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Abstract: In this series of papers, we study the crosscap two embedding of a class of multipartite
graphs, namely, annihilating-ideal graphs of a lattice. In Part 1 of the series [Class of crosscap two
graphs arising from lattices-I, Mathematics, 11 (2023), 1–26], we classified lattices with the number
of atoms less than or equal to 4, whose annihilating-ideal graph can be embedded in the Klein bottle.
In this paper, which is Part 2 of the series, we classify all finite lattices with at least 5 atoms whose
annihilating-ideal graph is embedded in crosscap two surfaces. These characterizations help us to
identify classes of multipartite graphs, which are embedded in the Klein bottle.

Keywords: atom of a lattice; multipartite graphs; Klein bottle; crosscap; annihilating-ideal graph
Mathematics Subject Classification: Primary: 05C75, 05C10, 05C25; Secondary: 06A07, 06B99

1. Introduction

Let L be a finite lattice with a least element 0 and A(L) be the set of all atoms. Before reading the
paper, to familiarize with the notation and concepts used here, we strongly recommend the readers to
read the first part of this work [3]. The annihilating-ideal graph of a lattice L, denoted by AG(L), and
defined by the graph whose vertex set is the set of all non-trivial ideals of L and two distinct vertices I
and J being adjacent if and only if I ∧ J = 0, which was introduced by Afkhami et al. [1]. Note that
the graph AG(L) is an r-partite graph for some r ∈ N.

One of the most important topological properties of a graph is its genus. The genus of graphs
associated with algebraic structures has been studied by many authors, see [2, 4, 5, 11]. The planar
and crosscap one annihilating-ideal graph of lattices were characterized by Shahsavar [13] and
Parsapour et al. [10], respectively. Also, whether the line graph associated with the annihilating-ideal
graph of a lattice is planar or projective was characterized by Parsapour et al. [12]. Moreover, the
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authors of [9] characterized all lattices L whose line graph of AG(L) is toroidal. Recently, Asir et
al. [3], provided the classification of lattices with the number of atoms less than or equal to 4 whose
annihilating-ideal graph can be embedded in the non-orientable surface of crosscap two.

Note that a graph is planar if and only if it does not contain either of two forbidden graphs K5

and K3,3. An analogous characterization for embeddings of graphs on surfaces is known for the
projective plane, which has 103 forbidden subgraphs, see [6]. For surfaces in general, it is known
that the set of forbidden minors is finite and an explicit upper bound can be given, see [14]. In this
paper, we have identified a class of minimal r-partite graphs that are not crosscap two graphs. So, these
graphs may be realized as forbidden subgraphs for crosscap two.

The aim of this paper is to find the lattices with at least 5 atoms whose annihilating-ideal graph has
non-orientable genus two embedding. This lead to the addition of r-partite graphs, where r ≥ 5, to
the family of crosscap two graphs. First of all, we observe that, by Proposition 3.3 [3], |A(L)| ≤ 6
whenever the crosscap of AG(L) is two. Therefore, the lattices under consideration has either 5 or 6
atoms, and the corresponding classifications are done in Theorems 2.2 and 3.1. The reader can find an
interesting connection between AG(L) and multipartite graphs in Examples 2.1 and 3.1.

Before moving into our main results, we have collected the crosscap lower bound of some graphs
which will be used in the subsequent sections. In what follows, the notations K4− e and K4,5− e denote
graphs with an arbitrary edge removed from K4 and K4,5 respectively. Also, K8 − 3e denotes a graph
with three arbitrary edges removed from K8. Moreover, K6,3 ∪ (K4 − e), denotes a graph, that includes
the vertices and edges of K6,3 with partition (X,Y), |X| = 6, as well as the edges of K4 − e, a subgraph
induced by any 4 arbitrary vertices in the partition X.

Proposition 1.1. Let G be a graph.

(i) [3, Proof of Theorem 3] If G is isomorphic to K6,3 ∪ (K4 − e) or K4,5 − e, then γ̃(G) ≥ 3.

(ii) If G is isomorphic to K8 − 3e or K2,2,2,2, then γ̃(G) ≥ 3.

Proof. (ii) The non-embeddability of K8−3e in the Klein bottle directly follows from Euler’s polyhedral
equation. The non-embeddability of K2,2,2,2 in the Klein bottle is a straightforward consequence of the
characterization [8] of the graphs that triangulate both the torus and Klein bottle; note that it is well-
known that K2,2,2,2 triangulates the torus, see [7]. □

Let us directly move on to the lattices with 5 atoms.

2. The case when |A(L)| = 5

Before going into the characterization of crosscap two AG(L) for number of atoms of size 5,
we rectify missing cases in projective characterization given in [10]. In particular, the authors have
not discussed the sets of the form Ui jk for 1 ≤ i , j , k ≤ 5 in Theorem 2.7. To be precise, let
|
⋃5

n=1 Un| = 5. From the proof of Theorem 2.7(i) [10], the following two possibilities should be
considered.

Case 1. |Ui j| = 2 for unique 1 ≤ i , j ≤ 5. Then, Theorem 2.7(i) of [10] says that AG(L) is
projective whenever |

⋃
k,i, j

(Uik∪U jk)| ≤ 2 with |Uik|, |U jk| ≤ 1. But consider any one of U(i j)c ,U(ik)c ,U( jk)c

as non-empty. More generally, let us assume U(pq)c , ∅ for some Upq , ∅ with 1 ≤ p, q ≤ 5. Then
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the sets X = Ui ∪ U j ∪ Ui j ∪ {[Ipq, I(pq)c]} and Y =
⋃

k,i, j
Uk form K5,3 in AG(L) and so γ̃(AG(L)) ≥ 2.

Therefore, U(pq)c = ∅ whenever Upq , ∅.
Case 2. For some fixed i, |

⋃5
j=1 Ui j| ≤ 3, |Ui j| ≤ 1 and |Ukℓ| ≤ 1 for at most one pair k, ℓ with

1 ≤ i , j , k , ℓ ≤ 5 such that every vertex of Ukℓ is adjacent to a maximum of one vertex from⋃5
j=1 Ui j.
If |U(pq)c | ≥ 2 for some Upq , ∅ and 1 ≤ p, q ≤ 5, then the sets X = Up∪Uq∪Upq and Y =

⋃
r,p,q

Ur ∪

U(pq)c form K3,5 in AG(L), a contradiction. Also if |U(pq)c |, |U(p1q1)c | = 1 for some |Upq|, |Up1q1 | , ∅ and
1 ≤ p, q, p1, q1 ≤ 5, then the sets X = Up ∪ Uq ∪ Upq ∪ {[Ip1q1 , I(p1q1)c]} and Y =

⋃
r,p,q

Ur ∪ U(pq)c form

K4,4 − e which has crosscap two, a contradiction. Therefore, |
⋃

U(pq)c | ≤ 1, where the union is taken
over all Upq , ∅.

Suppose |Ukℓ| = 1 for some 1 ≤ k, ℓ ≤ 5 with a vertex in Ukℓ adjacent to exactly one vertex of⋃5
j=1 Ui j, say a vertex in Ui j. We now claim that

⋃
U(pq)c = ∅, where the union is taken over all

Upq , ∅. In order to prove the claim, when either U(i j)c , ∅ or U(kℓ)c , ∅, let us take U(i j)c , ∅, then
X = Ui∪U j∪Ui j and Y =

⋃
m,i, j

Um∪Ukℓ∪U(i j)c form K3,5. Further, if U(i j′)c , ∅ for some 1 ≤ j′ , j ≤ 5,

then, X = Ui ∪ U j ∪ Ui j ∪ [Ii j′ , I(i j′)c] and Y =
⋃

m,i, j
Um ∪ Ukℓ form K4,4 − e. Thus,

⋃
U(pq)c = ∅.

Based on the addition of above mentioned cases in projective characterization, we can summarize
it as follows.

Theorem 2.1. Let L be a lattice with |A(L)| = 5 and let |
⋃5

n=1 Un| = 5. Then, γ̃(AG(L)) = 1 if and
only if |Ui j| ≤ 2 for all 1 ≤ i , j ≤ 5 and one of the following conditions hold:

(i) There is a unique Ui j such that |Ui j| = 2 with Ui′ j′ ,U(i j)c = ∅ for i′, j′ ∈

{1, . . . , 5} \ {i, j}, |
⋃

p∈{i, j};q<{i, j}
Upq| ≤ 2 and

⋃
Upq,∅

U(pq)c = ∅. Moreover, if

Up1q1 ,Up2q2 , ∅, then {p1, q1} ∩ {p2, q2} , ∅.

(ii) |Ui j| ≤ 1 for all 1 ≤ i , j ≤ 5. For some fixed i ∈ {1, . . . , 5}, |
⋃5

j=1 Ui j| ≤ 3, atmost one of the
sets Ukℓ such that |Ukℓ| = 1, where 1 ≤ i , k , ℓ ≤ 5 and |

⋃
Upq,∅

U(pq)c | ≤ 1. Moreover, if Ukℓ has

a vertex, then it is adjacent to atmost one vertex in
⋃5

j=1 Ui j and if such adjacency exists, then⋃
Upq,∅

U(pq)c = ∅.

We are now in a position to state and prove the main result of this section.

Theorem 2.2. Let L be a lattice with |A(L)| = 5 and let 1 ≤ i , j , k , l , m ≤ 5. Then,
γ̃(AG(L)) = 2 if and only if one of the following conditions hold:

(i) |
⋃5

n=1 Un| = 8, there exists Ui with |Ui| = 4 and Upq = U jkl = U jklm = ∅ for all 1 ≤ p , q ≤ 5.

(ii) |
⋃5

n=1 Un| = 7, one of the following cases is satisfied:

[a] There exists Ui such that |Ui| = 3 with |
⋃
j,i

Ui j| ≤ 2 and |
⋃

k,ℓ,m,n,i
Ukℓ ∪ Ukℓm ∪ Ukℓmn| ≤ 1.

Moreover, if |
⋃

k,ℓ,m,n,i
Ukℓ ∪ Ukℓm ∪ Ukℓmn| = 1, then

⋃
j,i

Ui j = ∅ and if
⋃

k,ℓ,m,n,i
Ukℓ ∪ Ukℓm ∪ Ukℓmn = ∅,

then |
⋃
j,i

Ui j| ∈ {1, 2}.
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[b] There exist Ui and U j such that |Ui| = |U j| = 2 with |
⋃

k,ℓ<{i, j}
Ukℓ| ≤ 1. Moreover:

[b1] If |
⋃

k,ℓ<{i, j}
Ukℓ| = 1, then

⋃
m=i, j;pq,i j

(Umn ∪ Upqr) ∪ U(i j)c ∪ Ui j ∪ U(i)c ∪ U( j)c = ∅.

[b2] If
⋃

k,ℓ<{i, j}
Ukℓ = ∅, then |

⋃
m=i, j;mn,i j

Umn ∪ U(i j)c | ≤ 1. Also, if |
⋃

m=i, j;mn,i j
Umn ∪ U(i j)c | = 1,

then |Ui j| ≤ 1 and
⋃

pq,i j;pqr,(i j)c
Upqr ∪ U(i)c ∪ U( j)c = ∅. Moreover, if

⋃
m=i, j;mn,i j

Umn ∪ U(i j)c = ∅, then

|Ui j| ≤ 2. In addition, if |Ui j| = 2, then
⋃

pq,i j;pqr,(i j)c
Upqr ∪ U(i)c ∪ U( j)c = ∅ and if |Ui j| ≤ 1, then

|
⋃

p=i, j;pq,i j
Upqr| ≤ 2 together with |Upqr| ≤ 1, and either

⋃
p=i;q, j

Upqr ∪U( j)c = ∅ or
⋃
p= j

Upqr ∪U(i)c = ∅.

(iii) |
⋃5

n=1 Un| = 6. There exists Ui such that |Ui| = 2 with |
⋃
j,k,i

U jk| ≤ 2 and U j′k′ = ∅ when U jk , ∅ for

all j′, k′ < { j, k}. Moreover:

[a] There is U jk such that |U jk| = 2 for j, k , i with
⋃
ℓ<{ j,k}

Uiℓ = ∅, |
⋃

m∈{ j,k};p,q,r,i
(Uim ∪ Upqr)| ≤ 2

in which |Uim|, |Upqr| ≤ 1 and U(st)c = ∅ if Ust , ∅ for all 1 ≤ s , t ≤ 5.

[b] There exist U jk,U j1k1 such that |U jk| = |U j1k1 | = 1 where j, k, j1, k1 , i and |{ j, k}∩{ j1, k1}| =

1 with
⋃

ℓ<{ j,k}∩{ j1,k1}

Uiℓ = ∅, |
⋃

m={ j,k}∩{ j1,k1};p,q,r,i
(Uim∪Upqr)| ≤ 2 in which |Uim|, |Upqr| ≤ 1 and U(st)c = ∅

if Ust , ∅ for all 1 ≤ s , t ≤ 5.

[c] There is a unique U jk such that |U jk| = 1 for all j, k , i with |
⋃
ℓ<{ j,k}

Uiℓ ∪ U( jk)c | ≤ 1. Also,

if |
⋃
ℓ<{ j,k}

Uiℓ ∪ U( jk)c | = 1, then |
⋃

m∈{ j,k}
Uim| ≤ 2 in which each |Uim| ≤ 1 and

⋃
p,q,r,s,i

Upqr ∪ Upqrs = ∅.

Furthermore, one of the following is satisfied in the case of
⋃
ℓ<{ j,k}

Uiℓ ∪ U( jk)c = ∅:

[c1] If |
⋃

m∈{ j,k}
Uim| = 3 or 4, then exactly one of the sets Uim, for m = j, k, has more than one

element and
⋃

p,q,r,s,i
Upqr ∪ Upqrs = ∅.

[c2] If |Uim| = 2 and Uim′ = ∅ for m , m′ ∈ { j, k}, then U(im)c = ∅ and |
⋃

p,q,r,i
Upqr| ≤ 1. Also,

Upqrs = ∅ for p, q, r, s , i whenever |
⋃

p,q,r,i
Upqr| = 1.

[c3] If |
⋃

m∈{ j,k}
Uim| ≤ 2 in which each |Uim| ≤ 1, then U(im)c = ∅ and 1 ≤ |

⋃
m∈{ j,k};p,q,r,i

(Uim ∪

Upqr)| ≤ 3. Also, Upqrs = ∅ for p, q, r, s , i whenever |
⋃

m∈{ j,k};p,q,r,i
(Uim ∪ Upqr)| = 3 together with

|
⋃

p,q,r,i
Upqr| = 2.

[d]
⋃
j,k,i

U jk = ∅ and |
⋃
m,i

Uim| ≤ 4 in which |Uim| ≤ 3. Also, if two of Uim’s has 2 elements, then⋃
p,q,r,s,i

Upqr ∪ Upqrs = ∅, and if exactly one set Uim has more than 1 element, then |
⋃

p,q,r,i
Upqr| ≤ 1

together with
⋃

Uim,∅
U(im)c = ∅. Furthermore, one of the following is satisfied in case of |Uim| ≤ 1

for all m , i:

[d1] If |
⋃
m,i

Uim| = 4, then
⋃

Uim,∅
U(im)c = ∅.

[d2] If |
⋃
m,i

Uim| ≤ 3, then |
⋃

Uim,∅
U(im)c | ≤ 1. Also, if |

⋃
Uim,∅

U(im)c | = 1, then
⋃

p,i,pqr,(im)c
Upqr = ∅.
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If
⋃

Uim,∅
U(im)c = ∅, then |

⋃
p,q,r,i;pqr,(im)c

Upqr| ≤ 2 whenever |
⋃
m,i

Uim| = 3, and 2 ≤ |
⋃

p,q,r,i;pqr,(im)c
Upqr| ≤

4 with atmost one |Upqr| ∈ {2, 3} whenever |
⋃
m,i

Uim| ≤ 2. Further, in the last part, if

|
⋃

p,q,r,i;pqr,(im)c
Upqr| = 2, then exactly one non-empty set exists in the collection {Upqr : p, q, r ,

i; pqr , (im)c}.

(iv) |
⋃5

n=1 Un| = 5 and one of the following cases is satisfied:

[a] There is a Ui j such that |Ui j| = 4,
⋃

ℓ,m<{i, j}
Uℓm ∪ U(i j)c = ∅, |

⋃
p∈{i, j};q<{i, j}

Upq| ≤ 2 in which

|Upq| ≤ 1 and Up′q′ ,U(pq)c = ∅ when |Upq| = 1 where p′, q′ < {p, q}.

[b] There is a Ui j such that |Ui j| = 3,
⋃

ℓ,m<{i, j}
Uℓm ∪ U(i j)c = ∅, |

⋃
p∈{i, j};q<{i, j}

Upq| ≤ 3, where

the choice i or j for p is placed at most two times in the union, in which at most one of Upq’s
has two elements and |

⋃
Upq,∅

U(pq)c | ≤ 1. Further, if |Upq| = 2 for some p ∈ {i, j}; q < {i, j}, then⋃
p′,q′<{p,q}

Up′q′ ∪
⋃

Upq,∅
U(pq)c = ∅, and if |

⋃
p∈{i, j};q<{i, j}

Upq| = 3 with |Upq| ≤ 1, then the three choices for

q is not distinct. Moreover, if |
⋃

Upq,∅
U(pq)c | = 1, then |

⋃
p∈{i, j};q<{i, j}

Upq| ≤ 2 with the choice for two

pairs of p, q’s are not mutually disjoint.

[c] There is a Ui j such that |Ui j| = 2 with |
⋃

ℓ,m<{i, j}
Uℓm ∪ U(i j)c | ≤ 1. Further, if |

⋃
ℓ,m<{i, j}

Uℓm ∪

U(i j)c | = 1, then |
⋃

p∈{i, j};q<{i, j}
Upq| ≤ 2 with |Upq| ≤ 1 and Up′q′ ,U(pq)c = ∅ when |Upq| = 1, where

p′, q′ < {p, q}. Moreover, if
⋃

ℓ,m<{i, j}
Uℓm ∪ U(i j)c = ∅, then 2 ≤ |

⋃
p∈{i, j};q<{i, j}

Upq| ≤ 4 in which at most

one of the sets Upq has two elements, where the choice i or j for p is placed at most once in the
union, and one of the following is satisfied:

[c1] If |Urs| = 2 for some r ∈ {i, j}, s < {i, j}, then
⋃

Upq,∅
U(pq)c = ∅ and at most one of the sets

Utu is non-empty with the property that {r, s} ∩ {t, u} = ∅.

[c2] If |Upq| ≤ 1 for all p ∈ {i, j}, q < {i, j}, then |
⋃

Upq,∅
U(pq)c | ≤ 1. Also, if |U(pq)c | = 1 for

some |Upq| = 1, then every non-empty set Urs should have the property that {r, s} ∩ {p, q} , ∅.

[d] |Ui j| ≤ 1 for all 1 ≤ i , j ≤ 5.

[d1] If |
⋃

1≤p,q≤5
Upq| = 5, then

⋃
Upq,∅

U(pq)c = ∅, and at least one of the sets Up1q1 ,Up2q2 ,Up3q3

or Up4q4 must be empty whenever the indices satisfy the condition {p1, q1} ∩ {p2, q2} = ∅ and
{p3, q3} ∩ {p4, q4} = ∅.

[d2] If |
⋃

1≤p,q≤5
Upq| = 4, then |

⋃
Upq,∅

U(pq)c | ≤ 1. Moreover, if
⋃

Upq,∅
U(pq)c = ∅, then the

subgraph induced by the set
⋃

1≤p,q≤5
Upq has more than one edge and if |

⋃
Upq,∅

U(pq)c | = 1, say

|U(rs)c | = 1, then the vertex in Urs is adjacent to at most two vertices of
⋃

Upq,∅;pq,rs
Upq. Further, if

there is an adjacency between the vertex of Urs and a vertex of
⋃

Upq,∅;pq,rs
Upq, then the subgraph

induced by the set
⋃

Upq,∅;pq,rs
Upq is an empty graph.
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[d3] If |
⋃

1≤p,q≤5
Upq| ∈ {2, 3}, then |

⋃
Upq,∅

U(pq)c | ≤ 3. Moreover:

• If |
⋃

Upq,∅

U(pq)c | = 3, then |U(pq)c | = 3 for some 1 ≤ p , q ≤ 5 and no non-empty set Urs exist

with {r, s} ∩ {p, q} = ∅.

• Let |
⋃

Upq,∅

U(pq)c | = 2. If a unique set U(pq)c , ∅ for 1 ≤ p , q ≤ 5, then at most one non-

empty set Urs exists with {r, s}∩{p, q} = ∅. If two sets U(p1q1)c ,U(p2q2)c , ∅ for 1 ≤ p1, q1, p2, q2 ≤ 5,
then no non-empty set Urs exists with {r, s} ∩ {p f , q f } = ∅ for 1 ≤ f ≤ 2.

• If |
⋃

Upq,∅

U(pq)c | = 1, then exactly one non-empty set Urs exists with {r, s} ∩ {p, q} = ∅.

[d4] If |
⋃

1≤p,q≤5
Upq| = 1, then |

⋃
Upq,∅

U(pq)c | ∈ {2, 3}.

Proof. If |
⋃5

n=1 Un| ≥ 9, then AG(L) contains K5,4 as a subgraph so that |
⋃5

n=1 Un| ≤ 8.
Case 1. Let |

⋃5
n=1 Un| = 8. Suppose |U1| = 4. If

⋃
k,p,1

Ui j ∪ Ukℓm ∪ Upqrs , ∅ for some 1 ≤ i <

j ≤ 5, then AG(L) contains K4,5 − e and by Proposition 1.1, we have γ̃(AG(L)) ≥ 3. Therefore,⋃
k,p,1

Ui j ∪ Ukℓm ∪ Upqrs = ∅. Now the graph AG(L) (except the vertices of degree one and two) is a

subgraph of H1 (as given in [3, Figure 1(a)]) and so by [3, Lemma 3.5], we get γ̃(AG(L)) = 2. If
|U1| = 3, then the subgraph induced by the sets X = U1 ∪ U5 and Y = U2 ∪ U3 ∪ U4 contains H4 in
AG(L) and so by [3, Lemma 3.6], γ̃(AG(L)) ≥ 3. Also, if |U1| = 2, then AG(L) contains K2,2,2,2 as a
subgraph and by Proposition 1.1, γ̃(AG(L)) ≥ 3.

Case 2. Let |
⋃5

n=1 Un| = 7.
Case 2.1. Suppose |U1| = 3. If the subgraph induced by

〈
V(AG(L)) − {

⋃5
n=1 Un}

〉
has an

edge (I, J), then the vertices I1, I′1, I
′′
1 , I2, I3, I4, I5, [I, J] form K8 − 3e and so by Proposition 1.1, we

have γ̃(AG(L)) ≥ 3. Therefore each vertex of U1mn is adjacent to exactly two vertices in AG(L)
which are also adjacent. Also if I, J ∈

⋃
i,p,s,1

Ui j ∪ Upqr ∪ Ustuv, then the subgraph induced by

I1, [I′1, I], [I′′1 , J], I2, I3, I4 and I5 form K7 in AG(L), a contradiction. Thus |
⋃

i,p,s,1
Ui j ∪ Upqr ∪ Ustuv| ≤ 1

and among all the remaining sets we have to examine only those sets of the form U1k.
Let I ∈

⋃
i,p,s,1

Ui j ∪ Upqr ∪ Ustuv. If U1k , ∅ for some k , 1, then, the subgraph G21 = AG(L) −

{I, (Ik, Iℓ), (Ik, Im), (Ik, In)} contains K4,4 − e with partite sets X = U1 ∪U1k and Y = Uk ∪Uℓ ∪Um ∪Un

where ℓ,m, n ∈ {2, 3, 4, 5} \ {k} and e = (I1k, Ik). Note that any N2-embedding of K4,4 − e has one
hexagonal and six rectangular faces. Since I is adjacent to three vertices I1, I′1 and I′′1 of X, the vertex I
must be inserted into the hexagonal face of the N2-embedding of K4,4 − e. If Ik is in the hexagonal
face, then Ik is in exactly two distinct rectangular faces so that the three edges incident with Ik, namely
(Ik, Iℓ), (Ik, Im), (Ik, In), cannot be drawn without edge crossing, a contradiction. If not, I1k ∈ X must be
in the hexagonal face. Therefore, the hexagonal face does not contain all the three vertices of X namely
I1, I′1 and I′′1 . Thus, I cannot be embedded, a contradiction. Hence, U1k = ∅ for all 2 ≤ k ≤ 5.

Assume
⋃

i,p,s,1
Ui j ∪ Upqr ∪ Ustuv = ∅. Suppose |

⋃5
k=2 U1k| ≥ 3 and let I1ℓ, I1m, I1n ∈

⋃5
k=2 U1k. Then,

the subgraphAG(L)−{I1m, I1n} contains K4,4−e with partitions X = U1∪U1ℓ and Y = U2∪U3∪U4∪U5.
Clearly, any N2-embedding of K4,4 − e has one hexagonal and six rectangular faces. The vertices I1m

and I1n are adjacent to three vertices of Y in AG(L). So it requires at least two hexagonal faces in a
N2-embedding of K4,4 − e, a contradiction. Thus, |

⋃5
k=2 U1k| ≤ 2.
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Further,AG(L) is projective whenever
⋃

1≤i< j≤5
Ui j = ∅with

⋃
p,s,1

Upqr∪Ustuv = ∅. Thus, γ̃(AG(L)) = 2

if |
⋃

i,p,s,1
Ui j∪Upqr ∪Ustuv| = 1 with

⋃5
k=2 U1k = ∅ or

⋃
i,p,s,1

Ui j∪Upqr ∪Ustuv = ∅ with |
⋃5

k=2 U1k| ∈ {1, 2}.

Case 2.2. Suppose |U1| = 2. Then, |U2| must be 2.
If |Ui j| ≥ 2 for some i , 1, 2, then the contraction of AG(L) induced by the set

{I1, [I′1, Ii j], I2, [I′2, I
′
i j], I3, I4, I5} form K7. So, |Ui j| ≤ 1 for all i, j < {1, 2}.

Suppose |Ui j| = 1 for some i , 1, 2. If I ∈
⋃

k=1,2;pq,12
(Ukℓ ∪ Upqr) ∪ U(i j)c ∪ U1345 ∪ U2345, then I

is adjacent to one of I1, I2 or Ii j. The latter case, that is (I, Ii j) ∈ E(AG(L)), is not possible because〈⋃5
n=1 Un ∪ {[I, Ii j]}

〉
� K8 − 2e. Also if either (I, I1) ∈ E(AG(L)) or (I, I2) ∈ E(AG(L)), then we can

merge such an edge so that K8 − 3e is a minor subgraph of AG(L). Thus, in this case, V(AG(L)) \
{
⋃5

n=1 Un ∪ U12i ∪ U12 j} = ∅.
Suppose Ui j = ∅ for all i , 1, 2. Let I, J ∈

⋃
k=1,2;kℓ,12

Ukℓ ∪ U345. If I, J ∈ U345, then the partition

sets {I, J, I3, I4, I5} and {U1 ∪ U2} form K5,4 in AG(L). If not, we have |Ukℓ| ≥ 1 for some k ∈ {1, 2}
and kℓ , 12 so that the partition sets Uk ∪ Uℓ ∪ {I, J} and

⋃
m,k,ℓ

Um form K5,4 − e in AG(L). Thus,

|
⋃

k=1,2;kℓ,12
Ukℓ ∪ U345| ≤ 1.

Let I ∈
⋃

k=1,2;kℓ,12
Ukℓ ∪ U345.

• In the case of |U12| ≥ 2, note that I is adjacent to either the vertices of U1 or U2, say U1. Here,
the contraction of AG(L) contains K6,3 ∪ (K4 − e) with partite sets {I1, [I′1, I], I2, I′2, I12, I′12} and⋃
m,1,2

Um.

• In the case of
⋃

pq,12;pqr,345
Upqr ∪U1345 ∪U2345 , ∅, by contracting a single edge in AG(L), we get

the contraction of AG(L) contains H4.

Thus, |
⋃

k=1,2;kℓ,12
Ukℓ ∪ U345| = 1, |U12| ≤ 1 and

⋃
pq,12;pqr,345

Upqr ∪ U1345 ∪ U2345 = ∅. For this case, with

the help of Figure 1, we get γ̃(AG(L)) = 2.
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I2 b

b I2
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I ′1

| ⋃
k=1,2;pq 6=12

Ukℓ ∪ U345| = 1, |U12| ≤ 1 and
⋃

pq 6=12;pqr 6=345

Upqr ∪ U1345 ∪ U2345 = ∅.

I12

1

Figure 1. |
⋃5

n=1 Un| = 7 with |U1| = |U2| = 2.

AIMS Mathematics Volume 8, Issue 10, 24802–24824.



24809

Let
⋃

k=1,2;kℓ,12
Ukℓ ∪ U345 = ∅.

• In the case of |U12| ≥ 3, AG(L) contains K3,7 with partite sets U1 ∪ U2 ∪ U12 and U3 ∪ U4 ∪ U5.
• In the case of |U12| = 2, we have

⋃
pq,12;pqr,345

Upqr ∪ U1345 ∪ U2345 = ∅. If not, there exists some

J ∈
⋃

pq,12;pqr,345
Upqr ∪ U1345 ∪ U2345, then J is adjacent to either I1 or I2, say (J, I1) ∈ E(AG(L))

so that the contraction of AG(L) contains K6,3 ∪ (K4 − e) with partite sets {[J, I1], I′1, I2, I′2, I12, I′12}

and U3 ∪ U4 ∪ U5.
• In the case of |U12| ≤ 1:

(a) If |Upqr| ≥ 2 for pq , 12 and pqr , 345, then AG(L) contains K3,6 ∪ (K4 − e) with partite
sets Up ∪ Uq ∪ Ur ∪ Upqr and

⋃
m,p,q,r

Um. Therefore, |Upqr| ≤ 1 for pq , 12 and pqr , 345.

(b) If J ∈
⋃

p=1;q,2
Upqr ∪U1345 and K ∈

⋃
p=2

Upqr ∪U2345, then the contraction of AG(L) induced

by the set {I1, [I′1,K], I2, [I′2, J], I3, I4, I5} form K7. Therefore, either
⋃

p=1;q,2
Upqr ∪ U1345 = ∅ or⋃

p=2
Upqr ∪ U2345 = ∅.

(c) If |
⋃

p=1;q,2
Upqr| ≥ 3, that is |U134| = |U135| = |U145| = 1, then consider the subgraph

AG(L)−{I135, I145, (I1, I4), (I′1, I4), (I3, I4), (I1, I3), (I′1, I3)} which contains K5,3 with partite sets X =
U1∪U3∪U4∪U134 and Y = U2∪U5. Notice that any N2-embedding of K5,3 has one hexagonal face
and six rectangular faces. Also in AG(L), the vertex I4 is adjacent to the vertices of {I1, I′1, I3} ⊆ X
and I135 is adjacent to I4 as well as {I2, I′2} ⊆ Y . Since degK5,3(I4) = 3, three rectangular faces
cannot adopt all these edges incident with I3 together with the edges incident with I135. Therefore,
I4 must be in the hexagonal face. A similar technique also proves that I3 is a part of the hexagonal
face. To an extent, the hexagonal face can adopt the vertices I135 and I145 with its edges together
with an edge incident to either I4 or I3. We let the edge (I1, I4) be embedded in the hexagonal
face. Here the two other edges incident with I4, namely (I′1, I4) and (I3, I4) can be embedded in
two rectangle faces that contains I4. Now we have to embed two more edges incident with I3,
namely (I1, I3) and (I′1, I3) but we are left-out with only one rectangular face that contains I3, a
contradiction. Therefore, |

⋃
p=1;q,2

Upqr| ≤ 2; likewise |
⋃
p=2

Upqr| ≤ 2.

Thus, in the case of
⋃

k=1,2;kℓ,12
Ukℓ ∪ U345 = ∅, either |U12| = 2 with

⋃
pq,12;pqr,345

Upqr ∪ U1345 ∪ U2345 = ∅

or |U12| ≤ 1 with |
⋃

p=1,2;pq,12
Upqr| ≤ 2 and |Upqr| ≤ 1 together with either

⋃
p=1;q,2

Upqr ∪ U1345 = ∅ or⋃
p=2

Upqr ∪ U2345 = ∅. For all these cases, by using Figure 2, we get γ̃(AG(L)) = 2.

Thus, γ̃(AG(L)) = 2 if |
⋃

i,1,2
Ui j| = 1 with

⋃
k=1,2;pq,12

(Ukℓ ∪Upqr) ∪U(i j)c ∪U12 ∪U1345 ∪U2345 = ∅ or⋃
i,1,2

Ui j = ∅ with |
⋃

k=1,2;kℓ,12;pq,12
Ukℓ ∪ Upqr| ≤ 1. Also, if |

⋃
k=1,2;kℓ,12;pq,12

Ukℓ ∪ Upqr| = 1, then |U12| ≤ 1

and U1345 = U2345 = ∅. Moreover, if
⋃

k=1,2;kℓ,12;pq,12
Ukℓ ∪ Upqr = ∅, then |U12| ≤ 2. In addition,

U1345 = U2345 = ∅ whenever |U12| = 2 and either U1345 = ∅ or U2345 = ∅ whenever |U12| ≤ 1.
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(a)
⋃

k=1,2;kℓ6=12

Ukℓ ∪ U345 = ∅, |U12| = 2 and
⋃

Upqr = U1345 = U2345 = ∅.

I135

(b)
⋃

k=1,2;kℓ6=12

pq6=12

Ukℓ ∪ U345 = ∅, |U12| = |U135| = |U145| = 1 and U1345 6= ∅.

b
b

b

I1345
I145

1

(a) (b)

Figure 2. |
⋃5

n=1 Un| = 7 with |U1| = |U2| = 2.

Case 3. Let |
⋃5

n=1 Un| = 6. Then |U1| = 2. If |
⋃
i,1

Ui j| ≥ 3, then the graph G21 is contained

in AG(L) and so γ̃(AG(L)) ≥ 3. Therefore, |
⋃
i,1

Ui j| ≤ 2. Further, if |Ui j| = |Ukℓ| = 1 for some

{i, j} ∩ {k, ℓ} = ∅, then the graph (H4 ∪ (u1, u2))− (v2, v4) is contained in AG(L) and by [3, Lemma 3.6],
we have γ̃(AG(L)) ≥ 3. That is, E(

〈⋃
i,1 Ui j

〉
) = ∅.

Case 3.1. Assume |
⋃
i,1

Ui j| = 2. Let |Ui j| = 2 for some i , 1. If I ∈ (
⋃

k,i, j
U1k) ∪ U(i j)c , then the sets

X = Ui ∪ U j ∪ Ui j and Y = U1 ∪ Uk ∪ Uk′ ∪ I, where k′ ∈ {2, 3, 4, 5} \ {i, j, k} form K4,5 in AG(L), a
contradiction. Therefore,

⋃
k,i, j

U1k = U(i j)c = ∅.

If U1i or U1 j has two elements, say |U1i| ≥ 2, then the subgraph G22 = AG(L) −
{I1i, I′1i, (Ik, Ii), (Ik, I j), (Ik, Ii j), (Ik, I′i j)} contains K5,3 with partite sets X = Ui ∪ U j ∪ Uk ∪ Ui j and
Y = U1 ∪Uk′ , where k ∈ {2, 3, 4, 5} \ {i, j} and k′ ∈ {2, 3, 4, 5} \ {i, j, k}. Note that any N2-embedding of
K5,3 has one hexagonal, six rectangular faces and out of which three faces contains the vertex Ik because
degK5,3(Ik) = 3. Since I1i and I′1i are adjacent to I j, Ik, Ik′ in AG(L), it requires two distinct faces that
contains Ik to embed the vertices I1i and I′1i. So, after embedding I1i and I′1i in any N2-embedding of
K5,3, it may adopt at most three distinct edges with one end in Ik and another end in one of the vertices
of X. But, Ik is adjacent to {Ii, I j, Ii j, I′i j} ⊂ X, a contradiction. Thus, |U1i|, |U1 j| ≤ 1.

Suppose |U1i|, |U1 j| = 1 and
⋃
p,1

Upqr , ∅. Then, γ̃(AG(L)) ≥ 3. Suppose |U1i| = 1 and U1 j = ∅.

If U(1i)c , ∅, then the sets X = Ui ∪ U j ∪ Ui j ∪ {[I1i, I(1i)c]} and Y = U1 ∪ Um ∪ Un, where m, n ∈
{1, . . . , 5} \ {1, i, j} form K5,4 in AG(L), a contradiction. Also, if I, J ∈

⋃
p,1

Upqr, then it is not difficult to

verify that γ̃(AG(L)) ≥ 3.
Thus, γ̃(AG(L)) = 2 if

⋃
k<{i, j}

U1k = ∅, |
⋃

k∈{i, j},p,1
(U1k ∪ Upqr)| ≤ 2 with |U1k|, |Upqr| ≤ 1 and U(mn)c = ∅

if Umn , ∅ for all 1 ≤ m, n ≤ 5.
Moreover, it is not difficult to verify that the same argument is also valid for |Ui j| = |Umn| = 1 for

some i,m , 1. Since E(
〈⋃

i,1 Ui j

〉
) = ∅, let {i, j} ∩ {m, n} = ℓ. So γ̃(AG(L)) = 2 whenever

⋃
k,ℓ

U1k = ∅,

|U1ℓ| ≤ 1, |U1ℓ ∪
⋃
p,1

Upqr| ≤ 2 and U(mn)c = ∅ if Umn , ∅ for all 1 ≤ m, n ≤ 5.
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Case 3.2. Suppose |Ui j| = 1 for some unique i , 1. If I, J ∈
⋃

k,i, j
U1k ∪ U(i j)c , then the sets

X = Ui∪U j∪Ui j and Y = U1∪ I∪ J∪
⋃

k,i, j
Uk form K3,6∪ (K4− e) in AG(L) and so by Proposition 1.1,

γ̃(AG(L)) ≥ 3. Therefore, |
⋃

k,i, j
U1k ∪ U(i j)c | ≤ 1.

Case 3.2.1. Suppose I ∈
⋃

k,i, j
U1k ∪ U(i j)c . If |U1i| ≥ 2, then the graph induced by sets

X = {I1, I′1, Ii, I1i, I′1i, [Ii j, I]} and Y =
⋃

k,i, j
Uk contains a minor K6,3 ∪ (K4 − e) in AG(L) and so by

Proposition 1.1, γ̃(AG(L)) ≥ 3. Therefore, |U1i|, |U1 j| ≤ 1. Further, if J ∈ Upqr ∪Upqrs for some p , 1,
then the set {I1, [I′1, J], I2, I3, I4, I5, [Ii j, I]} form K7 in AG(L), a contradiction. For the remaining cases,
by using Figure 3(a), we have γ̃(AG(L)) = 2.

Case 3.2.2. Suppose
⋃

k,i, j
U1k ∪ U(i j)c = ∅. Let max{|U1i|, |U1 j|} = |U1i| and ℓ,m ∈ {2, 3, 4, 5} \ {i, j}.

Clearly |U1i| ≤ 3, otherwise, the sets X = U1 ∪Ui ∪U1i and Y = U j ∪Uℓ ∪Um form K7,3 in AG(L). If
|U1i| ≥ 2 and |U1 j| ≥ 2, then AG(L) − {I1 j, I′1 j, Ii j, (I j, Iℓ), (I j, I′ℓ)} contains K5,3 with X = U1 ∪ Ui ∪ U1i

and Y = U j ∪ Uℓ ∪ Um which is similar to the graph G15 (refer Case 4.2.2 of [3, Theorem 5.2]) so that
γ̃(AG(L)) ≥ 3.

Let |U1i| = 3. If I ∈
⋃
p,1

Upqr ∪ Upqrs, then the subgraph AG(L) − {Ii j, I, (I1, Ii), (I′1, Ii)} contains

K6,3 with X = U1 ∪ Ui ∪ U1i and Y = U j ∪ Uℓ ∪ Um. Note that any N2-embedding of K6,3 has only
rectangular faces. Further, in AG(L), Ii j is adjacent to I1, I′1, Iℓ, Im and I is adjacent to I1, I′1. So, to
embed the vertices Ii j and I, it requires two distinct rectangular faces that contain both I1 and I′1. Next,
to embed the edges (I1, Ii) and (I′1, Ii), it requires two more distinct rectangular faces with diagonals
I1, Ii and I′1, Ii. In such a case, one cannot construct the remaining five distinct rectangular faces by
using the existing vertices and edges, a contradiction. Therefore,

⋃
p,1

Upqr ∪Upqrs = ∅. In this case, that

is |U1i| = 3, |U1 j| ≤ 1 with
⋃
p,1

Upqr ∪ Upqrs = ∅, and by the help of Figure 3(b), we get γ̃(AG(L)) = 2.
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⋃
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U1k ∪ U(ij)c| = 1, |U1i|, |U1j| ≤ 1 and
⋃
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(a) 

Figure 3. |
⋃5

n=1 Un| = 6 with |Ui j| = 1 for i , 1.

Let |U1i| = 2. Then, U(1i)c = ∅; otherwise, the minor subgraph induced by the set
{I1, [I′1, Ii j], I2, I3, I4, I5, [I1i, I(1i)c]} form K7 in AG(L). Suppose |U1 j| = 1. If I ∈

⋃
p,1

Upqr ∪ Upqrs,

then AG(L) − {I1 j, Ii j, I, (I1, Ii), (I′1, Ii)} contains K5,3 with X = U1 ∪ Ui ∪ U1i and Y = U j ∪ Uℓ ∪ Um.
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By using the structure of the graph G15 (refer Case 4.2.2 of [3, Theorem 5.2]), we have γ̃(AG(L)) ≥ 3.
Suppose U1 j = ∅. If |

⋃
p,1;pqr,(1i)c

Upqr| ≥ 2 or
⋃

p,1;pqr,(1i)c
Upqr,U2345 , ∅, then the reader can verify that

γ̃(AG(L)) ≥ 3. Therefore, γ̃(AG(L)) = 2 whenever |U1 j| = 1 with
⋃
p,1

Upqr ∪Upqrs = ∅ or U1 j = ∅ with

|
⋃

p,1;pqr,(1i)c
Upqr| ≤ 1 and U2345 = ∅ while |

⋃
p,1;pqr,(1i)c

Upqr| = 1.

Let |U1i|, |U1 j| ≤ 1. Then, U(1i)c ,U(1 j)c = ∅ whenever U1i,U1 j , ∅. Note that by Theorem 2.8 [10],
γ̃(AG(L)) = 1 if

⋃
p,1

Upqr = ∅.

Thus, γ̃(AG(L)) = 2 if |U1i ∪ U1 j| = 2 with |
⋃

p,1;pqr,(1i)c,(1 j)c
Upqr| = 1 (or) |U1i ∪ U1 j| = 1 with

|
⋃

p,1;pqr,(1i)c,(1 j)c
Upqr| = 2, U2345 = ∅ or |

⋃
p,1;pqr,(1i)c,(1 j)c

Upqr| = 1 (or) |U1i∪U1 j| = ∅with 1 ≤ |
⋃
p,1

Upqr| ≤ 2.

Case 3.3. Suppose Ui j = ∅ for all i , 1. Then, the subgraph induced by the neighborhood set of
each vertex in U1mn for all 2 ≤ m, n ≤ 5 is an edge and so it does not play any role in determining the
value of the crosscap. If |

⋃
2≤k≤5

U1k| ≥ 5 or |U1k| ≥ 4 or |Upqr| ≥ 4 for p , 1, then K3,x where x ≥ 7 is a

subgraph of AG(L) and so γ̃(AG(L)) ≥ 3.
Case 3.3.1. Let |U1k| ∈ {2, 3}. Clearly, U(1m)c = ∅ whenever U1m , ∅ for all 2 ≤ m ≤ 5; otherwise,

K3,6 ∪ (K4 − e) is a subgraph of AG(L). If |Upqr| = 2 for p , 1, then pqr , (1k)c and so {p, q, r} ∩ {k} ,
∅. Therefore, we assume that p = k. Now the subgraph G23 = AG(L) − {(Ip, Iq), (Ip, Ir), (Ip, Iℓ)}
contains K6,4 − 4e with partite set X = Up ∪ Uq ∪ Ur ∪ Uℓ ∪ Upqr and Y = U1 ∪ U1k, where ℓ ∈
{2, 3, 4, 5}\{p, q, r}. Clearly, every face in any N2-embedding of K6,4−4e is rectangular. So to embed the
edges (Ip, Iq), (Ip, Ir) and (Ip, Iℓ), it requires three rectangular faces which contains Ip, a contradiction
to degK6,4−4e(Ip) = 2.

Suppose |U1k| = 3 for some 2 ≤ k ≤ 5. Then γ̃(AG(L)) = 2 provided |
⋃
ℓ,k

U1ℓ| ≤ 1 with U(1k)c ,U(1ℓ)c =

∅ and |
⋃

p,1,pqr,(1k)c,(1ℓ)c
Upqr| ≤ 1.

Suppose |U1k| = 2 for some 2 ≤ k ≤ 5. If |U1ℓ| = 2 for some ℓ ∈ {2, 3, 4, 5} \ k, then
|

⋃
p,1,pqr,(1k)c,(1ℓ)c

Upqr ∪ U2345| = ∅, otherwise, AG(L) contains G23. Therefore, γ̃(AG(L)) = 2 provided

|
⋃
ℓ,k

U1ℓ| ≤ 2 with U(1k)c ,U(1ℓ)c = ∅. Moreover, if |U1ℓ| = 2, then |
⋃

p,1,pqr,(1k)c,(1ℓ)c
Upqr ∪ U2345| = ∅ and if

|U1ℓ| ≤ 1, then |Upqr| ≤ 1 for all p , 1 and pqr , (1k)c, (1ℓ)c.
Case 3.3.2. Suppose |U1k| ≤ 1 for all k ∈ {2, 3, 4, 5}.
Suppose |

⋃
U1k,∅

U(1k)c | ≥ 2, say I, J ∈
⋃

U1k,∅
U(1k)c . Then, the contraction of AG(L) induced by {I1} ∪

{[I′1, I
′
(1kc)]} ∪ {[I1k, I(1k)c]} ∪

⋃
ℓ,1

Uℓ in AG(L) form K7, a contradiction. Thus |
⋃

U1k,∅
U(1k)c | ≤ 1.

Claim A: If |
⋃

2≤k≤5
U1k| = 4, then

⋃
p,1

Upqr = ∅; equivalently,
⋃

2≤k≤5
U(1k)c = ∅.

Let |
⋃

2≤k≤5
U1k| = 4. Assume on the contrary that Upqr , ∅ for some p , 1. Then

pqr = (1m)c where m ∈ {2, 3, 4, 5} \ {p, q, r}. Now the subgraph AG(L) − {I1q, I1r, I1m, (Ip, I1),
(Ip, I′1)} contains K4,4 with partite sets X = U1 ∪ Up ∪ U1p and Y = Uq ∪ Ur ∪ Um ∪ U(1m)c . Note
that each face of any N2-embedding of K4,4 is rectangular, the vertices I1q, I1r, I1m are adjacent to Ip ∈ X
and two vertices of Y , and Ip is adjacent to I1, I′1 ∈ X. So to embed the remaining three vertices and
two edges, it requires five rectangular faces which contains Ip but degK4,4(Ip) = 4, a contradiction.
Therefore, the claim holds.
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Claim B: If |
⋃

2≤k≤5
U1k| ≤ 3 and |

⋃
U1k,∅

U(1k)c | = 1, then Upqr = ∅ for all p , 1, pqr , (1k)c.

If U(1k)c , ∅ for 2 ≤ k ≤ 5 and Upqr , ∅ for p , 1 and pqr , (1k)c, then the contraction of AG(L)
induced by

〈
{I1} ∪ {[I′1, Ipqr]} ∪ {[I1k, I(1k)c]} ∪

⋃
ℓ,1 Uℓ

〉
contains K7, a contradiction.

Claim C: In case of |
⋃

2≤k≤5
U1k| ≤ 3 and

⋃
U1k,∅

U(1k)c = ∅.

Claim C1: If |
⋃

2≤k≤5
U1k| = 3, then |Upqr| ≤ 2 for p , 1, pqr , (1k)c.

Suppose
⋃

U1k,∅
U(1k)c = ∅ and |Upqr| ≥ 3 for some p , 1, pqr , (1k)c. This implies that |U1p| =

|U1q| = |U1r| = 1. Now consider the graph AG(L) − {Ir, I1p, I1q, I1r} which contains K5,3 with partite
sets X = Up ∪Uq ∪Upqr and Y = U1 ∪Uℓ where ℓ < {1, p, q, r}. Notice that any N2-embedding of K5,3

has one hexagonal face and six rectangular faces. Label the hexagonal face as F1. Now, try to embed
the left-out vertices of AG(L) into a N2-embedding of K5,3. In AG(L), Ir is adjacent to I1, I′1, Ip, Iq and
Iℓ so that Ir should be embedded into the face F1. Since I1p and I1q are adjacent to both Ir and Iℓ, we
have both I1p and I1q embedded together with Ir in F1 and further the face F1 should have the path
Ip − Iℓ − Iq. The point to remember here is the other neighbors of Ip and Iq in F1 are I1 and I′1. Also, I1r

is adjacent to Iℓ, Ip and Iq, so to embed I1r it requires a rectangular face, say F2, that contains the path
Ip− Iℓ− Iq. The point here is the fourth vertex of F2 must be either I1 or I′1. At last, since degK3,5(Ip) = 3,
there must be another rectangular face, say F3, in any N2-embedding of K5,3 that should have Ip. But,
the edge (Ip, Iℓ) is already used twice for forming the faces F1 and F2 so that the two neighbors of Ip

in F3 must be I1 and I′1. This contradicts the fact that at least one of the edges (Ip, I1) or (Ip, I′1) was
used twice in F1 and F2. Thus, the claim holds true.

Claim C2: If |
⋃

2≤k≤5
U1k| ≤ 2, then 2 ≤ |

⋃
p,1,pqr,(1k)c

Upqr| ≤ 4 with at most one |Upqr| ∈ {2, 3}. Further,

if |
⋃

p,1,pqr,(1k)c
Upqr| = 2, then there exists Upqr such that |Upqr| = 2.

First recall that if |
⋃

2≤k≤5
U1k| ∈ {1, 2},

⋃
U1k,∅

U(1k)c = ∅ and |
⋃

p,1,pqr,(1k)c
Upqr| ≤ 2 with |Upqr| ≤ 1, then by

Theorem 2.8 of [10], AG(L) is projective.

• If |Upqr| ≥ 4 for some p , 1, then AG(L) contains K7,3 with partite sets Up ∪Uq ∪Ur ∪Upqr and
U1 ∪ Um where m ∈ {2, . . . , 5} \ {p, q, r}.
• Suppose there exist two sets Up1q1r1 and Up2q2r2 from the collection {Upqr : p , 1, pqr ,

(1k)c} each having more than two elements. Clearly |{p1, q1, r1} ∩ {p2, q2, r2}| = 2. So
let us take p1 = p2 = p and q1 = q2 = q. Now, consider the graph AG(L) −
{Ipqr2 , I

′
pqr2
, (Ip, Iq), (Ip, Ir1), (Iq, Ir1), (I1, Ir2), (I

′
1, Ir2)} which is isomorphic to K5,3 with partite sets

X = Up ∪ Uq ∪ Ur1 ∪ Upqr1 and Y = U1 ∪ Ur2 . Any N2-embedding of K5,3 has one hexagonal
face and six rectangular faces. Note that Ipqr2 and I′pqr2

are adjacent to I1, I′1 and Ir1 . To embed the
vertices Ipqr2 and I′pqr2

into a N2-embedding of K5,3, we have two possibilities; (i) both Ipqr2 and
I′pqr2

together with its edges are embedded in two rectangular faces, or (ii) Ipqr2 and I′pqr2
together

with its edges are embedded in hexagonal and rectangular faces respectively.
(i) In this case, both rectangular faces must have I1, I′1 and Ir1 . Now, embedding of the edges

(Ir1 , Ip) and (Ir1 , Iq) together with the fact that degK5,3(Ir1) = 3 implies that the hexagonal face must
contain Ir1 . So, the edges either (Ir1 , I1) or (Ir1 , I1) belong to the hexagonal face, a contradiction
because it is used twice in two rectangular faces.

(ii) In this case, to embed the edges (Ip, Iq), (Ip, Ir1) and (Iq, Ir1), at least two rectangular faces
are required. Finally, to embed the edges (I1, Ir2) and (I′1, Ir2), it requires two more rectangular
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faces in which the diagonals are I1, Ir2 and I′1, Ir2 respectively. But, such a case does not exist and
so γ̃(AG(L)) ≥ 3.
• Suppose |

⋃
p,1,pqr,(1k)c

Upqr| ≥ 5. Then, the possibilities from the collection {Upqr : p , 1, pqr ,

(1k)c} are (i) one set with three elements and two singleton sets, and (ii) one set with two elements
and three singleton sets. For case (i), the graph AG(L)−{I4, I245, I345, (I2, I3)} has K5,3 with partite
sets X = U2 ∪U3 ∪U234 and Y = U1 ∪U5 which behave as a similar structure of the graph given
in Claim C1. So γ̃(AG(L)) ≥ 3. We leave it to the reader to prove γ̃(AG(L)) ≥ 3 for case (ii).

Thus, the claim holds true.
Case 4. Let |

⋃5
n=1 Un| = 5 and let max

1≤p<q≤5
|Upq| = |Ui j|. Clearly AG(L) is projective when Ui j = ∅. If

|Ui j| ≥ 5, then the sets X = Ui ∪ U j ∪ Ui j and Y =
⋃

k,i, j
Uk form K3,7 in AG(L), a contradiction.

Case 4.1. Assume that |Ui j| ∈ {3, 4}. If Uℓm , ∅ or Uℓmn , ∅ for some ℓ,m, n < {i, j}, then the sets
X = Ui ∪ U j ∪ Ui j and Y = Uℓ ∪ Um ∪ Un ∪ Uℓm ∪ Uℓmn form K5,4 in AG(L), a contradiction. So, any
non-empty two index sets Upq and three index sets Upqr must have either i or j as one of their indices.
Therefore, every vertex in Ui jk, for any k, is adjacent to exactly two vertices in AG(L), hence, these
vertices do not play any role in finding the crosscap value. Thus, we avoid the sets Ui jk for all k from
V(AG(L)). Also, if Uik,Uiℓ,Uim , ∅ for k, ℓ,m < {i, j}, then G24 = AG(L)−{Iik, Iiℓ, Iim, (Ii, I j)} contains
K5,3 with partite sets X = Ui ∪ U j ∪ Ui j and Y = Uk ∪ Uℓ ∪ Um. Notice that any N2-embedding of K5,3

has one hexagonal and six rectangular faces. Also, in AG(L), Iik is adjacent to I j, Iℓ, Im; Iiℓ is adjacent
to I j, Ik, Im and Iim is adjacent to I j, Ik, Iℓ. So to embed the vertices Iik, Iiℓ, Iim in a N2-embedding of K5,3,
it requires either one hexagon with a rectangular face or three rectangular faces which contains I j. If
Iik, Iiℓ, Iim are embedded in three rectangular faces, then since degK5,3(I j) = 3, no other face contains
I j so the edge (Ii, I j) cannot be drawn without crossing. If not, two vertices must be inserted in the
hexagonal face and the other vertex should be inserted in a rectangle face. In such cases, the third face
which contains I j does not exist because each edge occurs in exactly two faces. So γ̃(AG(L)) ≥ 3.
Therefore one of the sets Uik or Uiℓ or Uim must be empty for k, ℓ,m < {i, j}. A slight modification of
the proof would show that one of the sets U jk or U jℓ or U jm must be empty for k, ℓ,m < {i, j}.

Case 4.1.1. Suppose |Ui j| = 4. If |Upq| ≥ 2 for p ∈ {i, j} and q < {i, j}, then the subgraph
AG(L) − {Ipq, I′pq, (Ii, I j)} has a similar structure to the graph G16 (refer Case 5.1 [3, Theorem 5.2]) so
that γ̃(AG(L)) ≥ 3. Therefore, at most two sets from {Uik,Uiℓ,Uim} and two sets from {U jk,U jℓ,U jm},
where k, ℓ,m < {i, j}, may have an element.

Further, if Upq , ∅ for p ∈ {i, j} and q < {i, j}, then we claim that the set Up′q′ ∪ U(pq)c = ∅, where
p′ ∈ {i, j} \ {p} and q , q′ < {i, j}. Suppose not, I ∈ Up′q′ ∪ U(pq)c , then the graph AG(L) − {[Ipq, I]}
contains K6,3 with partite sets X = Ui ∪ U j ∪ Ui j and Y =

⋃
k,i, j

Uk. Since the merged vertex [Ipq, I] is

adjacent to all the five vertices of
⋃5

n=1 Un, it requires a face of length at least five in an N2-embedding
of K6,3. A contradiction to the fact that every face in any N2-embedding of K6,3 is a rectangle.

Thus, in the case of |Ui j| = 4, γ̃(AG(L)) = 2 provided
⋃

ℓ,m<{i, j}
Uℓm ∪ U(i j)c = ∅, |

⋃
p∈{i, j};q<{i, j}

Upq| ≤ 2, in

which |Upq| ≤ 1 and Up′q′ ,U(pq)c = ∅ when |Upq| = 1, where p′, q′ < {p, q}.
Case 4.1.2. Suppose |Ui j| = 3. In every part of the case, let k, ℓ,m ∈ {1, . . . , 5}\{i, j}. If |Upq| = 3 for

p ∈ {i, j} and q ∈ {k, ℓ,m}, then the graph AG(L)−{Ipq, I′pq, I
′′
pq, (Ip′ , Iq′), (Ip′ , Iq′′)}, where p′ ∈ {i, j} \ {p}

and distinct q′, q′′ ∈ {k, ℓ,m} \ {q}, contains a similar structure of the graph G′15 (refer Case 5.2 [3,
Theorem 5.2]) so that γ̃(AG(L)) ≥ 3. Also, if |Upq| = |Up′q′ | = 2 for distinct p, p′ ∈ {i, j} and distinct
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q, q′ ∈ {k, l,m}, then AG(L) − {Ipq, I′pq, Ip′q′ , I′p′q′ , (Ip, Ip′)} contains a similar structure of the graph G15

(refer to Case 4.2.2 [3, Theorem 5.2]) so that γ̃(AG(L)) ≥ 3. Therefore, at most one set from the
collection {Uik,Uiℓ,Uim,U jk,U jℓ,U jm} has two elements.

(i) Without loss of generality, let us take |Uik| = 2. Then, by Case 4.1, we have |Uiℓ ∪ Uim| ≤ 1 and
at most two sets from the collection {U jk,U jℓ,U jm} have an element. But, our next claims are:

Claim A: |Uiℓ ∪ Uim ∪ U jk| ≤ 1 and U jℓ ∪ U jm ∪ U(ik)c = ∅.
Suppose |Uiℓ ∪ Uim ∪ U jk| = 2. Since |Uiℓ ∪ Uim| ≤ 1 and |U jk| ≤ 1, we choose I ∈ Uiℓ ∪ Uim

and J ∈ U jk. Now the graph AG(L) − {Iik, I′ik, (Ii, I j), (I j, [I, J])} contains K6,3 with partite sets X =
Ui ∪U j ∪Ui j ∪ {[I, J]} and Y = Uk ∪Uℓ ∪Um. Note that all the faces in any N2-embedding of K6,3 are
rectangular. Since Iik and I′ik are adjacent to I j, Iℓ and Im, to embed the vertices Iik and I′ik, it requires
two distinct rectangular faces that should have the vertex I j in its boundary. Since degK6,3(I j) = 3, there
is exactly one more rectangular face containing I j, in which the two edges (I j, Ii) and (I j, [I, J]) cannot
be embedded so that γ̃(AG(L)) ≥ 3.

Suppose I ∈ U jℓ∪U jm∪U(ik)c . Then, K5,3 is a subgraph of the graph AG(L)−{Iik, I′ik, I} with partite
sets X = Ui ∪ U j ∪ Ui j and Y = Uk ∪ Uℓ ∪ Um. Note that γ̃(K5,3) = 2. Since Iik − I − I′ik is a path in
AG(L), these three vertices should be embedded into a single face of a N2-embedding of K5,3. First,
embed the path Iik − I − I′ik together with the edges (Iik, I j), (Iik, Iℓ), (Iik, Im), (I′ik, I j), (I′ik, Iℓ) and (I′ik, Im)
into a face. Then, clearly the middle vertex I of the path cannot adopt any edge incident with I, so the
edges (I, Ii) and (I, Ik) cannot be embedded. Therefore, γ̃(AG(L)) ≥ 3. Thus, the claim holds true.

Claim B: If |Uiℓ ∪ Uim ∪ U jk| = 1, say |Uiℓ| = 1, then U(iℓ)c = ∅.
If |Uiℓ| = 1 with U(iℓ)c , ∅, then just replace I by Iiℓ and J by I(iℓ)c in the proof of the case |Uiℓ ∪

Uim ∪ U jk| = 2, and we get γ̃(AG(L)) ≥ 3.
(ii) Let |Uik| = 1. Here, our claim is:
Claim C: |Uiℓ ∪ Uim ∪ U jk ∪ U jℓ ∪ U jm ∪ U(ik)c | ≤ 2, |U jℓ ∪ U jm ∪ U(ik)c | ≤ 1 and |

⋃
Upq,∅

U(pq)c | ≤ 1.

Further, if |
⋃

Upq,∅
U(pq)c | = 1, then U jℓ ∪ U jm = ∅ and |Uiℓ ∪ Uim ∪ U jk| ≤ 1.

A slight modification of the proof of Claim B would show that |U jℓ ∪ U jm ∪ U(ik)c | ≤ 1 and
|
⋃

Upq,∅
U(pq)c | ≤ 1.

Suppose |Uiℓ ∪Uim ∪U jk ∪U jℓ ∪U jm ∪U(ik)c | = 3. Since |Uiℓ ∪Uim| ≤ 1 and |U jℓ ∪U jm ∪U(ik)c | ≤ 1,
let I ∈ Uiℓ ∪Uim, J ∈ U jk and K ∈ U jℓ ∪U jm∪U(ik)c . Then the sets X = Ui∪U j∪Ui j∪ {[I, J]} ∪ {K, Iik}

and Y = Uk ∪ Uℓ ∪ Um form K7,3.
Let |

⋃
Upq,∅

U(pq)c | = 1. If U(ik)c , ∅, then clearly U jℓ ∪ U jm = ∅ and |Uiℓ ∪ Uim ∪ U jk| ≤ 1. If

Upq,U(pq)c , ∅ for pq , ik, then we have to show that pq , jℓ, jm. If not, then X = Ui ∪ U j ∪ Ui j and
Y = Uk ∪ Uℓ ∪ Um form K5,3 in the subgraph AG(L) − {Iik, [Ipq, I(pq)c]}. Note that γ̃(K5,3) = 2. Since
the vertex Iik is adjacent to the vertex [Ipq, I(pq)c], the vertices Iik and [Ipq, I(pq)c] have to be embedded
in a single face of any N2-embedding of K5,3. Here, the vertex [Ipq, I(pq)c] is adjacent to all of the five
vertices of

⋃5
n=1 Un and the vertex Iik is adjacent to exactly three vertices of

⋃5
n=1 Un. Clearly, a single

face cannot embed such eight edges onto it, a contradiction. Therefore, the claim holds true.
Thus, in the case of |Ui j| = 3, we have γ̃(AG(L)) = 2 provided

⋃
ℓ,m<{i, j}

Uℓm ∪ U(i j)c = ∅,

|
⋃

p∈{i, j};q<{i, j}
Upq| ≤ 3, where the choice i or j for p is placed at most two times in the union, in which

at most one of the sets Upq has two elements and |
⋃

Upq,∅
U(pq)c | ≤ 1. Further, if |Upq| = 2 for some

AIMS Mathematics Volume 8, Issue 10, 24802–24824.



24816

p ∈ {i, j}; q < {i, j}, then
⋃

p′,q′<{p,q}
Up′q′ ∪

⋃
Upq,∅

U(pq)c = ∅, and if |
⋃

p∈{i, j};q<{i, j}
Upq| = 3 with |Upq| ≤ 1, then

the three choices for q are not distinct. Moreover, if |
⋃

Upq,∅
U(pq)c | = 1, then |

⋃
p∈{i, j};q<{i, j}

Upq| ≤ 2 with the

choice for two pairs of p, q’s are not mutually disjoint.
Case 4.2. Assume |Ui j| = 2. If |

⋃
ℓ,m<{i, j}

Uℓm ∪ U(i j)c | ≥ 2, then the sets X = Ui ∪ U j ∪ Ui j and

Y = V(AG(L)) \ X form K4,5 in AG(L), a contradiction.
Further, if four non-empty sets exist other than Ui j in such a way that two sets of the form Uik

and two other sets of the form U jk for k , i, j are non-empty, say Uiℓ,Uim , ∅ and U jℓ,U jn , ∅

for distinct ℓ,m, n < {i, j}. Then, the sets X = {Ii, I j, Ii j, [Iiℓ, I jn]} and Y = {Iℓ, Im, In, [Iim, I jℓ]} form
(H3 ∪ (u2, u3)) − (u2, v1). Therefore, by [3, Lemma 3.6], we have γ̃(AG(L)) ≥ 3.

Case 4.2.1. Suppose |
⋃

ℓ,m<{i, j}
Uℓm ∪ U(i j)c | = 1 and let I ∈

⋃
ℓ,m<{i, j}

Uℓm ∪ U(i j)c . If |Upq| ≥ 2 for some

p ∈ {i, j} and q < {i, j}, then clearly γ̃(AG(L)) ≥ 3. Let |Upq| = 1 for some p ∈ {i, j} and q < {i, j}. If
J ∈ Up′q′ ∪ Up′q′′ for p′ ∈ {i, j} \ {p} and q′, q′′ < {i, j, q}, then the sets X = {Ii, I j, Ii j, I′i j, [Ipq, J]} and
Y = {Iq, Iq′ , Iq′′ , I} form K5,4 − e in AG(L) so that γ̃(AG(L)) ≥ 3. Further, similar verification gives us
γ̃(AG(L)) ≥ 3 whenever U(pq)c , ∅ or there exist p ∈ {i, j} such that Upq , ∅ for all q < {i, j}.

Therefore, in the case of |Ui j| = 2 with |
⋃

ℓ,m<{i, j}
Uℓm ∪ U(i j)c | = 1, γ̃(AG(L)) = 2 provided

|
⋃

p∈{i, j};q<{i, j}
Upq| ≤ 2 with |Upq| ≤ 1 and Up′q′ ,U(pq)c = ∅ when |Upq| = 1 where p′, q′ < {p, q}.

Case 4.2.2. Suppose
⋃

ℓ,m<{i, j}
Uℓm ∪ U(i j)c = ∅. If there exist p, p1 ∈ {i, j} and q, q1 < {i, j} with

pq , p1q1 such that |Upq|, |Up1q1 | = 2, thenAG(L) contains a structure of K3,8−4e and it can be verified
that γ̃(AG(L)) ≥ 3. So assume |Upq| = 2 for unique p ∈ {i, j} and q < {i, j}. If |Up′q′ ∪ Up′q′′ | > 1
for p′ ∈ {i, j} \ {p} and q′, q′′ ∈ {1, . . . , 5} \ {i, j, q}, then the sets X = Up ∪ Uq ∪ Upq and Y =
Up′ ∪ Uq′ ∪ Uq′′ ∪ Up′q′ ∪ Up′q′′ form K4,5 in AG(L), a contradiction. If |Up′q′ ∪ Up′q′′ | = 1, then
|Upq′ ∪Upq′′ ∪Up′q| ≤ 1 with Upq′ = ∅ if |Up′q′′ | = 1 and Upq′′ = ∅ if |Up′q′ | = 1 because of the facts that
no two sets of the form Uik and no two sets of the form U jk are non-empty, and the edges (Ip′q′ , Ipq′′)
and (Ip′q′′ , Ipq′) are in AG(L). Similarly, if Up′q′ ,Up′q′′ = ∅, then |Upq′ ∪ Upq′′ | ≤ 1 and |Up′q| ≤ 1.
Moreover, U(pq)c = ∅ whenever Upq , ∅.

Finally, assume |Upq| ≤ 1 for all p ∈ {i, j} and q < {i, j}. Since no two sets from Uik and no two
sets from U jk are non-empty, |

⋃
p∈{i, j};q<{i, j}

Upq| ≤ 4, where the choice i or j for p is placed at most once

in the union. If the subgraph induced by
〈 ⋃

p∈{i, j};q<{i, j}
Upq

〉
in AG(L) has an edge, then U(pq)c = ∅ for

all Upq , ∅. If not, |
⋃

p∈{i, j};q<{i, j}
U(pq)c | ≤ 1, where the union is taken over all non-empty Upq. Also, by

Theorem 2.1, AG(L) is projective whenever |
⋃

p∈{i, j};q<{i, j}
Upq| ≤ 2 with |Upq| ≤ 1 and

⋃
Upq,∅

U(pq)c = ∅.

Further, if two non-empty sets Up1q1 and Up2q2 exists in the collection {Upq : p ∈ {i, j}; q < {i, j}}, then
{p1, q1} ∩ {p2, q2} , ∅.

Therefore, in the case of |Ui j| = 2 with
⋃

ℓ,m<{i, j}
Uℓm ∪ U(i j)c = ∅, we have γ̃(AG(L)) = 2 provided

2 ≤ |
⋃

p∈{i, j};q<{i, j}
Upq| ≤ 4 in which at most one of the sets Upq has two elements, where the choice i or j

for p is placed at most once in the union. Moreover, one of the following is satisfied:
(a) If |Up f q f | = 2 for some p f ∈ {i, j}, q f < {i, j}, then

⋃
Upq,∅

U(pq)c = ∅. Further, at most one of the sets
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Upgqg is non-empty with the property that {p f , q f } ∩ {pg, qg} = ∅.
(b) If |Upq| ≤ 1 for all p ∈ {i, j}, q < {i, j}, then |

⋃
Upq,∅

U(pq)c | ≤ 1. Further, if |U(pq)c | = 1 for some

|Upq| = 1, then every non-empty set Up f ,q f should have the property that {p f , q f } ∩ {p, q} , ∅.
Case 4.3. Suppose |Ui j| = 1. If |

⋃
1≤p,q≤5

Upq| ≥ 6, then K8 − 3e is a minor of AG(L) and so by

Proposition 1.1, γ̃(AG(L)) ≥ 3. Therefore, |
⋃

1≤p,q≤5
Upq| ≤ 5.

(i) Let |
⋃

1≤p,q≤5
Upq| ∈ {4, 5}. Suppose non-empty sets Up1q1 ,Up2q2 ,Up3q3 ,Up4q4 exists which satisfies

the conditions {p1, q1} ∩ {p2, q2} = ∅ and {p3, q3} ∩ {p4, q4} = ∅. If {p1, q1} ∩ {p3, q3} = ∅ or
{p2, q2} ∩ {p4, q4} = ∅, then the vertex subset {

⋃5
n=1 Un ∪ [Ip1q1 , Ip2q2] ∪ [Ip3q3 , Ip4q4]} form K7. So,

let us take p1 ∈ {p1, q1} ∩ {p3, q3} and p2 ∈ {p2, q2} ∩ {p4, q4}. Then, the sets X = Up1 ∪ Uq1 ∪

Ut ∪ Up1q1 ∪ Up3q3 and Y = Up2 ∪ Uq2 ∪ Up2q2 ∪ Up4q4 , where t ∈ {1, . . . , 5} \ {p1, p2, q1, q2}, form
K5,4 − 4e in AG(L). Note that γ̃(K4,5 − 4e) = 2. Now it is not hard to demonstrate that the
edges (Ip1 , Iq1), (Iq1 , Ip3q3), (Ip1 , It), (Iq1 , It), (Ip1q1 , It), (Ip3q3 , It), (Ip2 , Iq2) and (Iq2 , Ip4q4) of AG(L) cannot
be embedded into any N2-embedding of K4,5 − 4e.

Also, notice that the set
⋃

Upq,∅
U(pq)c = ∅ when |

⋃
1≤p,q≤5

Upq| = 5. Otherwise, either K7 or a graph

similar to the structure of the graph G24, given in Case 4.1 of Theorem 2.2, will be a subgraph of
AG(L).

Claim A: |
⋃

Upq,∅

U(pq)c | ≤ 1 when |
⋃

1≤p,q≤5
Upq| = 4. Moreover, if

⋃
Upq,∅

U(pq)c = ∅, then the subgraph

induced by the set
⋃

1≤p,q≤5
Upq has more than one edge and if |

⋃
Upq,∅

U(pq)c | = 1, say |U(rs)c | = 1,

then the vertex in Urs is adjacent to at most two vertices of
⋃

Upq,∅;pq,rs
Upq. Further, if there is an

adjacency between the vertex of Urs and a vertex of
⋃

Upq,∅;pq,rs
Upq, then the subgraph induced by the

set
⋃

Upq,∅;pq,rs
Upq is an empty graph.

Assume that |
⋃

1≤p,q≤5
Upq| = 4. Since |Upq| ≤ 1 for all 1 ≤ p , q ≤ 5, let us take

Up1q1 ,Up2q2 ,Up3q3 ,Up4q4 , ∅.
Let |

⋃
Upq,∅

U(pq)c | ≥ 2. If |U(p1q1)c | ≥ 2, then the graph AG(L) − {
⋃

pq,p1q1

Upq, (p1, q1)} is similar to the

graph G24 (Case 4.1 of Theorem 2.2) with partite sets X = Up1 ∪Uq1 ∪Up1q1 and Y =
⋃

r,p1,q1

Ur ∪U(p1q1)c

so that γ̃(AG(L)) ≥ 3. Suppose |U(p1q1)c |, |U(p2q2)c | ≥ 1. If {p3, q3} ∩ {p4, q4} = ∅, then the graph
induced by the set {

⋃5
n=1 Un ∪ [Ip1q1 , I(p1q1)c] ∪ [Ip2q2 , I(p2q2)c] ∪ [Ip3q3 , Ip4q4]} contains K8 − 3e so that

γ̃(AG(L)) ≥ 3. Also, if {p3, q3} ∩ {p4, q4} , ∅, say p3 ∈ {p3, q3} ∩ {p4, q4}, then the sets X = Up3 ∪

Up3q3 ∪ Up4q4 ∪ {[Ip1q1 , I(p1q1)c]} ∪ {[Ip2q2 , I(p2q2)c]} and Y =
⋃

r,p3

Ur contains K5,4 − 2e in AG(L). Note

that γ̃(K5,4 − 2e) = 2 and every face in any N2-embedding of K5,4 − 2e is rectangular. Since ⟨Y⟩ = K4

and K4 cannot be embedded in N2 along with rectangular embedding, we have γ̃(AG(L)) ≥ 3.
Let |U(p1q1)c | = 1. If Ip1q1 is adjacent to all vertices of Up2q2 ∪ Up3q3 ∪ Up4q4 , then the sets X =

Up1 ∪ Uq1 ∪ Up1q1 and Y =
⋃

r,p1,q1

Ur ∪ Up2q2 ∪ Up3q3 ∪ Up4q4 ∪ U(p1q1)c form K3,7 in AG(L). Suppose

Ip1q1 is adjacent to Ip2q2 . As mentioned earlier, Ip3q3 is not adjacent to Ip4q4 . If Ip2q2 is adjacent to
either Ip3q3 or Ip4q4 , say Ip3q3 , then the set {

⋃5
n=1 Un ∪ [Ip1q1 , I(p1q1)c] ∪ [Ip2q2 , Ip3q3]} form K7. Therefore,

E
(〈

Up2q2 ∪ Up3q3 ∪ Up4q4

〉)
= ∅. Thus, the claim holds true.
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Claim B: |
⋃

Upq,∅

U(pq)c | ≤ 3 when |
⋃

1≤p,q≤5
Upq| ≤ 3.

Assume that |
⋃

1≤p,q≤5
Upq| ≤ 3. If |U(pq)c | ≥ 4 for 1 ≤ p , q ≤ 5, then

AG(L) contains K3,7 with partite sets X = Up ∪ Uq ∪ Upq and Y =
⋃

k,p,q
Uk ∪ U(pq)c . If

three sets U(p1q1)c ,U(p2q2)c ,U(p3q3)c are non-empty, then the three merged vertices [Ip f q f , I(p f q f )c],
for all 1 ≤ f ≤ 3, together with the vertices in

⋃5
n=1 Un form K8 − 3e. If |U(p1q1)c |,

|U(p2q2)c | ≥ 2, then the sets X = Up1 ∪ Uq1 ∪ Up1q1 and Y =
⋃

r,p1,q1

Ur ∪ U(p1q1)c form K3,5 which has

crosscap 2. Clearly, the path I(p2q2)c − Ip2q2 − I′(p2q2)c together with its edges, could not be embedded into
any N2-embedding of K3,5.

Claim C: [C1] If |
⋃

Upq,∅

U(pq)c | = 3, then |U(pq)c | = 3 for 1 ≤ p , q ≤ 5 and no non-empty set Urs

exists with {r, s} ∩ {p, q} = ∅.
[C2] Let |

⋃
Upq,∅

U(pq)c | ∈ {2, 1}. If there exists a unique set U(pq)c , ∅ for 1 ≤ p , q ≤ 5, then

at most one non-empty set Urs exist with {r, s} ∩ {p, q} = ∅. If two sets U(p1q1)c ,U(p2q2)c , ∅ for
1 ≤ p1, q1, p2, q2 ≤ 5 and {p1, q1}∩{p2, q2} , ∅, then no non-empty set Urs exist with {r, s}∩{p f , q f } = ∅

for 1 ≤ f ≤ 2.
The proofs of claims [C1] and [C2] are merely verifications that can be done by the reader.
Now, to determine conditions for γ̃(AG(L)) = 2 (given in the statement), we have to eliminate

projective conditions of AG(L) which was given in Theorem 2.1. □

Example 2.1. As an illustration, we consider the case (iii)[c] in Theorem 2.2. Let |U1| = 2, |Ui| = 1
for i = 2, 3, 4, 5, and |U14| = |U23| = 1. If |U12| = |U13| = 1, then the corresponding 6-partite graph,
given in Figure 4(a), is a crosscap two graph. Also, if |U2345| = 1, then the crosscap of corresponding
6-partite graph, given in Figure 4(b), is not equal to two. Moreover, the 6-partite graph G in Figure 4(b)
is minimal with respect to γ̃(G) , 2.

b

b bb

b

U2 U3U1

(a) A crosscap two 6-partite graph

U4

(b) A minimal 6-partite graph with crosscap 6= 2

U5

b

b b b b

I12 I13 I14 I23

b

b bb

b

U2 U3U1 U4 U5

b

b b b

I14 I23I2345

1

Figure 4. undefined.

3. The case when |A(L)| = 6

Finally we look into the lattice with 6 atoms. We close the paper by presenting its statement
and proof.
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Theorem 3.1. Let L be a lattice with |A(L)| = 6. Then, γ̃(AG(L)) = 2 if and only if one of the
following conditions hold:

(i) |
⋃6

n=1 Un| = 7, there is Ui such that |Ui| = 2 with
⋃

1≤p,q≤6
Upq = ∅,

⋃
j,k,ℓ,m,n,i

(U jkℓ∪U jkℓm∪U jkℓmn) = ∅

and at most three sets Uipq’s has exactly one element.

(ii) |
⋃6

n=1 Un| = 6, |
⋃

1≤i, j≤6
Ui j| ≤ 2,

⋃
Ui j,Ui jk,∅

(
U(i j)c ∪ U(i jk)c

)
= ∅ and one of the following cases is

satisfied:

[a] In case of
⋃

1≤i, j≤6
Ui j = ∅:

[a1] If there is a unique |Ui jk| = 3 for 1 ≤ i , j , k ≤ 6 or |Ui jk| = |Uℓmn| = 2 for
some i jk , ℓmn and 1 ≤ i, j, k, ℓ,m, n ≤ 6, then there exist at most eight distinct non-empty Upqr’s
(including Ui jk,Uℓmn) in which at most two distinct Upqr’s are non-empty such that the intersection
of all the sets at their indices has exactly two elements, where 1 ≤ p , q , r ≤ 6.

[a2] If there is a unique |Ui jk| = 2 for 1 ≤ i , j , k ≤ 6, then there exist at most nine distinct
non-empty Upqr’s (including Ui jk) in which at most three distinct Upqr’s are non-empty such that
the intersection of all the sets at their indices has exactly two elements, where 1 ≤ p , q , r ≤ 6.

[a3] If |Ui jk| ≤ 1 for all 1 ≤ i , j , k ≤ 6, then there exist at most ten distinct non-empty
Ui jk’s in which exactly three distinct Ui jk’s are non-empty such that the intersection of all the sets
at their indices has exactly two elements, where 1 ≤ i , j , k ≤ 6.

[b] If |Ui j| = 1 for some unique 1 ≤ i , j ≤ 6, then
⋃

{ℓ,m,n}∩{i, j}=∅
Uℓmn = ∅, and∣∣∣∣∣∣ ⋃

{ℓ,m,n}∩{i, j},∅
Uℓmn

∣∣∣∣∣∣ ≤ 6 with at most two distinct non-empty Uℓmn’s in which at most one set Uℓmn has

two elements such that the intersection of all the sets at their indices has exactly two elements.

[c] If |Ui j| = 2 for some unique 1 ≤ i , j ≤ 6, then
⋃

{ℓ,m,n}∩{i, j}=∅
Uℓmn =

⋃
1≤k≤6

Ui jk = ∅, and∣∣∣∣∣∣ ⋃
|{ℓ,m,n}∩{i, j}|=1

Uℓmn

∣∣∣∣∣∣ ≤ 4 with |Uℓmn| ≤ 1 in which at most two distinct Uℓmn’s are non-empty such

that the intersection of all the sets at their indices has exactly two elements.

[d] If |Ui j| = |Uik| = 1 for some 1 ≤ i , j , k ≤ 6, then⋃
{i}or{ j,k}⊈{ℓ,m,n}∩{i, j,k}

Uℓmn = ∅, and

∣∣∣∣∣∣ ⋃
{i}or{ j,k}⊆{ℓ,m,n}∩{i, j,k}

Uℓmn

∣∣∣∣∣∣ ≤ 5 with |Uℓmn| ≤ 1 in which at most

two distinct Uℓmn’s are non-empty such that the intersection of all the sets at their indices has
exactly two elements.

Proof. Suppose that |
⋃6

n=1 Un| ≥ 8. Then AG(L) contains K2,2,2,2 or K8 − 3e as a subgraph so that by
Proposition 1.1, we have γ̃(AG(L)) ≥ 3. Thus, |

⋃6
n=1 Un| ≤ 7.

Case 1. Let |
⋃6

n=1 Un| = 7. Then, |U1| = 2 and |U2| = . . . = |U6| = 1. Clearly, K7 − e is a subgraph
of AG(L). If I ∈

⋃
i,1

(Ui j∪Ui jk∪Ui jkℓ∪Ui jkℓm), then merge the vertices I and I1 so that K7 is a subgraph

of AG(L), a contradiction. If U1 j , ∅ for some j = 2, . . . , 6, then X = U1 ∪ U j ∪ U1 j and Y =
⋃

j′,1, j
U j′

form a subgraph H3 (refer [3, Lemma 3.6]) in AG(L) and so γ̃(AG(L)) ≥ 3. Therefore,
⋃
i, j

Ui j = ∅.
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If |U1 jk| ≥ 2 for some 2 ≤ j, k ≤ 6, then AG(L) contains K3,6 ∪ (K4 − e) as a minor, so by
Proposition 1.1 we have γ̃(AG(L)) ≥ 3. So, |U1 jk| ≤ 1 for all 2 ≤ j, k ≤ 6.

Suppose |
⋃

U1 jk| ≥ 4. Then, it is not hard to verify that K8,3 − 4e is a subgraph of AG(L) with the
partition set X ⊃ {

⋃
U1 jk ∪U1}. Further, assume that a vertex in X is adjacent to at least six vertices of

X or, two vertices in X is adjacent to at least five vertices of X. Note that any N2-embedding of K8,3−4e
has two hexagonal and seven rectangular faces. Since the maximum degree of vertices of X in K8,3−4e
is 3, at most one vertex of X may adopt 5 distinct edges from ⟨X⟩. But, ⟨X⟩ contains either a vertex of
degree 6 or two vertices of degree 5, a contradiction.

Thus, γ̃(AG(L)) = 2 whenever
⋃

k,1(Ui j ∪ Ukℓm ∪ Ukℓmn ∪ Ukℓmnp) = ∅ with at most three U1ℓm’s
having one element.

Case 2. Let |
⋃6

n=1 Un| = 6. Then |U1| = . . . = |U6| = 1. If the subgraph induced by
V(AG(L)) \ {

⋃6
n=1 Un} has an edge (I, J), then merge the vertices I and J so that the resulting vertex

is adjacent to all the vertices of
⋃6

n=1 Un. Therefore, K7 is a minor of AG(L), a contradiction. Thus,〈
V(AG(L)) \ {

⋃6
n=1 Un}

〉
is an empty graph.

If |
⋃
i, j

Ui j| ≥ 3, then the structure given for G21 is a subgraph of AG(L), so that γ̃(AG(L)) ≥ 3.

Therefore, |
⋃
i, j

Ui j| ≤ 2.

Case 2.1. Assume Ui j = ∅ for all 1 ≤ i, j ≤ 6. As mentioned earlier, we have U(i jk)c = ∅ when
Ui jk , ∅.

If |Ui jk ∪ Ui jℓ ∪ Ui jm ∪ Ui jn| ≥ 4, then the subgraph AG(L) − {(Ii, Ik), (I j, Ik), (Ik, Ii jℓ),
(Ik, Ii jm), (Ik, Ii jn)} contains K3,7 − 3e with partite sets X = Ui ∪ U j ∪ Uk ∪ Ui jk ∪ Ui jℓ ∪ Ui jm ∪ Ui jn

and Y = Uℓ ∪ Um ∪ Un (take ℓ,m, n ∈ {1, . . . , 6} \ {i, j, k} in case of ℓ,m, n does not exist in the union
of the assumption). Note that any N2-embedding of K3,7 − 3e have two hexagonal and six rectangular
faces. The edges (Ii, Ik), (I j, Ik), (Ik, Ii jℓ), (Ik, Ii jm) can be inserted without crossing in two hexagonal
faces. In such a case one cannot find a rectangular face with diagonals Ik and Ii jn and so γ̃(AG(L)) ≥ 3.

Also, if |Ui jk| ≥ 4 for some 1 ≤ i , j , k ≤ 6, then the sets X = Ui ∪U j ∪Uk ∪Ui jk and Y =
⋃
ℓ,i, j,k

Uℓ

form K7,3 in AG(L).
(i) Assume |Ui jk| = 3 for some 1 ≤ i , j , k ≤ 6. If |Uℓmn| ≥ 2 for some ℓmn , i jk,

then the the subgraph AG(L) − {Iℓmn, I′ℓmn, (Ii, I j), (Ii, Ik), (I j, Ik)} is similar to the structure of G16

(refer Case 5.1 of [3, Theorem 5.2]) so that γ̃(AG(L)) ≥ 3. If |Ui jℓ| = |Ui jm| = 1, then the
graph AG(L) − {Ii jℓ, Ii jm, (Ik, Ii), (Ik, I j)} contains K6,3 with partite sets X = Ui ∪ U j ∪ Uk ∪ Ui jk

and Y = Uℓ ∪ Um ∪ Un. Note that every face in any N2-embedding of K6,3 is rectangular, Ii jℓ is
adjacent to Ik, Im, In and Ii jm is adjacent to Ik, Iℓ, In. So, to embed the vertices Ii jℓ and Ii jm, it requires
two rectangular faces that contains Ik. Now the edges (Ik, Ii) and (Ik, I j) cannot be embedded into
a single rectangular face which has Ik, a contradiction. Similarly, we get γ̃(AG(L)) ≥ 3 whenever
|Upqr| = |Upqs| = |Upqt| = 1 for 1 ≤ p , q , r , s , t ≤ 6 with pq , i j.

(ii) Assume |Ui jk| = 2 for some 1 ≤ i , j , k ≤ 6. If |Uℓmn| = |Upqr| = 2 for ℓmn, pqr ,
i jk, then clearly γ̃(AG(L)) ≥ 3. If |Ui jℓ| = 2 with Ui jm , ∅ for 1 ≤ ℓ , m ≤ 6, then the graph
AG(L) − {(Ik, Ii), (Ik, I j), (Ik, Ii jℓ), (Ik, I′i jℓ), (Ik, Ii jm)} contains K8,3 − 3e with partite sets X = Ui ∪ U j ∪

Uk ∪Ui jk ∪Ui jℓ ∪Ui jm and Y =
⋃

n,i, j,k
Un. Note that γ̃(K8,3 − 3e) = 2, and any N2-embedding of K8,3 − 3e

have one hexagonal and nine rectangular faces. Now, to recover a N2-embedding of AG(L) from a
N2-embedding of K8,3 − 3e, we have to embed five edges in which one end is at Ik and the another end
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at a vertex of X. So it is required that Ik has to be part of at least four faces of a N2-embedding of
K8,3 − 3e, a contradiction to degK8,3−3e(Ik) = 3.

Suppose |Upqr| = 2 for pq , i j. If |Ui jℓ| = |Ui jm| = 1 for 1 ≤ ℓ , m ≤ 6, then the subgraph
AG(L)− {Ipqr, I′pqr, (Ik, Ii), (Ik, I j), (Ik, Ii jℓ), (Ik, Ii jm), (Ii, I j)} contains K3,7 − 2e with partite sets X = Ui ∪

U j ∪Uk ∪Ui jk ∪Ui jℓ ∪Ui jm and Y = Uℓ ∪Um ∪Un. Note that any N2-embedding of K3,7 − 2e have one
hexagonal and 8 rectangular faces. Clearly, each rectangular face can adopt at most one new edge and
so to embed the edges (Ik, Ii), (Ik, I j), (Ik, Ii jℓ), (Ik, Ii jm) it requires one hexagonal and two rectangular
faces which contains Ik. In addition, we have to embed the vertices Ipqr and I′pqr. Here, the vertices
Ipqr and I′pqr are adjacent to at least one of Ii or I j or Ik. If it is Ik, then clearly the edge (Ik, Ipqr) cannot
be embedded. So, let Ipqr, I′pqr be adjacent to Ii. But, Ii is used in embedding the first five edges. So,
the remaining two rectangular faces are required to embed the edges (Ii, Ipqr) and (Ii, I′pqr). In such a
case, the edge (Ii, I j) could not be embedded in N2, a contradiction. For all the remaining cases, one
can retrieve a N2-embedding of AG(L) from Figure 5.

If |Ui jk| ≤ 1 for all 1 ≤ i , j , k ≤ 6, then by eliminating the projective cases, we will get the result
as in the statement.

bb

b b

bb
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|Uijk| = |Uℓmn| = 2 for some ijk 6= ℓmn
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I123

I123
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Figure 5. |
⋃6

n=1 Un| = 6 with Ui j = ∅ for all 1 ≤ i , j ≤ 6.

Case 2.2. Assume 1 ≤ |
⋃
i, j

Ui j| ≤ 2. Let Ui j , ∅ for some 1 ≤ i , j ≤ 6. Clearly, U(i j)c = ∅ and

Upqr = ∅ for all {p, q, r} ∩ {i, j} = ∅.
Choose p and q such that {p, q} ∩ {i, j} , ∅. If Upqr1 ,Upqr2 ,Upqr3 , ∅ with r1, r2, r3 < {i, j}, then,

the subgraph AG(L) − {Ipqr2 , Ipqr3 , (Ir1 , Ip), (Ir1 , Iq), (Ir1 , Ii j)} contains K5,3 with partite sets X = Up ∪

Uq ∪ Ur1 ∪ Ui j ∪ Upqr1 and Y = Ur ∪ Ur2 ∪ Ur3 , where r < {p, q, r1, r2, r3}. Any N2-embedding of K5,3

have one hexagonal and six rectangular faces. Note that Ipqr2 , Ipqr3 are adjacent to Ir1 and two vertices
of Y . So, to embed the vertices Ipqr2 , Ipqr3 together with edges (Ir1 , Ip), (Ir1 , Iq) and (Ir1 , Ii j), it requires
a hexagon with three rectangular faces or five rectangular faces which contains Ir1 , a contradiction to
degK5,3(Ir1) = 3.

(i) Assume |Ui j| = 1 for some unique 1 ≤ i , j ≤ 6. Choose ℓ,m and n in such a way that
{ℓ,m, n} ∩ {i, j} , ∅. If |Uℓmn| ≥ 3, then AG(L) contains K3,7 as a subgraph, a contradiction. Also, if
|Uℓmn| = |Uℓ1m1n1 | = 2, then the graph AG(L) − {Iℓ1m1n1 , I

′
ℓ1m1n1

, (Ii, I j)} contains a subgraph similar to
the structure of G16 (refer Case 5.1 of [3, Theorem 5.2]) and so γ̃(AG(L)) ≥ 3. Thus, γ̃(AG(L)) = 2

whenever
⋃

{ℓ,m,n}∩{i, j}=∅
Uℓmn ∪ U(i j)c = ∅ and,

∣∣∣∣∣∣ ⋃
{ℓ,m,n}∩{i, j},∅

Uℓmn

∣∣∣∣∣∣ ≤ 6 in which at most one set Uℓmn has two
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elements with at most two distinct sets Uℓmn’s non-empty such that the intersection of all the sets at
their indices has exactly two elements.

(ii) Assume |
⋃
i, j

Ui j| = 2.

Suppose |Ui j| = 2 for 1 ≤ i , j ≤ 6. If Ui jk , ∅ for some 1 ≤ k ≤ 6, then K6,3 with partite sets
X = Ui∪U j∪Uk∪Ui j∪Ui jk and Y = Up∪Uq∪Ur, where p, q, r ∈ {1, . . . , 6}\{i, j, k}. Every face in any
N2-embedding of K6,3 is rectangular. So, to embed the edges (Ik, Ii), (Ik, I j), (Ik, Ii j), (Ik, I′i j), it requires
four rectangular faces all of which contains Ik but degK3,6(Ik) = 3, a contradiction. Thus, γ̃(AG(L)) = 2

when
⋃

{ℓ,m,n}∩{i, j}=∅
Uℓmn ∪

⋃
k

Ui jk ∪ U(i j)c = ∅, and

∣∣∣∣∣∣ ⋃
|{ℓ,m,n}∩{i, j}|=1

Uℓmn

∣∣∣∣∣∣ ≤ 4 in which |Uℓmn| ≤ 1 with at most

two distinct sets Uℓmn’s non-empty such that the intersection of all the sets at their indices has exactly
two elements.

Suppose distinct Ui j,Upq , ∅ for 1 ≤ i, j, p, q ≤ 6. Then, {i, j} ∩ {p, q} , ∅. So let |Ui j| = |Uik| = 1
for some 1 ≤ i , j , k ≤ 6. Let us take ℓ,m and n such that {ℓ,m, n} ∩ {i, j, k} contains either {i} or
{ j, k}. If |Uℓmn| ≥ 2, then the subgraph AG(L) − {Iℓmn, I′ℓmn, (Ii, I j), (Ii, Ik), (I j, Iik), (Ik, Ii j)} contains K5,3

with partite sets X = Ui ∪U j ∪Uk ∪Ui j ∪Uik and Y = Up ∪Uq ∪Ur where p, q, r ∈ {1, . . . , 6} \ {i, j, k}.
Note that Iℓmn, I′ℓmn are adjacent to three vertices of K5,3 and so to embed the vertices Iℓmn, I′ℓmn together
with edges (Ii, I j), (Ii, Ik), it requires one hexagonal and one rectangular face. Thereafter one cannot
find two rectangular faces with diagonal vertices I j, Iik and Ik, Ii j respectively. Therefore, either (I j, Iik)
or (Ik, Ii j) cannot be embedded without crossing. Therefore, γ̃(AG(L)) ≥ 3.

Thus, γ̃(AG(L)) = 2 when
⋃

{i}or{ j,k}⊈{ℓ,m,n}∩{i, j,k}
Uℓmn ∪ U(i j)c ∪ U(ik)c = ∅, and∣∣∣∣∣∣ ⋃

{i}or{ j,k}⊆{ℓ,m,n}∩{i, j,k}
Uℓmn

∣∣∣∣∣∣ ≤ 5 in which |Uℓmn| ≤ 1 with at most two distinct sets Uℓmn’s non-empty such

that the intersection of all the sets at their indices has exactly two elements. □

Example 3.1. As an illustration, we consider the case (ii)[a1] in Theorem 3.1. Let |Ui| = 1 for i =
1, . . . , 6, |U123| = |U134| = 2 and |U126| = |U145| = |U245| = 1. If |U356| = 1, then the corresponding
crosscap two 8-partite graph is given in Figure 6. Also, if |U125| = 1, then the crosscap of corresponding
8-partite graph, as in Figure 7, is not equal to two. Moreover, the 8-partite graph G in Figure 7 is
minimal with respect to γ̃(G) , 2.
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Figure 6. A crosscap two 8-partite graph.
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Figure 7. A minimal 8-partite graph with crosscap , 2.

4. Conclusions

Note that no complete set of forbidden subgraphs for the two-crosscap surface (Klein bottle) is
known yet. In this regard, an open problem will be to determine a family of graphs that has crosscap
number two. This series of papers provides a class of r-partite graphs, where 3 ≤ r ≤ 8, that (1) can
be embedded or (2) cannot be embedded in the two-crosscap surface. This was done by using the
complete classification of all lattices whose annihilating-ideal graph has crosscap number two.

For the future work, one can determine all forbidden r-partite, r ≥ 4, subgraphs for the crosscap
two surface. Also, it would be interesting to classify all lattices whose annihilating-ideal graph can be
embedded in the non-orientable surfaces of crosscap three.
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