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Abstract: In this series of papers, we study the crosscap two embedding of a class of multipartite
graphs, namely, annihilating-ideal graphs of a lattice. In Part 1 of the series [Class of crosscap two
graphs arising from lattices-1, Mathematics, 11 (2023), 1-26], we classified lattices with the number
of atoms less than or equal to 4, whose annihilating-ideal graph can be embedded in the Klein bottle.
In this paper, which is Part 2 of the series, we classify all finite lattices with at least 5 atoms whose
annihilating-ideal graph is embedded in crosscap two surfaces. These characterizations help us to
identify classes of multipartite graphs, which are embedded in the Klein bottle.
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1. Introduction

Let £ be a finite lattice with a least element 0 and A(ZL) be the set of all atoms. Before reading the
paper, to familiarize with the notation and concepts used here, we strongly recommend the readers to
read the first part of this work [3]. The annihilating-ideal graph of a lattice £, denoted by AG(ZL), and
defined by the graph whose vertex set is the set of all non-trivial ideals of £ and two distinct vertices /
and J being adjacent if and only if I A J = 0, which was introduced by Afkhami et al. [1]. Note that
the graph AG(L) is an r-partite graph for some r € N.

One of the most important topological properties of a graph is its genus. The genus of graphs
associated with algebraic structures has been studied by many authors, see [2,4,5, 11]. The planar
and crosscap one annihilating-ideal graph of lattices were characterized by Shahsavar [13] and
Parsapour et al. [10], respectively. Also, whether the line graph associated with the annihilating-ideal
graph of a lattice is planar or projective was characterized by Parsapour et al. [12]. Moreover, the
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authors of [9] characterized all lattices £ whose line graph of AG(L) is toroidal. Recently, Asir et
al. [3], provided the classification of lattices with the number of atoms less than or equal to 4 whose
annihilating-ideal graph can be embedded in the non-orientable surface of crosscap two.

Note that a graph is planar if and only if it does not contain either of two forbidden graphs K
and K33. An analogous characterization for embeddings of graphs on surfaces is known for the
projective plane, which has 103 forbidden subgraphs, see [6]. For surfaces in general, it is known
that the set of forbidden minors is finite and an explicit upper bound can be given, see [14]. In this
paper, we have identified a class of minimal r-partite graphs that are not crosscap two graphs. So, these
graphs may be realized as forbidden subgraphs for crosscap two.

The aim of this paper is to find the lattices with at least 5 atoms whose annihilating-ideal graph has
non-orientable genus two embedding. This lead to the addition of r-partite graphs, where r > 5, to
the family of crosscap two graphs. First of all, we observe that, by Proposition 3.3 [3], [A(L)| < 6
whenever the crosscap of AG(L) is two. Therefore, the lattices under consideration has either 5 or 6
atoms, and the corresponding classifications are done in Theorems 2.2 and 3.1. The reader can find an
interesting connection between AG(L) and multipartite graphs in Examples 2.1 and 3.1.

Before moving into our main results, we have collected the crosscap lower bound of some graphs
which will be used in the subsequent sections. In what follows, the notations K, — e and K, s — e denote
graphs with an arbitrary edge removed from K, and K, 5 respectively. Also, Kg — 3e denotes a graph
with three arbitrary edges removed from Kg. Moreover, K¢ 3 U (K4 — €), denotes a graph, that includes
the vertices and edges of K¢ 3 with partition (X, Y), |X| = 6, as well as the edges of K4 — e, a subgraph
induced by any 4 arbitrary vertices in the partition X.

Proposition 1.1. Let G be a graph.
(1) [3, Proof of Theorem 3] If G is isomorphic to K¢3 U (K4 — e) or K45 — e, then ¥(G) > 3.
(1) If G is isomorphic to Kg — 3e or K, 5,5, then y(G) > 3.

Proof. (ii) The non-embeddability of Ks—3e in the Klein bottle directly follows from Euler’s polyhedral
equation. The non-embeddability of K5, in the Klein bottle is a straightforward consequence of the
characterization [8] of the graphs that triangulate both the torus and Klein bottle; note that it is well-
known that K, , triangulates the torus, see [7]. O

Let us directly move on to the lattices with 5 atoms.
2. The case when |[A(L)| =5

Before going into the characterization of crosscap two AG(L) for number of atoms of size 5,
we rectify missing cases in projective characterization given in [10]. In particular, the authors have
not discussed the sets of the form U;j for 1 < i # j # k < 5 in Theorem 2.7. To be precise, let
|Ui=1 U,| = 5. From the proof of Theorem 2.7(i) [10], the following two possibilities should be
considered.

Case 1. |U;j| = 2 for unique 1 < i # j < 5. Then, Theorem 2.7(i) of [10] says that AG(L) is

projective whenever | | (Ui U U ji)| < 2 with |[Uyl, |U | < 1. But consider any one of Uy, U ixy, Uiy
k#i,j
as non-empty. More generally, let us assume U, # 0 for some U,, # 0 with 1 < p,q < 5. Then
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the sets X = U; UU; U U;; U {[lg, [ pgr]} and Y = | J Uy form K53 in AG(L) and so ¥(AG(L)) > 2.
k#i,j
Therefore, U(,, = 0 whenever U, # 0. :
Case 2. For some fixed i, |U§:1 Uijl <3,|U;|l < 1 and |Uy| < 1 for at most one pair k, £ with
1 <i+# j+# k+# ¢ <5 such that every vertex of Uy, is adjacent to a maximum of one vertex from
U1 Ui
If |Upgyl = 2 for some U, # Dand 1 < p,g < 5, thenthesets X = U,UU,UU,,andY = |J U,V

r#£p.q
U(pge form K5 in AG(L), a contradiction. Also if [Uygl, |Up )| = 1 for some |U |, |U, 4| # 0 and

1 <p,q,pi,q1 <5, thenthesets X = U, UU,UU,, U{lly4,lpqxl}andY = |J U, U U, form
r#p.q
K44 — e which has crosscap two, a contradiction. Therefore, | J U(,y| < 1, where the union is taken

overall U, # 0.

Suppose |Uy| = 1 for some 1 < k,£ < 5 with a vertex in Uy, adjacent to exactly one vertex of
U?:l U;j, say a vertex in U;;. We now claim that J U,,- = 0, where the union is taken over all
U,; # 0. In order to prove the claim, when either Ujc # 0 or Uy # 0, let us take U # 0, then
X=U,uU;uU;;andY = |J U,UUUUje form K3 5. Further, if U # 0 forsome 1 < j* # j <5,

m#i, j
then, X = U,’ U UJ' U Uij U [Iij”l(ij’)“] and Y = U Um U Uk[ form K4’4 —e. ThUS, U U(pq)f =0.
m#i, j
Based on the addition of above mentioned cases in projective characterization, we can summarize

it as follows.

Theorem 2.1. Let L be a lattice with |A(L)| = 5 and let | Uf,: LUl = 5. Then, y(AG(L)) = 1 if and
only if [Ujjl <2 forall 1 <i # j <5 and one of the following conditions hold:

(i) There is a unique U;; such that Uyl = 2 with Upp,Uspe = 0 for ', €
{L..,5y N b | U Uyl < 2 and U Upye = 0. Moreover, if
peti.jlq#li.j) Upg#0

Uqul’ UPzQz # 0, then {p1,q1} N {p2, g2} # 0.

(1) Ul £ 1 forall1 <i+# j<5. For some fixedi € {1,...,5}, |U§:1 Uil < 3, atmost one of the
sets Uye such that Uyl = 1, where 1 <i# k # € <5and| |J Uyl < 1. Moreover, if Uy, has

Upg#0
a vertex, then it is adjacent to atmost one vertex in U§:1 Ui; and if such adjacency exists, then
U Upge = 0.
Upg#0

We are now in a position to state and prove the main result of this section.

Theorem 2.2. Let L be a lattice with |A(L)| = Sandlet1 < i # j# k # 1 # m < 5. Then,

Y(AG(L)) = 2 if and only if one of the following conditions hold:
(i) U, Ual = 8, there exists U; with |U;| =4 and Upy = Ujy = Ujyyy = O forall 1 < p # g < 5.

(i) | Ufz:l U,| =1, one of the following cases is satisfied:
[a] There exists U; such that |U;| = 3 with IU.U,-jI <2and| |J Ui VY U U Upnl < 1.

J# k.L,mn#i

Moreover, if | |J Ui U Ui Y Uggnl = 1, then JU;; = 0 and if |J Ui U Uggn Y Uggun = 0,
k,Lomnti i k,Lam.ni
then |JU;;| € {1,2}.
J#i
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[b] There exist U; and U such that |U;| = |U;| = 2 with| |J Ul < 1. Moreover:

k.te{i.j)
[bl]]f| U ngl = 1, then U (Uanqur)UU(ij)cUUijUU(i)cUU(j)c = 0.
k,0¢{i,j} m=i, j;pq#ij
[b2] If U Ui = 0, then | U U U U(ij)”l < 1. Also, lfl U U, U U(ij)"l =1,
k,te{i,j} m=i, j;mn#ij m=i, j;mn#ij
then |U;;| < 1 and U 3 U,gr U Ugiye U Uje = 0. Moreover, if U U U Ugjy = 0, then
Pq#ijipgr#(ij)° m=i, j;mn#ij

\U;j| < 2. In addition, if |U;j| = 2, then U Upgr YU UUgjye = 0and if |U;j| < 1, then
Pq#L]pqr#(ij)°
| U Upyl < 2together with |U .| < 1, and either ) U,y UUjye = 0 or |JUpgr U Uy = 0.
p=j

P=LJipg#i] iy
@ii) |2, Uyl = 6. There exists U; such that |U;| = 2 with | U Upl <2and Uy = 0 when U # 0 for
all j/, k" ¢ {j,k}. Moreover: e
[a] There is Uy, such that \U | = 2 for jk # iwith |J Up=0,1 U (Ui U Uyl €2

L jk} mée{ j,k};p,q.r#i
in which |U,|,|Upgrl < 1 and Uige = 0if Uy # O forall 1 < s #1t <5.

[b] There exist Uj, Uj, suchthat |U y| = |Uj,r,| = 1 where j, k, ji1, ki # iand |{j, k}0{ji, ki}| =

1 with U Ui=0,| U (UinUUpg)l £ 2in which Uiy, |U pgrl < 1 and Ugye = 0
e jkin{ji.ki} m={j,k}N{j1.k1};p.q.r#i
ifUy, #0foralll <s+#1t<5.

[c] There is a unique U j such that |U | = 1 for all j,k # i with| |J Uy U Ul < 1. Also,

L j.k}
ifl U Ui U Ugiel = 1, then | |J Uyl < 2 in which each |Uy| < 1 and ) Upgr U Upyrs = 0.
g jk} me{j,k} DqsF>SEI
Furthermore, one of the following is satisfied in the case of |J Ui U Ugjpy = 0:
L j.k}
[c11If| U U;nl = 3 or 4, then exactly one of the sets U, for m = j, k, has more than one
me{j.k}
elementand ) U,y U Upgrs = 0.
Psq.1SEQ
(2] If Uil = 2 and U,y = 0 for m # m’ € {j, k}, then Uy = 0 and | \|J U,q| < 1. Also,
Dsq.r#Q
U,grs = 0 for p,q,r, s # i whenever | |J Up,l = 1.
Dsq-r#Q
[c31If| U Uil < 2 in which each |U,,| < 1, then Ugyye = 0 and 1 < | U (Ui U
me{j,k} me{jk};p,q.r#i
Upgr)l < 3. Also, Upyrs = 0 for p,q,r, s # i whenever | U (Uin U Upgr)| = 3 together with
me{jk};p,q.r#i
| U .qurl =2.
p,q,r:ﬁt
[d]l UUj =0and|\J Ul <4 inwhich|U;,| < 3. Also, if two of U,’s has 2 elements, then
ikt m#i
U Upgr U Upgrs = 0, and if exactly one set Uj, has more than I element, then | | U,,| <1
o4 S#L Dq,rEi
together with ) Uimye = 0. Furthermore, one of the following is satisfied in case of |U;,| <1
Uin#0
forallm # i:
[d11If|J Uil = 4, then |J Uiy = 0.
m#i Uin#0
[A2] If [U Uil < 3, then | U Ugmyel < 1. Also, if | U Ugmye|l = 1, then U Uy =0.
m#i Uim¢0 Uim¢0 piiqur¢(im)c
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If U Ugmy =0, then | U U,q4l < 2 whenever |\ JU;y| = 3, and 2 < | U Upgrl <

Uim#0 Dsq.r#i;pqr#(im)° m#i Psq,r#i;pqr#(im)°©
4 with atmost one |Up,| € {2,3} whenever |\JU;,| < 2. Further, in the last part, if
m#i
| U Uyl = 2, then exactly one non-empty set exists in the collection {U,, : p,q,r #

D-q,r £ pgr#(im)©

i; pgr # (im)}.

@v) | Uf,:1 U,| = 5 and one of the following cases is satisfied:

[a] There is a Uij such that |U,’j| = 4, U ‘U[m U U(ij)“ = 0, | ' U ‘ ‘qul < 2 in which
£,méli, j} peti,jhqéli,j}
Upgl < 1and Uy, Upgye = 0 when |U 4| = 1 where p’, q’ ¢ {p, q}.

[b] There is a U;j such that \U;jl = 3, | Um U Ugjr = 0,1 U Uyl < 3, where
t,meli,j} pelisjhiqeli,j}
the choice i or j for p is placed at most two times in the union, in which at most one of U,,’s

has two elements and | |J U,g¢| < 1. Further, if |Upy| = 2 for some p € {i, j};q ¢ {i, j}, then

P‘I¢
U UpgU U Upge =0, andif| U  Upyl =3 with|Upy| < 1, then the three choices for
P4 g} Upg#0 Peli.jhqeli.j}
q is not distinct. Moreover, if | |J Uggyel = 1, then | | Uyl < 2 with the choice for two
Upg#0 peli,jhqeli, g}

pairs of p, q’s are not mutually disjoint.

[c] There is a U;; such that |U;j| = 2 with| | Ugy U Ugje|l < 1. Further, if | U U U

tméli, j} mée{i, j}
Uijel = 1, then | y %Je{. .}qul < 2with|Upyl £ 1 and Uy g, Upge = 0 when |Upy| = 1, where
peli.jhqeli.j
D, q ¢ {p,.q}. Moreover, if |J Up UUjje =0, then2 <| |J Upyl <4 in which at most
tméli, j} peli,jhqeli,j)

one of the sets U, has two elements, where the choice i or j for p is placed at most once in the
union, and one of the following is satisfied:

[c1]If|U,| = 2 for some r € {i, j}, s & {i, j}, then |J Uy = 0 and at most one of the sets
Upg#

U, is non-empty with the property that {r, s} N {t,u} = 0.
(2] If Uyl < 1 forall p € {i, j},q ¢ {i, j}, then | \J Uyl < 1. Also, if |Upg| = 1 for
some |U,,| = 1, then every non-empty set U, should havéj ];ql;tg property that {r, s} N {p, q} # 0.
[d] |Ujjl < 1foralll <i# j<5.
[dI1If| U Upgl =35, then |J Ugpge = 0, and at least one of the sets U, 4., Up,gr Upsgs

1<p#q<5 Upg#0
or U,,,, must be empty whenever the indices satisfy the condition {pi,q:} N {p2,q.} = 0 and

{P3.q3} N {ps,qs} = 0.

(2] If | U Uyl = 4 then | \J Ugpgel < 1. Moreover, if \J Ugpge = 0, then the
1<p#4<5 Upg#0 Upg#0

subgraph induced by the set ) U,, has more than one edge and if | \J Uqgel = 1, say
1<p#g<5 Upy#0

|U(r5c| = 1, then the vertex in U, is adjacent to at most two vertices of ~ \J  U,,. Further, if
Upg#0;pg#rs

there is an adjacency between the vertex of U,,; and a vertex of )  Up,, then the subgraph

Upg#0;pg#rs

induced by the set | ) U, is an empty graph.
Upg#0;pg#rs
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(dA3]11f| U Upl€i2,3}, then| U Uggyl < 3. Moreover:

1<p#g<5 Upy#0
o If| U Uggyl = 3, then |Upq| = 3 for some 1 < p # q < 5 and no non-empty set U, exist

Upg=0

with {r, s} N {p,q} = 0.
o Let| U Ugpgyel = 2. If a unique set Upye # 0 for 1 < p # g < 5, then at most one non-

pg#0

empty set U, exists with {r, s}N{p, q} = 0. If two sets Up,qycs Uprgrye # 0for 1 < pi,q1,p2,q2 <5,
then no non-empty set U, exists with {r, s} N {ps,qs} =0 for 1 < f <2.
o If| U Uggrl = 1, then exactly one non-empty set U, exists with {r, s} N {p,q} = 0.

Pq#0

(d4]1If| U Upl =1, then |UU oU(pq)cl € {2,3}.
Pqi

1<p#g<5

Proof. If | Uf,:l U,| > 9, then AG(L) contains Ks 4 as a subgraph so that | U5 U, <8.

n=1

Case 1. Let |U,51:1 U,l = 8. Suppose |Ui| = 4. If |J U;; U Ugg U Upyrs # 0 for some 1 < i <

k,p#1
Jj <5, then AG(L) contains K45 — e and by Proposition 1.1, we have ¥(AG(L)) > 3. Therefore,

U Uij U Ugem U Upgrs = 0. Now the graph AG(L) (except the vertices of degree one and two) is a
k,p#1

subgraph of H; (as given in [3, Figure 1(a)]) and so by [3, Lemma 3.5], we get ¥(AG(L)) = 2. If
|U,| = 3, then the subgraph induced by the sets X = U; U Us and Y = U, U U3 U U, contains Hy in
AG(L) and so by [3, Lemma 3.6], ¥(AG(L)) > 3. Also, if |U,| = 2, then AG(ZL) contains K55, as a
subgraph and by Proposition 1.1, ¥(AG(L)) > 3.

Case 2. Let || J_, U, = 7.

Case 2.1. Suppose |U;| = 3. If the subgraph induced by <V(AG(£)) —{Ui:1 U,,}> has an
edge (1,J), then the vertices Iy, 1], 1}, I, I3, 14,15, [1, J] form Kg — 3e and so by Proposition 1.1, we
have y(AG(L)) > 3. Therefore each vertex of U,,, is adjacent to exactly two vertices in AG(L)
which are also adjacent. Also if I,J € (J U;; U U,y U Ugy,, then the subgraph induced by

i,p,s#l

L, (1, 10,1, J1, I, I3, 1, and Is form K7 in AG(L), a contradiction. Thus | {J U;; U Uy, U Uyl <1

i,p,s#1
and among all the remaining sets we have to examine only those sets of the form U .

Let/ € U U;jVU Uy, UUgy. If Uy # 0 for some k # 1, then, the subgraph G,; = AG(L) —

i,p,s#l
{1, (Iy, Ip), (Iy, 1), (Ix, I,)} contains K44 — e with partite sets X = Uy UUy,and Y = U, VU, U U, U U,

where {,m,n € {2,3,4,5}\ {k} and e = (I, I;). Note that any N,-embedding of K,, — e has one
hexagonal and six rectangular faces. Since / is adjacent to three vertices I, I and 7" of X, the vertex /
must be inserted into the hexagonal face of the N,-embedding of K44 — e. If I; is in the hexagonal
face, then [ is in exactly two distinct rectangular faces so that the three edges incident with 7, namely
(I, Ip), (I, 1,), (I}, I,,), cannot be drawn without edge crossing, a contradiction. If not, 7, € X must be
in the hexagonal face. Therefore, the hexagonal face does not contain all the three vertices of X namely
I}, I} and I{’. Thus, I cannot be embedded, a contradiction. Hence, U, = @ forall 2 < k < 5.

Assume |J U;; U U,y U Uy, = 0. Suppose | U,fzz Uikl = 3 and let 114, 11,,, 11, € U2:2 Uji. Then,

i,p,s#l

the subgraph AG(L)—{I,,, I,,} contains K, 4—e with partitions X = U;UU,and Y = U,UU;UU,UUs.
Clearly, any N,-embedding of K44 — e has one hexagonal and six rectangular faces. The vertices I},
and /;, are adjacent to three vertices of ¥ in AG(L). So it requires at least two hexagonal faces in a
N,-embedding of K44 — e, a contradiction. Thus, | U,fzz Uyl £ 2.
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Further, AG(L) is projective whenever |J U;; = 0with (J U, UUg,, = 0. Thus, y(AG(L)) = 2

1<i<j<5 p.s#l

if| U UjUUp YUl = 1with U, Uy =0o0r | U;jUU,, UUg, = 0 with | UL, Uil € {1,2}.

i,p,s#1 i,p,s#l

Case 2.2. Suppose |U;| = 2. Then, |U,| must be 2.

If |Uj > 2 for some i # 1,2, then the contraction of AG(L) induced by the set
{119 [Il,lij]’129 [1,711,]]5 13’149 15} form K7' SO9 |Ul]| < 1 for all 19.] ¢ {1’2}

Suppose |U;j| = 1 for some i # 1,2. If I € U (Ui U Upg) U Ugje U Uyzas U Unsys, then 1

k=1,2;pq#12

is adjacent to one of I}, I, or I;;. The latter case, that is (1, [;;) € E(AG(L)), is not possible because
<UZ:1 U, U{ll, Iij]}> ~ Kg — 2e. Also if either (I, 1)) € E(AG(L)) or (I, 1,) € E(AG(L)), then we can
merge such an edge so that Kg — 3e is a minor subgraph of AG(L). Thus, in this case, V(AG(L)) \
U U, WU U Ui} =0.

Suppose U;; = O forall i # 1,2. LetI,J € U Ui U Usgs. If I,J € Usys, then the partition
k=12:kC£12
sets {1, J, I3, 14, Is} and {U; U U,} form Ks4 in AG(L). If not, we have |Uy| > 1 for some k € {I1,2}

and k¢ # 12 so that the partition sets Uy U U, U {I,J} and |J U, form K54 — e in AG(L). Thus,

m#k,l
| U UkUUsys| < 1.
k=1.2%0£12

Let/ € U Ure U Usgs.
k=1,2;k(#12

e In the case of |Uj»| > 2, note that / is adjacent to either the vertices of U; or U,, say U,. Here,
the contraction of AG(L) contains K¢3 U (K4 — e) with partite sets {1y, [1],1], 1>, 1,15, 1{,} and
U Un.
m#1,2

e In the case of U Upgr U Uizas U Uazys # 0, by contracting a single edge in AG(L), we get
pq#12;pqr+345

the contraction of AG(L) contains Hj.

ThUS, | U ng U U345| = 1, |U12| < 1and U qur U U1345 U U2345 = (. For this case, with
k=1,2;kt+12 pq#12;pqr+345

the help of Figure 1, we get ¥(AG(L)) = 2.

Il4 Il
= AT o R
I I
1 I]
12 ]12 3
JA 7,

I v 1 I
5 I L
1 1
| Y A N — |
Il4 ]1

| U UwUUss|=1,Up| <1land U Upgr U Uszas U Uagas = 0.

k=1,2;pq#12 PqF#12;pqr#345

Figure 1. || J)_, U,| = 7 with |U,| = |U,| = 2.
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Let U ng U U345 =0.
k=12k0£12
e In the case of |Ujy| > 3, AG(L) contains K37 with partite sets Uy U U, U Uy and U3 U Uy U Us.

e In the case of |Uj;| = 2, we have U Upgr U Uizas U Uszas = 0. If not, there exists some
pq#12;pgr#345

J e U U,qr U Uizas U Ujps, then J is adjacent to either I; or I, say (J, ;) € E(AG(L))

pq#12;pqr#345
so that the contraction of AG(L) contains K¢ 3 U (K4 — e) with partite sets {[J, [,], 1], I, I}, 15, I},}

and U3 U U4 U U5.
e In the case of |Uj,| < 1:
(@) If |U 4| > 2 for pq # 12 and pgr # 345, then AG(L) contains K3 ¢ U (K4 — e) with partite
sets U,UU,UU,UUp,, and |J U,. Therefore, |U,,| <1 for pg # 12 and pgr # 345.

m#p,q,r

dIfJe U UypUUsand K € |J Uy U Ursss, then the contraction of AG(L) induced
p=l;g#2 p=2
by the set {1,,[I], K], I, [1}, ], Iz, 14, Is} form K. Therefore, either |J U,, U Ujzss = 0 or

p=1l;q#2
U Upgr U Upsss = 0.
p=2

©If| U Uyl = 3, thatis [Ujsal = |Uizs| = |Uiss| = 1, then consider the subgraph
=1;g#2
AG(L) — {Ii)35,qll45, (Il, 14), (1’ s 14), (13, 14), ([1, 13), (],, 13)} which contains K5’3 with partite sets X =
U,uU;UU,UU 34 and Y = U,UUs. Notice that any N,-embedding of K5 3 has one hexagonal face
and six rectangular faces. Also in AG(L), the vertex /4 is adjacent to the vertices of {1;, 1], I3} € X
and I35 is adjacent to I as well as {I,,I)} C Y. Since degg,,(l4) = 3, three rectangular faces
cannot adopt all these edges incident with /5 together with the edges incident with /,35. Therefore,
1, must be in the hexagonal face. A similar technique also proves that /5 is a part of the hexagonal
face. To an extent, the hexagonal face can adopt the vertices /135 and 145 with its edges together
with an edge incident to either I, or I5. We let the edge (I, I4) be embedded in the hexagonal
face. Here the two other edges incident with I, namely (7, I;) and (3, ;) can be embedded in
two rectangle faces that contains /,. Now we have to embed two more edges incident with I3,
namely (/}, I3) and (17, I3) but we are left-out with only one rectangular face that contains /5, a
contradiction. Therefore, | |J U,q| < 2; likewise ||J Upy| < 2.
p=1ig#2 p=2

ThUS, in the case of U ng U U345 = Q), either |U12| = 2 with U qur U U1345 U U2345 =0

k=1,2:kt#12 pg#12;pqr#345
or [Up|l < 1with] U Uyl < 2and |U,,| < 1 together with either |J Uy U Ujzas = 0 or
p=12;pq#12 p=Lg#2

U Upgr U Uazss = 0. For all these cases, by using Figure 2, we get y(AG(L)) = 2.
p=2
ThUS, ’;/(AG(.E)) =2 lfl U Uijl = 1 with U (ng U qur) U U(ij)" U U]2 U U1345 U U2345 =0or

i#1,2 k=1,2;pg#12
UUj=0with| U  UgUUpl <1 Also,if| U Uy UUpyl =1, then [Up| < 1
i#1,2 k=1,2;k(#12;pq#12 k=1,2:k(#12;pq#12
and U1345 = U2345 = 0. MOI‘GOVGI‘, if U ng U qu, = 0, then |U12| < 2. In addition,

k=1,2;kt#12;pg#12
U1345 = U2345 = () whenever |U12| = 2 and either U1345 =0Qor U2345 = () whenever |U12| <l.
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I L, I I
17 .
I 3
) A
1 ___[12_-__]1 I
@)
@ o HZ#QUM UUsys = 0, |Ur2| = 2 and 9 ZUPqT = Uyzas = Uggas = 0.
Y Pa£l
® k=1 QnglyﬁHUké UUsss = 0, |Urz| = [Uzs| = [Urss| = 1 and Uszas # 0.

Figure 2. || J)_, U,| = 7 with |U,| = |U| = 2.

Case 3. Let |U,Sl:1 U, = 6. Then |U,| = 2. If [JU;;| > 3, then the graph G, is contained
i#l
in AG(L) and so y(AG(L)) > 3. Therefore, || JU;j| < 2. Further, if |U;;| = |Ug| = 1 for some
i£l
{1, j}n{k, €} = 0, then the graph (H4 U (uy, u,)) — (v2, v4) is contained in AG(L) and by [3, Lemma 3.6],
we have J(AG(L)) > 3. That is, E( Uz Uy,)) = 0.
Case 3.1. Assume | JU;j| = 2. Let |U;;| = 2 forsome i # 1. If I € (|J Uyx) U Ujy, then the sets

i#l k#i,j

X=U;VU;VU;jand Y = U U U, U Up U I, where kK’ € {2,3,4,5}\ {i, j,k} form K45 in AG(L), a

contradiction. Therefore, |J Uy = Ugje = 0.
ki, j

If Uy;; or Uj; has two elements, say |U;;] > 2, then the subgraph G, = AG(L) -
{Ilialil"(lkali)’ (]kalj)’ (Ika]ij)’ ([k,I;J)} contains K5,3 with partite sets X = U; U Uj U U, U Uij and
Y =U,UUyy,where k € {2,3,4,5}\ {i, j} and k" € {2,3,4,5}\ {i, j, k}. Note that any N,-embedding of
K5 3 has one hexagonal, six rectangular faces and out of which three faces contains the vertex I; because
degg,,(I,) = 3. Since Ij; and I}, are adjacent to I}, I, I, in AG(L), it requires two distinct faces that
contains I; to embed the vertices I;; and [],. So, after embedding /,; and I{; in any N,-embedding of
K53, it may adopt at most three distinct edges with one end in /; and another end in one of the vertices
of X. But, I is adjacent to {[;, I}, I;;, I;j} C X, a contradiction. Thus, |Uy, |U,;| < 1.

Suppose |Uyil,|U;;| = 1 and |J U,y # 0. Then, y(AG(L)) > 3. Suppose |Uy;| = 1 and U;; = 0.

#1
If Ugye # 0, then the sets X :pU,- UU,;UU;Ullllyyl}and Y = U, U U, U U,, where m,n €
{I,...,5}\{1,4, j} form K54 in AG(L), a contradiction. Also, if I, J € |J Uy, then it is not difficult to

p#l
verify that y(AG(L)) > 3.
Thus, Y(AG(L)) =2if J U =0,1 U (Ui VU Uyl <2 with Ui, |1Upgl < 1 and Uy = 0

] ke{i, j} keli,j},p#1
ifU,,#0foralll <m,n <5.

Moreover, it is not difficult to verify that the same argument is also valid for |Uj;| = |U,,| = 1 for
some i,m # 1. Since E(Ujz1 Uy)) = 0, let {i, j} 1 {m.n} = €. So HAG(L)) = 2 whenever U Uy = 0,

Kt
[Uil <1, U U LQIUWI <2and Uyypye =0 if Uy, # O forall 1 <m,n <5.
P

qro
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Case 3.2. Suppose |U;j| = 1 for some unique i # 1. If I,J € |J Uy U Ugjy, then the sets

X=U;uU;uUjjandY = U, UIUJU U .Uk form K36 U (K4 —e) in AGEZ; and so by Proposition 1.1,
YAG(L)) > 3. Therefore, | | Uy U Uiyl < 1.
Case 3.2.1. Suppose klnje U Ui U Ugje. If |Uyl > 2, then the graph induced by sets
X = {I,1},1;, 1;,1},,[1;;, I1} and ];tl}: kg-Uk contains a minor K¢3 U (Ky — e) in AG(L) and so by
LJ

Proposition 1.1, ¥(AG(L)) > 3. Therefore, |Uy;|,|U;;| < 1. Further, if J € U, U U, for some p # 1,
then the set {/,, [I], J], I, I3, I4, Is, [1;;, I} form K7 in AG(ZL), a contradiction. For the remaining cases,
by using Figure 3(a), we have y(AG(L)) = 2.

Case 3.2.2. Suppose |J Ui U Ugje = 0. Let max{|Uy,|, |[Uyjl} = |Uyil and €,m € {2,3,4,5} \ {i, j}.

ki, j

Clearly |Uy;| < 3, otherwise, the sets X = U; UU; U U;and Y = U; U U, U U, form K73 in AG(L). If
Uil > 2 and |Uyj| > 2, then AG(L) — {11‘,,1{1.,1[]-, (Ij, 1), U}, 1))} contains K53 with X = U; U U; U Uy;
and Y = U; U U, U U,, which is similar to the graph G5 (refer Case 4.2.2 of [3, Theorem 5.2]) so that
YAG(L)) > 3.

Let |Uyl = 3. If I € J U,y U Uy, then the subgraph AG(L) - {I;;,1,(13, 1), (1], 1;)} contains

p#1
K¢z with X = Uy UU; UUjand Y = U; U U, U U,. Note that any N,-embedding of K¢ 3 has only

rectangular faces. Further, in AG(L), I;; is adjacent to 1,1, 1,1, and I is adjacent to I;,I]. So, to

embed the vertices /;; and I, it requires two distinct rectangular faces that contain both /; and 7. Next,

to embed the edges (I, ;) and (I}, I;), it requires two more distinct rectangular faces with diagonals

I1,I; and 17, I;. In such a case, one cannot construct the remaining five distinct rectangular faces by

using the existing vertices and edges, a contradiction. Therefore, |J U, U U s = 0. In this case, that
p#l

is |Uyl = 3, |Uyjl £ 1 with |JU,q U U,yrs = 0, and by the help of Figure 3(b), we get y(AG(L)) = 2.
p#l

I, Iy I Ii I,

< Y

7.
I3 )z L1z 3,
12

L I, Ly I, L

(b)
@ | U U UUgje| =1, |Uy|, [Ty < Tand UpgrU Upgrs = 0.
k#i,j p#l
(b) U Ulk U U(ij)“ = @, |U17| = 3, |U1j‘ S 1 and U qurU qurs: @
k#1,j p#l

Figure 3. | J_, U,| = 6 with |U;;| = 1 fori # 1.

Let Uyl = 2. Then, Uyy = 0; otherwise, the minor subgraph induced by the set
{Il’[l/’lijLIZ, 13’14’ 15, [Ili9 I(li)c]} form K7 in AG(L) Suppose |U1/| =1 1IfI € U qur U qurs’
p#l

then AG(L) - {Ilja Iij,l, (11,11'), ([,,Ii)} contains K5’3 with X = U uU; U Uy and Y = UJ' UU,UU,.
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By using the structure of the graph G5 (refer Case 4.2.2 of [3, Theorem 5.2]), we have y(AG(L)) > 3.

Suppose U;; = 0. If | U Upgrl 2 2 or U U,gr, Ursas # 0, then the reader can verify that
’ p#Lpgr#(1i)© p#Lpgr(1i)

Y(AG(L)) > 3. Therefore, ¥(AG(L)) = 2 whenever |Uy;| = 1 with (J U, U Upyrs = 0 or Uy; = O with
p#l
| U qurl <1 and U2345 = () while | U qur| =1.

p#Lipgr#(1i)° p#Llipgr#(1i)°
Let |Uyl,|Uyjl < 1. Then, Ugjye, U je = 0 whenever Uy;, Uy # 0. Note that by Theorem 2.8 [10],

FAG(L) = 1if YU,y = 0.
p*l

Thus, #(AG(L)) = 2 if |U;; U Uyl = 2 with | U Uperl = 1 (or) |Uy; U Uy | = 1 with
p#ELpgr#(1i),(1))° )
Upgrl =2, Uszys = Qor | U U,grl = 1(or) |[Uj;UU, | = 0with 1 < [JUpy| < 2.
p#ELpgr#(1i)©,(1)° p#L;pgr#(1i),(1))° p#l

Case 3.3. Suppose U;; = 0 for all i # 1. Then, the subgraph induced by the neighborhood set of
each vertex in Uy, for all 2 < m,n < 5 is an edge and so it does not play any role in determining the
value of the crosscap. If | |J Unl > 5 or |Uy| > 4 or |Upy| > 4 for p # 1, then K3, where x > 7is a
subgraph of AG(L) and sé‘ky‘(kG(L)) > 3.

Case 3.3.1. Let |Uy,| € {2,3}. Clearly, U = 0 whenever Uy, # 0 for all 2 < m < 5; otherwise,
K36 U (K4 — e) is a subgraph of AG(L). If |U,| = 2 for p # 1, then pgr # (1k)" and so {p, q, r} N {k} #
(0. Therefore, we assume that p = k. Now the subgraph G»3 = AG(L) — {(/,, 1), (), I.), I, I;)}
contains Kg4 — 4e with partite set X = U, VU, U U, VU, UU,, and Y = U, U Uy, where { €
{2,3,4,5}\{p, g, r}. Clearly, every face in any N,-embedding of K 4—4e is rectangular. So to embed the
edges (1,,1,),(I,,1,) and (I, I,), it requires three rectangular faces which contains 7, a contradiction
to deg,—4.(1,) = 2.

Suppose |U x| = 3 forsome 2 < k < 5. Then y(AG(L)) = 2 provided ||J Uy¢| < 1 with Uy, Ui =
0 and | U Upyrl < 1. .

p#Lpgre(1k)e (10)¢
Suppose |Uy| = 2 for some 2 < k < 5. If |Uy| = 2 for some ¢ € {2,3,4,5} \ k, then

| U U,qr U Uzzys| = 0, otherwise, AG(L) contains G»3. Therefore, ¥(AG(L)) = 2 provided
p#Lpgr(1k) (1)

|U Ul[l < 2 with U(lk)f, U(l[)f = 0. Moreover, if |U1g| = 2, then | U qur U U2345| = ( and if
t+k p#Lpar#(1kye,(10)¢

Uil <1, then |U,,| < 1forall p # 1 and pgr # (1k)°, (1£)°.

Case 3.3.2. Suppose |Uy| < 1 for all k € {2,3,4,5}.
Suppose | |J Ugurel = 2,say I,J € |J Ugkye. Then, the contraction of AG(L) induced by {/;} U
U #0

1k# U1x#0
{[II,I(’lk(,)]} Uik, Lare ]} U U Ur in AG(L) form K7, a contradiction. Thus | |J Uggye| < 1.
C#1 Uy #0
Claim A: If | |J Ul =4, then |J U, = 0; equivalently, |J Ugpe = 0.
2<k<5 p#l 2<k<5
Let | U Ul = 4. Assume on the contrary that U,, # 0 for some p # 1. Then

2<k<5
pqr = (Im)° where m € {2,3,4,5} \ {p,q,r}. Now the subgraph AG(L) — {5y, iy, lim. (I, 1),

(I,,I7)} contains K44 with partite sets X = Uy UU, U U, and Y = U, U U, U U, U Uge. Note
that each face of any N,-embedding of K, 4 is rectangular, the vertices /1,4, /1, I1,, are adjacentto [, € X
and two vertices of Y, and I, is adjacent to I;,/] € X. So to embed the remaining three vertices and
two edges, it requires five rectangular faces which contains I, but degg,,(I,) = 4, a contradiction.
Therefore, the claim holds.
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ClaimB: If | U Uyl <3and| U Ugurel = 1, then U,y = 0 for all p # 1, pgr # (1k)°.
2<k<5 U0
If Ugge # 0 for2 < k < 5and Uy, # 0 for p # 1 and pqr # (1k)°, then the contraction of AG(L)
induced by <{Il} U], Logr I} U s Taige 1 YU U s U[> contains K5, a contradiction.

Claim C: Incaseof | |J Uyl <3and |J Ugpe = 0.

2<k<5 Uy #0
Claim C1: If | |J Uyl = 3, then |U,,| < 2 for p # 1, pgr # (1k)°.
2<k<5
Suppose |J Uqwe = 0 and |Up,| > 3 for some p # 1,pgr # (1k)°. This implies that |U;,| =

U1x#0

Uiyl = |U1| = 1. Now consider the graph AG(L) — {1, 1,,, 114, I} which contains K53 with partite
sets X =U,UU,UUp,andY = U, U U, where € ¢ {1, p, g, r}. Notice that any N,-embedding of K 3
has one hexagonal face and six rectangular faces. Label the hexagonal face as F;. Now, try to embed
the left-out vertices of AG(L) into a N>-embedding of K5 3. In AG(L), I, is adjacent to 1,1}, 1,,,1, and
I; so that I, should be embedded into the face F;. Since I;, and I,, are adjacent to both I, and I,, we
have both 7, and I,, embedded together with /. in F; and further the face F; should have the path
I, — I, — 1,. The point to remember here is the other neighbors of 1, and 1, in F'y are I; and I]. Also, I;,
is adjacent to I, I, and I, so to embed I, it requires a rectangular face, say F’,, that contains the path
I, —1I;—1,. The point here is the fourth vertex of F, must be either I, or I]. Atlast, since degk,(I,) = 3,
there must be another rectangular face, say F3, in any N,-embedding of K5 3 that should have /,,. But,
the edge (1, I;) is already used twice for forming the faces F; and F’, so that the two neighbors of /,
in F3 must be I; and /{. This contradicts the fact that at least one of the edges (I, I;) or (I, I}) was
used twice in F; and F5. Thus, the claim holds true.

Claim C2: If | |J Uyl <2,then2<| | U,q| < 4 with at most one |U | € {2, 3}. Further,

2<k<5 p#Lpgr(1k)e
if | U U,q:| = 2, then there exists U, such that |U .| = 2
p#Lpgr#(1k)°
Firstrecall thatif | |J Upl € (1,2}, U Uggpe =0and| U Upgrl <2 with U, | < 1, then by
2<k<5 Ui #0 p#Lpgr(1k)

Theorem 2.8 of [10], AG(L) is projective.

o If |Upy| > 4 for some p # 1, then AG(L) contains K53 with partite sets U, U U, U U, U U, and
U vU, whereme{2,...,5}\{p,q,r}.

e Suppose there exist two sets U, ,,, and Up,,,, from the collection {U,, : p # 1, pgr #
(1k)‘} each having more than two elements. Clearly [{pi,q1,71} N {p2,q2, 2}l = 2. So
let us take py = p, = pand q; = g = ¢q. Now, consider the graph AG(L) —
Upgrys Logrys Ups 1), Ups 1)), Uy, 1), (I, 1), (17, 1,)} which is isomorphic to Ks3 with partite sets
X=U,uU,UU,UU,y; and Y = U; U U,,. Any N,-embedding of Ks3 has one hexagonal
face and six rectangular faces. Note that /,,,, and / 1’7qr are adjacent to /1y, I and I,,. To embed the
vertices I, and Il’,q, into a N,-embedding of K53, we have two poss1b111tles (1) both 1, and
1., together with its edges are embedded in two rectangular faces, or (ii) /4, and [}, together
with its edges are embedded in hexagonal and rectangular faces respectively.

(1) In this case, both rectangular faces must have I;, I and I,,. Now, embedding of the edges
(I,,,1,) and (1,,, 1,) together with the fact that deg;,(I,,) = 3 implies that the hexagonal face must
contain /,,. So, the edges either (/,,, 1) or (I,,, I;) belong to the hexagonal face, a contradiction
because it is used twice in two rectangular faces.

(i1) In this case, to embed the edges (1, 1,), (I, I,,) and (1, I,)), at least two rectangular faces
are required. Finally, to embed the edges (/;,1,,) and (17, 1,,), it requires two more rectangular
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faces in which the diagonals are I}, I, and I, I,, respectively. But, such a case does not exist and
so y(AG(L)) > 3.

e Suppose | |J  Upyl = 5. Then, the possibilities from the collection (U, : p # 1, pgr #
p#Lpgr#(1k)©
(1k)“} are (1) one set with three elements and two singleton sets, and (ii) one set with two elements

and three singleton sets. For case (1), the graph AG(L) — {14, lr45, I345, (I2, I3)} has K5 3 with partite
sets X = U, UU; U Uyzy and Y = U, U Us which behave as a similar structure of the graph given
in Claim C1. So ¥(AG(ZL)) > 3. We leave it to the reader to prove y(AG(L)) > 3 for case (ii).

Thus, the claim holds true.

Case 4. Let | Uf,:l U,| =5 and let 1523(;5|qu| = |Ujjl. Clearly AG(ZL) is projective when U;; = 0. If
|Uijl > 5, thenthe sets X = U; UU; U U;jand Y = |J U form K37 in AG(L), a contradiction.

ki, j

Case 4.1. Assume that |U;;| € {3,4}). If Ug, # 0 ojr Uinn # 0 for some €,m,n ¢ {i, j}, then the sets
X=U;uU;uUjandY =U,0U,UU,U U, U Ugpy, form Ks4 in AG(L), a contradiction. So, any
non-empty two index sets U, and three index sets U, must have either i or j as one of their indices.
Therefore, every vertex in U;j, for any k, is adjacent to exactly two vertices in AG(L), hence, these
vertices do not play any role in finding the crosscap value. Thus, we avoid the sets U, for all k from
V(AG(L)). Also, if Uy, Uie, Uy, # O for k, €,m ¢ {i, j}, then Goy = AG(L)—{Iix, Ii¢, Iim, (I;, I;)} contains
Ks 3 with partite sets X = U; UU; U U;jand Y = U, U U, U U,,. Notice that any N,-embedding of K 3
has one hexagonal and six rectangular faces. Also, in AG(L), I; is adjacent to I}, I, I,; I¢ is adjacent
to I}, It, I,, and I;, 1s adjacent to I}, Iy, I;. So to embed the vertices Iy, Iy, I;, in a N,-embedding of K 3,
it requires either one hexagon with a rectangular face or three rectangular faces which contains /;. If
I, Iig, Iy, are embedded in three rectangular faces, then since degg,,(I;) = 3, no other face contains
I; so the edge (I;,1;) cannot be drawn without crossing. If not, two vertices must be inserted in the
hexagonal face and the other vertex should be inserted in a rectangle face. In such cases, the third face
which contains /; does not exist because each edge occurs in exactly two faces. So y(AG(L)) > 3.
Therefore one of the sets Uy, or U;, or U;, must be empty for k, £, m ¢ {i, j}. A slight modification of
the proof would show that one of the sets U, or U}, or U ,, must be empty for k, £, m ¢ {i, j}.

Case 4.1.1. Suppose |U;j| = 4. If |U,y| > 2 for p € {i,j} and g ¢ {i, j}, then the subgraph
AG(L) — {1, Il’,q, (I;,1;)} has a similar structure to the graph G ¢ (refer Case 5.1 [3, Theorem 5.2]) so
that ¥(AG(L)) > 3. Therefore, at most two sets from {Uy, U, Uj,,} and two sets from {U i, U ¢, U},
where k, £, m ¢ {i, j}, may have an element.

Further, if U, # 0 for p € {i, j} and g ¢ {i, j}, then we claim that the set U, U U, = 0, where
p eli,ji\{ptand g # q" ¢ {i, j}. Suppose not, I € U,y U U(,¢, then the graph AG(L) — {[1,4, I}
contains K3 with partite sets X = U; UU; U U;; and Y = J U,. Since the merged vertex [, I] is

ki, j
adjacent to all the five vertices of Uf,:] U,, it requires a face of length at least five in an N,-embedding
of K¢3. A contradiction to the fact that every face in any N,-embedding of Kg 5 is a rectangle.

Thus, in the case of |U;;| = 4, y(AG(L)) = 2 provided |J Upm U Uij =0, U Uyl <2,in

€me{i, j} peli,jhqelisj}
which |U,,| < 1and U, Upge = 0 when |U,,,| = 1, where p’, q" ¢ {p, q}.

Case 4.1.2. Suppose |U;;| = 3. In every part of the case, letk, ,m € {1,...,5}\{i, j}. If |U,,| = 3 for
p € {i, j} and q € {k, £, m}, then the graph AG(L) —{,,, II’,q, I;,’q, Uy, 1), Iy, 1)}, where p” € {i, j}\{p}
and distinct ¢’,q" € {k,{,m} \ {g}, contains a similar structure of the graph G’ (refer Case 5.2 [3,
Theorem 5.2]) so that y(AG(L)) > 3. Also, if |U,,| = |U,| = 2 for distinct p, p’ € {i, j} and distinct

q°
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q.q € {k,I,m}, then AG(L) — {I,,, 1 ;,q, ILyg, I ;) 7 (I,,1,)} contains a similar structure of the graph G5
(refer to Case 4.2.2 [3, Theorem 5.2]) so that y(AG(L)) > 3. Therefore, at most one set from the
collection {Uy, Ui¢, Ui, U jx, U, U j,,} has two elements.

(i) Without loss of generality, let us take |Uj;| = 2. Then, by Case 4.1, we have |U;; U U;,,| < 1 and
at most two sets from the collection {U j, U, Uj,} have an element. But, our next claims are:

Claim A: |Ui( U U,'m U Ujkl <1 and Uj[ U Ujm U U(ik)c = 0.

Suppose |Ujp U U;,, U Uyl = 2. Since |Uyy U Uiyl < 1 and |Uy| < 1, we choose I € Ui U Uy,
and J € Ujy. Now the graph AG(L) — {Iy, I}, (I;, 1)), I}, [1, J])} contains K3 with partite sets X =
U;uU;VU;;U{[l,J]}and Y = U, U U, U U, Note that all the faces in any N,-embedding of K3 are
rectangular. Since Iy and I, are adjacent to I}, I, and I,,, to embed the vertices [ and I’,, it requires
two distinct rectangular faces that should have the vertex /; in its boundary. Since degg,,(I;) = 3, there
is exactly one more rectangular face containing /;, in which the two edges (1}, I;) and (1}, [/, J]) cannot
be embedded so that y(AG(L)) > 3.

Suppose I € Uje U U, U Urye. Then, K53 is a subgraph of the graph AG(L) — {Iy, I,, I} with partite
sets X = U; UU;UU;;and Y = Uy U U, U U,. Note that ¥(K53) = 2. Since Iy — I — I, is a path in
AG(L), these three vertices should be embedded into a single face of a N,-embedding of K5 . First,
embed the path I — I — I, together with the edges (I, 1)), (Ii, Ir), (I, 1,), (I}, 1)), (I, 1) and (I}, I,,)
into a face. Then, clearly the middle vertex I of the path cannot adopt any edge incident with 7, so the
edges (1, I;) and (I, I;) cannot be embedded. Therefore, ¥(AG(L)) > 3. Thus, the claim holds true.

Claim B: If |Uig U U, U Ujkl =1, say |Ui[| =1, then U(l‘[)c =0.

If Uil = 1 with Ugee # 0, then just replace I by I;; and J by [ in the proof of the case |U;; U
Uin U Uj| = 2, and we get y(AG(L)) > 3.

(i) Let |Uy| = 1. Here, our claim is:

Claim C: |U,'[ U, J Ujk U Uj[ U Ujm U U(ik)fl <2, |Uj[ U Ujm U U(ik)fl <1 and | U U(pq)r| <1

Upg#0

Further, lfl U U(pq)fl =1, then Ujg U Ujm = and |U,‘g uU;, U Ujkl <1.
pa#

A slight modification of the proof of Claim B would show that |U;; U Uj, U Ul < 1 and
| U U(pq)‘| <1l

prq #

Suppose |Ujy U U;, WU j U U jr U Uy U Uggoe| = 3. Since U U Uyl < 1 and |Ujp U Uy, U U] <1,
let/ € UpyUU,, J€Upand K € UjyUU;,, U Ugpye. Then the sets X = U; U U; VU, UL, JT}ULK, I}
andY =U,v U,V U, form K73.

Let | U Ugpgel = 1. If Uy # 0, then clearly Ujy U Uj,, = 0 and |U;jy U U;,, U Up| < 1. If

1”1#

U,q> Upgr # 0 for pq # ik, then we have to show that pg # j¢, jm. If not, then X = U; U U; U U;; and
Y = Uy U U, U U, form Ks3 in the subgraph AG(L) — {Iix, [1 4, I(pg]}. Note that ¥(Ks3) = 2. Since
the vertex Iy is adjacent to the vertex [/, I(,y¢], the vertices I and [1,,, [,] have to be embedded
in a single face of any N,-embedding of K5 3. Here, the vertex [/, [,5<] is adjacent to all of the five
vertices of UZ=1 U, and the vertex I is adjacent to exactly three vertices of Ufz:l U,. Clearly, a single
face cannot embed such eight edges onto it, a contradiction. Therefore, the claim holds true.

Thus, in the case of |U;;| = 3, we have y(AG(L)) = 2 provided J Ug U Ugje = 0,

C,mée{i,j}
| U Uyl < 3, where the choice i or j for p is placed at most two times in the union, in which
peli,jhqelisj}
at most one of the sets U, has two elements and | |J Uyy| < 1. Further, if |U,,| = 2 for some
Upg#0
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peli,jhqgéli,jl,then U UpyU U Upgpe =0,andif | |J Uyl = 3 with |[U,,| < 1, then
P .q ¢p.q} Upg#0 peli,jhqéli,j}
the three choices for g are not distinct. Moreover, if | |J Ugpgel = 1,then| |J  U,yl < 2 with the
Upg#0 peli,jhiqelinj}
choice for two pairs of p, ¢’s are not mutually disjoint.
Case 4.2. Assume |U;;| = 2. If | U Ugn U Ugjel > 2, then the sets X = U; U U; U U;; and
t,me{i,j}
Y = V(AG(L)) \ X form K45 in AG(L), a contradiction.

Further, if four non-empty sets exist other than U;; in such a way that two sets of the form Uy
and two other sets of the form Uy for k # i, j are non-empty, say Ui, U;, # 0 and Uj, U;j, # 0
for distinct £,m,n ¢ {i, j}. Then, the sets X = {I;, 1}, I;;,[li¢,1;,]} and Y = {I;, L, L, Ly, I c]} form
(H3 U (up, u3)) — (up, vy). Therefore, by [3, Lemma 3.6], we have y(AG(L)) > 3.

Case 4.2.1. Suppose | |J U U Ugijel = landletl € |J Upy U Ugjye. If |U,yl > 2 for some

t,me{i,j} Cméli, j}

p € {i,j} and q ¢ {i, j}, then clearly y(AG(L)) > 3. Let |U,,| = 1 for some p € {i, j} and g ¢ {i, j}. If
JeUyy UU,y for p’ € {i, j}\{p}and ¢',q" ¢ {i, j,q}, then the sets X = {I;,]; I,j,I’ [/,4, J1} and
Y ={l,1,,1,,1} form Ks 4 — e in AG(L) so that ¥(AG(L)) > 3. Further, similar verification gives us
Y(AG(L)) > 3 whenever U, # 0 or there exist p € {i, j} such that U, # 0 for all g ¢ {i, j}.

Therefore, in the case of |U;;| = 2 with | U Upy U Ugjel = 1, ¥(AG(L)) = 2 provided

{,me{i,j}

| U Uyl 22with|Upy| <1and Uy y, U = 0 when |U,,| = 1 where p’,q" ¢ {p,q}.
peli,jhiqeli,j}

Case 4.2.2. Suppose |J Uy U Ugje = 0. If there exist p,p; € {i, j} and q,q1 ¢ {i, j} with

t,méli,j}

pq # piqi such that |Upy|,|U, 4| = 2, then AG(L) contains a structure of K3 g —4e and it can be verified
that ¥(AG(L)) > 3. So assume |U,,| = 2 for unique p € {i,j} and q ¢ {i, j}. If |Upy U Uy p| > 1
for p’ € {i,j} \ {p} and ¢’,q” € {1,...,5} \ {i, j,q}, then the sets X = U, U U, U U, and ¥ =
Up/ U Uq/ U Uq// U Up’q’ U Up’q” form K4’5 in AG(L), a contradiction. If |Up’q’ U Up’q”l =1, then
Upy WU, WUyl < 1 with U,y = 0if |U,yr| = 1and U,y = 0if |U,,| = 1 because of the facts that
no two sets of the form Uy and no two sets of the form U are non-empty, and the edges (1, I, )
and (147, 1,y) are in AG(L). Similarly, if Uy, Uy, = 0, then |Upy U Upyr| < 1 and Uy s
Moreover, U,qc = 0 whenever U, # 0.

Finally, assume |U,,| < 1 for all p € {i, j} and g ¢ {i, j}. Since no two sets from Uy and no two

sets from U j; are non-empty, | . %Je{‘ ‘}U »ql < 4, where the choice i or j for p is placed at most once
pelisjhqeti,j

in the union. If the subgraph induced by < U U pq> in AG(ZL) has an edge, then U(,,- = 0 for
peli,jhqeli,j}
alU,, # 0. If not, | |J  Uggel < 1, where the union is taken over all non-empty U,,. Also, by
peli,jhqeti,j}
Theorem 2.1, AG(L) is projective whenever | |J Uyl < 2 with |[U,yl < 1 and |J Uy = 0.
peli.jlqeliij) Upg#0
Further, if two non-empty sets U, ,, and U,,,, exists in the collection {U,, : p € {i, j};q ¢ {i, j}}, then
{p1.q1} N {p2. g2} # 0.
Therefore, in the case of |U;j| = 2 with  |J Ug, U Ugje = 0, we have ¥(AG(L)) = 2 provided
tmeli, j}
2<| U Upyl £ 4in which at most one of the sets U, has two elements, where the choice i or j
peli.jhq#ti.j)
for p is placed at most once in the union. Moreover, one of the following is satisfied:
(@If|U, 2 for some py € {i, j},qr € {i, j}, then |J Uy = 0. Further, at most one of the sets

f‘Ifl =
Upg#0
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U),q, s non-empty with the property that {ps, g} N {p,. q,} = 0.
(b) If |[Upy| < 1forall p € {i,j},q ¢ {i,j}, then | U Uggel < 1. Further, if |U,q.| = 1 for some
Upg#

|Upql = 1, then every non-empty set U,,, .. should have the property that {p;, g} N {p,q} # 0.
Case 4.3. Suppose |U;j| = 1. If | |J Uyl = 6, then Ky — 3e is a minor of AG(ZL) and so by

1<p#g<5
Proposition 1.1, #(AG(L)) > 3. Therefore, | |J U,,l < 5.
1<p#g<5
() Let| U Uyl € {4,5}. Suppose non-empty sets Uy, 4> Up,gos Upsgs» Upaq, €Xists which satisfies

1<p#q<5

the conditions {pi,qi1} N {p2,q2} = 0 and {ps,q3} N {ps,qs} = 0. If {p1,q:i} N {ps.q3} = 0 or
{P2, @2} N {ps,qa} = 0, then the vertex subset {U)_; Uy U [Lp01> Ipsn] U [psgs> Ipige ]} form Kz, So,
let us take p; € {p1,q1} N {p3,q3} and p> € {p2,q2} N {ps,qs}. Then, the sets X = U, U U, U
U vUp, VU and Y = U,, U U, UU,, U U,,, where t € {1,...,5}\ {p1, p2,q1,q>}, form
Ks4 — 4e in AG(L). Note that ¥(K45 — 4e) = 2. Now it is not hard to demonstrate that the
edges (Ipl’lql)’ (Iq171p3q3)7 (Ipl’Il‘)’ (Iqlvll)’ (Iplqplt)’ (Ip3q391t)’ (Ip291q2) and (Iq2’1p4q4) Of AG('E) cannot
be embedded into any N,-embedding of K45 — 4e.

Also, notice that the set |J Uy = 0 when | |J U,l = 5. Otherwise, either K; or a graph
Upg#0 1<p#q<5

similar to the structure of the graph G4, given in Case 4.1 of Theorem 2.2, will be a subgraph of
AG(L).
Claim A: | [J Uyl < 1 when| | U,l = 4. Moreover, if |J Uy = 0, then the subgraph

Upg#0 1<p#g<5 Upy#0
induced by the set |J U,, has more than one edge and if | |J Uggel = 1, say [Uggel = 1,
1<p#q<5 Upy#0
then the vertex in U,, is adjacent to at most two vertices of U U,q Further, if there is an
Upg#0;pg#rs

adjacency between the vertex of U,, and a vertex of  (J  Up,
Upy#0;pg#rs

then the subgraph induced by the

set |J U, is an empty graph.
Upg#0;pg#rs

Assume that | |J Uyl = 4. Since |[Up| < 1 forall 1 < p # g < 5, let us take
1<p#g<5

UPI‘II’ UPZ(]Z’ UPS‘]}’ UP4‘]4 ;t 0
Let | U Ugpgyel = 2. If [Upyq,cl = 2, then the graph AG(L) —{ U U,y (p1,q1)} is similar to the

qu¢q) Pg#p1q1
graph G4 (Case 4.1 of Theorem 2.2) with partite sets X = U, WU, UUp, andY = |J U,U U4
r#p1,41

so that y(AG(L)) > 3. Suppose |Uq,qgxls Uyl = 1. If {p3,q3} N {ps, g4} = 0, then the graph
induced by the set {{J7_, U, U g Lipigc] Y Upagos Liprgoyel U Upagss Ipg, 1} contains Kg — 3e so that
Y(AG(L)) = 3. Also, if {p3,q3} N {ps,qs} # 0, say p3 € {p3,q3} N {pas,qa}, then the sets X = U, U

Upigy Y Upgs YL Liprgoe 1} YU AlLpagas Lipago)e 1} and Y = |J U, contains Ks4 — 2e in AG(L). Note
r£p3
that (K54 — 2e) = 2 and every face in any N,-embedding of K54 — 2e is rectangular. Since (Y) = K4

and K, cannot be embedded in N, along with rectangular embedding, we have y(AG(L)) > 3.
Let |Ugp, gl = 1. If I, is adjacent to all vertices of Up,,, U U, U U,,,,, then the sets X =

U, U, uU,, andY = iU U, UUpy UUpy YU, UUgp,) form Kz 7 in AG(L). Suppose
r#p1.41
1,4, 1s adjacent to /,,,,. As mentioned earlier, /,,,, is not adjacent to I,,,,. If I,,,, is adjacent to

either I, Or 1,,4,, say Iy, then the set {U_, Un U [Lp4,s Ipigye] YU [pag» Ipsgs]) form K. Therefore,
E ((Umq2 UU,,, Y Up4q4>) = (0. Thus, the claim holds true.

242
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Claim B: | J Ul <3 when| (J Uyl <3.

Upgzo 1<p#q<5
Assume that | (J U,l < 3. If [Upyl = 4 for 1 < p # q < 5, then
1<p#q<5
AG(L) contains K37 with partite sets X = U, U U, U U, and ¥ = |J U U Upye. If

k#p,q
three sets Uy g)c> Uipagore> Uipagse @re non-empty, then the three merged vertices [l Lpq,¢],

for all 1 < f < 3, together with the vertices in |J>_, U, form Kg — 3e. If U pg1)ls

U (prgo)c| = 2, then the sets X = U, UU, UU,, and Y = iU U, U Ugp,q) form K35 which has
r#p1,q1
II

crosscap 2. Clearly, the path I, g,y — Ij,q, = I, .\ together with its edges, could not be embedded into
any N,-embedding of Kj 5.

Claim C: [CI] If | U Ugpgel = 3, then |Upyc| = 3for 1 < p # g < 5 and no non-empty set U,
Upgzo

exists with {r, s} N {p, g} = 0.
[C2] Let | U Ugpgyl € {2,1}. If there exists a unique set U, # 0 for 1 < p # g < 5, then

Pq#E0

at most one non-empty set U,, exist with {r, s} N {p,q} = 0. If two sets U g, Uprgye # 0 for
1 < pi,q1,p2.q2 < 5and {p1,q1}N{p2, g2} # 0, then no non-empty set U, exist with {r, s}N{ps, g¢} = 0
forl1 < f<2.

The proofs of claims [C1] and [C2] are merely verifications that can be done by the reader.

Now, to determine conditions for y(AG(L)) = 2 (given in the statement), we have to eliminate
projective conditions of AG(L) which was given in Theorem 2.1. O

Example 2.1. As an illustration, we consider the case (iii)[c] in Theorem 2.2. Let |U,| = 2,|U;| = 1
fori =2,3,4,5, and |Uy4| = |Uys| = 1. If |Uy,| = |Uj3] = 1, then the corresponding 6-partite graph,
given in Figure 4(a), is a crosscap two graph. Also, if |U,345| = 1, then the crosscap of corresponding
6-partite graph, given in Figure 4(b), is not equal to two. Moreover, the 6-partite graph G in Figure 4(b)
is minimal with respect to ¥(G) # 2.

Uy U, Us U, Us U, U, Us U, Us

Io345 Ty I

(a) A crosscap two 6-partite graph (b) A minimal 6-partite graph with crosscap # 2

Figure 4. undefined.

3. The case when [A(L)| =6

Finally we look into the lattice with 6 atoms. We close the paper by presenting its statement
and proof.
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Theorem 3.1. Let L be a lattice with |A(L)| = 6. Then, y(AG(L)) = 2 if and only if one of the
following conditions hold:

) IUS:1 U,l =7, there is U; such that \U;| = 2with  |J Uy, =0, U (UjeYUjtenVU jrmn) = 0
1<p#q<6 Jok,Cimn#i
and at most three sets U,p,’s has exactly one element.

(ii) IUS:1 Ud =61 U Ujl <2 U (U(ij)¢- U U(l'jk)c) = () and one of the following cases is

1<i#j<6 UijUije#0
satisfied:
[a] In case of |J U;; = 0:
1<i#j<6

[al] If there is a unique |Uj| = 3 for 1 < i # j # k < 6 or Uil = |Upnal = 2 for
some ijk # mnand 1 <1, j,k,€,m,n < 6, then there exist at most eight distinct non-empty U,,,’s
(including Ui jr, Uy ) in which at most two distinct U ,,,’s are non-empty such that the intersection
of all the sets at their indices has exactly two elements, where 1 < p #q #r < 6.

[a2] If there is a unique |U;j| = 2 for 1 <i # j# k < 6, then there exist at most nine distinct
non-empty U ,,’s (including U;j) in which at most three distinct U ,,,’s are non-empty such that
the intersection of all the sets at their indices has exactly two elements, where 1 < p # q#r < 6.

[a3] If Uil < 1 forall1 <i+# j+ k <6, then there exist at most ten distinct non-empty
Uij’s in which exactly three distinct U;ji’s are non-empty such that the intersection of all the sets
at their indices has exactly two elements, where 1 <i # j# k <6.

[b]l If Uil = 1 for some unique 1 < i # j < 6, then U Upn = 0, and
{€,m,nin{i, j}=0

U€mn
{€m,n}N{i,j}#0
two elements such that the intersection of all the sets at their indices has exactly two elements.

[c] If |U;j| = 2 for some unique 1 < i # j < 6, then U Uwmn = U Ui = 0, and

{€,m,n}n{i,j}=0 1<k<6

< 6 with at most two distinct non-empty Ug,,’s in which at most one set Uy,,, has

U Ufmn

{E€.m.n}n{i, jil=1
that the intersection of all the sets at their indices has exactly two elements.

[dl If [Ujl = |Uxl = 1 for some 1 < i # j # k < 6, then

< 4 with |Ugp,| < 1 in which at most two distinct Uy,,’s are non-empty such

Uon = 0, and U Uin| < 5 with |Ugnl < 1 in which at most
{orl KL Lommnti, k) {ilor{ ki Bmnnti,jk)

two distinct Uy,,,’s are non-empty such that the intersection of all the sets at their indices has
exactly two elements.

Proof. Suppose that | U2:1 U,| > 8. Then AG(ZL) contains K,,,, or Kg — 3e as a subgraph so that by
Proposition 1.1, we have #(AG(L)) > 3. Thus, || J°_, U, < 7.

Case 1. Let | U6 L Unl =7. Then, |U;| = 2 and |U,| = = |U¢| = 1. Clearly, K7 — e is a subgraph
of AG(L). If I € U(Ul iU Uik YUijie U Ujjken), then merge the vertices I and /; so that K7 is a subgraph
of AG(L), a contradlctlon If Uy; # 0 for some j = ,60,thenX =U,uU;UU,;jand Y = |J Uy

J#1,j

form a subgraph Hj; (refer [3, Lemma 3.6]) in AG(ZL) and so ¥(AG(L)) > 3. Therefore, (JU;; = 0.
iJ
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If |Uijl > 2 for some 2 < jk < 6, then AG(L) contains K3s U (K4 — e) as a minor, so by
Proposition 1.1 we have y(AG(L)) > 3. So, |[U | < 1forall2 < jk <6.

Suppose | |J Uy | > 4. Then, it is not hard to verify that K53 — 4e is a subgraph of AG(L) with the
partition set X D {{J U, x U U,}. Further, assume that a vertex in X is adjacent to at least six vertices of
X or, two vertices in X is adjacent to at least five vertices of X. Note that any N,-embedding of K ;3 —4e
has two hexagonal and seven rectangular faces. Since the maximum degree of vertices of X in Kg 3 —4e
is 3, at most one vertex of X may adopt 5 distinct edges from (X). But, (X) contains either a vertex of
degree 6 or two vertices of degree 5, a contradiction.

Thus, ¥(AG(L)) = 2 whenever (J;,1(U;; U Ui Y Ugemn YU Urgmnp) = O with at most three Uyg,’s
having one element.

Case 2. Let | US:] U, = 6. Then |Uj| = ... = |Ug] = 1. If the subgraph induced by
VIAG(L) \ { ngl U,} has an edge (I, J), then merge the vertices / and J so that the resulting vertex
is adjacent to all the vertices of ngl U,. Therefore, K5 is a minor of AG(/L), a contradiction. Thus,
<V(AG(£)) \ {8, Un}> is an empty graph.

If |JU;jl > 3, then the structure given for G is a subgraph of AG(ZL), so that y(AG(L)) > 3.

i.j

Therefé)re, UU;jl < 2.
ij

Case 2.1. Assume U;; = Q forall 1 < i,j < 6. As mentioned earlier, we have U = 0 when
Uijk 0.

If |Uijk U U,‘j{ U Uijm U Uijn| > 4, then the subgraph AG(,L) - {(I,‘,Ik), (Ij,Ik), (Ik,lijg),
(I, Iijm), I, 1;jn)} contains K37 — 3e with partite sets X = U; U U; U Uy U U;jx U Uije U Uy U Uy
andY =U,UU,VUU, (take {,m,n € {1,...,6}\{i, j,k} in case of £, m, n does not exist in the union
of the assumption). Note that any N,-embedding of K37 — 3e have two hexagonal and six rectangular
faces. The edges (1;, Iy), (I}, Ir), (Ix, Iije), (I, I;jn) can be inserted without crossing in two hexagonal
faces. In such a case one cannot find a rectangular face with diagonals /; and /;;, and so y(AG(L)) > 3.

Also, if |U;j| > 4 forsome 1 <i# j# k<6,thenthesets X = U;UU;UU,UU;andY = |J U,

ik
form K73 in AG(L).

(i) Assume |U;| = 3 forsome 1 < i # j # k < 6. If |Upyl > 2 for some fmn # ijk,
then the the subgraph AG(L) — {lpm, 1}, (Ii, 1)), (I, Iy), (I}, )} is similar to the structure of G
(refer Case 5.1 of [3, Theorem 5.2]) so that ¥(AG(L)) > 3. If |Ujl = |Uijul = 1, then the
graph AG(L) — {Lij¢, Lijm, U, I}), (I, I;)} contains Kg3 with partite sets X = U; U U; U U U Ujj
and Y = U, U U, U U,. Note that every face in any N,-embedding of K¢3 is rectangular, [, is
adjacent to Iy, 1,,, I, and I;;, is adjacent to I, I, I,. So, to embed the vertices I;j; and I;;,,, it requires
two rectangular faces that contains ;. Now the edges (Ix, ;) and (I, ;) cannot be embedded into
a single rectangular face which has [I;, a contradiction. Similarly, we get y(AG(L)) > 3 whenever
|Upgrl = Upgsl = |Upgel = 1for 1 < p#q#r+#s+t<6with pg #ij.

(ii) Assume |U;| = 2 forsome 1 < i # j # k < 6. If [Upnal = |Upg| = 2 for mn, pgr #
ijk, then clearly ¥(AG(L)) > 3. If |U;j| = 2 with U;j,, # O for 1 < £ # m < 6, then the graph
AG(L) — {(x, 1)), Ui, 1), U, Lije), (g, Il.’ﬂ,), (Ix, I;jm)} contains K3 — 3e with partite sets X = U; U U; U

UrVU;x VUV Ujj,and Y = |J U,. Note that (K353 — 3e) = 2, and any N,-embedding of Kg3 — 3e
n#i, jk
have one hexagonal and nine rectangular faces. Now, to recover a N,-embedding of AG(L) from a

N,-embedding of Ks; — 3e, we have to embed five edges in which one end is at I; and the another end
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at a vertex of X. So it is required that /; has to be part of at least four faces of a N,-embedding of
K33 — 3e, a contradiction to degk,,-3.(Iy) = 3.

Suppose |U,,| = 2 for pq # ij. If |Uijel = |Ujju| = 1 for 1 < € # m < 6, then the subgraph
AG(L) — {Lpgrs I;,qr, Ui, 1), (Ui, 1), Uy, Lije), Uk, 1ijm), (13, 1)} contains K37 — 2e with partite sets X = U; U
UjuU, VUV U;je VU, and Y = U, U U, U U,. Note that any N,-embedding of K37 — 2e have one
hexagonal and 8 rectangular faces. Clearly, each rectangular face can adopt at most one new edge and
so to embed the edges (Ii, I;), (i, 1), (Ix, Lijc), (Ix, I;jm) 1t requires one hexagonal and two rectangular
faces which contains /. In addition, we have to embed the vertices /,,, and I;,qr. Here, the vertices
I,y and I ;qr are adjacent to at least one of ; or I; or [;. If it is I}, then clearly the edge (I, I,,-) cannot
be embedded. So, let I,/ [’,qr be adjacent to ;. But, /; is used in embedding the first five edges. So,
the remaining two rectangular faces are required to embed the edges (1;, 1,,,) and (/;, I;,qr). In such a
case, the edge (/;, ;) could not be embedded in N,, a contradiction. For all the remaining cases, one
can retrieve a N-embedding of AG(ZL) from Figure 5.

If |Ui| < 1forall 1 <i# j+# k <6, then by eliminating the projective cases, we will get the result

as in the statement.

f136 I3 Lios  Ihg

26 I3 Ia3 T2

Usjk| = |Upmn| = 2 for someijk # ¢mn

Figure 5. || J°_, U,| = 6 with U;; = 0 forall 1 <i# j<6.

Case 2.2. Assume | < |JU;l < 2. Let U;; # 0 for some 1 < i # j < 6. Clearly, U = 0 and

U,qr = 0 for all {p,q, r} N {i, ]J'} =0.

Choose p and g such that {p,q} N {i, j} # 0. If Upgr,s Upgry, Upgr, # 0 with 1y, 12,13 & {i, j}, then,
the subgraph AG(L) — {I,4r,5 Lpgrs> (I, 1), U, 1), (I, I;;)} contains Ks3 with partite sets X = U, U
v,vU,VU;uU,,, andY =U, VU, UU,, wherer & {p,q,ri,r,r3}. Any N,-embedding of K53
have one hexagonal and six rectangular faces. Note that /,,,,, I, are adjacent to /,, and two vertices
of Y. So, to embed the vertices I,,,,, I, together with edges (/,,,1,),(I,,1,) and (I, I;;), it requires
a hexagon with three rectangular faces or five rectangular faces which contains /,,, a contradiction to
degK5,3(Ir1) =3.

(i) Assume |U;j| = 1 for some unique 1 < i # j < 6. Choose {,m and n in such a way that
{&,m,n} N {i, j} # 0. If |Ugpn| > 3, then AG(L) contains K37 as a subgraph, a contradiction. Also, if
[Utmnl = \U¢;mn,| = 2, then the graph AG(L) — {1z, mn,» ,(1;,1;)} contains a subgraph similar to

Eymyny

the structure of G4 (refer Case 5.1 of [3, Theorem 5.2]) and so y(AG(L)) > 3. Thus, y(AG(L)) = 2

whenever U Uppn Y Uije = 0 and, U U¢mn| < 6 1n which at most one set Uy, has two
{€,m,n}n{i, j}=0 {€,m,n}n{i, j}#0
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elements with at most two distinct sets Uy,,,’s non-empty such that the intersection of all the sets at
their indices has exactly two elements.
(ii) Assume |UU1J| =

Suppose IUUI =2forl <i+# j<6. If Uy # 0 for some 1 < k < 6, then K¢z with partite sets
X=UuU;uUuU;juU;jxandY = U,UU,UU,, where p,q,r € {1,...,6}\{i, j,k}. Every face in any
N,-embedding of Kg 3 is rectangular. So, to embed the edges (I, I;), (Ik, I]), (I, 1), (Ig, Ilfj), it requires
four rectangular faces all of which contains I, but degk, (1) = 3, a contradiction. Thus, ¥(AG(L)) =
when U Uen U JU;jx U Uijye = 0, and U Un

k

£mnnfi, j=0 Cmnnfi, jll=1
two di{stinét{sgts Umy’s non-empty such that thel{inte}rs{eé}tlion of all the sets at their indices has exactly
two elements.

Suppose distinct U;;, U,, # 0 for 1 < i, j, p,q < 6. Then, {i, j} N {p,q} # 0. So let |U;j| = |Uy| = 1
forsome 1 < i # j # k < 6. Let us take £, m and n such that {¢,m,n} N {i, j, k} contains either {i} or
{J, k}. If |Ugul = 2, then the subgraph AG(L) — Loy, 1}, (1i, 1), (I, 1), (I, Ii), (Ix, 1;;)} contains K 3
with partite sets X = U; UU; UU, U U;;UUy andY = U,V U, U U, wherep,q,r e{l,...,6}\{i, j, k}.
Note that I;,,,, I;,,, are adjacent to three vertices of K53 and so to embed the vertices Iy, I, together
with edges (1;, 1), (I;, I), it requires one hexagonal and one rectangular face. Thereafter one cannot
find two rectangular faces with diagonal vertices I;, I and Iy, I;; respectively. Therefore, either (I}, I;x)
or (I, I;;) cannot be embedded without crossing. Therefore, y(AG(L)) > 3.

Thus, Y(AG(L)) = 2 when U Uwmn U Ugije U Uiy = 0, and
{iYor{jk}E{L,m,n}nli, jik}

< 4 in which |U,,,| < 1 with at most

Ugnn| < 5 1n which |Uy,,| < 1 with at most two distinct sets Uy,,’s non-empty such
{ijor{ jKIC{Cmn)nti, jk)
that the intersection of all the sets at their indices has exactly two elements. m|

Example 3.1. As an illustration, we consider the case (ii)[al] in Theorem 3.1. Let |U;| = 1 fori =
1, .. .,6, |U123| = |U134| = 2 and |U126| = |U145| = |U245| =1.1If |U356| = 1, then the Corresponding
crosscap two 8-partite graph is given in Figure 6. Also, if |U»5| = 1, then the crosscap of corresponding
8-partite graph, as in Figure 7, is not equal to two. Moreover, the 8-partite graph G in Figure 7 is
minimal with respect to ¥(G) # 2.

1356 Ipys I Inys
Ui Us Us U, Us Us
/
1134 I3y 1{23 2l

Figure 6. A crosscap two 8-partite graph.
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I356 Ioys L6 I15
Ul U2 1]3 U4 U5 U(;
L
Ly I Tos Iy

Figure 7. A minimal 8-partite graph with crosscap # 2.

4. Conclusions

Note that no complete set of forbidden subgraphs for the two-crosscap surface (Klein bottle) is
known yet. In this regard, an open problem will be to determine a family of graphs that has crosscap
number two. This series of papers provides a class of r-partite graphs, where 3 < r < §, that (1) can
be embedded or (2) cannot be embedded in the two-crosscap surface. This was done by using the
complete classification of all lattices whose annihilating-ideal graph has crosscap number two.

For the future work, one can determine all forbidden r-partite, r > 4, subgraphs for the crosscap
two surface. Also, it would be interesting to classify all lattices whose annihilating-ideal graph can be
embedded in the non-orientable surfaces of crosscap three.
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