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Abstract: LetS be a ring. The main objective of this paper is to analyze the structure of quotient rings,
which are represented as S/P, where S is an arbitrary ring and P is a prime ideal of S. The paper
aims to establish a link between the structure of these rings and the behaviour of traces of symmetric n-
derivations satisfying some algebraic identities involving prime ideals of an arbitrary ringS. Moreover,
as an application of the main result, we investigate the structure of the quotient ring S/P and traces of
symmetric n-derivations.

Keywords: derivation; prime ideal; prime ring; derivation; symmetric derivation; symmetric
n-derivation
Mathematics Subject Classification: 16N60, 16R50, 16W25

1. Introduction

This paper provides a concise exploration of different expansions in the concept of derivations
within associative rings. Among these extensions, the most comprehensive and significant is the
concept of symmetric n-derivations. Moreover, we aim to identify connections and relationships
between symmetric n-derivations and other key algebraic concepts, revealing new insights into the
structural nature of rings. Throughout, S will be an associative ring with Z(S), as its center. A
ring S is said to be prime if ϱSξ = {0} implies that either ϱ = 0 or ξ = 0, and semiprime if ϱSϱ = {0}
implies that ϱ = 0, where ϱ, ξ ∈ S. The symbols [ϱ, ξ] and ϱ ◦ ξ denote the commutator, ϱξ − ξϱ and
the anti-commutator, ϱξ + ξϱ, respectively, for any ϱ, ξ ∈ S. A ring S is said to be n-torsion free
if nϱ = 0 implies that ϱ = 0 ∀ ϱ ∈ S. If S is m-torsion free, then it is d-torsion free for every divisor d
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of m. Recall that an ideal P of S is said to be prime if, P , S and for ϱ, ξ ∈ S, ϱSξ ⊆ P implies
that ϱ ∈ P or ξ ∈ P. An additive mapping D : S → S is called a derivation,
if D(ϱξ) = D(ϱ)ξ + ϱD(ξ) holds for all ϱ, ξ ∈ S. Maksa [12] expanded the scope of derivation by
introducing symmetric bi-derivations on rings and Vukman explored these derivations in greater depth
in [19, 21]. Later, several authors have studied symmetric bi-derivations and its relative mappings on
rings (see [3, 12, 13, 16] and references therein) that generated very beneficial results. Let n ≥ 2 be a
fixed integer and Sn = S ×S × · · · ×S︸               ︷︷               ︸

n−times

. A map D : Sn → S is said to be symmetric (permuting)

if D(ξ1, ξ2, . . . , ξn) = D(ξσ(1), ξσ(2), . . . , ξσ(n)), for all permutations σ(m) ∈ S n and ξm ∈ S,
where m = 1, 2, . . . , n. The notion of symmetric n-derivation was defined by Park [15] as follows:
an n-additive (i.e., additive in each slot) map D : Sn → S is said to be symmetric n-derivation if D is
symmetric and D(ξ1, ξ2, . . . , ξiξ′i , . . . , ξn) = D(ξ1, ξ2, . . . , ξi, . . . , ξn)ξ′i + ξiD(ξ1, ξ2, . . . , ξ′i , . . . , ξn). A
map d : S → S defined by d(ϱ) = D(ϱ, ϱ, . . . , ϱ) is called the trace of D. If D : Sn → S is symmetric
and n-additive, then the trace d of D satisfies the
relation d(ϱ + ξ) = d(ϱ) + d(ξ) +

∑n−1
k=1

nCk D(ϱ, . . . , ϱ︸  ︷︷  ︸
(n−k)−times

, ξ, . . . , ξ︸  ︷︷  ︸
k−times

) for all ϱ, ξ ∈ S. Many authors have

studied various identities involving traces of n-derivations and have obtained several interesting
results (see [1, 4, 6, 7, 16] and references therein). A 1-derivation is clearly a derivation, a 2-derivation
is a symmetric bi-derivation, and for n = 3, D is a symmetric 3-derivation (or tri-derivation) on rings.

Posner’s discovery [17], that a prime ring becomes commutative if it has a nonzero centralizing
derivation marked the beginning of the theory of centralizing (commuting) maps on prime rings.
Since then, several authors have conducted extensive research in this area. Notable among them are
Breŝar [8], Deng-Bell [9], Lanski [11], Vukman [20] and others, whose works are cited in these
publications. A new study in this direction was proposed by Almahdi et al. in [2] by involving prime
ideals of an arbitrary rings. The focus of their research is on the quotient ring S/P, where S is an
arbitrary ring and P is a prime ideal of S and studied various differential identities involving prime
ideals (see also [1, 10, 14] for recent work). Inspired by the idea of centralizing and commuting
mappings, Idrissi and Oukhtite [10] introduced the concepts of W-centralizing and W-commuting
mappings, where W is an ideal of a ring S. Basically, they investigated the relationship between the
structure of the ring S/P and generalized derivations of S that are P-centralizing, where P is a prime
ideal of S.

In the current investigation, we will utilize the above-mentioned approach and explore algebraic
identities associated with the trace of symmetric n-derivations acting on prime ideals P of S, but
without imposing the assumption of primeness on the ring under consideration. Moreover, we extend
the Posner’s second theorem [17] for the trace of symmetric n-derivations which involves prime ideals.
Precisely, we prove that for any fixed integer n ≥ 2, let S be any ring and P be a prime ideal of S
such that S/P is n!-torsion free. If there exists a non-zero symmetric n-derivation with trace d on S
such that [d(ϱ), ϱ] ∈ P, for all ϱ ∈ S, then either S/P is a commutative integral domain or d(S) ⊆ P.
Further, we prove this result for Jordan product (Theorem 1.2).

Furthermore, as an application of our main result, we investigate the structure of quotient ring S/P
and the traces of symmetric n-derivations via P-centralizing mappings. Precisely, we prove that for
a fixed integer n ≥ 2, let P be a prime ideal of an arbitrary ring S such that the quotient ring S/P
is (n + 1)!-torsion free and D : Sn → S be a nonzero symmetric n-derivation with trace d on S. If d
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is P-centralizing on S, then either d(S) ⊆ P or S/P is a commutative integral domain (Theorem 2.1).
In order to support the development of our main findings, we rely on the utilization of a well-

established lemma, which serves as a valuable tool for our proof within the context of our discussion.

Lemma 1.1. [4, Theorem 5.3.1.] For a fixed integer n ≥ 2, let S be an n!-torsion free semiprime ring
and I a nonzero ideal of S. Let D : Sn → S be a symmetric n-derivation such that D(I, I, . . . , I) , {0}
and [δ(ϱ), ϱ] = 0 for all ϱ ∈ I, where δ is the trace of D. Then S contains a nonzero central ideal.

Lemma 1.2. [16, Lemma 2.3] For a fixed positive integer n, let S be a ring and P be a prime ideal
of S, such that R/P is n!-torsion free. Suppose that l1, l2, . . . , ln ∈ S satisfy αl1 + α

2l2 + · · · + α
nln ∈ P

for α = 1, 2, . . . , n. Then lt ∈ P for t = 1, 2, . . . , n.

Lemma 1.3. [18] Let S be a ring and P be a prime ideal of S. If one of the following conditions is
satisfied, then S/P is a commutative integral domain:

(1) [ϱ, ξ] ∈ P ∀ ϱ, ξ ∈ S,

(2) ϱ ◦ ξ ∈ P ∀ ϱ, ξ ∈ S.

The first main result of this paper is the following theorem:

Theorem 1.1. For a fixed integer n ≥ 2, let S be a ring and P be a prime ideal of S such that S/P
is n!-torsion free and D : Sn → S be a nonzero symmetric n-derivation on S with trace d : S → S.
If [d(ϱ), ϱ] ∈ P for all ϱ ∈ S, then we have one of the following assertions:

(1) d(S) ⊆ P,

(2) S/P is a commutative integral domain.

Proof. We are given that
[d(ϱ), ϱ] ∈ P ∀ ϱ ∈ S. (1.1)

Replace ϱ by ϱ + qξ for ξ ∈ S and 1 ≤ q ≤ n − 1 leads to

[d(ϱ + qξ), (ϱ + qξ)] ∈ P ∀ ϱ, ξ ∈ S,

thereby obtaining

[d(ϱ), ϱ] + [d(ϱ), qξ] + [d(qξ), ϱ] + [d(qξ), qξ] +
[ n−1∑

t=1

nCtD(ϱ, . . . , ϱ︸  ︷︷  ︸
(n−t)−times

, qξ, . . . , qξ︸      ︷︷      ︸
t−times

), ϱ
]
+

[ n−1∑
t=1

nCtD(ϱ, . . . , ϱ︸  ︷︷  ︸
(n−t)−times

, qξ, . . . , qξ︸      ︷︷      ︸
t−times

), qξ
]
∈ P,

∀ ϱ, ξ ∈ S. Using the relation (1.1), we obviously find that

q[d(ϱ), ξ] + qn[d(ξ), ϱ] +
[ n−1∑

t=1

nCtD( ϱ, . . . , ϱ︸  ︷︷  ︸
(n−t)−times

, qξ, . . . , qξ︸      ︷︷      ︸
t−times

), ϱ
]
+

[ n−1∑
t=1

nCtD( ϱ, . . . , ϱ︸  ︷︷  ︸
(n−t)−times

, qξ, . . . , qξ︸      ︷︷      ︸
t−times

), qξ
]
∈ P ∀ ϱ, ξ ∈ S,
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which implies that,

qA1(ϱ; ξ) + q2A2(ϱ; ξ) + · · · + qnAn(ϱ; ξ) ∈ P ∀ ϱ, ξ ∈ S,

where At(ϱ; ξ) represents the term in which ξ appears t-times.

The application of Lemma 1.2 yields

[d(ϱ), ξ] + n[D(ϱ, . . . , ϱ, ξ), ϱ] ∈ P ∀ ϱ, ξ ∈ S. (1.2)

Replacing ξ by ϱξ, we can see that

[d(ϱ), ϱξ] + n[D(ϱ, . . . , ϱ, ϱξ), ϱ] ∈ P ∀ ϱ, ξ ∈ S.

On further solving

ϱ
{
[d(ϱ), ξ] + n[D(ϱ, . . . , ϱ, ξ), ϱ]

}
+ [d(ϱ), ϱ]ξ + n[d(ϱ), ϱ]ξ + nd(ϱ)[ξ, ϱ] ∈ P ∀ ϱ, ξ ∈ S.

By using (1.2) and using the hypothesis, we get

nd(ϱ)[ξ, ϱ] ∈ P ∀ ϱ, ξ ∈ S.

Since S/P is n!-torsion free, we get

d(ϱ)[ξ, ϱ] ∈ P ∀ ϱ, ξ ∈ S. (1.3)

Taking ξ by rξ in the above yields,

d(ϱ)r[ξ, ϱ] ∈ P ∀ ϱ, ξ, r ∈ S. (1.4)

Replacing ϱ by ϱ + qw1 for 1 ≤ q ≤ n − 1, w1 ∈ S, we obtain

d(ϱ + qw1)r[ξ, ϱ + qw1] ∈ P ∀ ϱ, ξ, r,w1 ∈ S.

After simplification, we find that

d(ϱ)r[ξ, ϱ] + d(ϱ)r[ξ, qw1] + d(qw1)r[ξ, ϱ] + d(qw1)r[ξ, qw1]+
n−1∑
t=1

nCtD(ϱ, . . . , ϱ︸  ︷︷  ︸
(n−t)−times

, qw1, . . . , qw1︸          ︷︷          ︸
t−times

)r[ξ, ϱ] +
n−1∑
t=1

nCtD(ϱ, . . . , ϱ︸  ︷︷  ︸
(n−t)−times

, qw1, . . . , qw1︸          ︷︷          ︸
t−times

)r[ξ, qw1] ∈ P,

∀ ϱ, ξ, r,w1 ∈ S. Application of (1.3) and Lemma 1.2 gives

d(ϱ)r[ξ,w1] + nD(w1, ϱ, . . . , ϱ)r[ξ, ϱ] ∈ P ∀ ϱ, ξ, r,w1 ∈ S. (1.5)

Replacing r by r[ξ, ϱ] and using (1.4) and using torsion restriction, we get

D(w1, ϱ, . . . , ϱ)r[ξ, ϱ]21
∈ P ∀ ϱ, ξ, r,w1 ∈ S. (1.6)
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Now again replacing ϱ by ϱ + qw2 in above for 1 ≤ q ≤ n − 1, for all w2 ∈ S, we get

D(w1, ϱ + qw2, . . . , ϱ + qw2)r[ξ, ϱ + qw2]21
∈ P ∀ ϱ, ξ, r,w1,w2 ∈ S

which on further solving, we obtain

qA1(ϱ; ξ; w1; w2) + q2A2(ϱ; ξ; w1; w2) + · · · + qnAn(ϱ; ξ; w1; w2) ∈ P ∀ ϱ, ξ,w1,w2 ∈ S,

where At(ϱ; ξ; w1; w2) denotes the sum of the terms in which w2 appears t-times. Application of
Lemma 1.2, we have

(n − 1)D(w1,w2, ϱ, . . . , ϱ)r[ξ, ϱ]21
+D(w1, ϱ, . . . , ϱ)r[ξ,w2][ξ, ϱ]+

D(w1, ϱ, . . . , ϱ)r[ξ, ϱ][ξ,w2] ∈ P ∀ ϱ, ξ,w1,w2 ∈ S.

For r = r[ξ, ϱ]2 and using (1.6), we get

D(w1,w2, ϱ, . . . , ϱ)r[ξ, ϱ]22
∈ P ∀ ϱ, ξ,w1,w2 ∈ S.

Proceeding in the similar manner, after some steps we arrive at

D(w1,w2,w3, . . . ,wn)r[ξ, ϱ]2n
∈ P ∀ ϱ, ξ,wi ∈ S, 1 ≤ i ≤ n.

On taking account of primeness of P, we get either D(w1,w2,w3, . . . ,wn) ∈ P or [ξ, ϱ]2n
∈ P for

all ξ, ϱ,wi ∈ S, 1 ≤ i ≤ n. Let us suppose D(w1,w2,w3, . . . ,wn) ∈ P. In particular, when w1 = w2 =

· · · = wn = w, we get d(w) ∈ P for all w ∈ S and hence d(S) ⊆ P. If for all ϱ, ξ ∈ S, [ξ, ϱ]2n
∈ P

implies [ξ, ϱ] ∈ P. Using Lemma 1.3, we conclude that S/P is a commutative integral domain.

Corollary 1.1. [15, Theorem 2.3] Let n ≥ 2 be a fixed integer and let S be a noncommutative n!-
torsion free prime ring. Suppose that there exists a symmetric n-derivation D : Sn → S such that the
trace d of D is commuting on S. Then D = 0.

Proof. It is given that
[d(ϱ), ϱ] = 0 ∀ ϱ ∈ S. (1.7)

Since S is a prime ring, then P = {0} is a prime ideal of S. Hence, (1.7) can be written as

[d(ϱ), ϱ] ∈ P ∀ ϱ ∈ S.

Application of Theorem 1.1 yields that either d(S) ⊆ P = {0} orS/P is a commutative integral domain
which contradicts the commutativity of S. Hence d(S) = 0, making D = 0.

Theorem 1.2. For a fixed integer n ≥ 2, let S be any ring and P be a prime ideal of S such that S/P
is n!-torsion free and D : Sn → S be a nonzero symmetric n-derivation on S with trace d : S → S.
If d(ϱ) ◦ ϱ ∈ P for all ϱ ∈ S then one of the following holds:

(1) d(S) ⊆ P.

(2) S/P is a commutative integral domain.
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Proof. Given that
d(ϱ) ◦ ϱ ∈ P ∀ ϱ ∈ S. (1.8)

Replacing ϱ by ϱ + qξ for ξ ∈ S and 1 ≤ q ≤ n − 1, we obtain

d(ϱ + qξ) ◦ (ϱ + qξ) ∈ P ∀ ϱ, ξ ∈ S.

Solving further, we get

d(ϱ) ◦ ϱ + d(ϱ) ◦ qξ + d(qξ) ◦ ϱ + d(qξ) ◦ qξ+
n−1∑
t=1

nCtD(ϱ, . . . , ϱ︸  ︷︷  ︸
(n−t)−times

, qξ, . . . , qξ︸      ︷︷      ︸
t−times

) ◦ ϱ +
n−1∑
t=1

nCtD(ϱ, . . . , ϱ︸  ︷︷  ︸
(n−t)−times

, qξ, . . . , qξ︸      ︷︷      ︸
t−times

) ◦ qξ ∈ P,

∀ ϱ, ξ ∈ S. On taking account of the given condition, we find that

q(d(ϱ) ◦ ξ) + qn(d(ξ) ◦ ϱ) +
n−1∑
t=1

nCtD(ϱ, . . . , ϱ︸  ︷︷  ︸
(n−t)−times

, qξ, . . . , qξ︸      ︷︷      ︸
t−times

) ◦ ϱ+

n−1∑
t=1

nCtD(ϱ, . . . , ϱ︸  ︷︷  ︸
(n−t)−times

, qξ, . . . , qξ︸      ︷︷      ︸
t−times

) ◦ qξ ∈ P ∀ ϱ, ξ ∈ S,

which implies that,

qA1(ϱ; ξ) + q2A2(ϱ; ξ) + · · · + qnAn(ϱ; ξ) ∈ P ∀ ϱ, ξ ∈ S,

where At(ϱ; ξ) represents the term in which ξ appears t-times.
Using Lemma 1.2, it follows that

d(ϱ) ◦ ξ + nD(ϱ, . . . , ϱ, ξ) ◦ ϱ ∈ P ∀ ϱ, ξ ∈ S. (1.9)

Replacing ξ by ϱξ, we can see that

ϱ{d(ϱ) ◦ ξ + nD(ϱ, . . . , ϱ, ξ) ◦ ϱ} + [d(ϱ), ϱ]ξ + n(d(ϱ) ◦ ϱ)ξ + nd(ϱ)[ξ, ϱ] ∈ P ∀ ϱ, ξ ∈ S.

By using (1.9) and using the hypothesis, one can obviously verify that

[d(ϱ), ϱ]ξ + nd(ϱ)[ξ, ϱ] ∈ P ∀ ϱ, ξ ∈ S. (1.10)

Putting rξ instead of ξ in (1.10), we see that

nd(ϱ)r[ξ, ϱ] ∈ P ∀ ϱ, ξ ∈ S.

Since S/P is n!-torsion free, we get

d(ϱ)r[ξ, ϱ] ∈ P ∀ ϱ, ξ ∈ S. (1.11)

which is same as (1.4). Hence, proceeding in the same way as after (1.4), we conclude.
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2. Applications

In this section, we delve into the applications of the results that were established in Section 2.
Inspired by the concept of centralizing and commuting maps, which is extensively discussed in [17,20],
Idrissi and Oukhtite introduced the notions of W-centralizing and W-commuting maps where W is an
ideal of the considered ring S in their work [10]. For more comprehensive information, please refer to
the aforementioned references.

Definition 2.1. [10] Let W be an ideal of a ring S.

(1) A map f : S → S is W-centralizing if [ f (ϱ), ϱ] ∈ Z(S/W) for all ϱ ∈ S or equivalently
[[ f (ϱ), ϱ], ξ] ∈W for all ϱ, ξ ∈ S.

(2) A map f : S→ S is W-commuting if [ f (ϱ), ϱ] ∈W for all ϱ ∈ S.

Remark 2.1. From the definition it is clear that every W-commuting map is necessarily W-centralizing
but the converse need not be true in general.

Example 2.1. Let us consider S =
{[0 a b

0 0 c
0 0 0

]
| a, b, c ∈ Z

}
. Of course S with matrix addition

and matrix multiplication is a ring. Consider W =

{[0 a b
0 0 c
0 0 0

]
| a, b, c ∈ 2Z

}
be an ideal of S.

Define f : S→ S by f (M) =
[0 c b
0 0 a
0 0 0

]
for any M ∈ S. Then, it is easy to see that f is W-centralizing,

but not W-commuting.

The objective of this section is to extend the well-known Posner’s second theorem, originally
presented in [17]. This theorem establishes that the existence of a nonzero centralizing derivation in a
prime ring leads to the ring being commutative. In [10], Idrissi and Oukhtite extended the Posner’s
second theorem for the prime ideals. In fact, they proved that if P is a prime ideal of ring S and F a
generalized derivation of S associated with a derivation d such that F is P-centralizing
then d(S) ⊆ P or S/P is a commutative integral domain. Our next result is motivated by the above
mentioned result, and we take the traces of symmetric n-derivations instead of derivations under
suitable torsion restrictions. Precisely, we prove the following result:

Theorem 2.1. For a fixed integer n ≥ 2, let S by any ring and P be a prime ideal of S such that S/P
is (n + 1)!-torsion free and D be a nonzero symmetric n-derivation of S with trace d : S → S. If d
is P-centralizing then one of the following holds:

(1) d(S) ⊆ P

(2) S/P is a commutative integral domain.

Proof. We are given that
[d(ϱ), ϱ] ∈ Z(S/P) ∀ ϱ ∈ S.
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This can also be re-written as
[[d(ϱ), ϱ], ξ] ∈ P ∀ ϱ, ξ ∈ S. (2.1)

Replacing ϱ by ϱ + qω for ω ∈ S and 1 ≤ q ≤ n + 1, we obtain[
[d(ϱ + qω), (ϱ + qω)], ξ

]
∈ P ∀ ϱ, ξ, ω ∈ S.

As we continue to solve, we find that[
[d(ϱ), ϱ], ξ

]
+

[
[d(qω), ϱ], ξ

]
+

[
[d(ϱ), qω], ξ

]
+

[
[d(qω), qω], ξ

]
+

[
[

n−1∑
t=1

nCtD(ϱ, . . . , ϱ︸  ︷︷  ︸
(n−t)−times

, qω, . . . , qω︸       ︷︷       ︸
t−times

), ϱ], ξ
]
+

[
[

n−1∑
t=1

nCtD(ϱ, . . . , ϱ︸  ︷︷  ︸
(n−t)−times

, qω, . . . , qω︸       ︷︷       ︸
t−times

), qω], ξ
]
∈ P,

∀ ϱ, ξ, ω ∈ S. Using hypothesis, we have

qn[[d(ω), ϱ], ξ
]
+ q

[
[d(ϱ), ω], ξ

]
+

[
[

n−1∑
t=1

nCtD(ϱ, . . . , ϱ︸  ︷︷  ︸
(n−t)−times

, qω, . . . , qω︸       ︷︷       ︸
t−times

), ϱ], ξ
]

+
[
[

n−1∑
t=1

nCtD(ϱ, . . . , ϱ︸  ︷︷  ︸
(n−t)−times

, qω, . . . , qω︸       ︷︷       ︸
t−times

), qω], ξ
]
∈ P ∀ ϱ, ξ, ω ∈ S,

which implies that

qA1(ϱ, ξ, ω) + q2A2(ϱ, ξ, ω) + · · · + qn−1An−1(ϱ, ξ, ω) ∈ P,

∀ ϱ, ξ, ω ∈ S, where At(ϱ, ξ, ω) represents the term in which ω appears t-times.
On taking account of Lemma 1.2, we see that[

[d(ϱ), ω], ξ
]
+ n

[
[D(ϱ, . . . , ϱ, ω), ϱ], ξ

]
∈ P ∀ ϱ, ξ, ω ∈ S. (2.2)

Substituting ϱω for ω in (2.2), we deduce that[
[d(ϱ), ϱ]ω + ϱ[d(ϱ), ω], ξ

]
+ n

[
[ϱD(ϱ, . . . , ϱ, ω) +D(ϱ, . . . , ϱ)ω, ϱ], ξ

]
∈ P,

∀ ϱ, ξ, ω ∈ S. On further solving, we get

[d(ϱ), ϱ][ω, ξ] +
[
[d(ϱ), ϱ], ξ

]
ω + ϱ

[
[d(ϱ), ω], ξ

]
+ [ϱ, ξ][d(ϱ), ω] + nϱ

[
[D(ϱ, . . . , ϱ, ω), ϱ], ξ

]
+ n[ϱ, ξ][D(ϱ, . . . , ϱ, ω), ϱ] + nd(ϱ)

[
[ω, ϱ], ξ

]
+ n[d(ϱ), ξ][ω, ϱ] + n[d(ϱ), ϱ][ω, ξ]

+ n
[
[d(ϱ), ϱ], ξ

]
ω ∈ P ∀ ϱ, ξ, ω ∈ S.

Using the hypothesis and (2.2), we have

[ϱ, ξ][d(ϱ), ω] + (n + 1)[d(ϱ), ϱ][ω, ξ] + n[ϱ, ξ][D(ϱ, . . . , ϱ, ω), ϱ]
+ nd(ϱ)

[
[ω, ϱ], ξ

]
+ n[d(ϱ), ξ][ω, ϱ] ∈ P ∀ ϱ, ξ, ω ∈ S. (2.3)
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Taking ξ = ϱ in (2.3), we get

(2n + 1)[d(ϱ), ϱ][ω, ϱ] + nd(ϱ)
[
[ω, ϱ], ϱ

]
∈ P ∀ ϱ, ω ∈ S. (2.4)

Similarly, replacing ω by ωϱ in (2.2), we obtain

[d(ϱ), ω][ϱ, ξ] + (n + 1)[ω, ξ][d(ϱ), ϱ] + n[D(ϱ, . . . , ϱ, ω), ϱ][ϱ, ξ]
+ n

[
[ω, ϱ], ξ

]
d(ϱ) + n[ω, ϱ][d(ϱ), ξ] ∈ P ∀ ϱ, ξ, ω ∈ S. (2.5)

On taking ξ = ϱ in (2.5), we get

(2n + 1)[ω, ϱ][d(ϱ), ϱ] + n
[
[ω, ϱ], ϱ

]
d(ϱ) ∈ P ∀ ϱ, ω ∈ S. (2.6)

Now replace ω by ωr in (2.4) to get

(2n + 1){[d(ϱ), ϱ]ω[r, ϱ] + [d(ϱ), ϱ][ω, ϱ]r} + nd(ϱ)ω
[
[r, ϱ], ϱ

]
+

2nd(ϱ)[ω, ϱ][r, ϱ] + nd(ϱ)
[
[ω, ϱ], ϱ

]
r ∈ P ∀ ϱ, ω, r ∈ S.

Using (2.4) in the above equation, we find that

(2n + 1)[d(ϱ), ϱ]ω[r, ϱ] + nd(ϱ)ω
[
[r, ϱ], ϱ

]
+ 2nd(ϱ)[ω, ϱ][r, ϱ] ∈ P ∀ ϱ, ω, r ∈ S.

Replace ω by d(ϱ) in the above relation to get

(2n + 1)[d(ϱ), ϱ]d(ϱ)[r, ϱ] + n(d(ϱ))2[[r, ϱ], ϱ] + 2nd(ϱ)[d(ϱ), ϱ][r, ϱ] ∈ P ∀ ϱ, r ∈ S. (2.7)

Again using (2.4) in (2.7), we see that

(2n + 1)[d(ϱ), ϱ]d(ϱ)[r, ϱ] − (2n + 1)d(ϱ)[d(ϱ), ϱ][r, ϱ] + 2nd(ϱ)[d(ϱ), ϱ][r, ϱ] ∈ P ∀ ϱ, r ∈ S,

which on solving, we get{
(2n + 1)[d(ϱ), ϱ]d(ϱ) − d(ϱ)[d(ϱ), ϱ]

}
[r, ϱ] ∈ P ∀ ϱ, r ∈ S.

Now, left multiply by [r, ϱ] in the above equation, we get

(2n + 1)[r, ϱ][d(ϱ), ϱ]d(ϱ)[r, ϱ] − [r, ϱ]d(ϱ)[d(ϱ), ϱ][r, ϱ] ∈ P, (2.8)

∀ ϱ, r ∈ S. Similarly, using (2.6) one can easily obtain

[r, ϱ]
{
(2n + 1)d(ϱ)[d(ϱ), ϱ] − [d(ϱ), ϱ]d(ϱ)

}
∈ P ∀ ϱ, r ∈ S.

Right multiply by [r, ϱ] in the above equation

(2n + 1)[r, ϱ]d(ϱ)[d(ϱ), ϱ][r, ϱ] − [r, ϱ][d(ϱ), ϱ]d(ϱ)[r, ϱ] ∈ P, (2.9)

∀ ϱ, r ∈ S. On adding (2.8) and (2.9), we find that

2n[r, ϱ]
{
[d(ϱ), ϱ]d(ϱ) + d(ϱ)[d(ϱ), ϱ]

}
[r, ϱ] ∈ P ∀ ϱ, r ∈ S. (2.10)
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Since 2n divides (n + 1)!, we find that S/P is 2n-torsion free and hence for all ϱ, r ∈ S, we have

[r, ϱ]
{
[d(ϱ), ϱ]d(ϱ) + d(ϱ)[d(ϱ), ϱ]

}
[r, ϱ] ∈ P. (2.11)

Using (2.11) in (2.9), we get

(2n + 2)[r, ϱ]d(ϱ)[d(ϱ), ϱ][r, ϱ] ∈ P ∀ ϱ, r ∈ S.

Since 2(n + 1) divides (n + 1)!, we find that S/P is (2n + 2)-torsion free and hence for all ϱ, r ∈ S, we
have

[r, ϱ]d(ϱ)[d(ϱ), ϱ][r, ϱ] ∈ P ∀ ϱ, r ∈ S.

Premultiplying by d(ϱ)[d(ϱ), ϱ] in above equation, we get

d(ϱ)[d(ϱ), ϱ][r, ϱ]d(ϱ)[d(ϱ), ϱ][r, ϱ] ∈ P ∀ ϱ, r ∈ S. (2.12)

Using the primeness of P, we get

d(ϱ)[d(ϱ), ϱ][r, ϱ] ∈ P ∀ ϱ, r ∈ S. (2.13)

Replace r by rω and use (2.13) to get

d(ϱ)[d(ϱ), ϱ]r[ω, ϱ] ∈ P ∀ ϱ, ω, r ∈ S.

Replacing ω by d(ϱ), we get

d(ϱ)[d(ϱ), ϱ]r[d(ϱ), ϱ] ∈ P ∀ ϱ, r ∈ S.

Now replace r by rd(ϱ) to obtain

d(ϱ)[d(ϱ), ϱ]rd(ϱ)[d(ϱ), ϱ] ∈ P ∀ ϱ, r ∈ S.

In light of primeness of P, we get

d(ϱ)[d(ϱ), ϱ] ∈ P ∀ ϱ ∈ S. (2.14)

Replacing ϱ by ϱ + qξ in (2.14), where 1 ≤ q ≤ n + 1 and implementing Lemma 1.2, we get

d(ϱ)[d(ϱ), ξ] + nd(ϱ)[D(ϱ, . . . , ϱ, ξ), ϱ] + nD(ϱ, . . . , ϱ, ξ)[d(ϱ), ϱ] ∈ P ∀ ϱ, ξ ∈ S. (2.15)

Replacing ξ by ξϱ in (2.15), we get

d(ϱ)ξ[d(ϱ), ϱ] + d(ϱ)[d(ϱ), ξ]ϱ + nd(ϱ)ξ[d(ϱ), ϱ]+
nd(ϱ)[ξ, ϱ]d(ϱ) + nd(ϱ)[D(ϱ, . . . , ϱ, ξ), ϱ]ϱ + nξd(ϱ)[d(ϱ), ϱ]+

nD(ϱ, . . . , ϱ, ξ)ϱ[d(ϱ), ϱ] ∈ P ∀ ϱ, ξ ∈ S.

Use (2.14) and (2.15) in the above relation, we see that

(n + 1)d(ϱ)ξ[d(ϱ), ϱ] + nd(ϱ)[ξ, ϱ]d(ϱ) − nD(ϱ, . . . , ϱ, ξ)
[
[d(ϱ), ϱ], ϱ

]
∈ P ∀ ϱ, ξ ∈ S
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and hence, we get
(n + 1)d(ϱ)ξ[d(ϱ), ϱ] + nd(ϱ)[ξ, ϱ]d(ϱ) ∈ P ∀ ϱ, ξ ∈ S. (2.16)

Substituting ϱξ for ξ in (2.16), we get

(n + 1)d(ϱ)ϱξ[d(ϱ), ϱ] + nd(ϱ)ϱ[ξ, ϱ]d(ϱ) ∈ P ∀ ϱ, ξ ∈ S. (2.17)

Left multiply (2.16) by ϱ to get

(n + 1)ϱd(ϱ)ξ[d(ϱ), ϱ] + nϱd(ϱ)[ξ, ϱ]d(ϱ) ∈ P ∀ ϱ, ξ ∈ S. (2.18)

Combining (2.17) and (2.18), we get

(n + 1)[d(ϱ), ϱ]ξ[d(ϱ), ϱ] + n[d(ϱ), ϱ][ξ, ϱ]d(ϱ) ∈ P ∀ ϱ, ξ ∈ S. (2.19)

Replacing ω by ωr in (2.6), we get

(2n + 1)[ωr, ϱ][d(ϱ), ϱ] + n
[
[ωr, ϱ], ϱ

]
d(ϱ) ∈ P ∀ ϱ, ω, r ∈ S, (2.20)

which on further solving, we obtain

(2n + 1)ω[r, ϱ][d(ϱ), ϱ] + (2n + 1)[ω, ϱ]r[d(ϱ), ϱ] + nω
[
[r, ϱ], ϱ

]
d(ϱ) + 2n[ω, ϱ][r, ϱ]d(ϱ)
+ n

[
[ω, ϱ], ϱ

]
rd(ϱ) ∈ P ∀ ϱ, ω, r ∈ S.

Now use (2.6) in above relation to get

(2n + 1)[ω, ϱ]r[d(ϱ), ϱ] + 2n[ω, ϱ][r, ϱ]d(ϱ) + n
[
[ω, ϱ], ϱ

]
rd(ϱ) ∈ P ∀ ϱ, ω, r ∈ S.

Replacing ω by d(ϱ) in the above relation, we get

(2n + 1)[d(ϱ), ϱ]r[d(ϱ), ϱ] + 2n[d(ϱ), ϱ][r, ϱ]d(ϱ) + n
[
[d(ϱ), ϱ], ϱ

]
rd(ϱ) ∈ P ∀ ϱ, r ∈ S.

Using the hypothesis, we obtain

(2n + 1)[d(ϱ), ϱ]r[d(ϱ), ϱ] + 2n[d(ϱ), ϱ][r, ϱ]d(ϱ) ∈ P ∀ ϱ, r ∈ S. (2.21)

Combining (2.19) and (2.21), we get

(2n + 1)[d(ϱ), ϱ]r[d(ϱ), ϱ] − 2(n + 1)[d(ϱ), ϱ]r[d(ϱ), ϱ] ∈ P ∀ ϱ, r ∈ S.

On solving,
[d(ϱ), ϱ]r[d(ϱ), ϱ] ∈ P ∀ ϱ, r ∈ S.

Invoking the primeness of P, it follows that

[d(ϱ), ϱ] ∈ P ∀ ϱ ∈ S.

Hence, by Theorem 1.1, we get the required result.
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Corollary 2.1. [7, Theorem 1] For any fixed integer n ≥ 2, let S be a (n + 1)!-torsion free semiprime
ring. Suppose that S admits a nonzero symmetric n-derivation D : Sn −→ S with trace d : S −→ S.
If d is centralizing on S, then d is commuting on S.

Proof. For the non-trivial implication assume that [d(ϱ), ϱ] ∈ Z(S) or [[d(ϱ), ϱ], ξ] = 0 ∀ ϱ, ξ ∈ S.
Since S is a semiprime ring, there exists a family Γ of prime ideals of S such that

⋂
P∈ΓP = (0)

thereby obtaining [[d(ϱ), ϱ], ξ] ∈ P for all P ∈ Γ. Using the proof of Theorem 2.1, we obtain

[d(ϱ), ϱ]r[d(ϱ), ϱ] ∈ P for all ϱ, r ∈ S and for all P ∈ Γ,

and therefore,
[d(ϱ), ϱ]r[d(ϱ), ϱ] = 0 for all ϱ, r ∈ S.

and the semiprimeness of S yields that [d(ϱ), ϱ] = 0 for all ϱ ∈ S. Hence, d is commuting on S.

Theorem 2.2. For a fixed integer n ≥ 2, let S be a ring and P be a prime ideal of S such that S/P
is n!-torsion free. If D1,D2 : Sn → S are n-derivations of S with traces d1, d2 : S→ S satisfying one
of the following conditions:

(1) [d1(ϱ), ξ] + [ϱ, d2(ξ)] ∈ P ∀ ϱ, ξ ∈ S,

(2) [d1(ϱ), ξ] + [ϱ, d2(ξ)] − [ϱ, ξ] ∈ P ∀ ϱ, ξ ∈ S,

then one of the following holds:

(a) d1(S) ⊆ P and d2(S) ⊆ P,

(b) S/P is commutative integral domain.

Proof. (1) Assume that
[d1(ϱ), ξ] + [ϱ, d2(ξ)] ∈ P ∀ ϱ, ξ ∈ S. (2.22)

Replace ξ by ξ + qω, ω ∈ S for 1 ≤ q ≤ n − 1 to get

[d1(ϱ), ξ + qω] + [ϱ, d2(ξ + qω)] ∈ P ∀ ϱ, ξ, ω ∈ S,

which on solving and using the given condition, we find that

n−1∑
t=1

nCt
[
ϱ,D2(ξ, . . . , ξ︸  ︷︷  ︸

(n−t)−times

, qω, . . . , qω︸       ︷︷       ︸
t−times

)
]
∈ P ∀ ϱ, ξ, ω ∈ S.

Taking Lemma 1.2 into consideration and using the fact that S/P is n!-torsion free, we obtain

[ϱ,D2(ξ, . . . , ξ, ω)] ∈ P ∀ ϱ, ξ, ω ∈ S. (2.23)

Put ω = ϱω in (2.23) and use (2.23), we find that

[ϱ,D2(ξ, . . . , ξ, ϱ)]ω +D2(ξ, . . . , ξ, ϱ)[ϱ, ω] ∈ P ∀ ϱ, ξ, ω ∈ S.

If we put ϱ = ξ, we obtain

[ϱ, d2(ξ)]ω + d2(ξ)[ϱ, ω] ∈ P ∀ ϱ, ξ, ω ∈ S. (2.24)
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Replace ω by ωr in (2.24) and using (2.24) to get

d2(ξ)ω[ξ, r] ∈ P ∀ r, ξ, ω ∈ S,

which is same as (1.11). Hence proceeding in the same manner, we get d2(S) ⊆ P or S/P is
commutative integral domain. If d2(S) ⊆ P, the relation (2.22) reduces to [d1(ϱ), ξ] ∈ P and by
Theorem 1.1, we conclude that d1(S) ⊆ P or S/P is commutative integral domain.
(2) Assume that

[d1(ϱ), ξ] + [ϱ, d2(ξ)] − [ϱ, ξ] ∈ P ∀ ϱ, ξ ∈ S. (2.25)

Replace ξ by ξ + qω, ω ∈ S for 1 ≤ q ≤ n − 1 to get

[d1(ϱ), ξ + qω] + [ϱ, d2(ξ + qω)] − [ϱ, ξ + qω] ∈ P ∀ ϱ, ξ, ω ∈ S.

Further solving and taking account of the given condition, we get

n−1∑
t=1

nCt
[
ϱ,D2(ξ, . . . , ξ︸  ︷︷  ︸

(n−t)−times

, qω, . . . , qω︸       ︷︷       ︸
t−times

)
]
∈ P ∀ ϱ, ξ, ω ∈ S.

Taking Lemma 1.2 into consideration and using the fact that S/P is n!-torsion free, we obtain

[ϱ,D2(ξ, . . . , ξ, ω)] ∈ P ∀ ϱ, ξ, ω ∈ S,

which is same as (2.23). Hence proceeding in the same way as before, we find that d2(S) ⊆ P or S/P
is commutative integral domain. If d2(S) ⊆ P, the relation (2.25) becomes

[d1(ϱ), ξ] − [ϱ, ξ] ∈ P. (2.26)

As a special case of (2.26) when ξ = ϱ, we may write [d1(ϱ), ϱ] ∈ P for all ϱ ∈ S and by Theorem 1.1,
we conclude that d1(S) ⊆ P or S/P is commutative integral domain.

Corollary 2.2. Let n ≥ 2 be a fixed integer and let S be a n!-torsion free semiprime ring. If S admits
two nonzero symmetric n-derivations D1 : Sn → S with trace d1 : S → S and D2 : Sn → S with
trace d2 : S → S satisfying [d1(ϱ), ξ] + [ϱ, d2(ξ)] = 0 for all ϱ, ξ ∈ S, then S contains a nonzero
two-sided central ideal.

Proof. Assume that [d1(ϱ), ξ] + [ϱ, d2(ξ)] = 0 ∀ ϱ, ξ ∈ S. According to semiprimeness, there exists a
family Γ of prime ideals P such that

⋂
P∈ΓP = (0) and therefore,

[d1(ϱ), ξ] + [ϱ, d2(ξ)] ∈ P for all ϱ, ξ ∈ S and for all P ∈ Γ.

Using the proof of Theorem 2.2(i), we obtain

d2(ξ)ω[ξ, r] ∈ P ∀ r, ξ, ω ∈ S and for all P ∈ Γ,

and therefore,
d2(ξ)ω[ξ, r] = 0 ∀ r, ξ, ω ∈ S. (2.27)
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Putting r = d2(ξ) and left multiply by ξ in above equation, we get

ξd2(ξ)ω[ξ, d2(ξ)] = 0 ∀ r, ξ, ω ∈ S. (2.28)

Replacing r by d2(ξ) and ω by ξω in (2.27), we arrive at

d2(ξ)ξω[ξ, d2(ξ)] = 0 ∀ r, ξ, ω ∈ S. (2.29)

Comparing the last two equations, we obtain

[ξ, d2(ξ)]ω[ξ, d2(ξ)] = 0,

for all ξ, ω ∈ S and the semiprimeness of S yields that [ξ, d2(ξ)] = 0 for all ξ ∈ S. Therefore, S
contains a nonzero two-sided central ideal by Lemma 1.1.

Corollary 2.3. Let n ≥ 2 be a fixed integer and let S be a n!-torsion free semiprime ring. If S admits
two nonzero symmetric n-derivations D1 : Sn → S with trace d1 : S → S and D2 : Sn → S with
trace d2 : S→ S satisfying [d1(ϱ), ξ]+[ϱ, d2(ξ)]−[ϱ, ξ] = 0 for all ϱ, ξ ∈ S, thenS contains a nonzero
two-sided central ideal.

Proof. Assume that [d1(ϱ), ξ]+ [ϱ, d2(ξ)]− [ϱ, ξ] = 0 for all ϱ, ξ ∈ S. SinceS is semiprime, there exists
a family Γ of prime ideals P such that

⋂
P∈ΓP = (0) and thus,

[d1(ϱ), ξ] + [ϱ, d2(ξ)] − [ϱ, ξ] ∈ P for all ϱ, ξ ∈ S and for all P ∈ Γ.

Invoking the proof of Theorem 2.2(ii), we obtain

d2(ξ)ω[ξ, r] = 0 ∀ r, ξ, ω ∈ S. (2.30)

Since the last equation is same as the (2.27), reasoning in the same manner as in the above mentioned
corollary, we get the required result.

The following example shows that the condition “primeness of an ideal P” in Theorems 1.1, 1.2
and 2.1 cannot be omitted.

Example 2.2. Consider the ring S =
{ 

0 a b
0 0 c
0 0 0

 | a, b, c ∈ Z
}

. Let P =
{ 

0 0 0
0 0 0
0 0 0


}

be an ideal

of S. Denote Ai =


0 ai bi

0 0 ci

0 0 0

 ∈ S, ai, bi, ci ∈ Z, 1 ≤ i ≤ n, and let us define D : Sn → S

byD(A1, A2, . . . , An) =


0 0 a1a2 · · · an

0 0 0
0 0 0

 with trace d : S→ S define by d
( 

0 a b
0 0 c
0 0 0


)
=


0 0 an

0 0 0
0 0 0

.
One can easily see that D is a symmetric n-derivation such that [d(x), x] ∈ P, d(x) ◦ x ∈ P and
[[d(x), x], y] ∈ P for x, y ∈ S. However, d(S) ⊈ P and S/P is noncommutative. Also, we observe

that P is not a prime ideal of S as


0 1 0
0 0 0
0 0 0

S

0 0 1
0 0 0
0 0 0

 ⊆ P, but


0 1 0
0 0 0
0 0 0

 < P and


0 0 1
0 0 0
0 0 0

 < P.
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3. Conclusions

In this article, we discussed about the relationship between the structural aspects of the quotient
rings S/P and the behavioral patterns exhibited by traces of symmetric n-derivations satisfying some
algebraic identities involving prime ideals of an arbitrary ring S. Further, we also investigated the
structure of quotient ring S/P and the traces of symmetric n-derivations via P-centralizing mappings.
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