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Abstract: Let H be a connected graph. The edge revised Szeged index of H is defined as Sz,(H) =
S (mu(elH) + ") (m, (e|H) + ") where m,(e|H) (resp., m,(e|H)) is the number of edges

e=uveEy
whose distance to vertex u (resp., v) is smaller than to vertex v (resp., u), and mg(e|H) is the number of

edges equidistant from u and v. In this paper, the extremal unicyclic graphs with given diameter and
minimum edge revised Szeged index are characterized.
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1. Introduction

Let H = (Vy, Ey) be a simple and connected graph, where V and Ej be the vertex set and the edge
set of H, respectively. For u € Vy, the degree of u in H, denoted by degp(u), is the number of edges
which connected to u in H. If degy(u) = 1, then, u is a pendant vertex. For an edge e = xy € Ey, e
is a pendant edge of H if degy(x) = 1 or degy(y) = 1. For any u,v € Vy, dy(u, v) denote the distance
between u and v in H. The diameter of a graph H is the maximum distance between any vertex pair in
H. Denote by P,, C, and S, the path, the cycle and the star with n vertices, respectively. For integers
i < J, [i, j] denote the set {k € Z,i < k < j}. One can refer to [1] for other notations and terminologies
undefined throughout this paper.

The topological indices can be used in theoretical chemistry for understanding the physicochemical
properties of chemical compounds. The atoms and bonds of molecules can be represented by the
vertices and edges of graphs, respectively. The first and most well-known topological index, named
Wiener index, was introduced by the famous chemist Harry Wiener for investigating boiling points of
alkanes [21]. The Wiener index and its deformation were studied extensively by many researchers [9,
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10, 12, 16]. The edge version of the Wiener index, named edge Wiener index [3], of a graph H is
defined as follows:
W(H) = > du(fi, f).
{/1.2}CEn

If e = xy and f are two edges of H and w is a vertex of H, the distance between e and w is
defined as dy(e, w) = min{dy(x, w), dy(y, w)}, and the distance between e and f is defined as dy(e, f) =
min{dy(x, f),dy(y, f)}. For an edge e = xy of H, the edge set Ey can be partitioned into three sets as
follows:

M (elH) = {f € En:dyx, [f)<du(y, )}
My(elH) = {f€Ey:du(y, f)<du(x, )},
Moy(elH) = {f € Ey:dy(x, f)=du(y, )}

Set m(e|H) = |M(e|H)|, m(e|lH) = |M,(e|H)| and my(e|H) = |My(e|H)|. The edge Szeged index of a
graph H was introduced by Gutman and Ashrafi [5], and defined as

Sz(H) = ) melH)m(e|H).

e=xyeEy

The edge Szeged index does not consider the edges with equal distances from the endpoints of an
edge. A modified version of the edge Szeged index, named edge revised Szeged index [4], of a graph
H is defined as:

mo(e|H) mo(e|H)

5 my(elH) + ———).

SZ(H) = ). (mdelH)+
e=xyeEy
In recently, the study on the topological indices of the unicyclic graphs with given diameter received
more and more attention. The minimum Wiener index of the unicyclic graphs with given diameter was
investigated independently in [18] and [17]. Liu et al. [14] studied the minimum Szeged index of the
unicyclic graphs with given diameter. Wang et al. [19] characterized the minimum edge Szeged index
and corresponding extremal graphs among all the unicyclic graphs with given order and diameter.
Yu et al. [22] identified the unicyclic graphs with given diameter having minimum revised Szeged
index. For other results on topological indices, one can refer to [2,8,11,13,15]. Before presenting our
main results, we introduce some definitions firstly.
Let P, = viv,---v, be an n-vertex path, C, = wuju,---u,u; be a g-vertex cycle and 7; be a tree
with root vertex w; for i € [1,g]. Denote by T'P; , the tree formed by attaching s pendant vertices to
Vi, (see Figure 1). Let U%’Tz;_.jg be the unicyclic graph obtained from the cycle C, = ujus - - - ugu,

by identifying the root vertex w; of T; with u; for i € [1,g]. Obviously, T Pg’k ~ P, TP’3’,‘22 = Sl

s o S 2 N . .
rp,, =TpP, . _and Ug ¢ o = C,, and any unicyclic graph can be represented in the form of
Ug

11,12, ,Tg"
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Vi V2 Vi-1 Vi Vi1 Vn-1 Vn

Figure 1. The tree TP} ,.

Let H be an unicyclic graph with diameter d and order n. It can be checked that H = C; ifd = 1;
H € {Cy, U;’z,sl,sl} ifd=2andn=4;H € {C5,C§3’SI’SI} ifd=2andn=35; H = USH.SI,SI ford =2
and n > 6. Thus, it is trivial to determine the minimum edge revised Szeged index of the unicyclic
graphs with diameter 1 < d < 2. Let (LICZ be the set of n-vertex unicyclic graphs with diameter d
(d € [3,n — 2]). Recently, Wang and Liu [20] established the lower bound of edge revised Szeged
index of unicyclic graphs with given diameter and characterized the corresponding extremal graphs.
But there is a flaw in their proof as the cases of d = n — 2 and d = n — 3 have not been discussed. In
this paper, by using a completely different approach with Wang and Liu [20], the extremal graphs in
UCY with minimum edge revised Szeged index are characterized. The following Theorem 1.1 is our
main result.

Theorem 1.1. Let H € UC? (n > 15 and 3 < d < n — 2) be the unicyclic graph with minimum edge
revised Szeged index.

. o ~ 73
(Ifd=n-2hen H=U3 |,
(i) Ifd =n -3, then H = U} ,

d+1,L%J+1’

(iii) f7<d<n-4,then H= U} .,

11§ 1+1

e
S8’

S1.81.81’

(iv)1f 3 <d <6, then H = U;Pnfdfz G oS
d-1,d-1° 12 101
Some properties of the edge revised Szeged index of graphs are represented in Section 3, and we
prove that the cycle length of the graphs in T/C? with minimum edge revised Szeged index is 3 or 4.
Moreover, the extremal unicyclic graphs in Z/C? with minimum edge revised Szeged index and cycle
length 3 (resp., 4) are identified in Section 4 (resp., Section 5). Furthermore, the Theorem 1.1 is proved

in Section 6.
2. Lemmas

For an integer g, define

|1, ifgisodd;
™(8) = { 0, if giseven.

Let H be a connected graph. For any edge e = xy € Ey, define
my(e) = m(e|H)m,(e|H)

and
mo(e|H) mo(e|H)

my,(e) = [m.(elH) + > 1[my(elH) + 5

1.
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Lemma 2.1. Let H = U‘STII’TZ;_,Tg be an unicyclic graph with |Vy| = n. Then,

1 1 1 n-n 1<
SZ(H) = Sz,(H) + Z”(zn -+ 1(2” -3)g+ T(g)[zg(S —4n) + 5 "1 ; |E7,I*].

Proof. We divide the edges of H into two types:

(a) the edges belonging to the tree T; fori = 1,2,--- , g;

(b) the edges belonging to the unique cycle C, of H.

Firstly, we consider the edges of type (a). For each edge e = xy of T; (i € [1, g]), it can be checked
that m,(e|H) + my(e|lH) = n — 1 and my(e|H) = 1. Let u be the contributions to S z;(H) of the edges of
type (a). Then,

< H H
o= DY il + M el + T

i=1 e=xyeEy;

N N H H))?
=3 S e+ > [mO(j )(mx(elH)+my(e|H))+w]

]

i=1 e:xyEETi i=1 e:xyeETl.

S e+ Y -1+

i=1 e=xyeEr, i=1 e=xyeEr,

M=

1 1
D, ma@+m=glzn—1)+ 7]

i=1 e=xyeEy;

M=

1
D mule)+ 7@n=1)n-g).

8
=1 e=xyeEr;

1

Now, we consider the edges of type (b). We divide this problem into two cases according to the
parity of g.
Case 1. g is even.

For each edge e = xy € Ec,, it can be checked that m,(e|H) + my(e|H) = n — 2 and mo(e|H) = 2. Let
A; be the contributions to S z,(H) of the edges of type (b). Then,

mo(;lH)][my(e| )+ mo(;lH)

A= ) ImyelH) +

e=xyekc,

H H))?
= > m@+ Yy [mO(;l )(mx(elH)+my(e|H))+w]

]

e=xy€Ec, e=xyeEc,

= 3 @+ Y B2+

e=xyeEc, e=xyeEc,

= > mule)+gn-1).

e=xyeEc,
By the definition of edge revised Szeged index, we have

SZ(H) = u+d

AIMS Mathematics Volume 8, Issue 11, 26301-26327.
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8
> mH<e>+}L<2n—1>(n—g)+ D mue)+gn—1)

i=1 e=xyeET; e=xyeEc,

1 1
Sz.(H) + Z(Zn —Dn+ Z(2n -3)g.

Case 2. g is odd.
Let A, be the contributions to S z,(H) of the edges of type (b). It can be checked that

mo(e|H) mo(e|H)
o= ) el + = my(elH) + =]
e=xyeEc,
mo(e|H) (mo(e|H))?
= > mue)+ Y [=(mlelH) + my(elH)) + —-——]
2 4
e=xyeEc, e=xyeEc,
8 2
|Er| +1 (Er)| + 1)
= D, mu@)+ ) [ Byl = D+ =]
e=xyeEc, i=1
n’ £ |ET,v|2 5 |ET‘| 1
e=xyeEc, i=1 i=1
2 &G IE)P n- 1
= Z my(e) + — — i’ —Tg—zg.
e=xyekc, i=1

By the definition of edge revised Szeged index, we have

SZH) = p+d

O LI P R W P o 1
= Sz(H) + ;(4n =3~ S(n - )g—; IR

The proof is completed.

O

Lemma 2.2. [6] Let H = U? 7, be an unicyclic graph with |Vy| = nand C, = viv, -+ - v,v| be the

Ty.T,,

unique cycle of H. Let

S = Z mpy(e).

eEEcg
Then,
-2 -2 -2
S = B+ 18 1en-9) - (I =T - g)

2 2 2

14 8

+ |ET||E7 |dc, (vi, v)) —T(g)z |ET,|IET|.
i=1 j=1 i<j

Lemma 2.3. [7] Let H and H’' be the graphs shown as in Figure 2, where H consists of Hy and H,
with a common vertex u, and H' consists of Hy and H, with a common vertex u. If |Ey, | = |Ey,|, then,

2, ma@) = ) mu(e).

e‘EEHO eEEHO
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T

0 1 0 2

H H
Figure 2. H and H’ in Lemma 2.3.
By similar proof process of Lemma 2.3, the following corollary holds directly.

Corollary 2.4. Let Hy, H,, H,, H and H' be the graphs defined in Lemma 2.3. If |Ey,| = |Eg,|, then,

Z my(e) = Z my,(e).

eEEHO eEEHO
3. Properties of the edge revised Szeged index of graphs

Fact 1: Let i € [0, n] be an integer. Then (i + %)(n —i+ %) > %(n + %) with equality holds if and only if
i=0orn.

Lemma 3.1. Let Hy be a connected graph with a vertex u and T be a tree. Let H (resp., H') be the
graph obtained by identifying u (resp., u) with a vertex of T (resp., the root vertex of |Vr|-vertex star
Svy1) (see Figure 3). Then,

Sz.(H) > Sz.(H)

and
Sz,(H) > SZ,(H')

with equalities hold if and only if H = H'.

Figure 3. H and H’' in Lemma 3.1.
Proof. By Lemma 2.3 and Corollary 2.4, one has

Sze(H) = Sz(H') = ) mu(e)— > mule)

ecEr eEESlVTl
and

SzU(H) = SZ(H) = Y myle) = D my(e).

ecEr eEESIVTI

AIMS Mathematics Volume 8, Issue 11, 26301-26327.
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By the fact that pendant edges make no contributions to the edge Szeged index and Fact 1, the
results hold. o

Corollary 3.2. Let H € UC), with minimum edge revised Szeged index. Let C, be the unique cycle of
H and P4, be a longest path in H. If an edge e € Ey \ {Ec, U Epi }, then e is a pendant edge.

Lemma 3.3. Let H, and H, be two connected graphs which connected by an edge e = uv, Hy be a
connected graph with a vertex w. Let H (resp., H') be a graph obtained by identifying w with u (resp.,
v), (see Figure 4). If |Ep,| > |Ey,|, then,

Sz.(H) 2 Sz.(H")

and
Sz, (H)>SZ,(H')

with equalities hold if and only if |Ey,| = 0 or |Ey,| = |Eg,|.

H, Hy
H, [%<]H7 H, D&]m
u v u v
H H

Figure 4. H and H’ in Lemma 3.3.
Proof. Let |Ey,| = m; fori =0,1,2. By Lemma 2.3 and Corollary 2.4, one has

Sze(H) = Sz.(H')

mpy(e) — my(e)

(my + mo)my — my(mgy + my)

mo(my — my)

and
Sz, (H)-SZ,(H) = my(e) —my(e)
= (my+m+ %)(mz + 5) - (m + %)(mo +my + %)
= mo(my — my).
Thus, the results hold. O
Corollary 3.4. Let H = U?l’TLT}’_“ Tprt, € UC);, with minimum edge revised Szeged index. Let C, =

Uiy - - - uguty be the unique cycle of H and Pﬁ, be a longest path in H.

. |Ex,|~d N .
i) If Ve, N V% = {u;}, then T; = TPd+T1,LgJ+1 and T; = SlVT_,.l for j #i.

(ll) If ch N sz = {Lt,', Ujp1,° ,Llj} and |E¢>(Ii_1 N ET[.| = l] < lz = |E7>Z N ETI-|, then Tk = S\VT,J for

. \Ex, 111 |z |12
keli,j}, T; = TPl.+ll,ll+1 and T; = TP, '~ forsome s € [1,[, +1].

12+1,S

AIMS Mathematics Volume 8, Issue 11, 26301-26327.
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Lemma 3.5. Let [} > 0 and g > 5 be two integers. Let H = UTl ToTy e Tyt Ty and H = Ui, 2T3 Ty

be two unicyclic graphs with |Ey| = |Ey/| = n as shown in Figure 5, where T consists of an 11 length
path and a tree Ty with a common vertex, T| consists of a pendant edge, an (I, + 1)-length path and
the three trees Ty, T and Ty with a common vertex. Let C, = ujuy - - - uguty and C;_z = U3 - Ug 1l

be the unique cycle of H and H’, respectively. IfZZJ’;1 |Er,| 2 I, then Sz.(H") < Sz,(H) and S7;,(H") <

*
SZ:(H).
TO TO Tg T,
1& v L+
T, N T, Ty Ts
Ug u Uy

g
Ug1 Uup us

Ug u Ug—2 u
e el e [t el
H=US H = U
Ty.T9.T3.Tg 1Ty T30 Ty

Figure 5. H and H’ in Lemma 3.5.

Proof. Let m, = |ETp| and d,, = du(u,,u,) for each p,q € [1,g]. Let dlf’j = dp/(u;,uj) for i, j €
{1,3,4,--- ,g—1}and m| = IET;I. It can be checked that n = Zle m; + g and my = my + my + mgy + 2.
From Lemma 2.3, one has

Z m(e|H) = Z melH') — Li(n—1—=1,).

eEEH\ECg eEEH/ \EC/
g-2

By Lemma 2.2, we have

-2
D mlelH) = g5 + 8= 2letn - ) - v 10— o)

eeEcg
+ Zg: Zg: mim;d; ; — 7(g) Z m;m;

=1 j=1 1<i<j<g
and
N a8 84 84
Z m(elH") = (g 2)(fT1) +FT1(g 2)(n—-g+2)-71(9f ln—-g+2)
eeEczz
g-1 g-1
+ m;m +22mml -1(2) Z mlm]+me]
i=3 i=3 3<i<j<g-1
Thus,
Sze(H) = Sz,(H") 2 Ay +2A; — Az — () A4,
where
m o2 4 18 2 0t — o) — (e 821 —
A= g > D +T 5 lg(n—g) — (9 5 1n—-g)

AIMS Mathematics Volume 8, Issue 11, 26301-26327.
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g—4
2

g1 g1 g1 g1
_ . — ’ . ’ . . . .
Ay, = Zmlm]dl,] Zmlm]dl’jﬂ-Zmzm]dz,jﬁ-ngm]dg,]
Jj=3 Jj=3 Jj=3 Jj=3
+m1m2d172 + mlmgdl,g + I’I’L2mgd2,g,
Az = Li(n-1-1),

g g1 g1 g1
= v — ’ . . .
Ay = E mym; E mym; + E msz+ngmJ+m2mg
J=2 J=3 j=3 J=3

g-1
mymy + mymg + mong — 2 Z mj.
J=3

—4 —4
~(g- 2>(rgT1)2 - rgTun —g+2)(g—-2) + ("1 —g +2),

In the following, the lower bounds of A; and A, and the upper bound of Aj are investigated by
Claims 1-3, respectively.

g-1

Claim 1. A, > ¥, mj[g + 2[421 = 2 = 7(9)] + g(my + my + my + 1).
j=3

Proof of Claim 1: Let [£2] = x. Then,

Al:g(n—g+1)+2(x—1)(n—g+2)—T(g)(n—g+2—2x)+2(x—1)2.

8
Asn—g= ) mjand x — 1 > 0, one has
J=1

g-1
gn—g+1) > mej+g(m1 +my +mg + 1),
=3

g-1
2x-1Dn—-g+2) > ij(2x—2)+m1 +my + my
=3
and
g
(Q)(n— g +2-2x) < T()n—g) = 7(g) Y m;.
j=1
Hence,
g-1
A > ij[g+2x—2—‘r(g)] +g(my +my + my + 1).
=3

This completes the proof of Claim 1.
g-1
Claim 2. A, > ) mj(m; — 2d; J.) +mymy + mymg + 2mom,.
j=3 :

Proof of Claim 2: From the fact d;’j =d,;— 1for j€[3,g— 1], we have

g-1 g-1 g-1 g-1

_— —_— 4 . . — . . . .

A, = E mymjd, ; E mymj(d, j— 1)+ E mom;d, ; + E mem;d, ;
=3 =3 =3 =3
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+m1m2d1,2 + mlmgdl,g + n’lzmgdz’g
g-1
= > mjlmyds; = dyj+ 1) + my(dyj = dy j + 1)+ my = 2d; ]
Jj=3
+mimy + mimg + 2mpm,.

g-1
As dz,j +1> dl,j and dg,j +1> dl’j, Z mj[mz(dz,j - dl,j + 1) + mg(dg’j - dl,j + 1)] >0
=3

This completes the proof of Claim 2.
g—1
Claim 3. A3 <2m; 3, mj + mymy + mymg + m(g — 1).
j=3
Proof of Claim 3: It can be checked that

8 8
As=bLn=1=0)=0) mj+g=1=h)=0 Y my+hm +hg-1)-F

J=1 Jj=2

Byl; <mjandl; < Zéj;; mj, we have

g-1
Ay = zlzmj+z]ml+l]m2+l]mg+l](g—1)—z§
=3
J .
< Zm]+mlzm]+m1m2+m1mg+ll(g 1)—l2
J=3 Jj=3
g—1
< 2m12mj+m1m2+m1mg+ll(g—l)
=3
g-1
< 2m12mj+m1m2+m1mg+m1(g—1).
=3

Claim 4. Z mjlg + 21521 - 2 - 4d; .+ 1()] = 41(g) Z mj.

Proof of Clalm 4: If g is even, then d] ; < gT and T(g) = 0. Thus,

<! g-2 & ~2
mylg + 21551 -2~ 4d; ; = 31()] 2 Z lg+2- ——2 4. —]_
=3 j=3

If g is odd, then d ; < 43, 1421 = 4% and 7(g) = 1. Thus,

< —2 < ~1 -3
mj[g+2rgT1—2—4d;,j—3T(g)] > Zm,-[g+2-g7—2—4-g7+1]
Jj=3 J=3
g-1
= 421’”]
Jj=3

AIMS Mathematics Volume 8, Issue 11, 26301-26327.
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This completes the proof of Claim 4.
By Claims 1-4, one has that

1
-2
A1 + 2A2 - A3 - T(g)A4 > m][g + Z[gT'I -2- T(g)] + g(m1 +my +m3 + 1)
J

oo

Il
o8}

g-1
+2 Z m(my — 2d{’j) + 2mymy + 2mymg + 2mymy,
j=3
g-1
=2m Z mj—mymy —mymg —m(g —1)
=3
g-1
+27(g2) Z mj — mmy — mmg — Mo,
=3

\%

g-1

—2
Dumilg +25S1-2 - 4d 4 7(g) + 2my = 2my]
=3

+g(my +ms + 1) + my
g-1

4T(g)ij +my + glmy + my + 1)
j=3

\%

g-1

T(g)ij+m1 +my+mg+g
=3

T(g)n.

\%

v

Thus, Sz.(H) > Sz.(H').
Since |Er/| = |Er,| + |Ep,| + |E7,| + 2, |Er,|* 2 |Eq,|* + |Ep,l* + |Er,|* + 4. From Lemma 2.1, one has

Sz(H) = Sz,(H')

2
Sz.(H)-Sz.,(H") + 7 2n -13)
1
+4—1T(g)[2 ~(5—14n) - |Er,|* = |Ep, - |ETg|2 + |ET;|2]

SZe(H) - SZe(H,) +n— % - T(g)(zn - g)

v

3 5
> 1(gm+n-— ok 2t(g)n + T(g)i
> 0.

This completes the proof. O

The Lemma 3.5 shows the fact that one can decrease the cycle length and edge revised Szeged index
of an unicyclic graph simultaneously keeping the diameter of the unicyclic graph.
LetH = Uil,Tz,T3,~~-,Tg_1,Tg € (L[(Jz (g = 5) with Cy = viv, - - - v,v; be the unique cycle of H and 73‘;1 be
a longest path in H.

) If [Ec, N E7"L | > 2, Lemma 3.5 can be used directly.

AIMS Mathematics Volume 8, Issue 11, 26301-26327.
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(i) If |[E¢c, N E% | = 1, the operations can be refer to Figure 6 and set /; = 0 in Lemma 3.5, regard

V-1 in Figure 6 as u; in Lemma 3.5.
(i) If [E¢, N E% | = 0, the operations can be refer to Figure 7 and set /; = 0 in Lemma 3.5, regard

v (k = [47) in Figure 7 as u; in Lemma 3.5.

Ty

T,

Vi-1
v,
Tis kel Ty Ty

Tk Tk
H e
Figure 6. The case of |[Ec, N E;of;,| =1.

Ty T T s

H ed
Figure 7. The case of |[Ec, N Ep(;[ | =0.

Corollary 3.6. Let H € UC), with minimum edge revised Szeged index. Then the length of the unique
cycle of H is 3 or 4.

From Corollaries 3.2, 3.4 and 3.6, one has that the unicyclic graph with given diameter and
minimum edge revised Szeged index must be one of the following five types in Figure 8.

AIMS Mathematics Volume 8, Issue 11, 26301-26327.
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Type 1

Type III Type IV Type V

Figure 8. The five types unicyclic graphs.
4. The graphs with cycle length 3 and minimum edge revised Szeged index in (Llef

In this section, the graphs with cycle length 3 and minimum edge revised Szeged index in UC? are
identified by comparing with the edge revised Szeged indices of the graphs of Type I and Type II in
Figure 8.

— 773 r _ 173 . . ~ a
Lemmad4.l. Let H=U; s ¢ and H = UT;,sl,sl be two unicyclic graphs, where T\ = TP}, .\, .|

and T| = TPsth+e (see Figure 9). Then, Sz;(H) > Sz,(H') with equality holds if and only if

L+bh+1,[+1°

b=c=0.

Figure 9. H and H’ in Lemma 4.1.
Proof. By Corollary 2.4, one has

SZ(H) - SZ:(H')

D i = " mie)

eEEC3 EEEC:/;
Lh+bLh+a+1 Lh+bLh+a+1
= +1+—b+1+ —
(c L .
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+1 +1
+(ll+lz+a+l+cT)(b+l+C )
b+1 b+1
+h+h+a+l1+—)c+1+—)
2 2
1 1
—2(ll+lz+a+b+c+l+§)(l+§)
Lh+b+a+b+c+1 Lh+b+a+b+c+1
—(1+ (1 +
2 2
3
= E[bc+(b+c)(a+ll+lz)]
> 0.
O
Lemma 4.2. Let H = U% s, and H = U;, TSoun be two unicyclic graphs, where Ty = TP| |, .|
1,429 ¢c+1 12t 5
and T| = TPZ+2,11+2’ T, = TPZHJ. and T = TPZ’ifor some i € [1,1], (see Figure 10). If I, +2 < b,

then Sz,(H) > SZ,(H").

Proof. By Corollary 2.4, one has

Sz(H) = Sz,(H')

AIMS Mathematics

Figure 10. H and H’' in Lemma 4.2.

1 1
Zm;(e)+(lz—1+b+§)(a+c+ll+3+§)

eEEC3

1 1
- Zm;,(e)—(ll+§)(a+b+c+lz—1+3+§)

eEEC3

l 1 l 1
(c+l+#)(b+lz+l+ﬂ

1 1
+(ll+a+l+%)(b+lz+l+%)

1 1
+(ll+a+l+%)(c+l+%)

1 1
+(lz—1+b+§)(a+c+ll+3+§)
L+1+a+1 L+1+a+1

> Yb+L-1+1+ >

c+1
)

—(c+1+

I
—(l]+1+a+1+%)(b+lz—1+1+
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L-1+b+1 L-1+b+1
—(11+1+a+1+2f)(c+1+2#)

1 1
—(ll+§)(a+b+c+lz—1+3+§)

1 3
= —(12+b—ll—1)(3+2c+2a)+§a

2
> 0.
O
From Lemmas 3.3 and 4.2, the following corollary can be obtained.
Corollary 4.3. Let H = U}, . ¢ be an unicyclic graph, where T\ = TP, and T, = TPZH;
for some i € [1,1,], (see Figure II) Then, there exists an unicyclic graph H' = U%, 1. Wlth

! ~ a
T TP11+12 k+1,01+l—k+

yand T = TPZJr1 kel and k < I, such that Sz,(H) > Sz,(H").

a
.

o
Figure 11. H and H’ in Corollary 4.3.

Proof. 1f I, < [;+1, one has that the edge revised Szeged index decrease when i increased until i = /,+1
by Lemma 3.3, that is

Sz(U? Sz(U? - > SZ(U3 .

Z ( T TP;;-H ) - Z ( T TP;)2+]1+1 S‘“) Z ( T TP;’2+I12+I S(”)
Then, k = [, and H' = U? .
’ 2 T1, TP1b2+1 h+1° Sl

fL—-(UL+1-0) >0 +2+ (L +1-1i),the result holds by Lemma 4.2.
fhL>L+2and b —(L+1-0) <l +1+(L+1-1i),byLemmas4.2 and 3.3, one has

SZ(U? ) > SZ(U? )
TP? +LI+1 TPZH,I"S“'] ¢ ;ll+l+s,ll+l+s’TP5)2+l s, Serl
> Sz Ul ,
( TP11+1+31|+]+5 TP;2+1 5,i+1° S(”)
>
> SZ(U? ),
TP101+1+311+1+S TPZH sly+l-s St
where 5 = |_l2 J andk =1 —s.
This completes the proof. O

Lemma4.4. Let H = U; Ty5.,, and H' = U;, o be two unicyclic graphs, where T\ = TP} |, | and

T/ =Py, T, = TP12+1,12+1 and T}, = TP;’*_{’IJFICH, (see Figure 12). If 0 < [} < I, then SZ,(H) > SZ,(H’)

with equality holds if and only ifc =a =0,orc=0and b+ 1, - [, = 0.
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o
Figure 12. H and H’ in Lemma 4.4.
Proof. By Corollary 2.4, one has

Sz,(H)—-Sz,(H)

D mier= > mi(e)

eEEC3 eEEC'é

! 1 ! 1
%)(buﬁu%)

1 1
+(ll+a+1+%)(b+lz+1+%)

= (c+1+

1 1
+(ll+a+1+%)(c+1+%)

—(1+12+a+§+c+1)(ll+1+12+a+§+c+1

1 1
—(ll+1+§)(lz+a+b+c+1+§)

I +1 L+1
L Yh+a+b+c+1+ 1;

-1+

)

3
E[ab +ac+bc+cl, +all, — )]
0.

\%

Lemma 4.5. Let H = U;l TS and H' = U;/Sl s be two unicyclic graphs, where T, = Pj .y, T =
T, 1.S1

TPla2+1,12+1 and T| = TP} (see Figure 13). Ifa > 1,1, > 1, > Oand I, + a > 4, then

L+h+1,0;+2°

Szi(H) > SZi(H').

Figure 13. H and H' in Lemma 4.5.
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Proof. By Corollary 2.4, one has

* * 4 * 1 1
S (H) - SZ:(H') > (o) + Fli+h+3+a—1+)

EEECz

1 1
= > @) = (h+ )b +3+a-1+5)
2 2
eEECé
= 1(l+l+3+ 1+1)+(l+1+1)(l+ +1+1)
B A M 2 TAT Ty

L+a+1 L+a+1
+(11+1+%)(1+%

I +1 I +1
1 F Yh+a+1+ 1 F

)

+(1 +

)

1 1 1 1
—(ll+5)(12+3+a—1+§)—2(1+E)(ll+lz+a+1+§)

L+b+a+1 L+b+a+1

—(1+ f)(l + > )

1
= Ell(lz +a —4)
> 0.

O

Theorem 4.6. Let H € UC* (n > 15) be an unicyclic graph with cycle length 3 and minimum edge
revised Szeged index.

Py

(i)Ifd=n-2,then H = U}
g rger

. 773 . ~ n—d—3
(ii)1f 3 <d <n-3,then H = UT.,Sl,Sl with T} = TPd+1,LgJ+1'

Si°

Proof. (i)Ifd =n—-2,then H = U133

lp—ql<1,ie, H= U;l%HI’Pr%]H’Sl‘

(1) If 3 < d < n - 3, from Corollaries 3.2, 3.4 and 3.6, H must be Type I or Type II in Figure 8 in
Section 3. If H is Type II, then there exists at least three pendant edges in H. From Corollary 4.3 and
Lemmas 4.4 and 4.5, there exists an unicycle graph of Type I whose edge revised Szeged index smaller
strictly than H. Thus H must be Type I. By Lemma 4.1 and Corollary 3.4, one has H = U%l 5.5, With

T, =TpP" 43 | m
d+1,L§J+1

for some p,q with p+ g+ 1 = d. By Lemma 4.2, one has

p+1:Pg+1,51

5. The graphs with cycle length 4 and minimum edge revised Szeged index in U/C*

From Section 3, the unicyclic graphs with cycle length 4 and given diameter and minimum edge
revised Szeged index must be one of the graphs of Type III, Type IV and Type V in Figure 8. In this
section, the properties of the graphs with cycle length 4 and minimum edge revised Szeged index in
UC! are characterized.
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Lemma 5.1. Let H = U;l Sy SentSany ANd H' = U;,S] s,.s, be two unicyclic graphs of Type III in
O b1 c+159 d+ 12191
Figure 8, where Ty = TP{, . ., |[Er| > 0and T| = TP;‘;I;:S";]H. Then SZ:(H) > Sz:(H') with

equality holds if and only if b=c=d = 0.

Proof. By Lemma 2.1 and Corollary 2.4, one has

ST(H) = ST(H) = Sz(H)— Sz (H')

= > mue)= > mule)
ecEc, ecEcy
= 2h+bh+a+b+D)(c+d+D)+2(1+L+a+d+1D)(b+c+1)
Al +hL+a+b+c+d+1)
20+ bh+a+b)(c+d)+2(li+ L +a+d)(b+c)
0.

\%

O

Lemma5.2. Let H = U%,TZ,SL-H’S‘”‘ and H' = U;‘:f,TZ;Sl’Sl be two unicyclic graphs of Type 1V in Figure 8,
where T; = TP¢ |Er,| > 0 and T| = Tpwerd T, = TP for somei € [1,l, + 1]. Then

L+1,0Lh+1° L+1,L+1 bh+1,i

S (H) > S, (H') with equality holds if and only if c = d = 0.

Proof. By Lemma 2.1 and Corollary 2.4, one has

ST(H) = ST(H) = Szu(H) - Sz(H')

= D, mu@) = ) mu(e)

ecEc, eeEc;

= 2h+b+a+b+D)(c+d+D+2(1+a+d+ D) +b+c+ 1)
24 +b+a+b+c+d+1)-2(li+a+c+d+1)(l,+b+1)
de(li+a)+2d(li+ L +a+b+c¢)

> 0.
O
Lemma 5.3. Let H = U3, ; ¢ ¢ and H' = U?‘;,Tﬁ,sl,Sl be two unicyclic graphs of Type IV in Figure 8,
where Ty = TP| ,,,, and T} = TP] ,, ., T» = TPZH,:‘ and T = TPZJ for some i € [1,L]. If

LL+2 <1y, then SZ,(H) > SZ,(H’).

Proof. By Lemma 2.1 and Corollary 2.4, one has

SZ(H)-SZ:(H') = Sz.(H)-Sz.(H')
— Z mu(e) + (L +b— 1)1, +a+4)

eEEC4
- Z my(e) =Ll —1+b+a+4)

e€E
Cy

= 2(li+a+D)bL+b+ D)+ L +b-1){;+a+4)
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2i+1+a+DbL-1+b+1D)-L{Lb-1+b+a+4)
= 2L-L-1)+ab+L+1-1)+2b
> 0.

O

By Lemmas 3.3 and 5.3 and similar proof method with Corollary 4.3, the following Corollary 5.4
derived.

Corollary 5.4. Let H = Uj, ;. ¢, ¢, be an unicyclic graph, where Ty = TP{ ., and T, = TP} ., for
some i € [1,1,]. Then, there exists an unicyclic graph H' = U% with T = TP}

T{,Té,Sl,Sl L+l —k+1,01+h—k+1
!/~ b % * ,
and T; = TP} ., and k < I, such that S z,(H) > S z,(H’).

Lemma 5.5. Let H = U?‘I,TLSI,SI and H' = U;f,sl;shsl be two unicyclic graphs of Type IV and Type II1
in Figure 8, respectively. Where T\ = TP} |, .|, T> = TPZHJ2+1 and T| = TPZJﬁz_:z,llJrz' Ifa+b>1,

Lh>li>landly +lh,+a+b+4> 15, then SZ,(H) > SZ,(H).

Proof. By Lemma 2.1 and Corollary 2.4, one has

SzZi(H) - SZ:(H') Sz.(H) - Sz.(H")

D mple)= > my(e) = b +b+a-1+4)

EEEC4 eEECé,t
= 2i+a+D)bL+b+1D)-2(i+L+a+b+1)—-Li(lLb+b+a+3)
= a(12—ll)+lllz+alz+2ab+llb—3ll

> 0.
O
Lemma 5.6. Letr H = U4T1,Sl,+1,T2,5d+1 and H = U;lsSchdH,TZaSl be two unicyclic graphs of Type V in
Figure 8, where T\ =2 TP} | |, Tr = TPZHJ.for some i € [1,1, + 1]. Then SZ:(H) > SZ:(H') with the

equality holds if and only if cd = 0.
Proof. By Lemma 2.1 and Corollary 2.4, one has

SZi(H) - Sz:(H) Sz.(H) - Sz.(H')

D myle)= ) mp(e)

EGEC4 e‘EEC:1
= 2(li+a+c+D)L+b+d+ D) +2(li+a+d+ D)L +b+c+1)
2l +a+c+d+D)L+b+ 1) =-2(1+a+ 1)l +b+c+d+1)

= 4cd.
O
Lemma 5.7. Let H = Uil,Sm,Tz,Su and H' = U;t;aTz,SlsSl be two unicyclic graphs of Type V and Type
1V in Figure 8, respectively. Where T, = TP?1 L+l and T| = TPZtrcz_,zll 0 Iy = TPﬁ’2 oL for some

iell,Lb+1]l. Ifa+c>1landl, >, >21andly+LL+a+b+c+4>15, then SZ.(H) > SZ,(H').
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Proof. By Lemma 2.1 and Corollary 2.4, one has

SZ(H) - Sz (H') Sz.(H) - Sz,(H")

_ Z my(e) — Z mp(e) =Ll +a+b+c+3)

eckc, ecEcy

= 2h+a+c+D)bL+b+D)+2(Li+a+ 1)L +b+c+1)
2h+b+a+b+c+1)-2(li+1+a+c—-1+1)(L+b+1)
—L(hb+a+b+c+3)

= Lhlb+a+b+c-3)+2allLb,+b+c—-1)

> 0.

If a + ¢ = 0 in the graph H mentioned in Lemma 5.7, we give the following lemmas.

Lemma 5.8. Let H = U? and H' = U? be two unicyclic graphs of Type V in Figure

Pp11,81,72,8 Py .81.T5.54
8, where T, = TPZH,:‘ and T} = TP? . forsomei€[l,l,+1]. Then SzZi(H) = SZ.(H').

bh+2,i

Proof. By Lemma 2.1 and Corollary 2.4, one has

SZ(H) = ST(H) = Szu(H) - Sz,(H')

> mle) + (= D(l + b +4)
eeEC4
= > m(e) = (= 1+ 4L +b)
eEEci
= 4L+ DL+b+D)+(1 =D +b+4)
~4l(L+b+2) = (I = 1+ 4)(l2 + b)
0.

O

Note that SzZ(Ui Sl) = Sz(U? S1) for some i € [1,l, + 1] from Lemma 5.8.

TP SS 1,51,

b
1S TP I+ +1,i

Ip+1,i°

Moreover, by Lemma 3.3, if n > 15 and 7 < d < n — 3, one has SzZ(U4 dn )
TPd—l,j S1.51,5

SZ:(U;PZ_T_LZM Z,Sl,Sl,Sl) for j € [1,d—1];if n > 15and 3 < d < 6, one has SZ:(U;PZif_jZ,Sl,Sl,Sl) >
L :

SZ:(U;PZZ‘{;,Z_.,Sl,Sl,Sl) for je[l,d-1].

Lemma5.9. Letn > 15 and d = n—3 be two integers. Let H = U‘; s 5.5 andH = U?,
1,010 1,9 1

P S1.81

gt gt

be two unicyclic graphs, where T = TP:I L4 Then Sz,(H) > SZ,(H").
L)

Proof. We divide this problem into two cases according to the parity of d.
Case 1. d = 2k + 1 is odd.
Then, H = U? and H' = U,

TP S 1518y PetPuns,.s,- BY Lemma 2.1 and Corollary 2.4, one has

ST(H) = ST(H) = Szu(H) - Sz(H')
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k k+1
- Zi(2k+3—i)+2i(2k+3—i)+4(2k+ 1
i=0 i=4
k—1

—2Zi(2k+3—i)—2(k+1)(k+1)—2(2k+1)

i=0

= kK -3k-2
> 0.
Case 2. d = 2k is even.
Then, H = U}, sis,s, and H' = Ug, p...s,.s,- By Lemma 2.1 and Corollary 2.4, one has

2k—1,k+2

SzU(H) = SZUH') = Sz (H) - Sz,(H')

k

k
_ Zi(2k+2—i)+2i(2k+2—i)+8k

i=0 i=4

k-1 k-2
—Zi(2k+2—i)—Zi(2k+2—i)—2k(k+1)—4k
i=0 i=0
= kK —4k-1
> 0.

O

Lemma 5.10. Letn > 15 and 7 < d < n — 4 be two integers. Let H = Uz;l,Sl,Sl,Sl and H' = U;{,SI,SI,S]

be two unicyclic graphs, where T, = TPZ:ﬁngz and T} = TPZ;‘IZI‘%H. Then SzZ:(H) > SZ:(H’).
Proof. We divide this problem into two cases according to the parity of d.
Case 1. d = 2k + 1 is odd.

Then, T} = TPy 35} and T} = TPy 202> . By Lemma 2.1 and the definition of edge Szeged index,

one has

ST(H) - SZ(H') = Szu(H)— Sz (H)

k k+1

= Din—1=i+ ) iln—1-i)+4(n-3)
i=4

i=0

k k-1
=Yl =1=i)= Y itn—1-i)=4(n-3)
i=0 i=0

(2k — 5)n — 2k* — 4k + 18

> (2k—5)(2k +5) - 2k* — 4k + 18
= 2(k-1)*-5
> 0.

Case 2. d = 2k is even.
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Then, Ty = TP5272, and T} = TPy 7% . By Lemma 2.1 and the definition of edge Szeged index,
one has

STH) = STH) = Sz (H)— Sz (H')

k

k
= Zi(n—1—i)+Zi(n—1—i)+4(7’l—3)
i=0 i=4
k-1

—ZZi(n— 1 — i) —4(n—3)
i=0

(2k — 6)n — 2k* — 2k + 20

> (2k - 6)(2k +4) - 2k* — 2k + 20
= 2(k*-3k-2)
> 0.
O
By direct calculation, the following lemma can be obtained immediately.
_ 774 ' J74
Lemma 5.11. Letn > 15and 4 <d <6. Let H = U, ., S1SLS, and H' = U_ . ., S1SLS, be two

d-ld-1 11§+

unicyclic graphs in WC’ff Then Sz,(H) < Sz,(H").

Theorem 5.12. Let H € (L(C,‘f (n > 15) be an unicyclic graph with cycle length 4 and minimum edge
revised Szeged index.

(i)Ifd =n-2,then H = U;‘J S 1P S ] for some nonnegative integers ry and r, with r; +r, = n—4.
rl » 9 )'2 9/

.. _ ~ 774
(ii)Ifd = n— 3, then H = UPL%JWP[%IW&’SI'
(iii) If7<d <n-—4,then H = U;Pn,d,4

S5,
11§ 1+1 Satiad

. ~ J74
(WIf3<d<6,then H=Uppyz g g

Proof. (1) If d = n — 2, then H must be the graph of Type V in Figure 8 in Section 3. By Lemma 5.8,
(i) holds immediately.

. _ _ ~ 4 . _ _ _ . .
(i) Ifd =n-3,then H = UTP?I+1,51+1s5b+1sTP§2+1,f51 withs;+s, =d-2,a+b+c=1andi€|[l,s+1];
~ 4 1 - —
or H = UP:;+1,PS4+1,S1,81 with s3 +s4 =d — 1.

If a+ b =1andc =0, by Lemmas 5.7 and 5.8, there exists a graph of Type IV with smaller edge

revised Szeged index than U; pa s> ifa+b =0andc =1, by Lemmas 5.9 and 5.8, there

. . aSb+17TPLT i
sp+lsy+l sp+Li
exists a graph of Type IV with smaller edge revised Szeged index than U;Pa s,..TP s, Ihus,
sp+lsp+100 0F b ey 10
H = U} . Moreover, by Lemmas 5.3 and 5.8, one has |s3 — 54| < 1 and (ii) holds.

Pyy+1,Psy+1.5 1,81
(111) It 7 4S d < n — 4, then H must be the graph of Type III, Type IV or Type V in Figure 8 in

Section 3.

If His Type V, H = U;P?]+1,1]+1’Sb+1’Tsz+1,,-~51 withlj+bL =d-2,a+b+c>2andi€|[l,l,+1]. When

a+ b > 1, by Lemma 5.6, there exists a graph of Type IV with smaller edge revised Szeged index;
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when a + b = 0 and ¢ > 2, by Lemmas 5.10 and 5.8, there exists a graph of Type III with smaller edge
revised Szeged index. Thus, H can not be Type V.
Moreover, by Corollary 5.4 and Lemma 5.5, H can not be Type IV either. Thus, H is the graph

of Type Il and H = U;P”_M 15,8, for some i € [1,d + 1]. Furthermore, by Lemma 3.3, one has
d+1, 22 b

i= L%J + 1 and (iii) holds.
(iv) If 4 < d < 6, by Corollary 5.4 and Lemma 5.5, H can not be Type IV. From Lemma 5.11, one

~ 4 _ ~ 4 .
has H = UTP,;:@%PSI’S“S]. Ifd=3,by Lemma5.1, H = UTP;;S,SI,SI,SI and (iv) holds.
These complete the proof. O

6. The proof of Theorem 1.1

Lemma 6.1. Let H = U’

Prat o ity 51

n>15andd =n—2, then Sz;(H) < SZ,(H").

and H = U

4
PL%JH’S"Pr%m’S

| be two unicyclic graphs. If

Proof. We divide this problem into two cases according to the parity of d.
Case 1. d = 2k is even.

It is routine to check that H = U} , ¢
Szeged index, one has

D mye)= > mie)

eeEy ecEy

and H' = U?’kasl,PksSI' By the definition of edge revised

Sz,(H)—-Sz,(H)

k-2 1 1 k—1 1 1
= ;(z‘+5)(n—1—i+§)+;(i+§)(n—1—i+§)

k+1 k+1 1 1 k k
+(1 + > )k + > )+(k+§)(k+1+§)+(1+5)(k+1+§)

ZH 1 1 2.2

-2 izo(i+ 5)(71— 1 —l+5)—4(k+§)(k+§)
1

= Z(Zk—Zkz— 11) < 0.

Case 2. d =2k + 1 is odd.
Obviously, H = U3

’ 4
Pri1,Pri1.S 1 and H' = U
we have

PoS1Pur.s, BY the definition of edge revised Szeged index,

Sz,(H)-Sz,(H)

I
[
3
N
N
!
[
3
T
S

k-1
1 1 1 1
= 2;(i+§)(n—l—i+§)+(k+l+§)(k+1+§)
k+1

k+1 k+1 k+1
+(1+T)(k+1+T)+(1+T)(k+1+7)

=1 1 Y 1
—;(i+5)(n—1—i+§)—2(i+§)(n—1—i+§)

i=0
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—4(k + %)(k +1+ %)
[P
= 5(_k -6) <0.

Thus, the proof is completed. O

Lemma 6.2. Let H = U}, s g and H' = U}

1,51
a 41077

andd =n -3, then SZ,(H) < SZ,(H').

ot Pty 1) be two unicyclic graphs. If n > 15

Proof. We divide this problem into two cases according to the parity of d.
Case 1. d = 2k is even.
Obviously, H = U 3

0
TP2k+l,k+1

S, and H' = Uik,PkH,SlySl' By the definition of edge revised Szeged

index, we have
Sa(H) = SZUH) = ) my(e) = ) my(@)
eeEy ecEy

2k + 1 2k + 1
+ )(1 + +
2 2

k-1 1 1
= 2i§:0(i+§)(n—l—i+§)+(1+ )
1 1
+2(1+§)(2k+1+§)
k—l' 1 1 k—2. 1 1
—i:EO(z+§)(n—l—z+§)—i:EO(z+§)(n—l—z+§)

2 2 2 2
—2(k+1+ 5)(k + 5) -2(1+ 5)(2k + 5)

= —(2k+3)<0.
Case 2. d = 2k + 1 is odd.
Obviously, H = U}, 5,5, and H' = U}, p.s.s,- By the definition of edge revised Szeged

. 2k+2,k+1
index, we have

SzU(H) = SZ(H) = > myle)= > miu(e)

ecEy €€k},

S 1 o, 1 1
- ;(l‘+5)(n—1—i+§)+;(i+§)(n—1—i+§)

2k+2  k+2 1 1
k2+ )1 + k2+ )21+ )k +2+ )

k-1 1 1 k—1 1 1
—;(i+5)(n—1—i+5)—;(i+§)(n—1—i+§)

+(1 +

2 2 2 2
—2(k+1+§)(k+1+§)—2(1+§)(2k+1+5)

1
= _Z(8k+ 11) <O0.

This completes the proof. O
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Lemma 6.3. Let H = U;Pn_d_3

S8
d+l,\_%]+l Ll

and4 <d <n-4, then Sz;,(H) > Sz,(H’).

’r 4
and H' = Ul praa

a1 |41

1518 be two unicyclic graphs. If n > 15

Proof. By the definition of edge revised Szeged index, one has

D omite) = > my(e)

ecEy ecEy

141-1 1311

o1 1 1 1
= ;(l+§)(n—l—l+§)+;(l+§)(n—1—l+z)

1 1 1 1
+(n—d—3)(0+§)(n—1+§)+2(1+§)(n—2+§)
2 n-—2

+(1+”; W+ 75

14)-1 rg1-1

- ;(i+%)(n—l—i+%)— ;(i+%)(n—1—i+%)

1 1 2 2
—(n—d—4)(0+E)(n—1+§)—4(1+§)(n—3+§)

Sz.(H) = Sz (H')

1
= Z(nz — 18n + 45) > 0.
Thus, the proof is completed. O

By direct calculation, the following Lemma 6.4 can be obtained.

Lemma 6.4. Ifn > 15 and d = 3, then S7;(U> ) > SzZ(U; ).

TPy 0.S1.51 Py .S1.81.81

Proof of Theorem 1.1:

(1) By Theorems 4.6 and 5.12 and Lemma 6.1, (i) holds immediately.

(i1) If d = n — 3, by Theorems 4.6 and 5.12 and Lemma 6.2, the result holds.

(iii) If 7 < d < n — 4, from Theorems 4.6 and 5.12 and Lemma 6.3, the result holds.

(iv) If 4 < d < 6, by Theorems 4.6 and 5.12 and Lemmas 5.11 and 6.3, the result holds. If d = 3,
from Theorems 4.6 and 5.12 and Lemma 6.4, the result is gotten directly.
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