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Abstract: Let H be a connected graph. The edge revised Szeged index of H is defined as S z∗e(H) =∑
e=uv∈EH

(mu(e|H) + m0(e|H)
2 )(mv(e|H) + m0(e|H)

2 ), where mu(e|H) (resp., mv(e|H)) is the number of edges

whose distance to vertex u (resp., v) is smaller than to vertex v (resp., u), and m0(e|H) is the number of
edges equidistant from u and v. In this paper, the extremal unicyclic graphs with given diameter and
minimum edge revised Szeged index are characterized.
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1. Introduction

Let H = (VH, EH) be a simple and connected graph, where VH and EH be the vertex set and the edge
set of H, respectively. For u ∈ VH, the degree of u in H, denoted by degH(u), is the number of edges
which connected to u in H. If degH(u) = 1, then, u is a pendant vertex. For an edge e = xy ∈ EH, e
is a pendant edge of H if degH(x) = 1 or degH(y) = 1. For any u, v ∈ VH, dH(u, v) denote the distance
between u and v in H. The diameter of a graph H is the maximum distance between any vertex pair in
H. Denote by Pn, Cn and S n the path, the cycle and the star with n vertices, respectively. For integers
i ≤ j, [i, j] denote the set {k ∈ Z, i ≤ k ≤ j}. One can refer to [1] for other notations and terminologies
undefined throughout this paper.

The topological indices can be used in theoretical chemistry for understanding the physicochemical
properties of chemical compounds. The atoms and bonds of molecules can be represented by the
vertices and edges of graphs, respectively. The first and most well-known topological index, named
Wiener index, was introduced by the famous chemist Harry Wiener for investigating boiling points of
alkanes [21]. The Wiener index and its deformation were studied extensively by many researchers [9,
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10, 12, 16]. The edge version of the Wiener index, named edge Wiener index [3], of a graph H is
defined as follows:

We(H) =
∑

{ f1, f2}⊆EH

dH( f1, f2).

If e = xy and f are two edges of H and w is a vertex of H, the distance between e and w is
defined as dH(e,w) = min{dH(x,w), dH(y,w)}, and the distance between e and f is defined as dH(e, f ) =
min{dH(x, f ), dH(y, f )}. For an edge e = xy of H, the edge set EH can be partitioned into three sets as
follows:

Mx(e|H) = { f ∈ EH : dH(x, f ) < dH(y, f )},
My(e|H) = { f ∈ EH : dH(y, f ) < dH(x, f )},
M0(e|H) = { f ∈ EH : dH(x, f ) = dH(y, f )}.

Set mx(e|H) = |Mx(e|H)|, my(e|H) = |My(e|H)| and m0(e|H) = |M0(e|H)|. The edge Szeged index of a
graph H was introduced by Gutman and Ashrafi [5], and defined as

S ze(H) =
∑

e=xy∈EH

mx(e|H)my(e|H).

The edge Szeged index does not consider the edges with equal distances from the endpoints of an
edge. A modified version of the edge Szeged index, named edge revised Szeged index [4], of a graph
H is defined as:

S z∗e(H) =
∑

e=xy∈EH

(mx(e|H) +
m0(e|H)

2
)(my(e|H) +

m0(e|H)
2

).

In recently, the study on the topological indices of the unicyclic graphs with given diameter received
more and more attention. The minimum Wiener index of the unicyclic graphs with given diameter was
investigated independently in [18] and [17]. Liu et al. [14] studied the minimum Szeged index of the
unicyclic graphs with given diameter. Wang et al. [19] characterized the minimum edge Szeged index
and corresponding extremal graphs among all the unicyclic graphs with given order and diameter.
Yu et al. [22] identified the unicyclic graphs with given diameter having minimum revised Szeged
index. For other results on topological indices, one can refer to [2,8,11,13,15]. Before presenting our
main results, we introduce some definitions firstly.

Let Pn = v1v2 · · · vn be an n-vertex path, Cg = u1u2 · · · ugu1 be a g-vertex cycle and Ti be a tree
with root vertex wi for i ∈ [1, g]. Denote by T Ps

n,k the tree formed by attaching s pendant vertices to
vk, (see Figure 1). Let Ug

T1,T2,··· ,Tg
be the unicyclic graph obtained from the cycle Cg = u1u2 · · · ugu1

by identifying the root vertex wi of Ti with ui for i ∈ [1, g]. Obviously, T P0
n,k � Pn, T Pn−2

3,2 � S n+1,
T Ps

n,k � T Ps
n,n+1−k and Ug

S 1,S 1,··· ,S 1
� Cg, and any unicyclic graph can be represented in the form of

Ug
T1,T2,··· ,Tg

.
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Figure 1. The tree T Ps
n,k.

Let H be an unicyclic graph with diameter d and order n. It can be checked that H � C3 if d = 1;
H ∈ {C4,U3

P2,S 1,S 1
} if d = 2 and n = 4; H ∈ {C5,C3

S 3,S 1,S 1
} if d = 2 and n = 5; H � U3

S n−2,S 1,S 1
for d = 2

and n ≥ 6. Thus, it is trivial to determine the minimum edge revised Szeged index of the unicyclic
graphs with diameter 1 ≤ d ≤ 2. Let UCd

n be the set of n-vertex unicyclic graphs with diameter d
(d ∈ [3, n − 2]). Recently, Wang and Liu [20] established the lower bound of edge revised Szeged
index of unicyclic graphs with given diameter and characterized the corresponding extremal graphs.
But there is a flaw in their proof as the cases of d = n − 2 and d = n − 3 have not been discussed. In
this paper, by using a completely different approach with Wang and Liu [20], the extremal graphs in
UC

d
n with minimum edge revised Szeged index are characterized. The following Theorem 1.1 is our

main result.

Theorem 1.1. Let H ∈ UCd
n (n > 15 and 3 ≤ d ≤ n − 2) be the unicyclic graph with minimum edge

revised Szeged index.

(i) If d = n − 2, then H � U3
P
⌊ d−1

2 ⌋+1,P⌈ d−1
2 ⌉+1,S 1

;

(ii) If d = n − 3, then H � U3
T P0

d+1,⌊ d
2 ⌋+1
,S 1,S 1

;

(iii) If 7 ≤ d ≤ n − 4, then H � U4
T Pn−d−4

d+1,⌊ d
2 ⌋+1
,S 1,S 1,S 1

;

(iv) If 3 ≤ d ≤ 6, then H � U4
T Pn−d−2

d−1,d−1,S 1,S 1,S 1
.

Some properties of the edge revised Szeged index of graphs are represented in Section 3, and we
prove that the cycle length of the graphs in UCd

n with minimum edge revised Szeged index is 3 or 4.
Moreover, the extremal unicyclic graphs in UCd

n with minimum edge revised Szeged index and cycle
length 3 (resp., 4) are identified in Section 4 (resp., Section 5). Furthermore, the Theorem 1.1 is proved
in Section 6.

2. Lemmas

For an integer g, define

τ(g) =
{

1, if g is odd ;
0, if g is even.

Let H be a connected graph. For any edge e = xy ∈ EH, define

mH(e) = mx(e|H)my(e|H)

and
m∗H(e) = [mx(e|H) +

m0(e|H)
2

][my(e|H) +
m0(e|H)

2
].
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Lemma 2.1. Let H = Ug
T1,T2,··· ,Tg

be an unicyclic graph with |VH | = n. Then,

S z∗e(H) = S ze(H) +
1
4

n(2n − 1) +
1
4

(2n − 3)g + τ(g)[
1
4

g(5 − 4n) +
n2 − n

2
−

1
4

g∑
i=1

|ETi |
2].

Proof. We divide the edges of H into two types:
(a) the edges belonging to the tree Ti for i = 1, 2, · · · , g;
(b) the edges belonging to the unique cycle Cg of H.
Firstly, we consider the edges of type (a). For each edge e = xy of Ti (i ∈ [1, g]), it can be checked

that mx(e|H) + my(e|H) = n − 1 and m0(e|H) = 1. Let µ be the contributions to S z∗e(H) of the edges of
type (a). Then,

µ =

g∑
i=1

∑
e=xy∈ETi

[mx(e|H) +
m0(e|H)

2
][my(e|H) +

m0(e|H)
2

]

=

g∑
i=1

∑
e=xy∈ETi

mH(e) +
g∑

i=1

∑
e=xy∈ETi

[
m0(e|H)

2
(mx(e|H) + my(e|H)) +

(m0(e|H))2

4
]

=

g∑
i=1

∑
e=xy∈ETi

mH(e) +
g∑

i=1

∑
e=xy∈ETi

[
1
2

(n − 1) +
1
4

]

=

g∑
i=1

∑
e=xy∈ETi

mH(e) + (n − g)[
1
2

(n − 1) +
1
4

]

=

g∑
i=1

∑
e=xy∈ETi

mH(e) +
1
4

(2n − 1)(n − g).

Now, we consider the edges of type (b). We divide this problem into two cases according to the
parity of g.
Case 1. g is even.

For each edge e = xy ∈ ECg , it can be checked that mx(e|H)+my(e|H) = n− 2 and m0(e|H) = 2. Let
λ1 be the contributions to S z∗e(H) of the edges of type (b). Then,

λ1 =
∑

e=xy∈ECg

[mx(e|H) +
m0(e|H)

2
][my(e|H) +

m0(e|H)
2

]

=
∑

e=xy∈ECg

mH(e) +
∑

e=xy∈ECg

[
m0(e|H)

2
(mx(e|H) + my(e|H)) +

(m0(e|H))2

4
]

=
∑

e=xy∈ECg

mH(e) +
∑

e=xy∈ECg

[
2
2

(n − 2) +
4
4

]

=
∑

e=xy∈ECg

mH(e) + g(n − 1).

By the definition of edge revised Szeged index, we have

S z∗e(H) = µ + λ1

AIMS Mathematics Volume 8, Issue 11, 26301–26327.
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=

g∑
i=1

∑
e=xy∈ETi

mH(e) +
1
4

(2n − 1)(n − g) +
∑

e=xy∈ECg

mH(e) + g(n − 1)

= S ze(H) +
1
4

(2n − 1)n +
1
4

(2n − 3)g.

Case 2. g is odd.
Let λ2 be the contributions to S z∗e(H) of the edges of type (b). It can be checked that

λ2 =
∑

e=xy∈ECg

[mx(e|H) +
m0(e|H)

2
][my(e|H) +

m0(e|H)
2

]

=
∑

e=xy∈ECg

mH(e) +
∑

e=xy∈ECg

[
m0(e|H)

2
(mx(e|H) + my(e|H)) +

(m0(e|H))2

4
]

=
∑

e=xy∈ECg

mH(e) +
g∑

i=1

[
|ETi | + 1

2
(n − |ETi | − 1) +

(|ETi | + 1)2

4
]

=
∑

e=xy∈ECg

mH(e) +
n2

2
−

g∑
i=1

|ETi |
2

4
−

g∑
i=1

|ETi |

2
−

1
4

g

=
∑

e=xy∈ECg

mH(e) +
n2

2
−

g∑
i=1

|ETi |
2

4
−

n − g
2
−

1
4

g.

By the definition of edge revised Szeged index, we have

S z∗e(H) = µ + λ2

= S ze(H) +
1
4

(4n − 3)n −
1
2

(n − 1)g −
g∑

i=1

|ETi |
2

4
.

The proof is completed. □

Lemma 2.2. [6] Let H = Ug
T1,T2,··· ,Tg

be an unicyclic graph with |VH | = n and Cg = v1v2 · · · vgv1 be the
unique cycle of H. Let

S =
∑

e∈ECg

mH(e).

Then,

S = g(⌈
g − 2

2
⌉)2 + ⌈

g − 2
2
⌉g(n − g) − τ(g)⌈

g − 2
2
⌉(n − g)

+

g∑
i=1

g∑
j=1

|ETi ||ET j |dCg(vi, v j) − τ(g)
∑
i< j

|ETi ||ET j |.

Lemma 2.3. [7] Let H and H′ be the graphs shown as in Figure 2, where H consists of H0 and H1

with a common vertex u, and H′ consists of H0 and H2 with a common vertex u. If |EH1 | = |EH2 |, then,∑
e∈EH0

mH(e) =
∑

e∈EH0

mH′(e).
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Figure 2. H and H′ in Lemma 2.3.
By similar proof process of Lemma 2.3, the following corollary holds directly.

Corollary 2.4. Let H0, H1, H2, H and H′ be the graphs defined in Lemma 2.3. If |EH1 | = |EH2 |, then,∑
e∈EH0

m∗H(e) =
∑

e∈EH0

m∗H′(e).

3. Properties of the edge revised Szeged index of graphs

Fact 1: Let i ∈ [0, n] be an integer. Then (i + 1
2 )(n − i + 1

2 ) ≥ 1
2 (n + 1

2 ) with equality holds if and only if
i = 0 or n.

Lemma 3.1. Let H0 be a connected graph with a vertex u and T be a tree. Let H (resp., H′) be the
graph obtained by identifying u (resp., u) with a vertex of T (resp., the root vertex of |VT |-vertex star
S |VT |), (see Figure 3). Then,

S ze(H) ≥ S ze(H′)

and
S z∗e(H) ≥ S z∗e(H′)

with equalities hold if and only if H � H′.
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��qqqH0 H0u uT S |VT |

H H′

Figure 3. H and H′ in Lemma 3.1.
Proof. By Lemma 2.3 and Corollary 2.4, one has

S ze(H) − S ze(H′) =
∑
e∈ET

mH(e) −
∑

e∈ES |VT |

mH′(e)

and
S z∗e(H) − S z∗e(H′) =

∑
e∈ET

m∗H(e) −
∑

e∈ES |VT |

m∗H′(e).
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By the fact that pendant edges make no contributions to the edge Szeged index and Fact 1, the
results hold. □

Corollary 3.2. Let H ∈ UCn
d with minimum edge revised Szeged index. Let Cg be the unique cycle of

H and Pd
H be a longest path in H. If an edge e ∈ EH \ {ECg ∪ EPd

H
}, then e is a pendant edge.

Lemma 3.3. Let H1 and H2 be two connected graphs which connected by an edge e = uv, H0 be a
connected graph with a vertex w. Let H (resp., H′) be a graph obtained by identifying w with u (resp.,
v), (see Figure 4). If |EH2 | ≥ |EH1 |, then,

S ze(H) ≥ S ze(H′)

and
S z∗e(H) ≥ S z∗e(H′)

with equalities hold if and only if |EH0 | = 0 or |EH1 | = |EH2 |.
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Figure 4. H and H′ in Lemma 3.3.

Proof. Let |EHi | = mi for i = 0, 1, 2. By Lemma 2.3 and Corollary 2.4, one has

S ze(H) − S ze(H′) = mH(e) − mH′(e)
= (m1 + m0)m2 − m1(m0 + m2)
= m0(m2 − m1)

and

S z∗e(H) − S z∗e(H′) = m∗H(e) − m∗H′(e)

= (m1 + m0 +
1
2

)(m2 +
1
2

) − (m1 +
1
2

)(m0 + m2 +
1
2

)

= m0(m2 − m1).

Thus, the results hold. □

Corollary 3.4. Let H = Ug
T1,T2,T3,··· ,Tg−1,Tg

∈ UC
n
d with minimum edge revised Szeged index. Let Cg =

u1u2 · · · ugu1 be the unique cycle of H and Pd
H be a longest path in H.

(i) If VCg ∩ VPd
H
= {ui}, then Ti � T P

|ETi |−d

d+1,⌊ d
2 ⌋+1

and T j � S |VT j |
for j , i.

(ii) If VCg ∩ VPd
H
= {ui, ui+1, · · · , u j} and |EPd

H
∩ ETi | = l1 ≤ l2 = |EPd

H
∩ ET j |, then Tk � S |VTk |

for

k < {i, j}, Ti � T P
|ETi |−l1
l1+1,l1+1 and T j � T P

|ET j |−l2
l2+1,s for some s ∈ [1, l2 + 1].
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Lemma 3.5. Let l1 ≥ 0 and g ≥ 5 be two integers. Let H = Ug
T1,T2,T3,··· ,Tg−1,Tg

and H′ = Ug−2
T ′1,T3,··· ,Tg−1

be two unicyclic graphs with |EH | = |EH′ | = n as shown in Figure 5, where T1 consists of an l1-length
path and a tree T0 with a common vertex, T ′1 consists of a pendant edge, an (l1 + 1)-length path and
the three trees T0, T2 and Tg with a common vertex. Let Cg = u1u2 · · · ugu1 and C′g−2 = u1u3 · · · ug−1u1

be the unique cycle of H and H′, respectively. If
∑g−1

j=3 |ET j | ≥ l1, then S ze(H′) < S ze(H) and S z∗e(H′) <
S z∗e(H).
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Figure 5. H and H′ in Lemma 3.5.

Proof. Let mp = |ETp | and dp,q = dH(up, uq) for each p, q ∈ [1, g]. Let d′i, j = dH′(ui, u j) for i, j ∈
{1, 3, 4, · · · , g − 1} and m′1 = |ET ′1

|. It can be checked that n =
∑g

i=1 mi + g and m′1 = m1 + m2 + mg + 2.
From Lemma 2.3, one has∑

e∈EH\ECg

m(e|H) =
∑

e∈EH′\EC′g−2

m(e|H′) − l1(n − 1 − l1).

By Lemma 2.2, we have∑
e∈ECg

m(e|H) = g(⌈
g − 2

2
⌉)2 + ⌈

g − 2
2
⌉g(n − g) − τ(g)⌈

g − 2
2
⌉(n − g)

+

g∑
i=1

g∑
j=1

mim jdi, j − τ(g)
∑

1≤i< j≤g

mim j

and ∑
e∈EC′g−2

m(e|H′) = (g − 2)(⌈
g − 4

2
⌉)2 + ⌈

g − 4
2
⌉(g − 2)(n − g + 2) − τ(g)⌈

g − 4
2
⌉(n − g + 2)

+

g−1∑
i=3

g−1∑
i=3

mim jd′i, j + 2
g−1∑
j=3

m′1m jd′i, j − τ(g)[
∑

3≤i< j≤g−1

mim j +

g−1∑
j=3

m′1m j].

Thus,
S ze(H) − S ze(H′) ≥ Λ1 + 2Λ2 − Λ3 − τ(g)Λ4,

where

Λ1 = g(⌈
g − 2

2
⌉)2 + ⌈

g − 2
2
⌉g(n − g) − τ(g)⌈

g − 2
2
⌉(n − g)

AIMS Mathematics Volume 8, Issue 11, 26301–26327.
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−(g − 2)(⌈
g − 4

2
⌉)2 − ⌈

g − 4
2
⌉(n − g + 2)(g − 2) + τ(g)⌈

g − 4
2
⌉(n − g + 2),

Λ2 =

g−1∑
j=3

m1m jd1, j −

g−1∑
j=3

m′1m jd′1, j +
g−1∑
j=3

m2m jd2, j +

g−1∑
j=3

mgm jdg, j

+m1m2d1,2 + m1mgd1,g + m2mgd2,g,

Λ3 = l1(n − 1 − l1),

Λ4 =

g∑
j=2

m1m j −

g−1∑
j=3

m′1m j +

g−1∑
j=3

m2m j +

g−1∑
j=3

mgm j + m2mg

= m1m2 + m1mg + m2mg − 2
g−1∑
j=3

m j.

In the following, the lower bounds of Λ1 and Λ2 and the upper bound of Λ3 are investigated by
Claims 1–3, respectively.

Claim 1. Λ1 >
g−1∑
j=3

m j[g + 2⌈ g−2
2 ⌉ − 2 − τ(g)] + g(m1 + m2 + mg + 1).

Proof of Claim 1: Let ⌈ g−2
2 ⌉ = x. Then,

Λ1 = g(n − g + 1) + 2(x − 1)(n − g + 2) − τ(g)(n − g + 2 − 2x) + 2(x − 1)2.

As n − g =
g∑

j=1
m j and x − 1 > 0, one has

g(n − g + 1) ≥ g
g−1∑
j=3

m j + g(m1 + m2 + mg + 1),

2(x − 1)(n − g + 2) ≥
g−1∑
j=3

m j(2x − 2) + m1 + m2 + mg

and

τ(g)(n − g + 2 − 2x) ≤ τ(g)(n − g) = τ(g)
g∑

j=1

m j.

Hence,

Λ1 >

g−1∑
j=3

m j[g + 2x − 2 − τ(g)] + g(m1 + m2 + mg + 1).

This completes the proof of Claim 1.

Claim 2. Λ2 ≥
g−1∑
j=3

m j(m1 − 2d′1, j) + m1m2 + m1mg + 2m2mg.

Proof of Claim 2: From the fact d′1, j = d1, j − 1 for j ∈ [3, g − 1], we have

Λ2 =

g−1∑
j=3

m1m jd1, j −

g−1∑
j=3

m′1m j(d1, j − 1) +
g−1∑
j=3

m2m jd2, j +

g−1∑
j=3

mgm jdg, j
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+m1m2d1,2 + m1mgd1,g + m2mgd2,g

=

g−1∑
j=3

m j[m2(d2, j − d1, j + 1) + mg(dg, j − d1, j + 1) + m1 − 2d′1, j]

+m1m2 + m1mg + 2m2mg.

As d2, j + 1 ≥ d1, j and dg, j + 1 ≥ d1, j,
g−1∑
j=3

m j[m2(d2, j − d1, j + 1) + mg(dg, j − d1, j + 1)] ≥ 0.

This completes the proof of Claim 2.

Claim 3. Λ3 ≤ 2m1

g−1∑
j=3

m j + m1m2 + m1mg + m1(g − 1).

Proof of Claim 3: It can be checked that

Λ3 = l1(n − 1 − l1) = l1(
g∑

j=1

m j + g − 1 − l1) = l1

g∑
j=2

m j + l1m1 + l1(g − 1) − l2
1.

By l1 ≤ m1 and l1 ≤
∑g−1

j=3 m j, we have

Λ3 = l1

g−1∑
j=3

m j + l1m1 + l1m2 + l1mg + l1(g − 1) − l2
1

≤ m1

g−1∑
j=3

m j + m1

g−1∑
j=3

m j + m1m2 + m1mg + l1(g − 1) − l2
1

≤ 2m1

g−1∑
j=3

m j + m1m2 + m1mg + l1(g − 1)

≤ 2m1

g−1∑
j=3

m j + m1m2 + m1mg + m1(g − 1).

Claim 4.
g−1∑
j=3

m j[g + 2⌈ g−2
2 ⌉ − 2 − 4d′1, j + τ(g)] ≥ 4τ(g)

g−1∑
j=3

m j.

Proof of Claim 4: If g is even, then d′1, j ≤
g−2

2 and τ(g) = 0. Thus,

g−1∑
j=3

m j[g + 2⌈
g − 2

2
⌉ − 2 − 4d′1, j − 3τ(g)] ≥

g−1∑
j=3

m j[g + 2 ·
g − 2

2
− 2 − 4 ·

g − 2
2

] = 0.

If g is odd, then d′1, j ≤
g−3

2 , ⌈g−2
2 ⌉ =

g−1
2 and τ(g) = 1. Thus,

g−1∑
j=3

m j[g + 2⌈
g − 2

2
⌉ − 2 − 4d′1, j − 3τ(g)] ≥

g−1∑
j=3

m j[g + 2 ·
g − 1

2
− 2 − 4 ·

g − 3
2
+ 1]

= 4
g−1∑
j=3

m j.
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This completes the proof of Claim 4.
By Claims 1–4, one has that

Λ1 + 2Λ2 − Λ3 − τ(g)Λ4 >

g−1∑
j=3

m j[g + 2⌈
g − 2

2
⌉ − 2 − τ(g)] + g(m1 + m2 + m3 + 1)

+2
g−1∑
j=3

m j(m1 − 2d′1, j) + 2m1m2 + 2m1mg + 2m2mg

−2m1

g−1∑
j=3

m j − m1m2 − m1mg − m1(g − 1)

+2τ(g)
g−1∑
j=3

m j − m1m2 − m1mg − m2mg

≥

g−1∑
j=3

m j[g + 2⌈
g − 2

2
⌉ − 2 − 4d′1, j + τ(g) + 2m1 − 2m1]

+g(m2 + m3 + 1) + m1

≥ 4τ(g)
g−1∑
j=3

m j + m1 + g(m2 + mg + 1)

≥ τ(g)
g−1∑
j=3

m j + m1 + m2 + mg + g

≥ τ(g)n.

Thus, S ze(H) > S ze(H′).
Since |ET ′1

| = |ET1 | + |ET2 | + |ETg | + 2, |ET ′1
|2 ≥ |ET1 |

2 + |ET2 |
2 + |ETg |

2 + 4. From Lemma 2.1, one has

S z∗e(H) − S z∗e(H′) = S ze(H) − S ze(H′) +
2
4
· (2n − 3)

+
1
4
τ(g)[2 · (5 − 4n) − |ET1 |

2 − |ET2 |
2 − |ETg |

2 + |ET ′1
|2]

≥ S ze(H) − S ze(H′) + n −
3
2
− τ(g)(2n −

5
2

)

> τ(g)n + n −
3
2
− 2τ(g)n + τ(g)

5
2

> 0.

This completes the proof. □

The Lemma 3.5 shows the fact that one can decrease the cycle length and edge revised Szeged index
of an unicyclic graph simultaneously keeping the diameter of the unicyclic graph.

Let H = Ug
T1,T2,T3,··· ,Tg−1,Tg

∈ UC
d
n (g ≥ 5) with Cg = v1v2 · · · vgv1 be the unique cycle of H and Pd

H be
a longest path in H.

(i) If |ECg ∩ EPd
H
| ≥ 2, Lemma 3.5 can be used directly.
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(ii) If |ECg ∩ EPd
H
| = 1, the operations can be refer to Figure 6 and set l1 = 0 in Lemma 3.5, regard

vg−1 in Figure 6 as u1 in Lemma 3.5.
(iii) If |ECg ∩ EPd

H
| = 0, the operations can be refer to Figure 7 and set l1 = 0 in Lemma 3.5, regard

vk (k = ⌈ g
2⌉) in Figure 7 as u1 in Lemma 3.5.
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Figure 6. The case of |ECg ∩ EPd
H
| = 1.
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Figure 7. The case of |ECg ∩ EPd
H
| = 0.

Corollary 3.6. Let H ∈ UCn
d with minimum edge revised Szeged index. Then the length of the unique

cycle of H is 3 or 4.

From Corollaries 3.2, 3.4 and 3.6, one has that the unicyclic graph with given diameter and
minimum edge revised Szeged index must be one of the following five types in Figure 8.
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Figure 8. The five types unicyclic graphs.

4. The graphs with cycle length 3 and minimum edge revised Szeged index inUCd
n

In this section, the graphs with cycle length 3 and minimum edge revised Szeged index inUCd
n are

identified by comparing with the edge revised Szeged indices of the graphs of Type I and Type II in
Figure 8.

Lemma 4.1. Let H = U3
T1,S b+1,S c+1

and H′ = U3
T ′1,S 1,S 1

be two unicyclic graphs, where T1 � T Pa
l1+l2+1,l1+1

and T ′1 � T Pa+b+c
l1+l2+1,l1+1, (see Figure 9). Then, S z∗e(H) ≥ S z∗e(H′) with equality holds if and only if

b = c = 0.
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Figure 9. H and H′ in Lemma 4.1.

Proof. By Corollary 2.4, one has

S z∗e(H) − S z∗e(H′) =
∑

e∈EC3

m∗H(e) −
∑

e∈EC′3

m∗H′(e)

= (c + 1 +
l1 + l2 + a + 1

2
)(b + 1 +

l1 + l2 + a + 1
2

)
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+(l1 + l2 + a + 1 +
c + 1

2
)(b + 1 +

c + 1
2

)

+(l1 + l2 + a + 1 +
b + 1

2
)(c + 1 +

b + 1
2

)

−2(l1 + l2 + a + b + c + 1 +
1
2

)(1 +
1
2

)

−(1 +
l1 + l2 + a + b + c + 1

2
)(1 +

l1 + l2 + a + b + c + 1
2

)

=
3
2

[bc + (b + c)(a + l1 + l2)]

≥ 0.

□

Lemma 4.2. Let H = U3
T1,T2,S c+1

and H′ = U3
T ′1,T

′
2,S c+1

be two unicyclic graphs, where T1 � T Pa
l1+1,l1+1

and T ′1 � T Pa
l1+2,l1+2, T2 � T Pb

l2+1,i and T ′2 � T Pb
l2,i

for some i ∈ [1, l2], (see Figure 10). If l1 + 2 ≤ l2,
then S z∗e(H) > S z∗e(H′).
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Figure 10. H and H′ in Lemma 4.2.

Proof. By Corollary 2.4, one has

S z∗e(H) − S z∗e(H′) =
∑

e∈EC3

m∗H(e) + (l2 − 1 + b +
1
2

)(a + c + l1 + 3 +
1
2

)

−
∑

e∈EC3

m∗H′(e) − (l1 +
1
2

)(a + b + c + l2 − 1 + 3 +
1
2

)

= (c + 1 +
l1 + a + 1

2
)(b + l2 + 1 +

l1 + a + 1
2

)

+(l1 + a + 1 +
c + 1

2
)(b + l2 + 1 +

c + 1
2

)

+(l1 + a + 1 +
l2 + b + 1

2
)(c + 1 +

l2 + b + 1
2

)

+(l2 − 1 + b +
1
2

)(a + c + l1 + 3 +
1
2

)

−(c + 1 +
l1 + 1 + a + 1

2
)(b + l2 − 1 + 1 +

l1 + 1 + a + 1
2

)

−(l1 + 1 + a + 1 +
c + 1

2
)(b + l2 − 1 + 1 +

c + 1
2

)
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−(l1 + 1 + a + 1 +
l2 − 1 + b + 1

2
)(c + 1 +

l2 − 1 + b + 1
2

)

−(l1 +
1
2

)(a + b + c + l2 − 1 + 3 +
1
2

)

=
1
2

(l2 + b − l1 − 1)(3 + 2c + 2a) +
3
2

a

> 0.

□

From Lemmas 3.3 and 4.2, the following corollary can be obtained.

Corollary 4.3. Let H = U3
T1,T2,S c+1

be an unicyclic graph, where T1 � T Pa
l1+1,l1+1 and T2 � T Pb

l2+1,i
for some i ∈ [1, l2], (see Figure 11). Then, there exists an unicyclic graph H′ = U3

T ′1,T
′
2,S c+1

with
T ′1 � T Pa

l1+l2−k+1,l1+l2−k+1 and T ′2 � T Pb
k+1,k+1 and k ≤ l2 such that S z∗e(H) ≥ S z∗e(H′).
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Figure 11. H and H′ in Corollary 4.3.

Proof. If l2 ≤ l1+1, one has that the edge revised Szeged index decrease when i increased until i = l2+1
by Lemma 3.3, that is

S z∗e(U3
T1,T Pb

l2+1,i,S c+1
) ≥ S z∗e(U3

T1,T Pb
l2+1,i+1,S c+1

) ≥ · · · ≥ S z∗e(U3
T1,T Pb

l2+1,l2+1,S c+1
).

Then, k = l2 and H′ = U3
T1,T Pb

l2+1,l2+1,S c+1
.

If l2 − (l2 + 1 − i) ≥ l1 + 2 + (l2 + 1 − i), the result holds by Lemma 4.2.
If l2 ≥ l1 + 2 and l2 − (l2 + 1 − i) ≤ l1 + 1 + (l2 + 1 − i), by Lemmas 4.2 and 3.3, one has

S z∗e(U3
T Pa

l1+1,l1+1,T Pb
l2+1,i,S c+1

) > S z∗e(U3
T Pa

l1+1+s,l1+1+s,T Pb
l2+1−s,i,S c+1

)

≥ S z∗e(U3
T Pa

l1+1+s,l1+1+s,T Pb
l2+1−s,i+1,S c+1

)

≥ · · ·

≥ S z∗e(U3
T Pa

l1+1+s,l1+1+s,T Pb
l2+1−s,l2+1−s,S c+1

),

where s = ⌊ l2−l1−2
2 ⌋ and k = l2 − s.

This completes the proof. □

Lemma 4.4. Let H = U3
T1,T2,S c+1

and H′ = U3
T ′1,T

′
2,S 1

be two unicyclic graphs, where T1 � T Pa
l1+1,l1+1 and

T ′1 � Pl1+1, T2 � T Pb
l2+1,l2+1 and T ′2 � T Pa+b+c

l2+1,l2+1, (see Figure 12). If 0 < l1 ≤ l2, then S z∗e(H) ≥ S z∗e(H′)
with equality holds if and only if c = a = 0, or c = 0 and b + l2 − l1 = 0.
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Figure 12. H and H′ in Lemma 4.4.

Proof. By Corollary 2.4, one has

S z∗e(H) − S z∗e(H′) =
∑

e∈EC3

m∗H(e) −
∑

e∈EC′3

m∗H′(e)

= (c + 1 +
l1 + a + 1

2
)(b + l2 + 1 +

l1 + a + 1
2

)

+(l1 + a + 1 +
c + 1

2
)(b + l2 + 1 +

c + 1
2

)

+(l1 + a + 1 +
l2 + b + 1

2
)(c + 1 +

l2 + b + 1
2

)

−(1 +
l2 + a + b + c + 1

2
)(l1 + 1 +

l2 + a + b + c + 1
2

)

−(l1 + 1 +
1
2

)(l2 + a + b + c + 1 +
1
2

)

−(1 +
l1 + 1

2
)(l2 + a + b + c + 1 +

l1 + 1
2

)

=
3
2

[ab + ac + bc + cl2 + a(l2 − l1)]

≥ 0.

□

Lemma 4.5. Let H = U3
T1,T2,S 1

and H′ = U3
T ′1,S 1,S 1

be two unicyclic graphs, where T1 � Pl1+1, T2 �

T Pa
l2+1,l2+1 and T ′1 � T Pa−1

l1+l2+1,l1+2, (see Figure 13). If a ≥ 1, l2 ≥ l1 > 0 and l2 + a > 4, then
S z∗e(H) > S z∗e(H′).
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Figure 13. H and H′ in Lemma 4.5.
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Proof. By Corollary 2.4, one has

S z∗e(H) − S z∗e(H′) =
∑

e∈EC3

m∗H(e) +
1
2

(l1 + l2 + 3 + a − 1 +
1
2

)

−
∑

e∈EC′3

m∗H′(e) − (l1 +
1
2

)(l2 + 3 + a − 1 +
1
2

)

=
1
2

(l1 + l2 + 3 + a − 1 +
1
2

) + (l1 + 1 +
1
2

)(l2 + a + 1 +
1
2

)

+(l1 + 1 +
l2 + a + 1

2
)(1 +

l2 + a + 1
2

)

+(1 +
l1 + 1

2
)(l2 + a + 1 +

l1 + 1
2

)

−(l1 +
1
2

)(l2 + 3 + a − 1 +
1
2

) − 2(1 +
1
2

)(l1 + l2 + a + 1 +
1
2

)

−(1 +
l1 + l2 + a + 1

2
)(1 +

l1 + l2 + a + 1
2

)

=
1
2

l1(l2 + a − 4)

> 0.

□

Theorem 4.6. Let H ∈ UCd
n (n > 15) be an unicyclic graph with cycle length 3 and minimum edge

revised Szeged index.

(i) If d = n − 2, then H � U3
P
⌊ d

2 ⌋+1,P⌈ d
2 ⌉+1,S 1

.

(ii) If 3 ≤ d ≤ n − 3, then H � U3
T1,S 1,S 1

with T1 � T Pn−d−3
d+1,⌊ d

2 ⌋+1
.

Proof. (i) If d = n − 2, then H � U3
Pp+1,Pq+1,S 1

for some p, q with p + q + 1 = d. By Lemma 4.2, one has
|p − q| ≤ 1, i.e., H � U3

P
⌊ d

2 ⌋+1,P⌈ d
2 ⌉+1,S 1

.

(ii) If 3 ≤ d ≤ n − 3, from Corollaries 3.2, 3.4 and 3.6, H must be Type I or Type II in Figure 8 in
Section 3. If H is Type II, then there exists at least three pendant edges in H. From Corollary 4.3 and
Lemmas 4.4 and 4.5, there exists an unicycle graph of Type I whose edge revised Szeged index smaller
strictly than H. Thus H must be Type I. By Lemma 4.1 and Corollary 3.4, one has H � U3

T1,S 1,S 1
with

T1 � T Pn−d−3
d+1,⌊ d

2 ⌋+1
. □

5. The graphs with cycle length 4 and minimum edge revised Szeged index inUCd
n

From Section 3, the unicyclic graphs with cycle length 4 and given diameter and minimum edge
revised Szeged index must be one of the graphs of Type III, Type IV and Type V in Figure 8. In this
section, the properties of the graphs with cycle length 4 and minimum edge revised Szeged index in
UC

d
n are characterized.
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Lemma 5.1. Let H = U4
T1,S b+1,S c+1,S d+1

and H′ = U4
T ′1,S 1,S 1,S 1

be two unicyclic graphs of Type III in
Figure 8, where T1 � T Pa

l1+l2+1,l1+1, |ET1 | > 0 and T ′1 � T Pa+b+c+d
l1+l2+1,l1+1. Then S z∗e(H) ≥ S z∗e(H′) with

equality holds if and only if b = c = d = 0.

Proof. By Lemma 2.1 and Corollary 2.4, one has

S z∗e(H) − S z∗e(H′) = S ze(H) − S ze(H′)

=
∑

e∈EC4

mH(e) −
∑

e∈EC′4

mH′(e)

= 2(l1 + l2 + a + b + 1)(c + d + 1) + 2(l1 + l2 + a + d + 1)(b + c + 1)
−4(l1 + l2 + a + b + c + d + 1)

= 2(l1 + l2 + a + b)(c + d) + 2(l1 + l2 + a + d)(b + c)
≥ 0.

□

Lemma 5.2. Let H = U4
T1,T2,S c+1,S d+1

and H′ = U4
T ′1,T2,S 1,S 1

be two unicyclic graphs of Type IV in Figure 8,
where T1 � T Pa

l1+1,l1+1, |ET1 | > 0 and T ′1 � T Pa+c+d
l1+1,l1+1, T2 � T Pb

l2+1,i for some i ∈ [1, l2 + 1]. Then
S z∗e(H) ≥ S z∗e(H′) with equality holds if and only if c = d = 0.

Proof. By Lemma 2.1 and Corollary 2.4, one has

S z∗e(H) − S z∗e(H′) = S ze(H) − S ze(H′)

=
∑

e∈EC4

mH(e) −
∑

e∈EC′4

mH′(e)

= 2(l1 + l2 + a + b + 1)(c + d + 1) + 2(l1 + a + d + 1)(l2 + b + c + 1)
−2(l1 + l2 + a + b + c + d + 1) − 2(l1 + a + c + d + 1)(l2 + b + 1)

= 4c(l1 + a) + 2d(l1 + l2 + a + b + c)
≥ 0.

□

Lemma 5.3. Let H = U4
T1,T2,S 1,S 1

and H′ = U4
T ′1,T

′
2,S 1,S 1

be two unicyclic graphs of Type IV in Figure 8,
where T1 � T Pa

l1+1,l1+1 and T ′1 � T Pa
l1+2,l1+2, T2 � T Pb

l2+1,i and T ′2 � T Pb
l2,i

for some i ∈ [1, l2]. If
l1 + 2 ≤ l2, then S z∗e(H) > S z∗e(H′).

Proof. By Lemma 2.1 and Corollary 2.4, one has

S z∗e(H) − S z∗e(H′) = S ze(H) − S ze(H′)

=
∑

e∈EC4

mH(e) + (l2 + b − 1)(l1 + a + 4)

−
∑

e∈EC′4

mH′(e) − l1(l2 − 1 + b + a + 4)

= 2(l1 + a + 1)(l2 + b + 1) + (l2 + b − 1)(l1 + a + 4)
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−2(l1 + 1 + a + 1)(l2 − 1 + b + 1) − l1(l2 − 1 + b + a + 4)
= 2(l2 − l1 − 1) + a(b + l2 + 1 − l1) + 2b

> 0.

□

By Lemmas 3.3 and 5.3 and similar proof method with Corollary 4.3, the following Corollary 5.4
derived.

Corollary 5.4. Let H = U4
T1,T2,S 1,S 1

be an unicyclic graph, where T1 � T Pa
l1+1,l1+1 and T2 � T Pb

l2+1,i for
some i ∈ [1, l2]. Then, there exists an unicyclic graph H′ = U4

T ′1,T
′
2,S 1,S 1

with T ′1 � T Pa
l1+l2−k+1,l1+l2−k+1

and T ′2 � T Pb
k+1,k+1 and k ≤ l2 such that S z∗e(H) ≥ S z∗e(H′).

Lemma 5.5. Let H = U4
T1,T2,S 1,S 1

and H′ = U4
T ′1,S 1,S 1,S 1

be two unicyclic graphs of Type IV and Type III
in Figure 8, respectively. Where T1 � T Pa

l1+1,l1+1, T2 � T Pb
l2+1,l2+1 and T ′1 � T Pa+b−1

l1+l2+2,l1+2. If a + b ≥ 1,
l2 ≥ l1 ≥ 1 and l1 + l2 + a + b + 4 > 15, then S z∗e(H) > S z∗e(H′).

Proof. By Lemma 2.1 and Corollary 2.4, one has

S z∗e(H) − S z∗e(H′) = S ze(H) − S ze(H′)

=
∑

e∈EC4

mH(e) −
∑

e∈EC′4

mH′(e) − l1(l2 + b + a − 1 + 4)

= 2(l1 + a + 1)(l2 + b + 1) − 2(l1 + l2 + a + b + 1) − l1(l2 + b + a + 3)
= a(l2 − l1) + l1l2 + al2 + 2ab + l1b − 3l1

> 0.

□

Lemma 5.6. Let H = U4
T1,S c+1,T2,S d+1

and H′ = U4
T1,S c+d+1,T2,S 1

be two unicyclic graphs of Type V in
Figure 8, where T1 � T Pa

l1+1,l1+1, T2 � T Pb
l2+1,i for some i ∈ [1, l2 + 1]. Then S z∗e(H) ≥ S z∗e(H′) with the

equality holds if and only if cd = 0.

Proof. By Lemma 2.1 and Corollary 2.4, one has

S z∗e(H) − S z∗e(H′) = S ze(H) − S ze(H′)

=
∑

e∈EC4

mH(e) −
∑

e∈EC′4

mH′(e)

= 2(l1 + a + c + 1)(l2 + b + d + 1) + 2(l1 + a + d + 1)(l2 + b + c + 1)
−2(l1 + a + c + d + 1)(l2 + b + 1) − 2(l1 + a + 1)(l2 + b + c + d + 1)

= 4cd.

□

Lemma 5.7. Let H = U4
T1,S c+1,T2,S 1

and H′ = U4
T ′1,T2,S 1,S 1

be two unicyclic graphs of Type V and Type
IV in Figure 8, respectively. Where T1 � T Pa

l1+1,l1+1 and T ′1 � T Pa+c−1
l1+2,l1+2 , T2 � T Pb

l2+1,i for some
i ∈ [1, l2 + 1]. If a + c ≥ 1 and l2 ≥ l1 ≥ 1 and l1 + l2 + a + b + c + 4 > 15, then S z∗e(H) > S z∗e(H′).
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Proof. By Lemma 2.1 and Corollary 2.4, one has

S z∗e(H) − S z∗e(H′) = S ze(H) − S ze(H′)

=
∑

e∈EC4

mH(e) −
∑

e∈EC′4

mH′(e) − l1(l2 + a + b + c + 3)

= 2(l1 + a + c + 1)(l2 + b + 1) + 2(l1 + a + 1)(l2 + b + c + 1)
−2(l1 + l2 + a + b + c + 1) − 2(l1 + 1 + a + c − 1 + 1)(l2 + b + 1)
−l1(l2 + a + b + c + 3)

= l1(l2 + a + b + c − 3) + 2a(l2 + b + c − l1)
> 0.

□

If a + c = 0 in the graph H mentioned in Lemma 5.7, we give the following lemmas.

Lemma 5.8. Let H = U4
Pl1+1,S 1,T2,S 1

and H′ = U4
Pl1 ,S 1,T ′2,S 1

be two unicyclic graphs of Type V in Figure
8, where T2 � T Pb

l2+1,i and T ′2 � T Pb
l2+2,i for some i ∈ [1, l2 + 1]. Then S z∗e(H) = S z∗e(H′).

Proof. By Lemma 2.1 and Corollary 2.4, one has

S z∗e(H) − S z∗e(H′) = S ze(H) − S ze(H′)

=
∑

e∈EC4

mH(e) + (l1 − 1)(l2 + b + 4)

−
∑

e∈EC′4

mH′(e) − (l1 − 1 + 4)(l2 + b)

= 4(l1 + 1)(l2 + b + 1) + (l1 − 1)(l2 + b + 4)
−4l1(l2 + b + 2) − (l1 − 1 + 4)(l2 + b)

= 0.

□

Note that S z∗e(U4
Pl1+1,S 1,T Pb

l2+1,i,S 1
) = S z∗e(U4

T Pb
l1+l2+1,i,S 1,S 1,S 1

) for some i ∈ [1, l2 + 1] from Lemma 5.8.

Moreover, by Lemma 3.3, if n > 15 and 7 ≤ d ≤ n − 3, one has S z∗e(U4
T Pn−d−2

d−1, j ,S 1,S 1,S 1
) ≥

S z∗e(U4
T Pn−d−2

d−1,⌊ d
2 ⌋+2
,S 1,S 1,S 1

) for j ∈ [1, d − 1]; if n > 15 and 3 ≤ d ≤ 6, one has S z∗e(U4
T Pn−d−2

d−1, j ,S 1,S 1,S 1
) ≥

S z∗e(U4
T Pn−d−2

d−1,d−1,S 1,S 1,S 1
) for j ∈ [1, d − 1].

Lemma 5.9. Let n > 15 and d = n−3 be two integers. Let H = U4
T1,S 1,S 1,S 1

and H′ = U4
P
⌊ d−1

2 ⌋+1,P⌈ d−1
2 ⌉+1,S 1,S 1

be two unicyclic graphs, where T1 � T P1
d−1,⌊ d

2 ⌋+2
. Then S z∗e(H) > S z∗e(H′).

Proof. We divide this problem into two cases according to the parity of d.
Case 1. d = 2k + 1 is odd.

Then, H = U4
T P1

2k,k+2,S 1,S 1,S 1
and H′ = U4

Pk+1,Pk+1,S 1,S 1
. By Lemma 2.1 and Corollary 2.4, one has

S z∗e(H) − S z∗e(H′) = S ze(H) − S ze(H′)
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=

k∑
i=0

i(2k + 3 − i) +
k+1∑
i=4

i(2k + 3 − i) + 4(2k + 1)

−2
k−1∑
i=0

i(2k + 3 − i) − 2(k + 1)(k + 1) − 2(2k + 1)

= k2 − 3k − 2
> 0.

Case 2. d = 2k is even.
Then, H = U4

T P1
2k−1,k+2,S 1,S 1,S 1

and H′ = U4
Pk ,Pk+1,S 1,S 1

. By Lemma 2.1 and Corollary 2.4, one has

S z∗e(H) − S z∗e(H′) = S ze(H) − S ze(H′)

=

k∑
i=0

i(2k + 2 − i) +
k∑

i=4

i(2k + 2 − i) + 8k

−

k−1∑
i=0

i(2k + 2 − i) −
k−2∑
i=0

i(2k + 2 − i) − 2k(k + 1) − 4k

= k2 − 4k − 1
> 0.

□

Lemma 5.10. Let n > 15 and 7 ≤ d ≤ n − 4 be two integers. Let H = U4
T1,S 1,S 1,S 1

and H′ = U4
T ′1,S 1,S 1,S 1

be two unicyclic graphs, where T1 � T Pn−d−2
d−1,⌊ d

2 ⌋+2
and T ′1 � T Pn−d−4

d+1,⌊ d
2 ⌋+1

. Then S z∗e(H) > S z∗e(H′).

Proof. We divide this problem into two cases according to the parity of d.
Case 1. d = 2k + 1 is odd.

Then, T1 � T Pn−2k−3
2k,k+2 and T ′1 � T Pn−2k−5

2k+2,k+1. By Lemma 2.1 and the definition of edge Szeged index,
one has

S z∗e(H) − S z∗e(H′) = S ze(H) − S ze(H′)

=

k∑
i=0

i(n − 1 − i) +
k+1∑
i=4

i(n − 1 − i) + 4(n − 3)

−

k∑
i=0

i(n − 1 − i) −
k−1∑
i=0

i(n − 1 − i) − 4(n − 3)

= (2k − 5)n − 2k2 − 4k + 18
≥ (2k − 5)(2k + 5) − 2k2 − 4k + 18
= 2(k − 1)2 − 5
> 0.

Case 2. d = 2k is even.

AIMS Mathematics Volume 8, Issue 11, 26301–26327.



26322

Then, T1 � T Pn−2k−2
2k−1,k+2 and T ′1 � T Pn−2k−4

2k+1,k+1. By Lemma 2.1 and the definition of edge Szeged index,
one has

S z∗e(H) − S z∗e(H′) = S ze(H) − S ze(H′)

=

k∑
i=0

i(n − 1 − i) +
k∑

i=4

i(n − 1 − i) + 4(n − 3)

−2
k−1∑
i=0

i(n − 1 − i) − 4(n − 3)

= (2k − 6)n − 2k2 − 2k + 20
≥ (2k − 6)(2k + 4) − 2k2 − 2k + 20
= 2(k2 − 3k − 2)
> 0.

□

By direct calculation, the following lemma can be obtained immediately.

Lemma 5.11. Let n > 15 and 4 ≤ d ≤ 6. Let H = U4
T Pn−d−2

d−1,d−1,S 1,S 1,S 1
and H′ = U4

T Pn−d−4
d+1,⌊ d

2 ⌋+1
,S 1,S 1,S 1

be two

unicyclic graphs inUCd
n. Then S z∗e(H) < S z∗e(H′).

Theorem 5.12. Let H ∈ UCd
n (n > 15) be an unicyclic graph with cycle length 4 and minimum edge

revised Szeged index.

(i) If d = n−2, then H � U4
Pr1+1,S 1,Pr2+1,S 1

for some nonnegative integers r1 and r2 with r1+ r2 = n−4.
(ii) If d = n − 3, then H � U4

P
⌊ d−1

2 ⌋+1,P⌈ d−1
2 ⌉+1,S 1,S 1

.

(iii) If 7 ≤ d ≤ n − 4, then H � U4
T Pn−d−4

d+1,⌊ d
2 ⌋+1
,S 1,S 1,S 1

.

(iv) If 3 ≤ d ≤ 6, then H � U4
T Pn−d−2

d−1,d−1,S 1,S 1,S 1
.

Proof. (i) If d = n − 2, then H must be the graph of Type V in Figure 8 in Section 3. By Lemma 5.8,
(i) holds immediately.

(ii) If d = n−3, then H � U4
T Pa

s1+1,s1+1,S b+1,T Pc
s2+1,i,S 1

with s1+ s2 = d−2, a+b+c = 1 and i ∈ [1, s2+1];

or H � U4
Ps3+1,Ps4+1,S 1,S 1

with s3 + s4 = d − 1.
If a + b = 1 and c = 0, by Lemmas 5.7 and 5.8, there exists a graph of Type IV with smaller edge

revised Szeged index than U4
T Pa

s1+1,s1+1,S b+1,T Pc
s2+1,i,S 1

; if a+ b = 0 and c = 1, by Lemmas 5.9 and 5.8, there

exists a graph of Type IV with smaller edge revised Szeged index than U4
T Pa

s1+1,s1+1,S b+1,T Pc
s2+1,i,S 1

. Thus,

H � U4
Ps3+1,Ps4+1,S 1,S 1

. Moreover, by Lemmas 5.3 and 5.8, one has |s3 − s4| ≤ 1 and (ii) holds.
(iii) If 7 ≤ d ≤ n − 4, then H must be the graph of Type III, Type IV or Type V in Figure 8 in

Section 3.
If H is Type V, H � U4

T Pa
l1+1,l1+1,S b+1,T Pc

l2+1,i,S 1
with l1+ l2 = d−2, a+b+ c ≥ 2 and i ∈ [1, l2+1]. When

a + b ≥ 1, by Lemma 5.6, there exists a graph of Type IV with smaller edge revised Szeged index;
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when a + b = 0 and c ≥ 2, by Lemmas 5.10 and 5.8, there exists a graph of Type III with smaller edge
revised Szeged index. Thus, H can not be Type V.

Moreover, by Corollary 5.4 and Lemma 5.5, H can not be Type IV either. Thus, H is the graph
of Type III and H � U4

T Pn−d−4
d+1,i ,S 1,S 1,S 1

for some i ∈ [1, d + 1]. Furthermore, by Lemma 3.3, one has

i = ⌊ d
2⌋ + 1 and (iii) holds.

(iv) If 4 ≤ d ≤ 6, by Corollary 5.4 and Lemma 5.5, H can not be Type IV. From Lemma 5.11, one
has H � U4

T Pn−d−2
d−1,d−1,S 1,S 1,S 1

. If d = 3, by Lemma 5.1, H � U4
T Pn−5

2,2 ,S 1,S 1,S 1
and (iv) holds.

These complete the proof. □

6. The proof of Theorem 1.1

Lemma 6.1. Let H = U3
P
⌊ d−1

2 ⌋+1,P⌈ d−1
2 ⌉+1,S 1

and H′ = U4
P
⌊ d−2

2 ⌋+1,S 1,P⌈ d−2
2 ⌉+1,S 1

be two unicyclic graphs. If

n > 15 and d = n − 2, then S z∗e(H) < S z∗e(H′).

Proof. We divide this problem into two cases according to the parity of d.
Case 1. d = 2k is even.

It is routine to check that H = U3
Pk ,Pk+1,S 1

and H′ = U4
Pk ,S 1,Pk ,S 1

. By the definition of edge revised
Szeged index, one has

S z∗e(H) − S z∗e(H′) =
∑
e∈EH

m∗H(e) −
∑

e∈EH′

m∗H′(e)

=

k−2∑
i=0

(i +
1
2

)(n − 1 − i +
1
2

) +
k−1∑
i=0

(i +
1
2

)(n − 1 − i +
1
2

)

+(1 +
k + 1

2
)(k +

k + 1
2

) + (k +
1
2

)(k + 1 +
1
2

) + (1 +
k
2

)(k + 1 +
k
2

)

−2
k−2∑
i=0

(i +
1
2

)(n − 1 − i +
1
2

) − 4(k +
2
2

)(k +
2
2

)

=
1
4

(2k − 2k2 − 11) < 0.

Case 2. d = 2k + 1 is odd.
Obviously, H = U3

Pk+1,Pk+1,S 1
and H′ = U4

Pk ,S 1,Pk+1,S 1
. By the definition of edge revised Szeged index,

we have

S z∗e(H) − S z∗e(H′) =
∑
e∈EH

m∗H(e) −
∑

e∈EH′

m∗H′(e)

= 2
k−1∑
i=0

(i +
1
2

)(n − 1 − i +
1
2

) + (k + 1 +
1
2

)(k + 1 +
1
2

)

+(1 +
k + 1

2
)(k + 1 +

k + 1
2

) + (1 +
k + 1

2
)(k + 1 +

k + 1
2

)

−

k−2∑
i=0

(i +
1
2

)(n − 1 − i +
1
2

) −
k−1∑
i=0

(i +
1
2

)(n − 1 − i +
1
2

)
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−4(k +
2
2

)(k + 1 +
2
2

)

=
1
2

(−k2 − 6) < 0.

Thus, the proof is completed. □

Lemma 6.2. Let H = U3
T P0

d+1,⌊ d
2 ⌋+1
,S 1,S 1

and H′ = U4
P
⌊ d−1

2 ⌋+1,P⌈ d−1
2 ⌉+1,S 1,S 1

be two unicyclic graphs. If n > 15

and d = n − 3, then S z∗e(H) < S z∗e(H′).

Proof. We divide this problem into two cases according to the parity of d.
Case 1. d = 2k is even.

Obviously, H = U3
T P0

2k+1,k+1,S 1,S 1
and H′ = U4

Pk ,Pk+1,S 1,S 1
. By the definition of edge revised Szeged

index, we have

S z∗e(H) − S z∗e(H′) =
∑
e∈EH

m∗H(e) −
∑

e∈EH′

m∗H′(e)

= 2
k−1∑
i=0

(i +
1
2

)(n − 1 − i +
1
2

) + (1 +
2k + 1

2
)(1 +

2k + 1
2

)

+2(1 +
1
2

)(2k + 1 +
1
2

)

−

k−1∑
i=0

(i +
1
2

)(n − 1 − i +
1
2

) −
k−2∑
i=0

(i +
1
2

)(n − 1 − i +
1
2

)

−2(k + 1 +
2
2

)(k +
2
2

) − 2(1 +
2
2

)(2k +
2
2

)

= −(2k + 3) < 0.

Case 2. d = 2k + 1 is odd.
Obviously, H = U3

T P0
2k+2,k+1,S 1,S 1

and H′ = U4
Pk+1,Pk+1,S 1,S 1

. By the definition of edge revised Szeged

index, we have

S z∗e(H) − S z∗e(H′) =
∑
e∈EH

m∗H(e) −
∑
e∈E′H

m∗H′(e)

=

k−1∑
i=0

(i +
1
2

)(n − 1 − i +
1
2

) +
k∑

i=0

(i +
1
2

)(n − 1 − i +
1
2

)

+(1 +
2k + 2

2
)(1 +

2k + 2
2

) + 2(1 +
1
2

)(2k + 2 +
1
2

)

−

k−1∑
i=0

(i +
1
2

)(n − 1 − i +
1
2

) −
k−1∑
i=0

(i +
1
2

)(n − 1 − i +
1
2

)

−2(k + 1 +
2
2

)(k + 1 +
2
2

) − 2(1 +
2
2

)(2k + 1 +
2
2

)

= −
1
4

(8k + 11) < 0.

This completes the proof. □
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Lemma 6.3. Let H = U3
T Pn−d−3

d+1,⌊ d
2 ⌋+1
,S 1,S 1

and H′ = U4
T Pn−d−4

d+1,⌊ d
2 ⌋+1
,S 1,S 1,S 1

be two unicyclic graphs. If n > 15

and 4 ≤ d ≤ n − 4, then S z∗e(H) > S z∗e(H′).

Proof. By the definition of edge revised Szeged index, one has

S z∗e(H) − S z∗e(H′) =
∑
e∈EH

m∗H(e) −
∑

e∈EH′

m∗H′(e)

=

⌊ d
2 ⌋−1∑
i=0

(i +
1
2

)(n − 1 − i +
1
2

) +
⌈ d

2 ⌉−1∑
i=0

(i +
1
2

)(n − 1 − i +
1
2

)

+(n − d − 3)(0 +
1
2

)(n − 1 +
1
2

) + 2(1 +
1
2

)(n − 2 +
1
2

)

+(1 +
n − 2

2
)(1 +

n − 2
2

)

−

⌊ d
2 ⌋−1∑
i=0

(i +
1
2

)(n − 1 − i +
1
2

) −
⌈ d

2 ⌉−1∑
i=0

(i +
1
2

)(n − 1 − i +
1
2

)

−(n − d − 4)(0 +
1
2

)(n − 1 +
1
2

) − 4(1 +
2
2

)(n − 3 +
2
2

)

=
1
4

(n2 − 18n + 45) > 0.

Thus, the proof is completed. □

By direct calculation, the following Lemma 6.4 can be obtained.

Lemma 6.4. If n > 15 and d = 3, then S z∗e(U3
T Pn−6

4,2 ,S 1,S 1
) > S z∗e(U4

T Pn−5
2,2 ,S 1,S 1,S 1

).

Proof of Theorem 1.1:
(i) By Theorems 4.6 and 5.12 and Lemma 6.1, (i) holds immediately.
(ii) If d = n − 3, by Theorems 4.6 and 5.12 and Lemma 6.2, the result holds.
(iii) If 7 ≤ d ≤ n − 4, from Theorems 4.6 and 5.12 and Lemma 6.3, the result holds.
(iv) If 4 ≤ d ≤ 6, by Theorems 4.6 and 5.12 and Lemmas 5.11 and 6.3, the result holds. If d = 3,

from Theorems 4.6 and 5.12 and Lemma 6.4, the result is gotten directly.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This research is supported by Tianjin Education Commission Research Program Project (No.
2022KJ007).

AIMS Mathematics Volume 8, Issue 11, 26301–26327.



26326

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. A. Bondy, U. S. R. Murty, Graph theory, New York: Springer, 2008. http://dx.doi.org/10.1007/978-
1-84628-970-5

2. X. Cai, B. Zhou, Edge Szeged index of unicyclic graphs, MATCH Commun. Math. Comput. Chem.,
63 (2010), 133–144.

3. P. Dankelmanna, I. Gutman, S. Mukwembi, H. C. Swart, The edge-Wiener index of a graph,
Discrete Math., 309 (2009), 3452–3457. http://dx.doi.org/10.1016/j.disc.2008.09.040
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