck + ξ2 −

∫ ∞

0
g(s)∆η(s)ds

)
ϕdx −

1
l

∫
Ω

(
l1k + cξ2 − c

∫ ∞

0
g(s)∆η(s)ds

)
ψdx.

It is clear that a is continuous and coercive in
(
H1

0(Ω) × H1
0(Ω)

)2
, and L is continuous on H1

0(Ω)×H1
0(Ω).

Then, it follows from the Lax-Milgram’s theorem that (2.16) possesses a unique solution (u, p) ∈
H1

0(Ω) × H1
0(Ω).

Beside that from (2.12), we have p − cu ∈ H2(Ω). This fact combined with (2.10) gives us l1∆u +∫ ∞

0
g(s)∆η(s)ds ∈ L2(Ω), and, thus, u, p ∈ H2(Ω). It follows that Z = (u, v, p, q, η) ∈ D(A), and

consequently, 0 ∈ ρ(A). Therefore, the well-known Lumer-Phillips theorem ensures that operator A
is the infinitesimal generator of a C0 semigroup of contractions. �

3. Exponential stability

We begin this section by introducing and proving several lemmas by adopting the method presented
in [10], which will be useful in the proof of our main result.

Lemma 3.1. Let Z = (y, yt, z, zt, η) be a solution of (2.3). Then, the functional

ϕ1(t) =

∫
Ω

yytdx + c
∫

Ω

yztdx,

satisfies

ϕ′1(t) ≤
(
1 +

cδ1

2

) ∫
Ω

|yt|
2dx −

l
2

∫
Ω

|∇y|2dx +
c

2δ1

∫
Ω

|zt|
2dx +

l0

2l

∫ ∞

0

∫
Ω

g(s)|∇η(s)|2dxds (3.1)

for any δ1 > 0.
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Proof. Multiplying (2.3)1 by y, using (2.3)2 and integrating by parts over Ω, we obtain

d
dt

∫
Ω

yytdx −
∫

Ω

|yt|
2dx + l

∫
Ω

|∇y|2dx + c
d
dt

∫
Ω

yztdx − c
∫

Ω

ytztdx +

∫ ∞

0

∫
Ω

g(s)∇η(s)∇ydxds = 0;

that is,

ϕ′1(t) =

∫
Ω

|yt|
2dx − l

∫
Ω

|∇y|2dx + c
∫

Ω

ytztdx −
∫ ∞

0

∫
Ω

g(s)∇η(s)∇ydxds. (3.2)

Applying Young’s inequality, we find for all δ1 > 0 that∫
Ω

ytzt ≤
δ1

2

∫
Ω

|yt|
2dx +

1
2δ1

∫
Ω

|zt|
2dx (3.3)

and ∫ ∞

0

∫
Ω

g(s)∇η(s)∇ydxds ≤
l
2

∫
Ω

|∇y|2dx +
1
2l

∫
Ω

(∫ ∞

0
g(s)∇η(s)ds

)2

dx

≤
l
2

∫
Ω

|∇y|2dx +
l0

2l

∫ ∞

0

∫
Ω

g(s)|∇η(s)|2dxds, (3.4)

where, in the last inequality, we have used the fact that∫
Ω

(∫ ∞

0
g(s)∇η(s)ds

)2

dx ≤

∫
Ω

(∫ ∞

0
g(s)ds

) (∫ ∞

0
g(s)|∇η(s)|2ds

)
dx

= l0

∫ ∞

0

∫
Ω

g(s)|∇η(s)|2dxds. (3.5)

Inserting (3.3) and (3.4) in (3.2), we get the desired inequality (3.1). �

Lemma 3.2. Let Z = (y, yt, z, zt, η) be a solution of (2.3). Then, the functional

ϕ2(t) =

∫
Ω

yt(cy − z)dx + c
∫

Ω

zt(cy − z)dx

satisfies

ϕ′2(t) ≤
(
c + c3 +

1
c

) ∫
Ω

|yt|
2dx +

l2

2δ2

∫
Ω

|∇y|2dx −
c
2

∫
Ω

|zt|
2dx + δ2

∫
Ω

|c∇y − ∇z|2dx

+
l0

2δ2

∫ ∞

0

∫
Ω

g(s)|∇η(s)|2dxds (3.6)

for any δ2 > 0.

Proof. Multiplying (2.3)1 by cy − z, using (2.3)2 and integrating by parts over Ω, we get∫
Ω

ytt(cy − z)dx + l
∫

Ω

∇y∇(cy − z)dx + c
∫

Ω

ztt(cy − z)dx +

∫ ∞

0

∫
Ω

g(s)∇η(s)∇(cy − z)dxds = 0,

which implies that

d
dt

(∫
Ω

yt(cy − z)dx + c
∫

Ω

zt(cy − z)dx
)

=

∫
Ω

yt(cy − z)tdx + c
∫

Ω

zt(cy − z)tdx − l
∫

Ω

∇y∇(cy − z)dx
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−

∫ ∞

0

∫
Ω

g(s)∇η(s)∇(cy − z)dxds

= c
∫

Ω

|yt|
2dx + (c2 − 1)

∫
Ω

ytztdx

−c
∫

Ω

|zt|
2dx − l

∫
Ω

∇y∇(cy − z)dx

−

∫ ∞

0

∫
Ω

g(s)∇η(s)∇(cy − z)dxds;

that is,

ϕ′2(t) = c
∫

Ω

|yt|
2dx + (c2 − 1)

∫
Ω

ytztdx − c
∫

Ω

|zt|
2dx − l

∫
Ω

∇y∇(cy − z)dx

−

∫ ∞

0

∫
Ω

g(s)∇η(s)∇(cy − z)dxds. (3.7)

By using Young’s inequality, we can easily check that

c2
∫

Ω

ytztdx ≤
c
4

∫
Ω

|zt|
2dx + c3

∫
Ω

|yt|
2dx, (3.8)

−

∫
Ω

ytztdx ≤
c
4

∫
Ω

|zt|
2dx +

1
c

∫
Ω

|yt|
2dx, (3.9)

− l
∫

Ω

∇y∇(cy − z)dx ≤
l2

2δ2

∫
Ω

|∇y|2dx +
δ2

2

∫
Ω

|c∇y − ∇z|2dx (3.10)

and

−

∫ ∞

0

∫
Ω

g(s)∇η(s)∇(cy − z)dxds ≤
δ2

2

∫
Ω

|c∇y − ∇z|2dx +
l0

2δ2

∫ ∞

0

∫
Ω

g(s)|∇η(s)|2dxds (3.11)

for every δ2 > 0.
Reporting (3.8)–(3.11) in (3.7) and (3.6) holds true. �

Lemma 3.3. Let Z = (y, yt, z, zt, η) be a solution of (2.3). Then, the functional

ψ1(t) =

∫
Ω

yytdx +

∫
Ω

zztdx

satisfies

ψ′1(t) ≤
∫

Ω

|yt|
2dx −

l
2

∫
Ω

|∇y|2dx +

∫
Ω

|zt|
2dx −

∫
Ω

|c∇y − ∇z|2dx

+
l0

2l

∫ ∞

0

∫
Ω

g(s)|∇η(s)|2dxds. (3.12)

Proof. Multiplying (2.3)1 by y and integrating by parts over Ω can obtain

d
dt

∫
Ω

yytdx−
∫

Ω

|yt|
2dx + l

∫
Ω

|∇y|2dx + c
∫

Ω

∇y(c∇y−∇z)dx +

∫ ∞

0

∫
Ω

g(s)∇y∇η(s)dxds = 0. (3.13)
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On the other hand, multiplying (2.3)2 by z and integrating by parts over Ω can obtain

d
dt

∫
Ω

zztdx −
∫

Ω

|zt|
2dx −

∫
Ω

∇z(c∇y − ∇z)dx = 0. (3.14)

Summing (3.13) and (3.14), one derives that

ψ′1(t) =

∫
Ω

|yt|
2dx − l

∫
Ω

|∇y|2dx +

∫
Ω

|zt|
2dx −

∫
Ω

|c∇y − ∇z|2dx −
∫ ∞

0

∫
Ω

g(s)∇y∇η(s)dxds. (3.15)

Reporting (3.4) in (3.15), we obtain the desired inequality. �

Lemma 3.4. Let Z = (y, yt, z, zt, η) be a solution of (2.3). Then, the functional

ψ2(t) = −

∫ ∞

0

∫
Ω

g(s)η(s)ytdxds

satisfies

ψ′2(t) ≤ −
l0

2

∫
Ω

|yt|
2dx +

lδ3

2

∫
Ω

|∇y|2dx +
cδ4

2

∫
Ω

|c∇y − ∇z|2dx

+

l0 +
b2

0C
2
p

2
+

ll0

2δ3
+

cl0

2δ4

 ∫ ∞

0

∫
Ω

g(s)|∇η(s)|2dxds (3.16)

for every δ3, δ4 > 0.

Proof. Multiplying (2.3)1 by −
∫ ∞

0
g(s)η(s)ds and integrating by parts over Ω to get

d
dt

(
−

∫ ∞

0

∫
Ω

g(s)η(s)ytdxds
)

= l
∫ ∞

0

∫
Ω

g(s)∇y∇η(s)dxds −
∫ ∞

0

∫
Ω

g(s)ytηt(s)dxds

+

∫
Ω

(∫ ∞

0
g(s)∇η(s)ds

)2

dx + c
∫ ∞

0

∫
Ω

g(s)∇η(s)(c∇y − ∇z)dxds. (3.17)

Now, multiplying (2.3)3 by g(s)yt, and integrating by parts over (0,∞) ×Ω, we infer that∫ ∞

0

∫
Ω

g(s)ytηt(s)dxds =

∫ ∞

0

∫
Ω

g(s)|yt|
2dxds −

∫ ∞

0

∫
Ω

g(s)ytηs(s)dxds

= l0

∫
Ω

|yt|
2dxds −

∫ ∞

0

∫
Ω

g(s)ytηs(s)dxds. (3.18)

Combining (3.17) and (3.18), it holds that

ψ′2(t) = −l0

∫
Ω

|yt|
2dx +

∫ ∞

0

∫
Ω

g(s)ytηs(s)dxds + l
∫ ∞

0

∫
Ω

g(s)∇y∇η(s)dxds

+c
∫ ∞

0

∫
Ω

g(s)∇η(s)(c∇y − ∇z)dxds +

∫
Ω

(∫ ∞

0
g(s)∇η(s)ds

)2

dx. (3.19)
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Likewise (3.4), we easily see that for every δ3 > 0,∫ ∞

0

∫
Ω

g(s)∇η(s)∇ydxds ≤
δ3

2

∫
Ω

|∇y|2dx +
l0

2δ3

∫ ∞

0

∫
Ω

g(s)|∇η(s)|2dxds. (3.20)

Now, we note that ∫ ∞

0

∫
Ω

g(s)ytηs(s)dxds = −

∫ ∞

0

∫
Ω

g′(s)ytη(s)dxds.

Using (3.32), Young’s inequality and Poincaré’s inequality, one derives that

−

∫ ∞

0

∫
Ω

g′(s)ytη(s)dxds ≤
l0

2

∫
Ω

|yt|
2dx +

b2
0C

2
p

2

∫ ∞

0

∫
Ω

g(s)|∇η(s)|2dxds. (3.21)

Thanks to Young’s inequality and Hölder’s inequality, we obtain∫
Ω

(∫ ∞

0
g(s)∇η(s)ds

)2

dx ≤

∫ ∞

0
g(s)ds

∫ ∞

0

∫
Ω

g(s)|∇η(s)|2dxds

= l0

∫ ∞

0

∫
Ω

g(s)|∇η(s)|2dxds (3.22)

and

c
∫ ∞

0

∫
Ω

g(s)∇η(s)(c∇y − ∇z)dxds

≤
cδ4

2

∫
Ω

|c∇y − ∇z|2dx +
c

2δ4

∫
Ω

(∫ ∞

0
g(s)∇η(s)ds

)2

dx

≤
cδ4

2

∫
Ω

|c∇y − ∇z|2dx +
cl0

2δ4

∫ ∞

0

∫
Ω

g(s)|∇η(s)|2dxds (3.23)

for all δ4 > 0.
Reporting (3.20)–(3.23) in (3.19), we find the desired inequality. �

Now, we define the energy of solutions of (2.3) by

E(t) =
1
2

∫
Ω

(
|yt|

2 + l|∇y|2 + |zt|
2 + |c∇y − ∇z|2

)
dx +

∫ ∞

0

∫
Ω

g(s)|∇η(s)|2dxds, (3.24)

which satisfies the following dissipation law

E′(t) =
1
2

∫ ∞

0

∫
Ω

g′(s)|∇η(s)|2dxds ≤ 0, (3.25)

which means that our system (2.3) is dissipative and so E(t) ≤ E(0).
Next, we define the functional L by

L(t) = N1E(t) + N2ϕ1(t) + N3ϕ2(t) + N4ψ1 + N5ψ2,

where N1,N2,N3,N4 and N5 are positive constants that will be chosen later.
It is easy to check, for N1 sufficiently large, that E(t) ∼ L(t) i.e.,

α1E(t) ≤ L(t) ≤ α2E(t), ∀ t ≥ 0, (3.26)

for some constants α1, α2 > 0.
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Lemma 3.5. Assume (H1)-(H2). We have, for all t ≥ 0,

L
′

(t) ≤ −βE(t), (3.27)

for some positive constant β.

Proof. From (3.1), (3.6), (3.12), (3.16), (3.25) and (3.32), we derive that

L′(t) ≤ −

N1b1

2
−

N2l0

2l
−

N3l0

2δ2
−

N4l0

2l
− N5

l0 +
b2

0C
2
p

2
+

ll0

2δ3
+

cl0

2δ4


∫ ∞

0

∫
Ω

g(s)|∇η(s)|2dxds

−

{
N5l0

2
− N2

(
1 +

cδ1

2

)
− N3

(
c + c3 +

1
c

)
− N4

}∫
Ω

|yt|
2dx

−

{
N3c
2
−

N2c
2δ1
− N4

}∫
Ω

|zt|
2dx

−

{
N2l
2

+
N4l
2
−

N5δ3l
2
−

N3l2

2δ2

}∫
Ω

|∇y|2dx

−

{
N4 − N3δ2 −

cN5δ4

2

} ∫
Ω

|c∇y − ∇z|2dx. (3.28)

By choosing δ1 = 2N2
N3
, δ2 = N4

4N3
, δ3 = N2

2N5
and δ4 = N4

2cN5
, (3.28) becomes

L′(t) ≤ −

N1b1

2
−

N2l0

2l
−

2N2
3 l0

N4
−

N4l0

2l
− N5

l0 +
b2

0C
2
p

2
+

ll0N5

N2
+

c2N5l0

N4


∫ ∞

0

∫
Ω

g(s)|∇η(s)|2dxds

−

{
N5l0

2
− N2

(
1 +

cN2

N3

)
− N3

(
c + c3 +

1
c

)
− N4

}∫
Ω

|yt|
2dx

−

{N3c
4
− N4

} ∫
Ω

|zt|
2dx

−

{
N2l
4

+
N4l
2
−

2N2
3 l2

N4

}∫
Ω

|∇y|2dx

−
N4

2

∫
Ω

|c∇y − ∇z|2dx. (3.29)

At this point, we pick up N3, N2 and N5, respectively, such that

N3 >
4N4

c
,

N2 >
8N2

3 l
N4

,

N5 >
2
l0

{
N2

(
1 +

cN2

N3

)
+ N3

(
c + c3 +

1
c

)
+ N4

}
.

After this, choosing N1 sufficiently large so that (3.26) holds true and

N1 >
2
b1

N2l0

2l
−

2N2
3 l0

N4
−

N4l0

2l
− N5

l0 +
b2

0C
2
p

2
+

ll0N5

N2
+

c2N5l0

N4

 .
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By taking
β = min {β1, β2, β3, β4, β5} ,

we get the desired inequality (3.27) with

β1 =
N1b1

2
−

N2l0

2l
−

2N2
3 l0

N4
−

N4l0

2l
− N5

l0 +
b2

0C
2
p

2
+

ll0N5

N2
+

c2N5l0

N4

 ,
β2 = 2

{
N5l0

2
− N2

(
1 +

cN2

N3

)
− N3

(
c + c3 +

1
c

)
− N4

}
,

β3 = 2
{N3c

4
− N4

}
,

β4 = 2
{

N2l
4

+
N4l
2
−

2N2
3 l2

N4

}
and

β5 = N4.

�

The main result of this paper reads as follows.

Theorem 3.6. Assume (H1)-(H2). Then, the energy of solutions of (2.3) decays exponentially, i.e.,
there exist positive constants d and γ, such that

E(t) ≤ dE(0)e−γt, t ≥ 0. (3.30)

Proof. By using (3.26) and (3.27), one finds that

L
′

(t) ≤ −βE(t) ≤ −
β

α2
L(t).

Consequently,
L(t) ≤ L(0)e−

βt
α2 .

Using again (3.26), we obtain

E(t) ≤
1
α1
L(t) ≤

1
α1
L(0)e−

βt
α2 ≤

α2

α1
E(0)e−

βt
α2 .

Hence, (3.30) holds true with d = α2
α1

and γ =
β

α2
. �

Remark 3.7. By replacing in (1.1) the past history by a finite memory term of the form
∫ t

0
g(t −

s)∆y(s)ds, (1.1) becomes

ytt − a∆y + c∆z +

∫ t

0
g(t − s)∆y(s)ds = 0, in Ω × (0,∞),

ztt − ∆z + c∆y = 0, in Ω × (0,∞),

y = z = 0, on Γ × (0,∞),

y(x, 0) = y0(x), z(x, 0) = z0(x), yt(x, 0) = y1(x), zt(x, 0) = z1(x), in Ω.

(3.31)
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The energy of solutions of (3.31) are defined by

E(t) =
1
2

∫
Ω

|yt|
2dx +

1
2

(
b −

∫ t

0
g(s)ds

) ∫
Ω

|∇y|2dx +
1
2

(g ◦ ∇y)(t)

+
1
2

∫
Ω

|zt|
2dx +

1
2

∫
Ω

|c∇y − ∇z|2dx,

where

(g ◦ y)(t) =

∫ t

0
g(t − s)‖y(t) − y(s)‖2ds.

Define
G(t) = ME(t) + M1ψ1(t) + M2ϕ1(t) + M3D(t),

where

D(t) = −

∫
Ω

yt

∫ t

0
g(t − s)(y(t) − y(s))dsdx.

Now, if we suppose, for example, that g satisfies (H1) and

(H3): There exists a non-increasing continuous function ξ : R+ → R+ satisfying

g′(t) ≤ −ξ(t)g(t), ∀ t ≥ 0. (3.32)

By proceeding as in the last section, we can prove for suitable choices of M,M1,M2 and M3 that

G′(t) ≤ −C2E(t) + C3(g ◦ ∇y)(t), ∀ t ≥ 0

for some positive constants C2 and C3. Therefore, we get the following result:

Theorem 3.8. Let (y0, y1), (z0, z1) ∈ H1
0(Ω) × L2(Ω). Assume that (H1) and (H3) hold true. Then, for

any t1 > 0, there exist positive constants β1 and β2, such that the energy E(t) satisfies

E(t) ≤ β2e
−β1

∫ t

t1
ξ(s)ds

.

4. Conclusions

We focus on the existence and exponential stability of solutions for a coupled, by second order
terms, system of two wave equations with a past history acting only on the first equation. Each one of
these two equations describes the motion of two elastic membranes. The exponential decay result still
valid if we replace the past history by a memory term. As future work, we will study the exponential
stability in the case where we replace one (that contains the damping term) of these two equations by
a quasi-linear one.
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