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Abstract: Web-based search query data have been recognized as valuable data sources for 
discovering new influenza epidemics. However, selecting search and query keywords and adopting 
prediction methods pose key challenges to improving the effectiveness of influenza prediction. In 
this study, web search data were analyzed and excavated using big data and machine learning 
methods. The flu prediction model for the southern region of China, considering the impact of 
influenza transmission across regions and based on various keywords and historical influenza-like 
illness percentage (ILI%) data, was built (models 1–4) to verify the factors affecting the spread of the 
flu. To improve the accuracy of the influenza trend prediction, a support vector regression method 
based on an improved particle swarm optimization algorithm was proposed (IPSO-SVR), which was 
applied to the influenza prediction model to forecast ILI% in southern China. By comparing and 
analyzing the prediction results of each model, model 4, using the IPSO-SVR algorithm, exhibited 
higher prediction precision and more effective results, with its prediction indexes including the mean 
square error (MSE), root mean square error (RMSE) and mean absolute error (MAE) being 0.0596, 
0.2441 and 0.1884, respectively. The experimental results show that the prediction precision 
significantly increased when the IPSO-SVR method was applied to the constructed ILI% model. A 
new theoretical basis and implementation strategy were provided for achieving more accurate 
influenza prevention and control in southern China. 
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1. Introduction 

Influenza (flu) is a very common respiratory infectious disease with high variability and 
infectivity. It spreads rapidly through droplets, with an extremely fast transmission speed and 
incubation period, which makes the influenza epidemic rapidly spread in a short time and pose a 
serious threat to human health [1]. According to statistics from the World Health Organization 
(WHO), there are an estimated 600 million to 1.2 billion cases of influenza worldwide each year. 
This number includes at least 3 million severe cases and complications associated with influenza, 
and the number of fatalities ranges from 250,000 to 500,000 [2,3]. According to statistics, 
approximately 84,200 to 92,000 people die from respiratory diseases caused by the flu in China 
every year, accounting for 8.2% of total deaths from respiratory diseases [4]. At the same time, the 
annual economic burden caused by influenza is about ¥ 26.381 billion in China, equivalent to 0.233‰ 
of GDP in 2021 [5], which is shocking. If active and effective prevention and control measures are 
not taken, influenza will continue to impose a serious health and economic burden on both China and 
the world. Therefore, preventing and controlling flu is important public health work that requires 
extensive attention and investment. 

Several methods have been proposed for real-time detection and routine monitoring of flu 
activity. Traditional influenza surveillance systems primarily rely on reported influenza-like cases 
and virological data from health care providers, including hospitals, clinics and contract 
laboratories [6,7]. Although China has established a nationwide influenza surveillance system, the 
time taken to publicly report influenza cases is usually delayed by about 1–2 weeks. Furthermore, 
there are issues such as high operating costs, low coverage of the surveillance network, low 
efficiency in information reporting, over-reliance on historical influenza data without 
multidimensional data support and simplistic methods for data mining, prediction and early 
warning [8]. If it is possible to predict the flu trends in certain areas promptly and accurately, and 
take appropriate prevention and control measures before the outbreak of influenza, we can 
effectively control the spread of the disease and reduce the harm and economic losses caused by it. 

Yang et al. [9] propose a comprehensive learning particle swarm optimization based machine 
learning (CLPSO-ML) framework incorporating support vector regression (SVR) and multilayer 
perceptron (MLP) for multi-step-ahead influenza prediction. Wang et al. [10] propose a new 
end-to-end spatiotemporal deep neural network structure for influenza risk prediction. The proposed 
model mainly consists of two parts. The first stage is the spatiotemporal feature extraction stage 
where two-stream convolutional and recurrent neural networks are constructed to extract different 
regions and time granularity information. Then, a dynamically parametric-based fusion method is 
adopted to integrate the two stream features and make predictions. Kumar et al. [11] propose a 
hybrid fuzzy time series forecasting model based on particle swarm optimization and the fuzzy 
c-mean technique, named as fuzzy time series particle swarm optimization extended fuzzy c-mean 
technique. Thomas et al. [12] develop methods for real-time prediction of the risk that an ongoing 
influenza epidemic will be exceptionally severe and for real-time detection of anomalous epidemics 
and use them for prediction and detection of anomalies for influenza epidemics in France. The 
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quality of predictions is assessed on observed and simulated data. Wei et al. [13] aimed to enhance 
their prediction model by incorporating traditional hydrological and atmospheric data. Features, such 
as popular search keywords on Google Trends, public holiday information, population density, air 
quality indices, and the numbers of COVID-19 confirmed cases, were also used to train the model. 
Kara [14] introduced a hybrid method that combines long short-term memory (LSTM) neural 
network and genetic algorithm (GA) for multi-step influenza outbreak forecasting problems. Kumar 
et al. [15] propose a hybrid fuzzy time series model for the prediction of upcoming COVID-19 
infection cases and deaths in India by using a modified fuzzy C-means clustering technique. 

At present, some non-traditional methods for influenza monitoring have been developed. For 
example, Ackley et al. [16] conducted a comparative analysis by integrating data from smart 
thermometers and mobile applications with regional influenza and influenza-like illness (ILI) 
surveillance data from the California Department of Public Health. They utilized smart thermometer 
readings and mobile application data to predict regional influenza in California. The experimental 
results demonstrated that these data improved the predictive capability of influenza illness. 
Murayama et al. [17] utilized inter-regional commuting data as a representation of human mobility 
when building a regional influenza prediction model and used it as spatial information in graph 
convolutional network (GCN) to predict the geographical distribution of influenza patients. The 
results show that the GCN model based on commuting data significantly improves the prediction 
accuracy in both temporal and spatial dimensions, thus providing an appropriate prediction interval. 
Yang et al. [18] developed a comprehensive influenza monitoring framework by integrating 
electronic medical records (EMRs) from several hospitals in Taiwan and ILI data from the Taiwan 
Center for Disease Control and Prevention (TWCDC). This framework is scalable and can 
periodically integrate TWCDC ILI open data with EMRs across multiple hospitals to automatically 
monitor influenza activity and support early surveillance of influenza outbreaks. In addition, some 
researchers have achieved real-time monitoring and prediction of influenza activity by utilizing 
non-traditional data sources such as social media data [19], web search data [20], call center 
data [21], pharmacy sales data [22] and meteorological data [23]. 

To enhance the prediction and response capabilities to influenza outbreaks, numerous 
researchers and institutions are devoted to improving influenza prediction models. These models 
encompass prediction models based on machine learning and deep learning, alongside prediction 
models grounded in mathematical models. For instance, Lu et al. [24] proposed the ARGONet 
method, which combines two prediction approaches with machine learning to estimate local 
influenza epidemics in real-time. This method first extended the proven inference method for 
influenza activity, called ARGO, to various states in the United States, and incorporates information 
related to influenza, such as Google search frequency, electronic health records and historical flu 
trends. To enhance prediction accuracy, a spatial network method called Net was developed based on 
ARGO, which improved the influenza estimation of ARGO by combining the spatiotemporal 
patterns of influenza transmission in neighboring regions. In this study, the ARGO model alone 
outperformed the Google Flu Trend prediction system that operated from 2008 to 2015. Researcher 
Fred Lu stated that this new method may lay the foundation for effective prevention of infectious 
diseases. With the increasing availability of online search data and cloud-based electronic health 
records collected from medical service providers, this new model will be able to predict disease 
outbreaks and epidemics more accurately in the future. Zimmer et al. [25] combined the developed 
calibration and prediction framework with the established humidity-based propagation dynamics 
model to predict influenza. They found that incorporating daily near real-time internet search data 
improved the accuracy of short-term and medium-term predictions of influenza activity. Miliou et 
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al. [26] proposed the use of retail market data to improve the prediction of seasonal influenza and 
developed a near-term forecasting and prediction framework that provided estimates of influenza 
incidence in Italy. They employed a SVR model to predict seasonal influenza incidence. The results 
quantitatively show the value of incorporating retail market data into the prediction model, which 
can serve as an agent for real-time analysis of epidemics. Huang [27] utilized a retrospective 
epidemiological survey method and based on the Baidu index of H7N9 avian influenza keywords 
and clinical symptoms keywords of H7N9 subtype avian influenza, established the SVR prediction 
model and multiple linear regression prediction model in different segments to analyze the fit degree. 
The results revealed that public search behavior, epidemic segment characteristics and the frequency 
of public search for clinical symptoms of infectious diseases significantly improved the capability of 
search engine big data to predict the epidemic trends of H7N9 subtype avian influenza. 

Recent research indicates that flu transmission trends can be effectively monitored by 
integrating open-source search query data and machine learning methods. This approach not only 
enables the timely provision of useful information to the public and medical professionals for taking 
appropriate prevention and control measures but also holds tremendous potential. However, research 
in this field is still relatively limited domestically, which necessitates further exploration and 
development. Currently, research methods mainly focus on multiple correlation regression 
analysis [28,29], but this approach has some issues in predicting the trend of influenza transmission. 
For example, in a multiple linear regression model, multicollinearity among the independent 
variables may lead to model instability. Additionally, the relationship between ILI and related factors 
is influenced by various factors, which may not exhibit a simple linear relationship. Therefore, using 
conventional linear models for fitting may not achieve the desired predictive performance. 

Overseas research has primarily focused on using Google search engine data and Twitter 
data [30‒34], while in China, Baidu index has become one of the main sources of search engine data. 
As of July 2022, Baidu holds a dominant market share of 71.2% in the Chinese search engine market, 
far surpassing other search engines, which better reflects the level of attention that most Chinese 
people have towards the epidemic. Therefore, this study utilized web search data provided by Baidu 
index and ILI data, and constructed a nonlinear influenza prediction model suitable for the 
characteristics of southern China based on machine learning methods. By leveraging Baidu index 
and machine learning algorithms, the model can better predict the spread trend of influenza and 
provide relevant information in time to provide scientific support for influenza prevention and 
control efforts. 

2. Data acquisition and processing  

2.1. Data source  

The official influenza like case data used in this study was obtained through the ILI weekly 
report released by the National Influenza Center of China [35]. The collection of this data relies on 
the collaboration of medical institutions at all levels, disease prevention and control centers, and 
sentinel hospitals for monitoring, summarizing and analyzing influenza data reported by sentinel 
hospitals across the country. In this paper, we collected 207 weeks of ILI data in southern regions of 
the China from the 1st week of 2018 to the 49th week of 2021. These official influenza sample case 
data are recognized as reliable sources widely used for research and monitoring of influenza 
transmission trends. By analyzing these data, we can obtain important information about the 
epidemic situation and changing trends of influenza in southern China. 
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The web search data originates from Baidu index of Baidu search engine [36]. It is a statistical 
index that comprehensively reflects the reference value of user interest and media attention to a 
specific keyword on a certain day. Based on the search volume of internet users on Baidu, the 
weighted sum of search frequency of each keyword in Baidu web search is analyzed and calculated. 
In this paper, we first conducted a long-tail keyword search using "flu" as the initial value on 
"Chinaz.com." We selected keywords with a whole network index greater than 200 and chose 
relatively original search terms related to influenza symptoms, treatment, preventive measures and 
other aspects. Then, we referred to the literature to summarize other keywords used in relevant 
studies. A total of 37 keywords that may be related to changes in the influenza epidemic trend were 
sorted out, as shown in Table 1. 

Table 1. Baidu search keyword and number. 

Number English Name Chinese Name Number English Name Chinese Name 

K1 How to prevent flu 如何预防流感 K20 Cold medicine 感冒药 

K2 Flu prevention measures 流感的预防措施 K21 Contac 康泰克 

K3 Influenza vaccine 流感疫苗 K22 Gankang 感康 

K4 Avian influenza vaccine 禽流感疫苗 K23 Amoxicillin 阿莫西林 

K5 Is a flu shot necessary 流感疫苗有必要打吗 K24 Lianhua Qingwen capsule 连花清瘟胶囊 

K6 Avian influenza prevention 禽流感预防 K25 Tylenol 泰诺 

K7 How to prevent colds 怎样预防感冒 K26 Influenza 流行性感冒 

K8 Preventing avian influenza 预防禽流感 K27 Flu 流感 

K9 Influenza A symptoms 甲型流感症状 K28 Swine flu 猪流感 

K10 Flu symptoms 流感的症状 K29 Influenza virus 流感病毒 

K11 Cold 感冒 K30 H1N1 influenza 甲流 

K12 Viral cold 病毒性感冒 K31 What is H1N1 influenza 甲流是什么 

K13 Stomach flu 肠胃感冒 K32 H1N1 influenza virus 甲流病毒 

K14 Cold symptom 感冒症状 K33 Influenza A 甲型流感 

K15 Fever 发烧 K34 Influenza A virus 甲型流感病毒 

K16 Hot 发热 K35 Avian influenza 禽流感 

K17 High fever 高烧 K36 H1N1 H1N1 

K18 Influenza treatment 流感治疗 K37 H7N9 H7N9 

K19 What medicine to take for the 

flu 

流感吃什么药    

2.2. Data preprocessing  

The Baidu index of flu-related keywords is counted on a daily basis. In order to conduct 
consistent analysis with other time series data, it needs to be aggregated on a weekly basis. Each 
keyword's weekly summaries are calculated separately. However, missing data were found when 
collecting the Baidu index for keywords. To improve the accuracy of the prediction of ILI, it is 
necessary to repair the raw data. To address this issue, the K-nearest neighbors (KNN) algorithm was 
employed to fill in the missing data in the Baidu index of keywords K1, K2, K4, K5, K6, K8, K9, 
K18, K31 and K32. The algorithm utilizes existing adjacent data points to infer the missing value 
and interpolates by finding neighbor data that is most similar to the missing data. This approach 
enables the estimation of the missing data and reduces its impact on the accuracy of ILI prediction. 
The repaired data allows for a more comprehensive analysis of the trends and changes in flu-related 
keywords, providing more accurate predictions and insights. 
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2.3. Keyword filtering  

Research has shown that an increase in the number of keywords does not necessarily improve 
the model's fitting performance. In order to accurately select the influencing factors related to the 
predicted outcome variable ILI%, a correlation analysis was conducted by comparing ILI% with the 
curated Baidu search index of keywords. In this way, keywords that contribute to the prediction 
model can be screened and included in the prediction model. In this study, the IBM SPSS Statistics 
26.0 statistical tool was used for conducting the correlation analysis. To preliminarily screen 
keywords, a minimum correlation coefficient of 0.5 between the time series of Baidu search index 
for keywords and ILI% was required. By conducting a ranking analysis based on the correlation 
between the Baidu search index for each keyword and ILI%, it was found that out of the 37 
keywords, 17 keywords had correlation coefficients less than 0.5 with ILI%, while 20 keywords had 
correlation coefficients greater than 0.5. The specific analysis results are shown in Table 2, which 
will help in the further selection of the most relevant keywords to establish a more accurate 
prediction model. 

Table 2. Results of keyword inter-correlation analysis. 

Number Correlation Number Correlation 

K1 0.71 K20 0.53 

K2 0.46 K21 0.59 

K3 0.01 K22 0.51 

K4 0.18 K23 0.50 

K5 0.30 K24 0.08 

K6 0.46 K25 0.77 

K7 0.38 K26 0.46 

K8 0.34 K27 0.72 

K9 0.68 K28 0.00 

K10 0.44 K29 0.67 

K11 0.58 K30 0.67 

K12 0.75 K31 0.66 

K13 0.35 K32 0.62 

K14 0.40 K33 0.72 

K15 0.85 K34 0.59 

K16 0.47 K35 0.42 

K17 0.81 K36 0.38 

K18 0.71 K37 0.40 

K19 0.65   

Influenza viruses are primarily transmitted through airborne droplets produced by sneezing or 
coughing, as well as through direct contact between people or contact with objects contaminated by 
influenza viruses. With the rapid and frequent operation of modern transportation, the frequent flow 
of people and the transportation of various new types of food, previously localized infectious 
diseases may become widespread and epidemic diseases. In areas with frequent population mobility, 
if an influenza outbreak occurs in one region, other closely related regions are also likely to be 
affected. Therefore, it is of great significance to analyze the number of ILI in northern and southern 
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China. Figure 1 shows the trends of ILI in the southern and northern regions of China from week 1 in 
2018 to week 49 in 2021. From the graph, it can be observed that the trend of rising and declining 
influenza activity levels in both southern and northern China is relatively consistent, and there is a 
strong correlation. This observation indicates that it is important to consider the impact of influenza 
transmission in the northern region on the southern region when modeling prediction models, and to 
assess its effect on the prediction effectiveness. 

 

Figure 1. Trend of ILI in the southern and northern regions of China from week 1 in 
2018 to week 49 in 2021. 

2.4. Keyword time-delay correlation analysis  

Due to the incubation period and subsequent disease development of influenza, the predictive 
factors generally exhibit time-delay characteristics. Therefore, the correlation trend between ILI% in 
the southern region of China and the Baidu search index of preliminary screened keywords was 
analyzed. The keywords "How to prevent influenza (K1)", "Influenza A symptoms (K9)", "Viral cold 
(K12)", "Fever (K15)", "High fever (K17)" and "Influenza A (K33)" were taken as examples. Figure 
2 shows the distribution of ILI% and Baidu index of specific keywords in the southern region of 
China from week 1 in 2018 to week 49 in 2021. From the figure, it can be observed that the Baidu 
index of keywords K1, K9, K12 and K33 show a certain leading relationship compared to ILI%, 
while the Baidu index of keywords K15 and K17 exhibit relative synchronicity with ILI%. Based on 
the above analysis, it is evident that the influence of time lag should be considered when conducting 
keyword correlation analysis. Therefore, this study employed cross-correlation analysis to examine 
the time-lagged relationship between the selected keywords and ILI% in the southern region within a 
time range of 7 weeks before and after. The maximum absolute correlation coefficient for each 
keyword and ILI% was selected to ensure the correlation between the data. The results of the 
keyword cross-correlation analysis are shown in Table 3. 

Keywords are classified into synchronous keywords, leading keywords and lagging keywords 
according to their temporal nature. From Table 3, it can be observed that as the number of lag days 
decreases, the correlation of each keyword gradually increases. Among them, 8 keywords reach the 
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maximum value when the delay is 0, which belong to the "synchronous" keywords, including fever, 
high fever, what medicine to take for the flu, amoxicillin, flu, influenza virus, H1N1 influenza virus 
and influenza A virus. Additionally, there are 12 keywords that reach their maximum value when the 
delay is -1, which are "leading" keywords, including how to prevent flu, influenza A symptoms, cold, 
viral cold, flu treatment, cold medicine, Contac, Gankang, Tylenol, H1N1 influenza, what is H1N1 
influenza and influenza A. Due to each keyword being highly correlated with ILI% at different lag 
times, the lag variable with the largest correlation coefficient was used to establish the model. This 
can more accurately reflect the association between keywords and ILI, thereby improving the 
accuracy of the prediction model. 

 

Figure 2. Distribution graph of ILI% and specific keyword Baidu index in the southern 
region of China. 

  



Table 3. Results of time lag correlation analysis for the preliminary screened keywords. 

Correlation  
Keyword 

Delay weeks 

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

K1 0.280 0.408 0.494 0.562 0.607 0.665 0.742 0.709 0.575 0.476 0.378 0.296 0.222 0.164 0.082 

K9 0.401 0.518 0.592 0.651 0.683 0.709 0.719 0.684 0.596 0.498 0.391 0.294 0.209 0.136 0.067 

K11 0.370 0.423 0.451 0.488 0.518 0.562 0.591 0.577 0.484 0.353 0.237 0.144 0.063 0.022 0.098 

K12 0.281 0.366 0.444 0.545 0.624 0.705 0.771 0.751 0.651 0.540 0.415 0.285 0.164 0.051 0.062 

K15 0.125 0.230 0.322 0.418 0.516 0.638 0.763 0.848 0.773 0.670 0.586 0.516 0.444 0.364 0.272 

K17 0.268 0.371 0.463 0.542 0.619 0.697 0.768 0.811 0.745 0.645 0.546 0.459 0.371 0.283 0.198 

K18 0.226 0.312 0.398 0.527 0.573 0.633 0.683 0.672 0.584 0.469 0.353 0.255 0.180 0.114 0.034 

K19 0.213 0.285 0.350 0.426 0.499 0.568 0.629 0.647 0.582 0.457 0.315 0.223 0.160 0.112 0.063 

K20 0.379 0.434 0.474 0.500 0.510 0.548 0.561 0.530 0.460 0.324 0.198 0.103 0.022 0.071 0.142 

K21 0.445 0.498 0.529 0.558 0.580 0.612 0.627 0.591 0.526 0.411 0.298 0.209 0.130 0.041 0.034 

K22 0.268 0.328 0.374 0.418 0.449 0.488 0.520 0.508 0.433 0.295 0.181 0.089 0.001 0.096 0.174 

K23 0.201 0.247 0.282 0.322 0.352 0.400 0.470 0.505 0.470 0.378 0.298 0.230 0.162 0.084 0.001 

K25 0.343 0.422 0.486 0.549 0.611 0.697 0.768 0.766 0.683 0.560 0.442 0.334 0.243 0.136 0.043 

K27 0.027 0.102 0.178 0.264 0.350 0.463 0.643 0.718 0.640 0.602 0.547 0.491 0.425 0.358 0.244 

K29 0.018 0.105 0.166 0.247 0.337 0.451 0.603 0.670 0.592 0.554 0.523 0.499 0.451 0.408 0.314 

K30 0.294 0.379 0.451 0.542 0.613 0.660 0.703 0.670 0.595 0.510 0.408 0.306 0.210 0.130 0.046 

K31 0.360 0.484 0.575 0.635 0.656 0.675 0.683 0.653 0.561 0.448 0.319 0.220 0.138 0.063 0.013 

K32 0.168 0.222 0.288 0.379 0.455 0.526 0.599 0.615 0.583 0.520 0.443 0.363 0.281 0.211 0.125 

K33 0.282 0.387 0.473 0.563 0.630 0.685 0.740 0.716 0.631 0.546 0.449 0.353 0.273 0.192 0.088 

K34 0.092 0.163 0.257 0.357 0.455 0.541 0.610 0.672 0.658 0.644 0.634 0.618 0.622 0.621 0.549 



3. Model 

According to the analysis results of the above keywords, it can be observed that there is a 
significant positive correlation between the Baidu search index of 12 leading keywords and the 
weekly official reported ILI%. Based on this observation, the influenza prediction model (model 1) 
was first established using the leading keywords to verify whether search query data can reflect 
influenza transmission trends. Understanding the historical data of influenza is of great significance 
for predicting future trends. Therefore, model 2 was established to consider the influence of past 
influenza epidemics on the next moment’s influenza to verify the impact of historical ILI% data in 
the southern region on ILI prediction. In addition, contact is an important pathway of influenza 
transmission, and with frequent population mobility, influenza can easily spread. Therefore, it is 
essential to incorporate the influenza level information from the northern region into the real-time 
influenza prediction model in the southern region to build model 3. The expression of the models are 
as follows: 

Model 1： , 1
1

%
P

t i i t t
i

ILI Gα ε−
=

= +∑ ,                           (1) 

Model 2： , 1
1 1

%
P M

t i i t j t j t
i j

ILI G Sβ γ ο− −
= =

= + +∑ ∑ ,                    (2) 

Model 3： , 1
1 1 1

%
P M N

t i i t j t j k t k t
i j k

ILI G S Nφ ϕ η σ− − −
= = =

= + + +∑ ∑ ∑ ,             (3) 

where %tILI  represents the ILI% of the southern region in the 𝑖𝑖-th week, , 1i tG − denotes the Baidu 

search index of the 𝑖𝑖-th leading keyword, t jS −  represents the official ILI% of the southern region 
before the j -th week, t kN −  represents the official ILI% of the northern region before the k -th 
week, 12P =  indicates the number of leading keywords and M  and N  represent the lead orders 
of tS and tN , respectively. Through experimental verification, the model achieves the best 
predictive performance when 4M =  and 3N = , iα , iβ , jγ , iφ , jϕ  and kη  are coefficients for 
each model, while tε , tο  and tσ  represent the residual terms of each model, respectively. 

Wang et al. [37] suggested in their study that only leading keywords can be used to establish 
influenza prediction models. However, the results of cross-correlation analysis among keywords 
showed that the correlation coefficient between synchronous keywords and the number of ILI was all 
greater than 0.5 at a lag of 1 week. Therefore, this study considered incorporating the Baidu index of 
synchronous keywords at a lag of 1 week, along with leading keywords into the influenza prediction 
model to analyze their influence on the prediction accuracy of ILI. Considering that there are a large 
number of keywords and certain correlation among them, the information in the data overlaps to 
some extent. In order to reduce the number of variables and retain the main information, this study 
used principal component analysis to process the input Baidu keywords and extracted the principal 
components that contributed to 90% of the variance as the input variables for the model. After the 
analysis, when 7 principal components are selected, the cumulative contribution rate of keywords 
reached 95.58%. Therefore, these 7 principal components of the keywords were selected as inputs for 
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the influenza prediction model (model 4). The specific model formula is as follows: 

Model 4： , 1
1 1 1

%
Q M N

t l l t j t j k t k t
l j k

ILI Z S Nµ ϕ η σ− − −
= = =

= + + +∑ ∑ ∑ ,                 (4) 

where %tILI , t jS − , t kN − , M , N , lµ , jϕ , kη  and tσ  are the same as represented in Equations 
(1)–(3), , 1l tZ −  represents the value of the l -th principal component at the time 1t −  and 7Q =  
indicates the number of search principal components included in the model. 

4. Model prediction and analysis 

4.1. Research method 

4.1.1. Support vector regression 

Support vector regression (SVR) is a machine learning method based on statistical learning 
theory. It employs the criterion of structural risk minimization, which aims to minimize the error of 
sample points while also maximizing the model’s generalization ability. It is a convex quadratic 
optimization problem, ensuring that the extreme value found is the globally optimal solution [38]. 
SVR can be used to capture complex nonlinear relationships in the real world. Its main idea is to find 
a regression plane that minimizes the distance of all training points to that plane. 

In a typical regression problem, given the training set: 

{( , )}l d
i i iG x y R R= ⊂ × , (5) 

where d
ix R∈  is the input vector, iy R∈  is the output variable and l  represents the number of 

samples. 
The modeling purpose of the nonlinear SVR is to map x  into a high-dimensional feature space 

through a nonlinear mapping ϕ , and then determine the linear regression function ( )y f x=  in that 
space to fit the data ( , )i ix y , which can be expressed as: 

( ) ( ) , : ,df x x b R F Fω ϕ ϕ ω= ∗ + → ∈ , (6) 

where ω  is the weight vector and b  is the threshold, which are estimated by the training set G , 
( )xϕ  represents the nonlinear mapping function that maps the input vector to a high-dimensional 

feature space F . Therefore, the linear regression in the high-dimensional feature space corresponds 
to nonlinear regression in the low-dimensional input space, while the inner product calculation 
between ω  and ( )xϕ  in the high-dimensional feature space is ignored. 

Based on the principle of structural risk minimization, the objective functions and constraints of 
SVR are defined as follows: 

, , , 1

1min ( )
2i i

l
T

i ib i
C

ω ξ ξ
ω ω ξ ξ

=

+ +∑ , (7) 
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ω ϕ ε ξ

ω ϕ ε ξ

ξ ξ

 ∗ + − ≤ +
 − ∗ + ≤ +
 ≥ ≥ = 

, (8) 

where C  is the trade-off parameter that adjusts the balance between regression error and 
regularization term, l  is the number of training samples, ( )i iξ ξ  is the relaxation variable that 
allows for the error range of the regression function and 0ε ≥ is the parameter in the insensitive loss 
function of 𝜀𝜀 −, which is used to control the accuracy of the regression approximation. 

By introducing Lagrange multipliers α  and α , the quadratic programming problem can be 
optimized into a dual problem, then the dual problem of equation (7) can be written as: 
 

, 1 1

1 1

max ( ) ( )

1 ( )( ) ( , )
2

l l

i i i i i
i i
l l

i i j j i j
i j

y

K x x

α α
α α ε α α

α α α α

= =

= =

− − +

− − −

∑ ∑

∑∑
 

1
. . ( )

l

i i
i

s t α α
=

−∑  

, 0, 1, 2, ,i iC i lα α≥ ≥ =   

(9) 

where 1{ , , }lα α α=   and 1{ , , }lα α α=   are dual variables and ( , )i jK x x  is the kernel function 

representing the inner product ( ), ( )i jx xϕ ϕ . 

By utilizing the Karush-Kuhn-Tucker (KKT) conditions to solve for iα , iα  and b  in 
Equation (9), the regression function is as follows: 

1
( ) ( ) ( , )

l

i i i
i

f x K x x bα α
=

= − +∑ . (10) 

For the training of SVR method, the first step is to determine the kernel function. At present, 
several kernel functions have been proposed, but there is no theoretical solution for selecting the 
optimal kernel function, and the trial-and-error method is usually adopted [39]. In this paper, through 
iterative tests, radial basis function (RBF) is employed as the basic kernel function, expressed as 
follows: 

2

2( , ) exp( )
2

i j
i j

x x
K x x

σ

−
= − . (11) 

4.1.2. Improved particle swarm optimization algorithm  

Particle swarm optimization (PSO) algorithm, based on swarm intelligence, is one of the widely 
used methods in SVR parameter optimization calculation. It does not require gradient information 
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during the iterative process and involves a relatively small number of adjustable parameters. This 
algorithm is known for its advantages such as ease of implementation, high efficiency and fast 
convergence speed [40,41]. The PSO algorithm can be described as follows: the particle swarm 
consists of m  particles in the n -dimensional search space, The velocity state vector is composed 
of four parts: 1 2( , , , , , ) , 1, 2, ,T

i i i ij inx x x x x i m= =    is the current position of the i -th particle in 

the search space, 1( , , , , )T
i i ij inv v v v=    is the velocity of the i -th particle, 

1( , , , , )T
i i ij inp p p p=    represents the optimal position of the i -th particle at the current moment 

and 1( , , , , )T
g g gj gnp p p p=    represents the optimal position of the particle swarm in each 

iteration. The velocity and position of each particle are updated according to Equations (12) and (13): 
1

1 1 2 2( ) ( )
ij ij ij ij gj ij

k k k k k k k kv v c r p x c r p xω+ = + − + − , (12) 

1 1
ij ij ij

k k kx x v+ += + , (13) 

where 
ij

kv  is the velocity of the j -th component of the i -th particle in the k -th iteration, ω  is 

the inertia weight, 1c  and 2c  are cognitive learning factors and social learning factors and 1
kr  and 

2
kr  are random numbers generated within the interval (0,1) . 

Inertia weight ω  plays a crucial role in the performance of PSO, as it balances the global 
search ability and local search ability of particles [42]. A large inertia weight enhances the 
algorithm’s global search ability, but it may lead to lower search efficiency. In contrast, a smaller 
inertia weight is beneficial for local search, but may lead to local optimality. 

2
max

1
( 1)

max min max( / )
t

twω ω ω
−
−= ⋅ , (14) 

where maxω  and minw  are the maximum and minimum values of the inertia weight ω , 
respectively, t  is the current iteration number and maxt  is the maximum number of iterations. In 
Equation (14), ω  gradually decreases during the search process, which satisfies the requirements of 
the adaptive process for the algorithm from global optimization to local optimization. 

4.1.3. Improved particle swarm optimization-based SVR method  

In the SVR method based on the RBF kernel function, C  and σ  (kernel width) are two 
adjustable parameters that play a crucial role in the performance of SVR [43,44]. In this study, an 
improved PSO algorithm is utilized to optimize the parameters C  and σ  of SVR. The method of 
optimizing SVR parameters using the improved PSO algorithm is referred to as IPSO-SVR, and the 
basic steps are summarized as follows: 

Step 1: Initialize all the parameters of the algorithm, including the maximum number of 
iterations maxt , population size, cognitive learning factor 1c  and social learning factor 2c , velocity 
range min max[ , ]V V , etc. 

Step 2: The population and speed are generated randomly, and the initial fitness value of each 
particle is calculated using Equation (15) for evaluation. ix  is set to ip , and the particle with the 
best fitness is set to gp . 
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2

1

1 ( )
m

i i i
i

fit y y
m =

= −∑ , （15） 

where iy  is the predicted value and iy  is the true value. 
Step 3: The velocity, position and inertia weights of the particles are updated according to 

Equations (12)–(14). Evaluate the fitness function for each particle and compare it with ip . If the 
fitness value ifit  of the i -th particle is less than ip , set ix  to ip ; otherwise, ip  is left 
unchanged. If the fitness value ifit  of the i -th particle is less than gp , set ix  to gp ; otherwise, 
the original value is retained. 

Step 4: Determine whether the termination conditions are met. If the condition is satisfied, 
proceed to the next step; otherwise, go back to step 2; 

Step 5: The best parameters bestC  and bestσ  of the SVR model were obtained, an SVR model 
with bestC  and bestσ  as parameters was established by using the training set and the trained model 
was used to predict ILI% in southern China. 

4.2. Model evaluation index  

To validate the predictive performance of each model, the MSE, RMSE and MAE were used to 
evaluate the prediction results of each model, as shown in equations (16)–(18). MSE represents the 
mean of the squared prediction errors, RMSE represents the square root of the mean of the squared 
differences between predicted and true values, divided by the sample size m , which is used to 
measure the deviation of the overall prediction results from the actual values, and MAE is the mean 
of the absolute errors, accurately reflecting the actual predicted error situation. 



2

1

1 ( )
m

i i
i

MSE y y
m =

= −∑ ,  (16) 



2

1

1 ( )
m

i i
i

RMSE y y
m =

= −∑ , (17) 



1

1 m

i i
i

MAE y y
m =

= −∑ , (18) 

where m  represents the number of samples, iy  represents the true value of ILI% and iy represents 
the predicted values of ILI%. 

4.3. Prediction results and analysis   

The prediction target of this study is the ILI% in the southern region of China. Due to the fact 
that both domestic and international scholars often adopt traditional multiple linear regression 
methods when choosing influenza trend prediction methods [28,29], this paper uses the prediction 
results of this method as a comparative baseline to analyze and compare them with the prediction 
results of SVR, GA-SVR, PSO-SVR and IPSO-SVR methods. The construction code of the model 
was implemented using Python 3.8.12 software. In this study, 164 weeks of data from week 1 of 
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2018 to week 7 of 2021 were selected as training samples and 42 weeks of data from week 8 of 2021 
to week 49 of 2021 were selected as test samples. 

The independent variables from models 1–4 were used as inputs for multiple linear regression, 
SVR, GA-SVR, PSO-SVR and IPSO-SVR, respectively, tILI  as the output. Training samples were 
used to train each model, and the trained models were utilized to predict the ILI% for the southern 
region of China from week 8 to week 49 of 2021. The MSE, RMSE and MAE results of each 
model’s test sample are shown in Table 4, where LR represents the prediction results of the multiple 
linear regression method. 

Table 4. The evaluation index results for the five methods in models 1-4. 

Model Method LR SVR GA-SVR PSO-SVR IPSO-SVR 

Model 1 

MSE 0.2845 0.3974 0.3570 0.3581 0.3027 

RMSE 0.5334 0.6304 0.5975 0.5984 0.5502 

MAE 0.4216 0.5426 0.5091 0.4642 0.4488 

Model 2 

MSE 0.0800 0.1053 0.0977 0.0931 0.0765 

RMSE 0.2829 0.3244 0.3126 0.3051 0.2765 

MAE 0.2227 0.2573 0.2455 0.2347 0.2058 

Model 3 

MSE 0.0736 0.0968 0.0821 0.0834 0.0625 

RMSE 0.2712 0.3112 0.2865 0.2888 0.2501 

MAE 0.2114 0.2394 0.2133 0.2163 0.2033 

Model 4 

MSE 0.0781 0.0834 0.0751 0.0723 0.0596 

RMSE 0.2794 0.2887 0.2740 0.2689 0.2441 

MAE 0.2177 0.2339 0.2178 0.2144 0.1884 

 
Comparing the MSE, RMSE and MAE results of the five prediction methods for each model in 

Table 4, it can be observed that, when compared with the traditional multiple linear regression, SVR, 
GA-SVR and PSO-SVR methods, the prediction results of IPSO-SVR are the best in models 2–4, 
demonstrating superior prediction performance. Among the SVR, GA-SVR, PSO-SVR and 
IPSO-SVR methods, model 4 demonstrates the best predictive performance. However, within the LR 
method, model 3 exhibits the most favorable prediction effectiveness. From the IPSO-SVR 
prediction results of model 1, it can be observed that when ILI% is predicted by the leading 
keywords, although there is some discrepancy between the predicted results and the true values, the 
trend of the predictions is relatively consistent with the true values. By comparing the three 
evaluation index results of the IPSO-SVR algorithm in model 1 and model 2, it can be found that by 
adding historical ILI% data from the southern region, the MSE, RMSE and MAE index results of the 
model were reduced by 74.7%, 49.7% and 54.1%, respectively. This indicates that the historical ILI 
data contains a significant amount of influenza epidemic trend information. 

By comparing the three evaluation index results of the IPSO-SVR algorithm in model 2 and 
model 3, it can be observed that adding historical ILI% data from the northern region led to a 
reduction of 18.3%, 9.5% and 1.2% in the model’s MSE, RMSE, and MAE index, respectively. This 
indicates that the influenza epidemic in the northern region has some impact on the southern region, 
which means that influenza transmission can be affected by interregional transmission. Therefore, 
when analyzing and forecasting ILI, it is essential to consider not only the impact of ILI in the 
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current region but also the influence of the epidemic situation in other regions on the current region. 
By comparing the three evaluation index results of the IPSO-SVR algorithm in model 2 and 

model 3, it can be observed that adding the Baidu index of synchronous keywords from the previous 
week can reduce the MSE, RMSE and MAE index results of the model by 4.6%, 2.4% and 7.3%, 
respectively. This indicates that incorporating synchronous keywords into the model can improve its 
predictive accuracy. Therefore, when establishing influenza prediction model based on web search 
data, the information of synchronous keywords should not be directly excluded. Instead, the 
influence of synchronous keywords on influenza prediction should be further analyzed by 
constructing models to assess their impact. 

The comparison of fitted values, actual values and predicted values for the training and testing 
samples using five forecasting methods in models 1–4 is shown in Figures 3–6. In each model 
prediction result graph, the subgraph is divided into two parts by a vertical deep red line along the 
horizontal axis: the left part shows the actual values (red) and fitted values of models 1–4 on the 
training sample, while the right part displays the actual values (red) and predicted values of models 
1–4 on the testing samples. By comparing the prediction results of the five methods in model 1 to 
model 4, it can be found that the prediction output of model 4 is closer to the real value of both the 
training set and the test set. Regardless of the fitting and prediction time periods, the IPSO-SVR 
method in model 4 can capture the peaks and troughs of the time series curve of ILI, and the 
prediction effect is better than that of other models. 

 

Figure 3. Training and testing results of the five methods in model 1. 



25544 
 

AIMS Mathematics  Volume 8, Issue 11, 25528–25549. 

 
Figure 4. Training and testing results of the five methods in model 2. 

 
Figure 5. Training and testing results of the five methods in model 3. 

 
Figure 6. Training and testing results of the five methods in model 4. 
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5. Conclusions 

Influenza is a common respiratory disease that can lead to illness and death in humans. Timely 
and accurate prediction of disease risks is essential for public health management and prevention. 
While various prediction efforts regarding infectious diseases have matured, the current infectious 
disease surveillance system model is excessively passive, heavily reliant on case reporting and there 
is a large time lag. Additionally, the geographical distribution and genetic diversity of novel 
influenza viruses are rapidly expanding, presenting a direct challenge to the existing disease control 
system in China. To achieve near real-time monitoring of influenza spread, both domestic and 
international scholars have proposed influenza prediction methods based on informal sources of data, 
such as news reports, social media data, online search query data and electronic health information 
records. However, there is few research on the domestic influenza epidemic in this field. Many 
existing methods solely utilize historical time series data for prediction, overlooking the impact of 
spatial correlations among neighboring regions and temporal correlations across different time 
periods. Additionally, influenza prediction methods often heavily rely on the use of multivariate 
linear regression techniques.  

In this study, an attempt was made to identify significant keywords related to influenza, 
followed by an initial screening of these keywords. By analyzing the time-delay correlation between 
each keyword and ILI, the keywords were further filtered and screened. Secondly, based on the 
identified distinct types of keywords and considering the influence of influenza transmission between 
neighboring regions, the influenza prediction model suitable for the characteristics of the southern 
region of China was constructed. The model can comprehensively consider spatial and temporal 
correlations, providing a more accurate reflection of the influenza transmission trends in the region. 
Finally, an improved PSO-based SVR method was proposed for model prediction, and its prediction 
results were compared and analyzed with multiple linear regression, SVR, GA-SVR and PSO-SVR 
methods. 

By comparing the prediction results of each model, the following conclusions were drawn: 1) 
The influenza epidemic in the northern region has some impact on the southern region, indicating 
that influenza transmission is influenced by interregional spread. 2) When establishing influenza 
prediction models based on web search data, the information of synchronous keywords should not be 
excluded directly. Instead, their impact on influenza prediction should be analyzed through further 
modeling. 3) The IPSO-SVR method used in model 4 can capture the peaks and troughs in the time 
series curve of ILI, which has higher prediction accuracy and a better effect, and can better reflect the 
real level of influenza.  

In this study, the integration of Baidu search data and machine learning methods was employed 
to construct a series of influenza trend prediction models, along with the incorporation of the 
IPSO-SVR algorithm as a predictive tool. This innovative approach introduces a novel predictive 
framework to the field of influenza trend forecasting, providing essential decision support for public 
health management and epidemic prevention and control. By constructing various prediction models, 
this study has unveiled multiple factors that influence the spread of influenza, thereby enhancing our 
understanding of the mechanisms underlying influenza transmission. The significant impact of 
introducing the IPSO-SVR algorithm in enhancing the accuracy of predictions is particularly 
noteworthy. This optimization algorithm demonstrates promising potential in influenza trend 
prediction, offering a novel avenue to improve the accuracy of prediction outcomes. By 
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incorporating this algorithm into the model, it becomes possible to capture the dynamic changes in 
influenza trends with greater precision, which provides new perspectives and approaches for research 
and application of influenza prediction. 

The paper still has some limitations. For instance, the scope of the study is confined to influenza 
forecasting in the southern region of China, and the prediction performance in other regions has not 
undergone sufficient in-depth research. Further validation and expansion are necessary in this regard. 
In reality, there might be cases of cross-infection and mutual influence among different diseases. ILI% 
data could be affected by these underlying factors. Therefore, when conducting influenza prediction, 
it is crucial to take into account the impact of other relevant disease data to mitigate the prediction 
errors arising from multifactorial influences. In future research, further exploration can be conducted 
on how to incorporate additional disease data into the predictive model, aiming to enhance the 
accuracy of influenza trend prediction and further improve the reliability and applicability of the 
predictive model. Furthermore, the exploration of more advanced machine learning techniques and 
data analysis methods will be pursued to optimize the performance of the influenza prediction model. 
By introducing new technological approaches, there is a potential to further enhance the predictive 
capabilities of the model across various regions, offering more forward-looking and practical 
solutions for research and practical applications in the field of influenza prediction. 
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