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Abstract: A fingerprint is the unique, complex pattern of ridges and valleys on the surface of
an individual’s fingertip. Fingerprinting is one of the most popular and widely used biometric
authentication methods for personal identification because of its reliability, acceptability, high level
of security, and low cost. When using fingerprints as a biometric, restoring poor-quality or damaged
fingerprints is an essential process for accurate verification. In this study, we present a semi-
automatic fingerprint image restoration method using a partial differential equation to repair damaged
fingerprint images. The proposed algorithm is based on the Cahn-Hilliard (CH) equation with a
source term, which was developed for simulating pattern formation during the phase separation of
diblock copolymers in chemical engineering applications. In previous work, in order to find an
optimal model and numerical parameter values in the governing equation, we had to make several
trial and error preliminary attempts. To overcome these problems, the proposed novel algorithm
minimizes user input and automatically computes the necessary model and numerical parameter values
of the governing equation. Computational simulations on various damaged fingerprint samples are
presented to demonstrate the superior performance of the proposed method.

Keywords: automatic fingerprint restoration; diblock copolymer; the Cahn-Hilliard (CH) equation;
phase-field model
Mathematics Subject Classification: 65N06, 65D18, 68U10

1. Introduction

Biometrics refers to an automated method of identifying individuals by analyzing their distinct
behavioral and biological traits [1]. In the past decade, humans have developed various biometric
techniques, including fingerprint recognition, face and facial feature analysis, personal ID numbers,
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signatures and more. In this era of abundant information, there has always been an urgent need for a
more accurate method of identity verification. Fingerprint usage stands out as one of the leading and
widely adopted verification methods due to its low cost, high resistance to spoofing and the availability
of extensive data. Numerous studies have proposed more precise and efficient fingerprint recognition
algorithms. However, a significant challenge in fingerprint recognition lies in handling poor and
low-quality fingerprints, which may exhibit issues such as missing data, unclear boundaries and low-
contrast images [2–4]. Therefore, when we recognize the information of the fingerprint image, it can
be recognized using a model such as a transform-minutiae fusion-based model in [5]. If the image is
damaged, the damaged fingerprint image can be restored using the proposed method.

Including fingerprint restoration, image inpainting has been a popular topic in image processing
due to its applications in real life. There are several algorithms for inpainting, and the use of partial
differential equations is one of the major areas. Halim and Kumar [6] proposed a fourth-order
anisotropic partial differential equation (PDE) for grayscale image inpainting. A modified Cahn-
Hilliard (CH) equation with a fidelity term is used for the proposed method, and the authors showed that
the numerical scheme is unconditionally stable, consistent and convergent. The authors [7] proposed
a coupled system with a nonlinear time-delay structure tensor. Through several experiments, it was
confirmed that the coupled anisotropic nonlinear diffusion system is effective in image enhancement.
Instead of attempting to directly authenticate the damaged fingerprint, another approach is to restore
the damaged image as a preprocessing step. Fingerprint restoration falls under the category of image
restoration, and specific methods suitable for restoring fingerprint images have been proposed. Shams
et al. [8] proposed a fingerprint enhancement filter with normalization; segmentation; coherence
diffusion filter; estimating orientation and frequency; log-Gabor filter and binarization steps. One
major approach to fingerprint restoration is adaptive filtering, which involves progressive enhancement
and feedback. In [9], Tu et al. illustrated a new fingerprint representation method that fits ridges using
cubic Bézier curves and curve fitting after Gabor enhancement and thinning the ridges as preprocessing.
Claesson et al. [10] proposed an improved adaptive fingerprint enhancement technique using contextual
filtering. They achieved enhanced results by updating four processing blocks: Preprocessing, global
analysis, local analysis and matched filtering. In their study, they compared their method with the
NIST fingerprint matching method. Sutthiwichaiporn and Areekul [11] proposed a method that applies
different schemes for regions with high and low quality. They utilized a Gaussian filter for the high-
quality regions and iteratively propagated good spectra from the enhanced ridges to the low-quality
regions. In their evaluation, out of 15 fingerprint verification tests, their method demonstrated the
best average equal error rate in 8 tests. Neural network-based fingerprint restoration is also a widely
used method. Convolutional neural networks (CNNs) are deep learning models that can learn filters
and characteristics to differentiate various input images. Joshi et al. [12] proposed a context-aware
fingerprint restoration model, and Figure 1 illustrates an example of this fingerprint restoration.
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(a) (b)
Figure 1. Example of restoration fingerprint image, (a) Original image, (b) Restored image
using CA-GAN [12].

Gao et al. [13] proposed a fingerprint preprocessing method using CNN for fingerprint recognition.
Their approach was applied to grayscale noisy fingerprints, and the enhanced fingerprints retained
most of the characteristics of the original fingerprint. Another machine learning architecture used
for fingerprint restoration is the generative adversarial network (GAN), which consists of two
neural networks engaged in a zero-sum game. Zhang et al. [14] introduced a lightweight and
fully convolutional GAN architecture called FCGAN. Experimental results demonstrated over 99%
training accuracy when using FCGAN-augmented samples, whereas classical augmentation techniques
achieved 96.34% accuracy. In [15], the authors presented a GAN-type fingerprint enhancement model
for restoring poor ridge structure.

In this paper, we present an automatic fingerprint image restoration technique using a partial
differential equation. Many of the state-of-the-art studies have focused on image quality improvement,
such as noise removal, while we develop the efficient algorithm for restoration in the case that some
parts of the image are completely damaged. Specifically, we focus on the CH equation with a source
term, which effectively models the phase separation in diblock copolymers. The use of diblock
copolymers in this context has been studied by Ohta and Kawasaki [16]. Previous work by Li et al. [17]
has explored the idea of employing the nonlocal CH equation and diblock copolymers for fingerprint
restoration. However, a drawback of their approach is that the parameter values of the CH equation
with a source term had to be manually adjusted for different fingerprints. This required a trial and error
process for successful restoration, resulting in slow and less intuitive restoration procedures. To resolve
this limitation, we propose an upgraded and improved fingerprint restoration method by introducing a
step that solves a partial differential equation. By specifying the discrete boundary and wave period,
the rest of the restoration process becomes automatic, as we can fix the parameter values for the CH
equation with a source term. This enhancement improves the efficiency, intuitiveness, and convenience
of the restoration process.

This paper is structured as follows. In Section 2, we present a computational approach for
implementing the fingerprint restoration method. Section 3 consists of several numerical experiments
conducted to demonstrate the effectiveness of the proposed method. Lastly, in Section 4, we offer
concluding remarks.
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2. Automatic fingerprint restoration method

In this section, we present the proposed automatic fingerprint restoration method. Let us denote
by f (x, y) a given damaged fingerprint image on an entire domain Ω as shown in Figure 2(a). Here,
Ωin ⊂ Ω is a local damaged fingerprint domain and ∂Ωin is the boundary of Ωin.

(a) (b)
Figure 2. (a) Damaged fingerprint image Ωin and (b) discretized Ωh

in.

Let us consider the following PDE [16, 18, 19]:

∂φ(x, y, t)
∂t

= ∆[F′(φ(x, y, t)) − ε2∆φ(x, y, t)] − α(φ(x, y, t) − φ̄), (x, y) ∈ Ωin, (2.1)

which is obtained by adding a source term to the original CH equation [20, 21]. Here, φ(x, y, t) is a
phase-field function at space (x, y) and time t, F(φ) = (φ2 − 1)2/4, ε is an interfacial transition layer
thickness related parameter, α represents a long-range repulsive interaction parameter, and φ̄ is the
spatial average value of the initial φ(x, y, 0) values, which are defined as follows:

φ(x, y, 0) =
2 f (x, y) − fmin − fmax

fmax − fmin
, (2.2)

where fmax is the maximum and fmin is the minimum of f (x, y). From this definition, φ̄ is zero.
For the sake of completeness of the description of the proposed numerical algorithm, we briefly

review the explicit numerical solver for the CH equation with the source term [22]. Let Ω = (0, a) ×
(0, b) and Ωh = {(xi, y j)|xi = (i − 1/2)h, y j = ( j − 1/2)h, i = 1, . . . ,Nx, j = 1, . . . ,Ny} be its discrete
domain, where Nx and Ny are the numbers of the pixels in x- and y-directions, respectively; and h =

a/Nx = b/Ny is the spatial grid size. Let Ωh
in and ∂Ωh

in be the discrete domain and boundary, respectively,
as shown in Figure 2(b). Open and filled circles represent Ωh

in and ∂Ωh
in, respectively. Let φn

i j =

φ(xi, y j, n∆t), where ∆t is the time step. We consider a stable numerical method [23, 24]:

φn+1
i j − φ

n
i j

∆t
= ∆d((φn

i j)
3 − 3φn

i j) + 2∆dφ
n+1
i j − ε

2∆2
dφ

n+1
i j − α(φn+1

i j − φ̄), (2.3)
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where ∆dφi j = (φi−1, j + φi+i, j − 4φi j + φi, j−1 + φi, j+1)/h2. If use a Saul’yev-type method, we have

φn+1
i j =

1
r

[
φn

i j

∆t
+ ∆d((φn

i j)
3 − 3φn

i j) +
2
h2

(
φn+1

i−1, j + φn
i+1, j − 2φn

i, j + φn+1
i, j−1 + φn

i, j+1
)

−
ε2

h4

[
φn+1

i−2, j + φn
i+2, j + φn+1

i, j−2 + φn
i, j+2 + 2(φn+1

i−1, j−1 + φn
i−1, j+1 + φn+1

i+1, j−1

+φn
i+1, j+1) − 8(φn+1

i−1, j + φn
i+1, j + φn+1

i, j−1 + φn
i, j+1) + 10φn

i, j
]
+ αφ̄

]
, (2.4)

where r = 1/∆t + 4/h2 + 10ε2/h4 + α. Here, we use the Dirichlet boundary condition. To compute
the solution on the boundary points in Ωh

in, we use the value of black-filled circles near the damaged
area, which contains the information of the original lamella-type patterns. More details can be found
in [22].

We present an automatic fingerprint restoration algorithm for solving Eqs (2.1) and (2.2) under the
Dirichlet boundary condition. In [17], parameters such as the interaction parameter α, model parameter
ε and other parameters h and ∆t were manually selected to restore the damaged fingerprint. However,
our proposed algorithm automatically determines the appropriate parameter values by analyzing the
fingerprint ridges around the damaged area.

The main idea of our proposed algorithm is to find an appropriate scaled spatial step size h̄, which
we call a scaling factor, using the information very close to the damaged area. After we fix values of α,
ε, and ∆t closely related to the period of given patterns, we can resize the damaged fingerprint image
with h̄. For the automatic restoration method, we propose an algorithm for estimating the period of
fingerprint patterns in two steps: First, using the governing equation, we find an equilibrium wave with
a random perturbation, and call it a reference; second, we estimate the period of the target patterns
using the reference.

Let K be the wavelength of the equilibrium wave, L be the length of the random perturbation,
and H be the spatial grid size at equilibrium. We set a random perturbation in x-direction with 0.2
amplitude, 0 average, and the total wave length L = 100, and then solve the governing equation (2.4)
with H = 1 to obtain the equilibrium wave. For estimating the target wave of the damaged fingerprint
image, a schematic of the algorithm for estimating the period is illustrated in Figure 3. We take a
line perpendicular to the pattern around the damaged area, and then interpolate data along the line.
The interpolated data is then rescaled from −1 to 1. Using the interpolation method, we obtain a set
of points denoted as P = {pi = (Xi,Yi) | φ(Xi,Yi) = 0, i = 1, . . . ,m}, where m is the number of points
defined as |P|. We define the wavelength as k = m − 1, the length (Xm − X1) of the red line as l, and the
spatial grid size and scaling factor as h̄. Therefore, we can obtain the suitable scaling factor as follows:

h̄ =
lKH
Lk

.
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Figure 3. Schematic illustration for estimating the period of the fingerprint patterns. The
original image was reprinted from [9].

3. Computational tests

It should be noted that we stop the evolution and consider the numerical results as equilibrium
solutions when the maximum error ||φn+1 − φn||∞ is smaller than the tolerance tol. Unless otherwise
stated, we will use the Dirichlet boundary condition for the boundaries.

3.1. Fingerprint restoration with different α values

We used the following parameters: h = 1, ∆t = 0.2h2, ε = 1.1, and tol = 1.0e-7, with a maximum
iteration of 10000. Figure 4 shows an intact fingerprint, a damaged fingerprint, and restorations of
a damaged fingerprint with α = 0.01, 0.1, and 0.5. The restoration image appears coarse when α

is small and fine when α is large. The value of α is the parameter that affects the thickness of the
fingerprint patterns. In this test, it appears that the restored fingerprint image is the most appropriate
when α = 0.1 among the three different α values. The best α value is found through trial and error so
that the pattern formed by the ridges and valleys around the damaged part of the given image could
be smoothly connected to the restored pattern. Therefore, instead of trial and error manually taking
parameters, our proposed method is to automatically fit the significant parameter, α, in fingerprint
restoration by estimating the period of fingerprint patterns near the damaged area.

AIMS Mathematics Volume 8, Issue 11, 27528–27541.
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(a) Intact (b) Damaged

(c) α = 0.01 (d) α = 0.1 (e) α = 0.5
Figure 4. Results of fingerprint restoration with different α values. (a) Intact fingerprint, (b)
damaged fingerprint, and restoration with (c) α = 0.01, (d) α = 0.1, (e) α = 0.5.

3.2. Fingerprint restoration using semi-automatic algorithm

In this section, we apply the semi-automatic algorithm to restore damaged fingerprint images. Using
the proposed algorithm, we can obtain a suitable spatial grid size h based on the information near the
damaged area. Specifically, because there is a close relation among h, ε and α, our goal is to obtain the
value of h given ε and α. In our experiments, we set ∆t = 0.1, ε = 1.2, α = 0.1, and tol = 1.0e-4.

Figure 5 illustrates the process of restoring a damaged fingerprint image. We use the same intact
image as shown in Figure 4(a). In Figure 5(a), the damaged area is highlighted by a red circle. To
estimate the period of the pattern, we take a line near the damaged area and compare it with the
equilibrium wave obtained from random perturbation. The purpose of finding the equilibrium wave is
to use it as a reference for estimating the period. In this test, the scaled spatial grid size is h = 0.9741
and the scaled domain is Ω̄ = (0, ah) × (0, bh). Using these parameters, we compute Eq (2.4), and the
final time is reached at t = 7585∆t. The temporal evolution is shown in Figure 5(b)– 5(d).
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Figure 5. From top to bottom, fingerprint restoration and the profiles of the numerical
solution with a scaling factor h = 0.9741: (a) damaged image and (b)–(d) temporal evolution.

The original CH equation does not satisfy the maximum principle, which means its solution φ may
become larger than 1 or smaller than −1 at some point (x, y, t). However, we use the CH equation with
an added source term that is the α term on the right-hand side in Eq (2.1). It is observed that the α term
stabilizes the numerical solution inside the damaged area between −1 and 1 from the bottom row in
Figures 5 and 6. On the other hand, When α = 0, some solutions could be smaller than −1 as shown in
Figure 6.

0 1000 2000 3000 4000 5000 6000 7000

Iteration

-1

-0.5

0

0.5

1

Maximum when =0.1

Minimum when =0.1

Maximum when =0

Minimum when =0

Figure 6. Maximums and minimums of numerical solution inside the damaged area (red
circle in Figure 5) according to α.
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Figure 7 shows the temporal evolution with different radii of the damaged area in the same image.
From top to bottom in Figure 7, the radius of damaged area is 20, 40, and 60, respectively. We fix the
final time T = 7000∆t to compare the results and their computational costs according to the radii of
the damaged area. We finally compare the CPU times (in seconds) of the computations. Here, we use
MATLAB R2022b on a computer with an Intel Core i9-12900K CPU at 3.19 GHz with 16 GB RAM.

(a)

(b)

(c)

t = 0 t = 500∆t t = 1000∆t t = 7000∆t

Figure 7. From top to bottom, restoration results of the fingerprint images with a circular
damaged area with each radius of (a) 20, (b) 40 and (c) 60, respectively. Each time is denoted
below each figure.

AIMS Mathematics Volume 8, Issue 11, 27528–27541.
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Total CPU time(s) of numerical tests of Figure 7 (see Table 1).

Table 1. Total CPU time(s) of numerical tests of Figure 7.

Radius Number of Damaged pixels CPU time (s)

20 1264 6.48

40 5024 21.51

60 11302 46.58

Figure 8 shows the temporal evolution with the same ε and α but different h values. We use a
different intact image, and Figure 8(a),(b) illustrate the damaged area of the given image represented
as a red circle. We solve the discrete governing equation with the initial image, and Figure 8(c),(d)
show the temporal evolution until the final time. In this test, the scaled spatial grid size is h = 1.2565.

(a) Intact image (b) t = 0 (c) t = 1000∆t (d) t = 25042∆t
Figure 8. Fingerprint restoration with a scaling factor h = 1.2565: (a) intact image [9] and
(b) damaged image, and (c)–(d) temporal evolution.

Figure 9 displays the temporal evolution of damaged fingerprint images whose numbers of damaged
pixels are the same, but each location is different. According to the proposed method, the scaling
factors are h = 1.2710, 1.3199, 1.2648, 1.2382 from top to bottom.
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(a)

t = 0 t = 500∆t t = 1000∆t t = 3932∆t

(b)

t = 0 t = 1000∆t t = 2000∆t t = 23390∆t

(c)

t = 0 t = 1000∆t t = 2000∆t t = 14923∆t

(d)

t = 0 t = 500∆t t = 1500∆t t = 18328∆t

Figure 9. Temporal evolution of fingerprint images damaged at different locations. Each
scaling factor h is (a) 1.2710, (b) 1.3199, (c) 1.2648 and (d) 1.2382 from top to bottom. Each
time is denoted below each figure.
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4. Conclusions

In summary, this research introduced a new approach for restoring damaged fingerprint images
using a semi-automatic method based on a partial differential equation derived from the Cahn-
Hilliard (CH) equation with a source term. The algorithm reduces user involvement by automatically
calculating the required model and numerical parameters, resulting in a streamlined restoration process.
Computational simulations on damaged fingerprint samples demonstrated the algorithm’s exceptional
ability to accurately restore fingerprints. The proposed technique is promising for improving the
reliability and security of fingerprint-based biometric authentication systems.
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