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1. Introduction

It is widely acknowledged that time-varying linear matrix equations (LMEs) solution is a key issue
that is encountered in many domains [1–4], including robot manipulators [4], cell processors [3],
control system architecture [2], and linear least squares regression [1]. In the past, academics have
typically solved LMEs by the use of classical iterative methods [5]. However, time-invariant and real-
valued LMEs are the only ones for which iterative approaches are appropriate. Due to their restricted
computational capacity, only few studies have been produced to handle time-invariant or time-varying
LMEs in the complex domain [6, 7]. Therefore, iterative approaches are not the best option when
tackling time-varying complex computing issues in real time.

In order to deal with time-varying tasks in real time, the zeroing neural network (ZNN) technique
is introduced by Zhang et al. in [8]. ZNNs are a particular kind of recurrent neural networks that
excel in parallel processing and their next acceptations were dynamic models for calculating the time-
varying Moore-Penrose inverse in the real and complex domains [9–12]. They are now used to solve
problems involving generalized inversion [13–18], linear and quadratic programming [19–21], systems
of nonlinear equations [22, 23], and LMEs [7, 24], among other issues. It is important to mention that
ZNNs originated from the gradient neural network (or Hopfield network), whereas gradient neural
networks are recently used to solve problems involving matrix inversion [25] and systems of nonlinear
equations [26].

The issue of finding the minimum-norm least-squares solution of the time-varying quaternion LME
(ML-TQ-LME) is addressed in this study. Hamilton first introduced quaternions, a non-commutative
number system that expands on complex numbers, in 1843 [27]. They are useful for calculations
requiring three-dimensional rotations in both theoretical and applied mathematics [28]. They are
particularly important in several fields, including robotics [29, 30], computer modeling [31, 32],
navigation [33], electromagnetism [34], quantum mechanics [35], and mathematical physics [36, 37].
Recently, there has been increased interest in the study of time-varying quaternion (TQ) problems that
involve matrices, including the inversion of TQ matrices [38], the solution of the dynamic TQ Sylvester
matrix equation [39], the resolution of the TQ constrained matrix least-squares problem [40], and the
resolution of the TQ linear matrix equation for square matrices [41]. Combining the quaternion and
the time-varying LME can get the TQ LME. The TQ LME means that three elements in the equation
are all quaternions, including two known quaternions and one unknown quaternion to be solved. By
solving the ML-TQ-LME rather than the TQ LME, we are able to determine the minimum-norm least-
squares solution of the TQ LMEs, which is particularly interesting when several solutions exist. Be
aware that the solution provided by ML-TQ-LME always exists and is unique. Additionally, chaotic
system synchronization [40], mobile manipulator control [38,42], kinematically redundant manipulator
of robotic joints [30,43] and picture restoration [41,44] are real-world uses of TQ matrices. One thing
unites all of these studies: they all use the ZNN technique to arrive at the solution.

In this paper, the ZNN technique is used to address the ML-TQ-LME problem. Particularly, two new
ZNN models are developed inline with the designs presented in [45] to solve the ML-TQ-LME problem
for TQ matrices of arbitrary dimension. The one model, named ZNNQ-G, is based on the gradient
design and the other, named ZNNQ-D, on the direct design. Through two simulation experiments
and two practical acoustic source tracking applications, the models’ efficacy will be evaluated. It is
significant to note that the results demonstrate the models’ excellent functionality. Considering that
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since the TQ LMEs may be expanded to handle different types of matrix equations, the proposed
models (i.e. ZNNQ-G and ZNNQ-D) can be extended to deal with other kinds of matrix equations,
such as the static quaternion LME and the TQ inverse matrix equation. Last, by doing theoretical
analysis and examining the computational complexity of each model that is described, this research
study adds to the body of literature.

The major results of the paper are listed below.
(1) Two new ZNN models (i.e. ZNNQ-G and ZNNQ-D) for solving the ML-TQ-LME problem are

presented.
(2) The suggested ZNNQ-G and ZNNQ-D models can be used with any TQ matrix.
(3) A theoretical investigation is conducted to support the models.
(4) To support the theoretical research, simulation experiments and practical acoustic source

tracking applications are carried out.
The remainder of the paper is structured as follows. Section 2 presents preliminary information and

the ML-TQ-LME problem. The ZNN model in line with gradient design is introduced in Section
3, while the ZNN model in line with is introduced in Section 4. It is important to note that the
theoretical analysis and the computational complexity of the models are both included in Sections
3 and 4. Simulation experiments and applications to acoustic source tracking are presented in Section
5. Lastly, final thoughts and comments are provided in Section 6.

2. Preliminary information and problem formulation

This part lays out some preliminary information about TQ matrices, the ML-TQ-LME issue, ZNNs
and the notation that will be utilized throughout the remainder of the study along with the major results
that will be covered.

A quaternion is a division algebra or skew-field over the real number field [46]. Let H be the set of
quaternions, S̃ (t) = S 1(t) + S 2(t)ı + S 3(t) ȷ + S 4(t)k ∈ Hm×n be a TQ matrix with coefficient matrices
S i(t) ∈ Rm×n for i = 1, 2, · · · , 4, and t ∈ [0, t f ) ⊆ [0,+∞) be the time. The conjugate transpose of S̃ (t)
is the following [47]:

S̃ ∗(t) = S T
1 (t) − S T

2 (t)ı − S T
3 (t) ȷ − S T

4 (t)k, (2.1)

where ()∗ is the conjugate transpose operator and ()T is the transpose operator. Consider the TQ matrix
B̃(t) ∈ Hn×g with coefficient matrices Bi(t) ∈ Rn×g for i = 1, 2, · · · , 4. The product of S̃ (t) and B̃(t) is as
follows:

S̃ (t)B̃(t) = Ṽ(t) = V1(t) + V2(t)ı + V3(t) ȷ + V4(t)k ∈ Hm×g, (2.2)

where the coefficient matrices Vi(t) ∈ Rm×g for i = 1, 2, · · · , 4 are the following:

V1(t)=S 1(t)B1(t)−S 2(t)B2(t)−S 3(t)B3(t)−S 4(t)B4(t),
V2(t)=S 1(t)B2(t)+S 2(t)B1(t)+S 3(t)B4(t)−S 4(t)B3(t),
V3(t)=S 1(t)B3(t)+S 3(t)B1(t)+S 4(t)B2(t)−S 2(t)B4(t),
V4(t)=S 1(t)B4(t)+S 4(t)B1(t)+S 2(t)B3(t)−S 3(t)B2(t).

(2.3)

Given that the quaternion foundations are covered, the ML-TQ-LME problem can be stated as
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follows:  Ã(t)X̃(t) = B̃(t), X̃(t) ∈ Hn×g, Ã(t) ∈ Hm×n, B̃(t) ∈ Hm×g, m ≥ n

X̃(t)Ã(t) = B̃(t), X̃(t) ∈ Hg×m, Ã(t) ∈ Hm×n, B̃(t) ∈ Hg×n, m < n,
(2.4)

in which X̃(t) is the desired solution to the ML-TQ-LME problem.
Further, the ZNN technique will be used to address the ML-TQ-LME problem. Two main processes

are normally involved in the construction of a ZNN model. The function of error matrix equation
(EME) E(t) must first be defined. Second, the following ZNN dynamical system must be employed:

Ė(t) = −λE(t), (2.5)

where (˙) is the time derivative operator. On top of that, one can change the model’s convergence rate
by adjusting the parameter λ > 0, which is a positive real number. As an example, any ZNN model
will converge even more quickly with a bigger value of λ [48–50]. The ZNN’s architecture is based on
setting each element of E(t) to 0, which is true as t → ∞. This is accomplished using the continuous-
time learning regulation that arises from the establishment of EME in (2.5). As a consequence, EME
can be considered a tool for monitoring ZNN model learning.

For the remainder of this paper, the identity g × g matrix will be referred to as Ig whereas the zero
g × g and m × n matrices will be referred to as 0g and 0m×n, respectively. Moreover, the vectorization
process will be denoted as vec(·) and the Kronecker product will be denoted as ⊗. Last, ∥·∥F will
denote the matrix Frobenius norm and β ≥ 0 is the Tikhonov regularization parameter. It is important
to mention that the Tikhonov regularization parameter is frequently used to address singularity issues.

3. Gradient ZNN model for solving the ML-TQ-LME

In this section we shall develop a ZNN model, named ZNNQ-G, in line with the gradient design
presented in [45] to solve the ML-TQ-LME problem for TQ matrices of any dimension.

3.1. The ZNNQ-G model

We suppose that B̃(t) ∈ Hm×g when m ≥ n, or B̃(t) ∈ Hg×n when n > m, and Ã(t) ∈ Hm×n are
differentiable TQ matrices. The gradient approach converts the ML-TQ-LME problem of (2.4) into
the following: Ã∗(t)Ã(t)X̃(t) = Ã∗(t)B̃(t), X̃(t) ∈ Hn×g, Ã(t) ∈ Hm×n, B̃(t) ∈ Hm×g, m ≥ n

X̃(t)Ã(t)Ã∗(t) = B̃(t)Ã∗(t), X̃(t) ∈ Hg×m, Ã(t) ∈ Hm×n, B̃(t) ∈ Hg×n, n > m,
(3.1)

or equivalent,  D̃(t)X̃(t) = Q̃(t), m ≥ n

X̃(t)D̃(t) = Q̃(t), n > m,
(3.2)

where D̃(t) = Ã∗(t)Ã(t) ∈ Hn×n and Q̃(t) = Ã∗(t)B̃(t) ∈ Hn×g when m ≥ n, otherwise D̃(t) = Ã(t)Ã∗(t) ∈
Hm×m and Q̃(t) = B̃(t)Ã∗(t) ∈ Hg×m. It is important to note that X̃(t) is the unknown TQ matrix to be
found.
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In line with (2.2) and (2.3), the following holds in the case of (3.2):


D1(t)X1(t) − D2(t)X2(t) − D3(t)X3(t) − D4(t)X4(t) = Q1(t),
D2(t)X1(t) + D1(t)X2(t) − D4(t)X3(t) + D3(t)X4(t) = Q2(t),
D3(t)X1(t) + D4(t)X2(t) + D1(t)X3(t) − D2(t)X4(t) = Q3(t),
D4(t)X1(t) − D3(t)X2(t) + D2(t)X3(t) + D1(t)X4(t) = Q4(t)

, m ≥ n


X1(t)D1(t) − X2(t)D2(t) − X3(t)D3(t) − X4(t)D4(t) = Q1(t),
X2(t)D1(t) + X1(t)D2(t) − X4(t)D3(t) + X3(t)D4(t) = Q2(t),
X3(t)D1(t) + X4(t)D2(t) + X1(t)D3(t) − X2(t)D4(t) = Q3(t),
X4(t)D1(t) − X3(t)D2(t) + X2(t)D3(t) + X1(t)D4(t) = Q4(t)

, n > m,

(3.3)

where Xi(t) and Di(t) for i = 1, · · · , 4 are the coefficient real matrices of X̃(t) and D̃(t), respectively.
Then, setting

Z(t) =




D1(t)−D2(t)−D3(t)−D4(t)
D2(t) D1(t) −D4(t) D3(t)
D3(t) D4(t) D1(t) −D2(t)
D4(t)−D3(t) D2(t) D1(t)

 ∈ R
4n×4n, m ≥ n


D1(t) D2(t) D3(t) D4(t)
−D2(t) D1(t) −D4(t) D3(t)
−D3(t) D4(t) D1(t) −D2(t)
−D4(t)−D3(t) D2(t) D1(t)

 ∈ R
4m×4m, n > m,

Y(t) =


[
XT

1 (t), XT
2 (t), XT

3 (t), XT
4 (t)
]T
∈ R4n×g, m ≥ n[

X1(t), X2(t), X3(t), X4(t)
]
∈ Rg×4m, n > m,

W(t) =


[
QT

1 (t),QT
2 (t),QT

3 (t),QT
4 (t)
]T
∈ R4n×g, m ≥ n[

Q1(t),Q2(t),Q3(t),Q4(t)
]
∈ Rg×4m, n > m,

(3.4)

we convert the problem of (3.2) into the next problem:Z(t)Y(t) = W(t), m ≥ n

Y(t)Z(t) = W(t), n > m.
(3.5)

Thereafter, we consider the next EME:

EG(t) =

Z(t)Y(t) −W(t), m ≥ n

Y(t)Z(t) −W(t), n > m,
(3.6)

where its first derivative is:

ĖG(t) =

Ż(t)Y(t) + Z(t)Ẏ(t) − Ẇ(t), m ≥ n

Y(t)Ż(t) + Ẏ(t)Z(t) − Ẇ(t), n > m.
(3.7)
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The following is the outcome of addressing the ZNN dynamical system in terms of Ẏ(t) when E(t)
and Ė(t) in (2.5) are substituted with EG(t) and ĖG(t) defined in (3.6) and (3.7), respectively:Z(t)Ẏ(t) = −λEG(t) + Ẇ(t) − Ż(t)Y(t), m ≥ n

Ẏ(t)Z(t) = −λEG(t) + Ẇ(t) − Y(t)Ż(t), n > m.
(3.8)

Thereafter, (3.8) may be made simpler with the use of vectorization and Kronecker product:(Ig⊗Z(t))vec(Ẏ(t))=vec(−λEG(t)+Ẇ(t)−Ż(t)Y(t)), m≥n

(ZT(t)⊗Ig)vec(Ẏ(t))=vec(−λEG(t)+Ẇ(t)−Y(t)Ż(t)), n>m.
(3.9)

Furthermore, after setting:

G(t)=


(Ig⊗Z(t))∈R4ng×4ng, m≥n=rank(Ã(t))

(Ig⊗Z(t))+βI4ng∈R
4ng×4ng, m≥n>rank(Ã(t))

(ZT(t)⊗Ig)∈R4mg×4mg, n>m=rank(Ã(t)),
(ZT(t)⊗Ig)+βI4mg∈R

4mg×4mg, n>m>rank(Ã(t)),

Q(t)=

vec(−λEG(t)+Ẇ(t)−Ż(t)Y(t))∈R4ng, m≥n

vec(−λEG(t)+Ẇ(t)−Y(t)Ż(t))∈R4mg, n>m,

y(t)=

vec(Y(t))∈R4ng, m≥n

vec(Y(t))∈R4mg, n>m,
ẏ(t)=

vec(Ẏ(t))∈R4ng, m≥n

vec(Ẏ(t))∈R4mg, n>m,

(3.10)

we get at the next ZNN model:
G(t)ẏ(t) = Q(t), (3.11)

where G(t) is an invertible mass matrix. The suggested ZNN model to be employed in addressing the
ML-TQ-LME problem of (2.4) is the dynamic model of (3.11), referred to as ZNNQ-G.

3.2. ZNNQ-G model theoretical analysis

This section presents the ZNNQ-G (3.11) model’s examination of convergence and stability.

Theorem 3.1. Let W(t) ∈ R4n×g and Z(t) ∈ R4n×4n when m ≥ n, and W(t) ∈ Rg×4m and Z(t) ∈ R4m×4m

when n > m. Also, suppose that W(t) and Z(t) are differentiable. Then, the system (3.8) converges to
the theoretical solution (TSOL) Ŷ(t) of the LME (3.5) and the solution is stable, in line with Lyapunov.

Proof. The replacement Ȳ(t) := Ŷ(t) − Y(t) entails Y(t) = Ŷ(t) − Ȳ(t), whereas Ŷ(t) is the TSOL. The
time-derivative of Y(t) is Ẏ(t) = ˙̂Y(t) − ˙̄Y(t). Note thatZ(t)Ŷ(t) −W(t) = 04n×g, m ≥ n

Ŷ(t)Z(t) −W(t) = 0g×4m, n > m,
(3.12)

and its first derivative Z(t) ˙̂Y(t) + Ż(t)Ŷ(t) − Ẇ(t) = 04n×g, m ≥ n
˙̂Y(t)Z(t) + Ŷ(t)Ż(t) − Ẇ(t) = 0g×4m, n > m.

(3.13)
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Consequently, one can confirm the following after replacing Y(t) = Ŷ(t) − Ȳ(t) with (3.6):

ÊG(t) =

Z(t)Ŷ(t) − Z(t)Ȳ(t) −W(t), m ≥ n

Ŷ(t)Z(t) − Ȳ(t)Z(t) −W(t), n > m.
(3.14)

In addition, the dynamics of (2.5) yield

˙̂EG(t) =

Z(t) ˙̂Y(t) − Z(t) ˙̄Y(t) − Ẇ(t) + Ż(t)Ŷ(t) − Ż(t)Ȳ(t) = −λÊG(t), m ≥ n
˙̂Y(t)Z(t) − ˙̄Y(t)Z(t) − Ẇ(t) + Ŷ(t)Ż(t) − Ȳ(t)Ż(t) = −λÊG(t), n > m.

(3.15)

After that, we choose the following potential Lyapunov function to corroborate convergence:

L(t) =
1
2

∥∥∥ÊG(t)
∥∥∥2

F
=

1
2

Tr
(
ÊG(t)

(
ÊG(t)

)T)
. (3.16)

The following identities can then be confirmed:

L̇(t) =
2Tr
((

ÊG(t)
)T ˙̂EG(t)

)
2

= Tr
((

ÊG(t)
)T ˙̂EG(t)

)
= −λTr

((
ÊG(t)

)T
ÊG(t)

)
. (3.17)

As a consequence, it holds

dL(Ȳ(t), t)
dt

< 0, ÊG(t) , 0

= 0, ÊG(t) = 0,

⇔L̇(t)


< 0,

Z(t)Ŷ(t) −W(t) − Z(t)Ȳ(t) , 0, m ≥ n

Ŷ(t)Z(t) −W(t) − Ȳ(t)Z(t) , 0, n > m.

= 0,

Z(t)Ŷ(t) −W(t) − Z(t)Ȳ(t) = 0, m ≥ n

Ŷ(t)Z(t) −W(t) − Ȳ(t)Z(t) = 0, n > m.

⇔L̇(t)

< 0, Ȳ(t) , 0

= 0, Ȳ(t) = 0.

(3.18)

Due to the fact that Ȳ(t) is the equilibrium point of (3.15) and EG(0) = 0, the following holds:

dL(Ȳ(t), t)
dt

≤ 0, ∀ Ȳ(t) , 0. (3.19)

We conclude that the equilibrium state Ȳ(t) = Ŷ(t) − Y(t) = 0 is stable in line with the Lyapunov
stability theory. Thereafter, Y(t)→ Ŷ(t) as t → ∞.

Theorem 3.2. Let B̃(t) ∈ Hm×g when m ≥ n, or B̃(t) ∈ Hg×n when n > m, and Ã(t) ∈ Hm×n be
differentiable TQ matrices. At every t ∈ [0, t f ) ⊆ [0,+∞), the ZNNQ-G model (3.11) converges
exponentially to the TSOL for every initial value y(0) that one may take into consideration.
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Proof. First, the ML-TQ-LME problem of (2.4) is converted into the problem of (3.1), based on the
gradient design presented in [45]. Second, using the matrices Ã(t) and B̃(t), we create the matrices
Z(t) and W(t) in (3.4), where W(t) ∈ R4n×g and Z(t) ∈ R4n×4n when m ≥ n, and W(t) ∈ Rg×4m and
Z(t) ∈ R4m×4m when n > m. As a result, we convert the problem of (3.1) into the problem of (3.5).
Third, to solve the problem of (3.5), the EME of (3.6) is declared. Then, for zeroing (3.6), the model
(3.8) is deployed in line with the ZNN theme (2.5). According to Theorem 3.1, Y(t) → Ŷ(t) when
t → ∞ for any choice of initial value. So, the model (3.8) converges to the TSOL of the ML-TQ-LME
(2.4). Fourth, the model (3.8) is simplified into the ZNNQ-G model (3.11) using the Kronecker product
and vectorization. As an alternative version of (3.8), for every initial value y(0), the ZNNQ-G model
(3.11) also converges to the TSOL ŷ(t) when t → ∞. Thereafter, the proof is finished.

3.3. ZNNQ-G model computational complexity

The complexity of creating and addressing (3.11) adds to the ZNNQ-G’s total computational
complexity. Particularly, the computational complexity of creating (3.11) is O((4ng)2) when m ≥ n
operations and O((4mg)2) operations when n > m because at every iteration we conduct (4ng)2

multiplications and 4ng additions/subtractions when m ≥ n and (4mg)2 multiplications and 4mg
additions/subtractions when n > m. On top of that, the implicit MATLAB solver ode15s is used
to address at each step the linear system of equations. The complexity of addressing (3.11) is O((4ng)3

as it necessitates a (4ng) × (4ng) matrix when m ≥ n, and O((4mg)3 as it necessitates a (4mg) × (4mg)
matrix when n > m. So, the ZNNQ-G model’s total computational complexity is O((4ng)3) when
m ≥ n and O((4mg)3) when n > m.

4. Direct ZNN model for solving the ML-TQ-LME

In this section we shall develop a ZNN model, named ZNNQ-D, in line with the direct design
presented in [45] to solve the ML-TQ-LME problem for TQ matrices of any dimension.

4.1. The ZNNQ-D model

We suppose that B̃(t) ∈ Hm×g when m ≥ n, or B̃(t) ∈ Hg×n when n > m, and Ã(t) ∈ Hm×n are
differentiable TQ matrices. The direct approach converts the ML-TQ-LME problem of (2.4) into the
following:  X̃(t) = Ã†(t)B̃(t), X̃(t) ∈ Hn×g, Ã(t) ∈ Hm×n, B̃(t) ∈ Hm×g, m ≥ n

X̃(t) = B̃(t)Ã†(t), X̃(t) ∈ Hg×m, Ã(t) ∈ Hm×n, B̃(t) ∈ Hg×n, n > m,
(4.1)

where X̃(t) is the desired solution and Ã†(t) is the Moore-Penrose inverse of Ã(t). That is, the direct
approach computes the solution generated directly by the Moore-Penrose inverse of A(t). If Ã†(t) is
also thought of as an unknown C̃(t), (4.1) can be rewritten as follows:

 Ã∗(t)Ã(t)C̃(t) = Ã∗(t), Ã(t) ∈ Hm×n, C̃(t) ∈ Hn×m,

X̃(t) = C̃(t)B̃(t), C̃(t) ∈ Hn×m, X̃(t) ∈ Hn×g, B̃(t) ∈ Hm×g
, m ≥ nC̃(t)Ã(t)Ã∗(t) = Ã∗(t), Ã(t) ∈ Hm×n, C̃(t) ∈ Hn×m,

X̃(t) = B̃(t)C̃(t), C̃(t) ∈ Hn×m, X̃(t) ∈ Hg×m, B̃(t) ∈ Hg×n
, n > m,

(4.2)
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or equivalent,



 D̃(t)C̃(t) = Ã∗(t), Ã(t) ∈ Hm×n, C̃(t) ∈ Hn×m,

X̃(t) = C̃(t)B̃(t), C̃(t) ∈ Hn×m, X̃(t) ∈ Hn×g, B̃(t) ∈ Hm×g
, m ≥ nC̃(t)D̃(t) = Ã∗(t), Ã(t) ∈ Hm×n, C̃(t) ∈ Hn×m,

X̃(t) = B̃(t)C̃(t), C̃(t) ∈ Hn×m, X̃(t) ∈ Hg×m, B̃(t) ∈ Hg×n
, n > m,

(4.3)

where D̃(t) = Ã∗(t)Ã(t) ∈ Hn×n when m ≥ n, otherwise D̃(t) = Ã(t)Ã∗(t) ∈ Hm×m. It is crucial to note
that C̃(t) and X̃(t) are both the unknown TQ matrices to be found.

According to (2.2), (2.3) and (2.1), the next system is satisfied in the case of (4.3):





D1(t)C1(t) − D2(t)C2(t) − D3(t)C3(t) − D4(t)C4(t) = AT
1 (t),

D2(t)C1(t) + D1(t)C2(t) − D4(t)C3(t) + D3(t)C4(t) = −AT
2 (t),

D3(t)C1(t) + D4(t)C2(t) + D1(t)C3(t) − D2(t)C4(t) = −AT
3 (t),

D4(t)C1(t) − D3(t)C2(t) + D2(t)C3(t) + D1(t)C4(t) = −AT
4 (t),

X1(t) = C1(t)B1(t) −C2(t)B2(t) −C3(t)B3(t) −C4(t)B4(t),
X2(t) = C2(t)B1(t) +C1(t)B2(t) −C4(t)B3(t) +C3(t)B4(t),
X3(t) = C3(t)B1(t) +C4(t)B2(t) +C1(t)B3(t) −C2(t)B4(t),
X4(t) = C4(t)B1(t) −C3(t)B2(t) +C2(t)B3(t) +C1(t)B4(t)

, m ≥ n



C1(t)D1(t) −C2(t)D2(t) −C3(t)D3(t) −C4(t)D4(t) = AT
1 (t),

C2(t)D1(t) +C1(t)D2(t) −C4(t)D3(t) +C3(t)D4(t) = −AT
2 (t),

C3(t)D1(t) +C4(t)D2(t) +C1(t)D3(t) −C2(t)D4(t) = −AT
3 (t),

C4(t)D1(t) −C3(t)D2(t) +C2(t)D3(t) +C1(t)D4(t) = −AT
4 (t),

X1(t) = B1(t)C1(t) − B2(t)C2(t) − B3(t)C3(t) − B4(t)C4(t),
X2(t) = B2(t)C1(t) + B1(t)C2(t) − B4(t)C3(t) + B3(t)C4(t),
X3(t) = B3(t)C1(t) + B4(t)C2(t) + B1(t)C3(t) − B2(t)C4(t),
X4(t) = B4(t)C1(t) − B3(t)C2(t) + B2(t)C3(t) + B1(t)C4(t)

, n > m,

(4.4)

where Xi(t),Ci(t),Di(t), Ai(t) and Bi(t) for i = 1, · · · , 4 are the coefficient real matrices of
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X̃(t), C̃(t), D̃(t), Ã(t) and B̃(t), respectively. Then, setting

Z(t) =




D1(t) −D2(t) −D3(t) −D4(t)

D2(t) D1(t) −D4(t) D3(t)

D3(t) D4(t) D1(t) −D2(t)

D4(t) −D3(t) D2(t) D1(t)


∈ R4n×4n, m ≥ n


D1(t) D2(t) D3(t) D4(t)

−D2(t) D1(t) −D4(t) D3(t)

−D3(t) D4(t) D1(t) −D2(t)

−D4(t) −D3(t) D2(t) D1(t)


∈ R4m×4m, n > m,

K(t) =




B1(t) B2(t) B3(t) B4(t)

−B2(t) B1(t) −B4(t) B3(t)

−B3(t) B4(t) B1(t) −B2(t)

−B4(t) −B3(t) B2(t) B1(t)


∈ R4m×4g, m ≥ n


B1(t) −B2(t) −B3(t) −B4(t)

B2(t) B1(t) −B4(t) B3(t)

B3(t) B4(t) B1(t) −B2(t)

B4(t) −B3(t) B2(t) B1(t)


∈ R4g×4n, n > m,

R(t) =


[
C1(t),C2(t),C3(t),C4(t)

]
∈ Rn×4m, m ≥ n[

CT
1 (t),CT

2 (t),CT
3 (t),CT

4 (t)
]T
∈ R4n×m, n > m,

L(t) =


[
CT

1 (t),CT
2 (t),CT

3 (t),CT
4 (t)
]T
∈ R4n×m, m ≥ n[

C1(t),C2(t),C3(t),C4(t)
]
∈ Rn×4m, n > m,

Y(t) =


[
X1(t), X2(t), X3(t), X4(t)

]
∈ Rn×4g, m ≥ n[

XT
1 (t), XT

2 (t), XT
3 (t), XT

4 (t)
]T
∈ R4g×m, n > m,

W(t) =


[
A1(t), −A2(t), −A3(t), −A4(t)

]T
∈ R4n×m, m ≥ n[

AT
1 (t), −AT

2 (t), −AT
3 (t), −AT

4 (t)
]
∈ Rn×4m, n > m,

(4.5)
we convert the problem of (4.3) into the next problem:

Z(t)L(t) = W(t),

Y(t) = R(t)K(t)
, m ≥ nL(t)Z(t) = W(t),

Y(t) = K(t)R(t)
, n > m.

(4.6)

Thereafter, we consider the next EME:

ED(t) =



ED
1 (t) = Z(t)L(t) −W(t),

ED
2 (t) = Y(t) − R(t)K(t)

, m ≥ nED
1 (t) = L(t)Z(t) −W(t),

ED
2 (t) = Y(t) − K(t)R(t)

, n > m,

(4.7)

where its first derivative is:

ĖD(t) =



 ĖD
1 (t) = Ż(t)L(t) + Z(t)L̇(t) − Ẇ(t),

ĖD
2 (t) = Ẏ(t) − Ṙ(t)K(t) − R(t)K̇(t)

, m ≥ n ĖD
1 (t) = L̇(t)Z(t) + L(t)Ż(t) − Ẇ(t),

ĖD
2 (t) = Ẏ(t) − K̇(t)R(t) − K(t)Ṙ(t)

, n > m.

(4.8)

The following is the outcome of addressing the ZNN dynamical system in terms of Ṙ(t), L̇(t) and Ẏ(t)

AIMS Mathematics Volume 8, Issue 11, 25966–25989.



25976

when E(t) and Ė(t) in (2.5) are substituted with ED(t) and ĖD(t) defined in (4.7) and (4.8), respectively:



Z(t)L̇(t) = −λED
1 (t) + Ẇ(t) − Ż(t)L(t),

Ẏ(t) − Ṙ(t)K(t) = −λED
2 (t) + R(t)K̇(t)

, m ≥ n L̇(t)Z(t) = −λED
1 (t) + Ẇ(t) − L(t)Ż(t),

Ẏ(t) − K(t)Ṙ(t) = −λED
2 (t) + K̇(t)R(t)

, n > m.

(4.9)

Thereafter, (4.9) may be made simpler with the use of vectorization and Kronecker product:



(Im⊗Z(t))vec(L̇(t))=vec(−λED
1 (t)+Ẇ(t)−Ż(t)L(t)),

vec(Ẏ(t))−(KT(t)⊗In)vec(Ṙ(t))=vec(−λED
2 (t)+R(t)K̇(t))

, m≥n(ZT(t)⊗In)vec(L̇(t))=vec(−λED
1 (t)+Ẇ(t)−L(t)Ż(t)),

vec(Ẏ(t))−(Im⊗K(t))vec(Ṙ(t))=vec(−λED
2 (t)+K̇(t)R(t))

, n>m.

(4.10)

It is significant to note that identical elements, but in different positions, can be found in the vectors
vec(L̇(t)) and vec(Ṙ(t)). In other words, it is possible to further simplify (4.10) by rewriting the
vector vec(L̇(t)) in terms of vec(Ṙ(t)). As a consequence, it is feasible to create the next equation
that substitutes vec(L̇(t)) in (4.10):

vec(L̇(t)) = Jvec(Ṙ(t)), (4.11)

where J ∈ R4mn×4mn is an operational matrix that may be computed utilizing the algorithmic process
presented in Algorithm 1. Notice that the notations in Algorithm 1 follow the usual MATLAB function
theme [51].
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Algorithm 1 Matrix J calculation.
Input: The rows m and columns n numbers of a matrix A ∈ Rm×n.

1: procedure Ope Mat J(m, n)
2: if m ≥ n then
3: g = 4
4: else
5: g = m
6: end if
7: Set b = [ ] and r = 4mn
8: for j = 1 : n do
9: b = [b, j : ng : r]

10: end for
11: Set b = sort(b), c = length(b) and J = zeros(r)
12: for i = 1 : g do
13: Set d = b + (i − 1)n and k = cr(i − 1)
14: for j = 1 : c do
15: J(d( j) + k + ( j − 1)r) = 1
16: end for
17: end for
18: return J
19: end procedure
Output: The matrix J.

By using (4.11), we can further simplify (4.10) as follows:

(Im⊗Z(t))Jvec(Ṙ(t))=vec(−λED
1 (t)+Ẇ(t)−Ż(t)L(t)),

vec(Ẏ(t))−(KT(t)⊗In)vec(Ṙ(t))=vec(−λED
2 (t)+R(t)K̇(t))

, m≥n(ZT(t)⊗In)Jvec(Ṙ(t))=vec(−λED
1 (t)+Ẇ(t)−L(t)Ż(t)),

vec(Ẏ(t))−(Im⊗K(t))vec(Ṙ(t))=vec(−λED
2 (t)+K̇(t)R(t))

, n>m.

(4.12)

In addition, once the following has been set:

U(t)=
[
(Im⊗Z(t))J 04mn×4ng

KT(t)⊗In I4ng

]
∈R4n(m+g)×4n(m+g), V(t)=

[
(ZT(t)⊗In)J 04mn×4mg

Im⊗K(t) I4mg

]
∈R4m(n+g)×4m(n+g)

G(t)=


U(t), m≥n=rank(Ã(t))

U(t)+βI4n(m+g), m≥n>rank(Ã(t))
V(t), n>m=rank(Ã(t)),
V(t)+βI4m(n+g), n>m>rank(Ã(t)),

, Q(t)=



vec(−λED
1 (t)+Ẇ(t)−Ż(t)L(t))

vec(−λED
2 (t)+R(t)K̇(t))

∈R4n(m+g), m≥nvec(−λED
1 (t)+Ẇ(t)−L(t)Ż(t))

vec(−λED
2 (t)+K̇(t)R(t))

∈R4m(n+g), n>m,

r(t)=


[
vec(R(t))T, vec(Y(t))T

]T
∈R4n(m+g), m≥n[

vec(R(t))T, vec(Y(t))T
]T
∈R4m(n+g), n>m,

ṙ(t)=


[
vec(Ṙ(t))T, vec(Ẏ(t))T

]T
∈R4n(m+g), m≥n[

vec(Ṙ(t))T, vec(Ẏ(t))T
]T
∈R4m(n+g), n>m,

(4.13)
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we get at the next ZNN model:
G(t)ṙ(t) = Q(t), (4.14)

where G(t) is an invertible mass matrix. The suggested ZNN model to be employed in addressing the
ML-TQ-LME problem of (2.4) is the dynamic model of (4.14), referred to as ZNNQ-D.

4.2. ZNNQ-D model theoretical analysis

This section presents the ZNNQ-D (4.14) model’s examination of convergence and stability.

Theorem 4.1. Let Z(t) ∈ R4n×4n, K(t) ∈ R4m×4g, L(t) ∈ R4n×m and W(t) ∈ R4n×m when m ≥ n, and
Z(t) ∈ R4m×4m, K(t) ∈ R4g×4n, L(t) ∈ Rn×4m and W(t) ∈ Rn×4m when n > m. Also, suppose that
Z(t),K(t),W(t) and L(t) are differentiable. Then, the system (4.9) converges to the TSOLs L̂(t) and Ŷ(t)
of the LMEs (4.6), and the solutions are stable, in line with Lyapunov.

Proof. The proof has been taken out since it resembles the proof of Theorem 3.1.

Theorem 4.2. Let B̃(t) ∈ Hm×g when m ≥ n, or B̃(t) ∈ Hg×n when n > m, and Ã(t) ∈ Hm×n be
differentiable TQ matrices. At every t ∈ [0, t f ) ⊆ [0,+∞), the ZNNQ-D model (4.14) model converges
exponentially to the TSOL for any initial value r(0) that one may take into consideration.

Proof. The proof has been taken out since, if Theorem 3.1 is replaced with Theorem 4.1, it resembles
the proof of Theorem 3.2.

4.3. ZNNQ-D model computational complexity

The complexity of creating and addressing (4.14) adds to the ZNNQ-D’s total computational
complexity. Particularly, the computational complexity of creating (4.14) is O((4n(m + g))2) when
m ≥ n operations and O((4m(n + g))2) operations when n > m because at every iteration we conduct
(4n(m + g))2 multiplications and 4n(m + g) additions/subtractions when m ≥ n and (4m(n + g))2

multiplications and 4m(n+g) additions/subtractions when n > m. On top of that, the implicit MATLAB
solver ode15s is used to address at each step the linear system of equations. The complexity of
addressing (4.14) is O((4n(m + g))3 as it necessitates a 4n(m + g) × 4n(m + g) matrix when m ≥ n, and
O((4m(n+g))3 as it necessitates a 4m(n+g)×4m(n+g) matrix when n > m. So, the ZNNQ-D model’s
total computational complexity is O((4n(m + g))3) when m ≥ n and O((4m(n + g))3) when n > m.

5. Simulation experiments

This section will outline two applications for acoustic source tracking as well as two simulation
examples (SEs). The following includes a few key justifications. The ZNN design parameter λ is
utilized with values 10 and 100 in SEs and with value 100 in the applications. The initial conditions
(ICs) of the ZNNQ-G and ZNNQ-D models have been set as follows:

• IC1: X̃(0) = 0n×g when m ≥ n, X̃(0) = 0g×m when n > m, and C̃(0) = 0n×m.
• IC2: X̃(0) = Ã∗(0)B̃(0) when m ≥ n, and X̃(0) = B̃(0)Ã∗(0) when n > m, and C̃(0) = Ã∗(0).

The notation ML Error in the y-label of the figures corresponds to the following error:
∥∥∥X̃(t) − Ã†(t)B̃(t) − (In − Ã†(t)Ã(t))X̃(0)

∥∥∥
F
, m ≥ n∥∥∥X̃(t) − B̃(t)Ã†(t) − X̃(0)(Im − Ã(t)Ã†(t))
∥∥∥

F
, n > m.

(5.1)
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For simplicity, we have set η(t) = cos(t) and ζ(t) = sin(t). Lastly, in all SEs and applications,
computations are performed using the MATLAB ode solver, ode15s, with a time interval of [0, 10].
It is crucial to note that we utilize the ode15s with its standard double precision arithmetic (eps =
2.22 · 10−16), which means that all of the errors in the figures of this section have a minimum value that
is close to 10−5.

5.1. Simulations

Example 5.1. In this SE, the input matrix Ã(t) coefficients are set to

A1(t) =


3ζ(t) + 1 4 4
3η(t) + 2 5 5

2 η(t) + 3 η(t) + 3
2η(t) + 5 1 1

 , A2(t) =


5 2 + 2ζ(t) 2 + 2ζ(t)

3ζ(t) − 2 3 3
−2η(t) + 5 5 + η(t) 5 + η(t)

9 1 + 2ζ(t) + 1 1ζ(t)

 ,

A3(t) =


3ζ(t) + 2 5 5
2ζ(t) + 1 6 6
−η(t) + 3 4 4
−η(t) + 5 1 1

 , A4(t) =


1 2ζ(t) + 3 2ζ(t) + 3
5 9 9

3η(t) + 2 5 5
3 2ζ(t) + 1 2ζ(t) + 1

 ,
and the input matrix B̃(t) coefficients are set to

B1(t) =


η(t) 2 + ζ(t)
5 1 + ζ(t)
3 2

7 + ζ(t) 2

 , B2(t) =


η(t) + 4 2
η(t) 8

ζ(t) + 3 ζ(t)
4 η(t)

 ,

B3(t) =


3ζ(t) + 2 6

5 8
4 ζ(t)
7 6

 , B4(t) =


2ζ(t) + 3 4
η(t) sin(t) + 1
9 4
2 η(t)

 .
As a result, Ã(t) ∈ H4×3 with rank(Ã(t)) = 2 and B̃(t) ∈ H4×2. Generated results are presented in Figure
1 and 2, where we have set β = 10−6.

Example 5.2. In this SE, the input matrix Ã(t) coefficients are set to

A1(t) =

2η(t) + 2 5 3η(t) + 2 3 8
2 ζ(t) + 3 2η(t) + 5 8 3

 , A2(t) =

 4 2ζ(t) + 1 2ζ(t) − 3 7 2
−3η(t) + 4 η(t) + 6 9 2ζ(t) + 2 4

 ,
A3(t) =

2ζ(t) + 2 6 2ζ(t) + 1 7 5
−η(t) + 2 3 −η(t) + 5 7 6

 , A4(t) =

 5 2ζ(t) + 1 6 6 6
3η(t) + 2 4 8 3ζ(t) + 1 1

 ,
and the input matrix B̃(t) coefficients are set to

B1(t) =


3 ζ(t) + 2 3 ζ(t) + 1 1
η(t) 1 ζ(t) + 2 4 1
η(t) 5 ζ(t) + 2 6 1

 , B2(t) =


η(t) + 2 7 η(t) 3 3
η(t) + 3 ζ(t) 3 η(t) 3
η(t) + 5 ζ(t) 5 η(t) 3

 ,

B3(t) =


2ζ(t) + 2 6 5 8 1

3 ζ(t) 5 6 5
3 ζ(t) 7 6 6

 , B4(t) =


2ζ(t) + 4 7 6 ζ(t) + 1 1

7 4 3 2 1
8 7 3 2 8

 .
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Therefore, Ã(t) ∈ H2×5 with rank(Ã(t)) = 2 and B̃(t) ∈ H3×5. The results are presented in Figures 1 and
2.

0 2 4 6 8 10
10

-10

10
-5

10
0

10
5

(a) SE 5.1: EMEs
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(p) SE 5.2: ML error
with IC2 and
λ = 100.

Figure 1. EMEs and ML error (5.1) in SEs 5.1-5.2.
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Figure 2. X̃(t) real and imaginary parts trajectories with IC1, IC2 and λ = 10 in SEs 5.1 and
5.2.

5.2. Discussion on simulation examples results

The performance of the ZNNQ-G (3.11) and ZNNQ-D (4.14) models for solving the ML-TQ-LME
problem of (2.4) is investigated throughout the SEs 5.1 and 5.2. Each SE is associated with a unique
ML-TQ-LME problem that is specified by the proper pair of matrices Ã(t) and B̃(t).

In the case of SE 5.1, we have that Ã(t) ∈ H4×3 with rank(Ã(t)) = 2 and B̃(t) ∈ H4×2. That is,
m ≥ n > rank(Ã(t)). Figure 1a and 1e, respectively, show the EMEs of the ZNNQ-G and ZNNQ-D
models under IC1 for λ = 10 and λ = 100, while Figure 1b and 1f show the EMEs of the ZNNQ-G
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and ZNNQ-D models under IC2 for λ = 10 and λ = 100, respectively. In these figures, all models start
at t = 0 from a high error value and converge to a low error value in the interval [10−5, 10−3] at t = 2
when λ = 10 and at t = 0.2 λ = 100. The ZNNQ-D model, however, converges to its minimum value
more quickly than the ZNNQ-G model and has a lower overall error value. Notice that the minimum
value close to 10−5 is expected because of the MATLAB ode15s default double precision arithmetic.
We can further confirm that the ZNN models converge to their minimal value regardless of the ICs, and
that they do so even more swiftly the larger the value of λ is. The ML errors in Figure 1i, 1m, 1j and 1n
follow the convergence tendency of their corresponding EME in Figure 1a, 1e, 1b and 1f, respectively.
However, unlike the comparable EMEs, the models’ ML errors have a similar lower overall error value
and converge to their minimum value at the same rate. For λ = 10, the trajectories of the solutions
generated by the models under IC1 are presented in Figure 2a–2d and under IC2 are presented in
Figure 2e–2h. The real part and the three imaginary parts of the solutions are depicted in these figures,
respectively, and their relation to the TSOL is shown. These figures show that the solutions produced
by the models match up to the TSOL and that they converge to the TSOL in a manner consistent with
the corresponding ML error’s convergence tendency.

In the case of SE 5.2, we have that Ã(t) ∈ H2×5 with rank(Ã(t)) = 2 and B̃(t) ∈ H3×5. That is,
n > m = rank(Ã(t)). Figure 1c and 1g, respectively, show the EMEs of the ZNNQ-G and ZNNQ-D
models under IC1 for λ = 10 and λ = 100, while Figure 1d and 1h show the EMEs of the ZNNQ-G
and ZNNQ-D models under IC2 for λ = 10 and λ = 100, respectively. In these figures, all models start
at t = 0 from a high error value and converge to a low error value in the interval [10−5, 10−3] at t = 2
when λ = 10 and at t = 0.2 λ = 100. The ZNNQ-D model, however, converges to its minimum value
more quickly than the ZNNQ-G model and has a lower overall error value. We can further confirm that
the ZNN models converge to their minimal value regardless of the ICs, and that they do so even more
swiftly the larger the value of λ is. The ML errors in Figure 1k, 1o, 1l and 1p follow the convergence
tendency of their corresponding EME in Figure 1c, 1g, 1d and 1h, respectively. However, unlike the
comparable EMEs, the models’ ML errors have a similar lower overall error value and converge to
their minimum value at the same rate. For λ = 10, the trajectories of the solutions generated by the
models under IC1 are presented in Figure 2i–2l and under IC2 are presented in Figure 2m–2p. The real
part and the three imaginary parts of the solutions are depicted in these figures, respectively, and their
relation to the TSOL is shown. These figures show that the solutions produced by the models match
up to the TSOL and that they converge to the TSOL in a manner consistent with the corresponding ML
error’s convergence tendency.

Overall, the ZNNQ-G and ZNNQ-D models work excellent in solving two different ML-TQ-LME
problems, while the aforementioned discussion verifies the results of Theorems 3.1–4.2. Additionally,
the total computational complexity of the ZNNQ-G and ZNNQ-D models, respectively, is O((4ng)3)
and O((4n(m + g))3) when m ≥ n, and O((4mg)3) and O((4m(n + g))3) when n > m. That is, the
ZNNQ-G model has lower total computational complexity than the ZNNQ-D model. Therefore, even
though both models have comparable accuracy, we may conclude that the ZNNQ-G model has more
advantages than the ZNNQ-D model.

5.3. Applications to acoustic source tracking

The ZNNQ-G and ZNNQ-D models are utilized in this subsection to simulate acoustic source
tracking based on the time delay of arrival (TDOA). TDOA is a technique for estimating the position
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of the signal source based on the difference in signal arrival times at receivers placed in various
locations [52]. TDOA has been widely used in a variety of fields, including videoconferencing [53],
indoor positioning [54], navigation [55] and a ultra-wideband localization system [56], as a form of
passive source localization. The localization of an acoustic source could be transformed into a task of
addressing LMEs based on TDOA.

The signal source for the acoustic source localization is an acoustic source, and the receivers are
microphones. These applications examine the issue of localizing moving acoustic sources, where
the position of the acoustic sound is subject to time. To keep things simple, we look into the 2-
dimensional localization, from which we can expand to the 3-dimensional localization. First, we define
the coordinates of the acoustic source, w(t), and the coordinates of the k microphones, C, as follows:

w(t) =
[
x(t)
y(t)

]
∈ R2, C =

[
x1 x2 . . . xk

y1 y2 . . . yk

]
∈ R2×k, (5.2)

where the k microphones are incidentally positioned and fixed. The acoustic source moves in the
first application along a circular path trajectory as time passes, and in the second application along an
infinity-shaped path trajectory as time passes. Particularly, taken from [57], the following circular path
trajectory is used in the first application (App. 1):

px(t) = ψη(2πζ(πt/(2T ))2 + π/6)/(2T ),
py(t) = ψζ(2πζ(πt/(2T ))2 + π/6)/(2T ),

(5.3)

where we have set the task duration T = 5 and the design parameter ψ = 5. In the second application
(App. 2), the following infinity-shaped path trajectory is used [57]:

px(t) = −ψζ(4πζ(πt/(2T ))2 + π/3)/(2T ),
py(t) = ψζ(2πζ(πt/(2T ))2 + π/6)/(2T ),

(5.4)

where we have set the task duration T = 10 and the design parameter ψ = 10.
The following equations are then provided, taken from [52]:

si(t) = uTi(t) =
√

(xi − px(t))2 + (yi − py(t))2,

u∆Ti(t) = u(Ti(t) − T1(t)) = si(t) − s1(t),
(5.5)

where i = 1, 2, . . . , k, the speed of sound is u = 340.29 m/s, si(t) is the distance between the acoustic
source and the ith microphone, the time at which sound arrives at the ith microphone is Ti(t), and
∆Ti(t) is the difference in arrival time among the 1th and ith microphones. After the derivation process
presented in [52], we set:

A(t) =


h31(t) h32(t)
h41(t) h42(t)
...

...

hk1(t) hk2(t)

 , B(t) =


−b3(t)
−b4(t)
...

−bk(t)

 , (5.6)
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where
hi1(t) =

2(xi − x1)
u∆Ti(t)

−
2(x2 − x1)
u∆T2(t)

, hi2(t) =
2(yi − y1)
u∆Ti(t)

−
2(y2 − y1)
u∆T2(t)

,

bi(t) = u∆Ti(t) − u∆T2(t) +
x2

1 − x2
i + y2

1 − y2
i

u∆Ti(t)
−

x2
1 − x2

2 + y2
1 − y2

2

u∆T2(t)
,

(5.7)

for i = 3, 4, . . . , k with k ≥ 4, to create the following equation:

A(t)w(t) = B(t), (5.8)

where w(t) is unknown. We chose the number of microphones to be 7 in both applications with C =[
1 2.2 −1 2.2 −1 1 0
1 1 2 0 −1 −1.2 0.3

]
∈ R2×7, whereas we have set the initial state w(0) = [0.42, 0.27]T

in the first application and w(0) = [−0.44, 0.25]T in the second application. Therefore, we set the ICs
X̃(0) = w(0) and C̃(0) = 02×5 in the ZNNQ-G and ZNNQ-D models. The results are presented in
Figure 3.
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Figure 3. EMEs, ML error (5.1), acoustic source path and the estimated track in
applications 1 and 2.

In App. 1, where the acoustic source moves in a circular path trajectory, Figure 3a shows the EMEs
of the ZNNQ-G and ZNNQ-D models for λ = 100, and in App. 2, where the acoustic source moves in
an infinity-shaped path trajectory, Figure 3e shows the EMEs of the ZNNQ-G and ZNNQ-D models for
λ = 100. In these figures, all models start at t = 0 from a high error value and converge to a low error
value in the interval [10−6, 10−3] at t = 0.1. The ZNNQ-D model, however, has a lower overall error
value than the ZNNQ-G model. The ML errors in Figure 3b and 3f follow the convergence tendency
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of their corresponding EMEs in Figure 3a and 3e. But unlike the comparable EMEs, the models’ ML
errors have a similar lower overall error value and converge to their minimum value at the same rate.
The actual acoustic source and the estimated track produced by the models are presented in Figure 3c
and 3g. In particular, we can see that the estimated track matches the actual acoustic source in Figure
3c, which moves in a circular path trajectory, and Figure 3d, which moves in an infinity-shaped path
trajectory. The errors in Figure 3d further support this, where the error is below 5× 10−5 in both cases.
It is important to note that the errors ϵX = x(t) − px(t) and ϵY = y(t) − py(t), while the estimated tracks
provided by the ZNNQ-G and ZNNQ-D models, respectively, are denoted by the superscripts G and
D in these errors. In other words, the ZNNQ-G and ZNNQ-D models were successful in locating the
acoustic source.

6. Conclusions

Two models, ZNNQ-G and ZNNQ-D, have been presented in order to address the ML-TQ-LME
problem for TQ input matrices of any dimension. The creation of such models has been backed by
theoretical research and an examination of their computational complexity, in addition to simulation
examples and practical acoustic source tracking applications. The gradient design, utilized by the
ZNNQ-G model, has been suggested as being more efficient than the direct design, represented by the
ZNNQ-D model, since the ML-TQ-LME problem has been successfully addressed.

The established results open the door for future interesting study efforts in light of this. Here are a
few topics to contemplate about:

• The use of nonlinear ZNNs in TQ issues may be investigated.
• It is possible to examine the application of the finite-time ZNN theme to TQ problems.
• Another area of research is using carefully selected design parameters stated in fuzzy settings to

quicken ZNN model convergence.
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