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1. Introduction

Supported by R, the continuous Shannon entropy (Shannon [14]) of the random variable (RV) X is
given by

SH(X) = —E(Inh(X)) = - fb(X) Inh(x)dx, (1.1)
R
where h(.) is the probability density function (pdf). Lad et al. [5] produced the extropy as a dual

Shannon entropy measure. The extropy of the discrete RV X supported on Q = {xy, ..., xy} and with
corresponding probability vector p = (py, ..., py), 18

N
Ex(X) == ) (1= p)In(l - p). (12)
i=1
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Moreover, the view of the extropy of the continuous RV X supported on R has been introduced in many
pieces of literature, see for example Ragab and Qiu [11] and Qiu [9], can be shown as follows:

Ex(X) = —% f H(x)%dx. (1.3)
R

The literature has offered several entropy measures and their generalizations. Through the various
uncertainty generalizations, Tsallis [15] presented the Tsallis entropy. The continuous Tsallis (C-Ts)
entropy of the continuous RV X supported on R, 1 # 1 > 0, is defined as follows:

TEn,(X) = L (1 - fb”(x)dx), (1.4)
n-1 R

when 77 1s 1, then lim,,; TEn,(X) = S H(X).
Renyi [12] suggested a model referred to as continuous Renyi (C-Re) entropy of order n of the
continuous RV X with pdf h(x) as

REn,(X) = ! - In foo h7(x)dx, (1.5)
0

1 -
where 1 # 1 > 0. It’s simple to see that, when n — 1, REn,(X) tends to S H(X).

The Tsallis and Renyi extropy under the discrete distribution have been presented in the literature.
Xue and Deng [19] suggested the model Tsallis of extropy, the dual of Tsallis entropy function, and
examined its maximum value. Besides, Balakrishnan et al. [2] study the Tsallis of extropy and apply
it to pattern recognition. Liu and Xiao [6] introduced Renyi extropy and looked at the maximum value
of it. Jawa et al. [4] discuss the past and residual of Tsallis and Renyi extropy via the softmax function.

This paper introduces the C-Ts and C-Re extropy under the continuous distribution lifetime.
Moreover, presenting the maximum of both models. The remainder of this article is as follows:
Section 2 discusses the C-Ts extropy model with its properties and their connection to other measures.
Furthermore, examples of the models for different distributions are introduced. Section 3 gives the
maximum C-Ts extropy and some properties depending on it. Section 4 provides the maximum CRe
extropy. Finally, Section 5 ends the article with some non-parametric estimations of C-Ts extropy
applied to simulated and real data and discusses the estimation for the forecasting time series of OECD
pharmaceutical market data.

2. Continuous Tsallis extropy

In this section, we introduce the rendition of the C-Ts extropy based on the continuous distribution
lifetime.

In the same manner, introduced in Lad et al. [5], we can present the extropy of the continuous RV
X supported on R as follows:

Ex(X)=- f(l — bh(x)) In(1 = H(x))dx. 2.1
R

In our work, we will deal with both Eqgs (1.3) and (2.1) as a representative form of extropy.
Inspired by the idea of discrete Tsallis of extropy, and the continuous distribution lifetime, we
present the C-T's extropy by the following definition.
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Definition 2.1. Let X be a continuous RV supported in [a,b], —c0 < a < b < oo, having a pdf h(.).
Before we introduce the concept of C-Ts extropy, we must mention that the value of the expression
(1 — b(x))" can be negative or non-negative according to the value of the pdf h(x) > 1 or h(x) < 1,
respectively. If h(x) < 1, then (1 —b(x))" gives real value for all 1 # n > 0. Ifh(x) > 1, then (1 — bh(x))"
gives real value when n € Z*\{1}. Otherwise, it gives a complex result when 1 is a non-positive integer.
Then, the C-Ts extropy can be given as

TEx,(X) = (f (1 = bh(x))dx - f 1- I)(x))”dx)

:%(b a—l—f(l— (x))"dx)

where the conditions on i can be given in two cases:

(1) 1#7>0ifhx) < .
(2) neZ\{1}if h(x) > 1.

Proposition 2.1. Assume that X is a continuous RV supported in [a,b], —co < a < b < co. From (2.2),
where 1 # 1 >0, if h(x) < 1 then the C-Ts extropy is non-negative.

(2.2)

Proof. From (2.2), the C-Ts extropy can be rewritten as

1 b b
TEx,(X) = p—] (f (1 = b(x))dx —f (1- b(X))”dX)

b
Tl(f (=) (1= (1 —b(x))ﬂ-l)dx),

Provided that h(x) < 1, when 1 > 1, the function z(y) = y""! is increasing, y > 0, therefore 1 — (1 —
h(x))"'> 0. While, when 0 < 5 < 1, the function z(y) = y7"! is decreasing, y > 0, therefore 1 — (1 —

(2.3)

H(x))"'< 0. Then, the C-Ts extropy is non-negative. O
Example 2.1. Assume that the continuous RV X has a continuous uniform distribution over |a,b],
—o00 < a < b < oo symbolize by U(a, b) with pdf Y(x) = —. Then, from (2.2), the C-Ts extropy is given
by

TExn(X):% b—a—l—(b_a_l)n 2.4)

—1 b-ay ' )’

where 1 £ 1 > 0ifbh(x) < 1 and n € Z*\{1} if )(x) > 1. In particular, the C-Ts extropy equals zero if
b—a=1.

Example 2.2. Consider that the continuous RV X has power function distribution with pdf given by

(6-1)
h(x) = ——,0<x< A, and 6,1 > 0.

Then, from (2.2), the C-Ts extropy is given by

1 A 0(0—1)77
TEx,](X):—(/l—l—f (1— ~ )dx),
n-1 0 A
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where 1 # 1 > 0ifbh(x) < 1 andn € Z*'\{1} if b(x) > 1. Figure 1 shows the C-Ts extropy of power
function distribution with different values of 6 and A. Furthermore, we can see that when the difference
between 0 and A increases, the C-Ts extropy increases.

TEzxy [

1.0

08|

——— TEx,(X),6=2.4=2
——— TEx,(X),8=3.4=4
——— TEx,(X).8=5.4=T
..... TEx, (4),6=6.4=9

TEx, (4).6=7.A=12

0l

. . . .
1 2 3 4

Figure 1. C-Ts extropy of power function distribution.

In view of Figure 1, we can see that all the given values of 8 and A of the power function distribution
satisfy the condition h(x) < 1 in Eq (2.2) and C-Ts extropy exist where 1 # 1 > 0. For example,
Figure 2 shows the plot of h(x) < 1 when § = 5 and 0 < A < 7. In contrast, Figure 2 shows that b(x)
has the values h(x) < 1 and h(x) > 1, for values like 8 = 6 and 0 < A < 4. As aresult, the value of C-Ts
extropy will only exist under the conditions described in Definition 2.1.

0.5

1 A 1 1 1 lA 1 2 1 )\

1 2 Lf' 4 5 e 7 1 2 3 -
Figure 2. The pdf of power function distribution when 8 = 5 and 0 < A < 7 (left panel) and
6 =6 and 0 < A < 4 (right panel).
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The next proposition discuss the C-Ts extropy when 7 tends to 1.

Proposition 2.2. Providing that X is a continuous RV supported in [a,b], —o0 < a < b < oo. Then,

from (2.1) and (2.2), we have
lin} TEx,(X) = Ex(X), (2.5)
]7—)

which is valid only for 1 #n > 0 and h(x) < 1.
Proof. From (2.2), with applying L' Hopital' s rule, we get
1 b
lirrll TEx,(X) = lim —] (b —a-1- f (1- b(x))”a’x)
n—- a

n—)l]]-

b
= lim - f (1 = B(x))" In(1 — H(x))dx
n— a

b
= - f (1 = H(x)) In(1 = H(x))dx
= Ex(X).
If h(x) > 1, then n € Z"\{1} = {2,3,...}, which can’t be tends to 1. Thus, lim,_,; TEXx,(X) = Ex(X)
only when 1 # 7> 0and h(x) < 1 O

In the next, we will obtain some significant results of C-Ts extropy when the parameter n = 2 is

selected.

Remark 2.1. From Definition 2.1, when the parameter n = 2 is selected, then the C-Ts extropy is valid
forh(x) < 1orh(x) > 1.

Proposition 2.3. Assume that X is a continuous RV supported in [a,b], —o0 < a < b < oo. Then,
from (1.3), (1.4), Definition 2.1 and Remark 2.1, we have

TEx>(X) = TEny(X) = 1 + 2Ex(X).

Proof. From (2.2), at n = 2, we have

b
TExy(X) = ﬁ (b —a-1- f (1- b(x))zdx)

b
:b—a—l—(b—a—2+f bz(x)dx)

b
=1- f b2 (x)dx = TEny(X) = 1 + 2Ex(X).
|

Definition 2.2. (Shaked and Shanthikumar [13]) Provided that X and Y be RV’s with pdf’s V) and g,
cdf’s © and ®, respectively. In the dispersive order, it is said that X is smaller than Y, symbolized by

X <pis Y, if 671(H(x)) — x is increasing in x > 0.

Lemma 2.1. If X <p;s Y, then TExy(X) < TEx,(Y).

AIMS Mathematics Volume 8, Issue 10, 24176-24195.
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Proof. From Definition 2.1 and Remark 2.1, at n = 2, we have

b b 1
TExy(X)=1- f b*(x)dx =1 - f H()dH(x) =1 - f H(H ™" (w)du.
a a 0

If X <pss Y, thus, by (2.2), we have h(H'(w)) > a(®~(u)), Yu € (0, 1). Therefore,

1 1
TEx,(X)=1- f HH ' w))du <1 - f (6 w))du = TEx,(Y).
0 0
O

Based on the independent and identically distributed observations (iid) X, X>,...,X, and
Y,Y5,...,Y,. If X <p;s Y, then we have

(1) Xin <pis Yi, (see Theorem 3.B.26 in Shaked and Shanthikumar [13]),i= 1,2, ..., n.
(2) PX <pis PY (see Belzunce et al. [3]).

Where X;, and Y;,, i = 1,2,...,n, are the ith order statistics of X;,X>,...,X,, and Y1, Y5, ..., Y,,
respectively, and PX and P! are the nth upper records of X and Y, respectively. Thus, we can conclude
with the following results.

Proposition 2.4. If X <p;s Y, thus

(]) TEXZ(Xiln) S TEXZ(YZn) ’ l = 1’2, (] n.
(2) TExy(PX) < TExy(PY).

The pdf of the jth order statistics X;., in a sample of size n is

S10% (Vh(x) 2.6)

i) = B

where B(j,n— j+ 1) is the beta function, 5(.) = 1-9(.) and $H(.) is the cumulative distribution function
(cdf). In the following example, based on U(a, b) distribution, we will obtain the C-Ts extropy of the
jth order statistics X ., as follows.

Example 2.3. Provided that X is a continuous RV supported in [a,b], —c0 < a < b < oo. Thus,
from (2.6), Definition 2.1 and Remark 2.1, the C-Ts extropy of the jth order statistics X ., of the U(a, b)
distribution is given by

b
TEx(X;.) = n_% b-a-1-[a- bj:n<x)>"dx)

1 b
- b—a—l—f
77—1 a

1 b 1 Zn: (7) (_l)i fb( )ij—i(b )in—ijd
= —a—1-— - - X—d - X X
n-1 L4 BGon—j+ DY —-ay J,

| n (?)(_1)i(b—a)1‘lB(ij—i+1,in—ij+1))

1

ssf-1<x>5”‘j<x>b(x)J" ., ]
- - - X
B(jn—j+1)

R boa=1-), BG,n—j+ 1)y

i=0
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Based on the jth order statistics X.,, we will obtain some significant results of C-Ts extropy when
the choice of n = 2.

Proposition 2.5. Provided that X is a continuous RV supported in [a,b], —c0o < a < b < oo. Then,
from (1.3), (1.4), (2.6), Definition 2.1 and Remark 2.1, we have

TEXQ(X]';") = TEnz(X],,) =1+ ZEX(XJ';”).

Proposition 2.6. Let X and Y be two continuous RV’s with cdf’s © and ®, respectively. Moreover, X
and Y supports in [a,b;] and [a, b,], respectively, where —oco < a < by < 00 and —o0o < a < by < oo.
Provided that L " dx and fa > dy exists, then, for a fixed j (1 < j < n), X and Y have a common
distribution iff TEx>(X;.,) = TExy(Y ).

Proof. Proof of sufficiency is sufficient. Suppose that TEx>(X;.,) = TEx,(Y},), then, from (2.6), we
have

[[r- 58 nw| [[r- 67 W6 waw)
a BGn—j+n )77 BGin—j+D |

after simplification, we get

bi . —2n-2j b2 . —2n-2j
f 909 (X)b2(X)dx=f GY ()6 (0’ (x)dx,

a a

which is equivalent to

by . b2 j
f 2% (W dS (x) = f G206 TG (x),

a a

where Tx(x) = % and ty(x) =

ie3)

—2 _
S0 Setting w = $ (x) or w = G (x), thus, we have

1 1
f (1= VW 2w g (971 (1 = Vw))dw = f (1= VW 2wy (G (1 = Vw))dw.
0 0

Equivalently

1
f (1 - Vw)2™? [Tx(ss—l(l — VW) — (G711 - «/v_v))] wdw=0, r=n—j>0. 2.7)
0

From Stone-Weierstrass Theorem and its corollary (Aliprantis and Burkinshaw [1]): If y is a
continuous function on (0, 1) such that fol xX'y(x)dx = 0Vn > 0, then y(x) = 0, x € (0,1). Thus,

from (2.7), we have tx(H7'(1 — Vw)) = t9(G1(1 — vw)), w € [0,1]. Put 1 — /w = u, then we have
9 '(u) = ' (u), u € (0, 1), and the result follows. o

AIMS Mathematics Volume 8, Issue 10, 24176-24195.
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3. The maximum C-Ts extropy

In this section, we will present the maximum C-Ts extropy by the following theorem.

Theorem 3.1. Provided that X is a continuous RV supported in [a,b], —c0o < a < b < oo. Thus,
from (2.2), X has the maximum C-Ts extropy iff it follows the continuous uniform distribution,
where 1 # 1> 0ifh(x) < 1 andn € Z*\{1} if h(x) > 1.

Proof. From Definition 2.1, we have

1 b b
TEx,(X) = — (f (1 = b(x))dx — f (1- b(x))”dx),

subject to

b
f h(x)dx = 1. (3.1)

We can obtain the maximization of T Ex,(X), using Lagrange multipliers method as follows:

1 b b b
L(X) = n——l(f (1 —b(X))dx—f (1 —b(X))"dx) +,U(f hx)dx — 1)-

Differentiating L(X) with respect to h(x) then equating to zero, we obtain

dL(X)

=0
dh(x)

_ ﬁ (=14 70 = by + s,

therefore, we get
1 1-
bx) = 1 - (— + —",1) . (32)
n n
To find the value of u, we substitute (3.2) in the constrain (3.1), thus

o 1\
=il ) o

Substituting (3.3) in (3.2), it holds h(x) = ﬁ is the pdf of the continuous U(a, b) distribution. O

Proposition 3.1. Provided that X is a continuous RV supported in [a, b], —o0 < a < b < oo, provided
that b —a > 2. Then, from (1.4) and Definition 2.1, we have

(1) TExy(X) < TEny(X), if0 <n < 2.
(2) TEx,(X) > TEny(X), ifn > 2.

Proof. From (1.4) and Definition 2.1, we have

b b
TEn,(X) - TEx,(X) = ﬁ (2 —(b-a)- f b(x)dx + f (1- b(x)ndx).

AIMS Mathematics Volume 8, Issue 10, 24176-24195.
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Therefore, the Lagrange function (L(X)) is given by

b
L(X) = TEn,(X) — TEx,(X) +u(f h(x)dx — 1).
Then, the derivative with respect to h(x) is
dL(X)  -n -1 _ -1
B0 " o1 (5770 + (1= 5™ ) + 4,

thus, we can note the vanishing equation

b 1(x) + (1 = (X)) =k, k is a constant,
and the rest of the proof will be in the same manner given in Balakrishnan et al. [2]. O

Figure 3 shows the comparison between T Ex,(X) and T En,(X) according to Proposition 3.1 of
uniform and power function distributions.

\ —\TEx%y (X) 12F | — TEx,(X)
L2 TEn,(X) \ TEn, (X)

Figure 3. TEx,(X) and TEn,(X) of uniform distribution U(5,2) (left panel), and power
function distribution (8 = 5, 4 = 7) (right panel).

Theorem 3.2. Provided that X is a continuous RV supported in [a,b], —c0 < a < b < co. Then, from
Definition 2.1, The C-Ts extropy is less than or equal to 1.

Proof. We can see that the C-T's extropy of the continuous uniform distribution increases to 1 as (b —a)
increases. From (2.4), assume the function
(Z-1)y

Th-a)=T@)=Z-1- "

b

then, its derivative is given by
Z"—-Z-Dr'mg+Z-1)

zn ’
its sign, by mean value theorem, is given by n(Z—1+&)""! —n(Z—1)""!, for some & € (0, 1). Therefore,
we can see that 7'(Z) increases for n > 1 and decreases for 0 < < 1. Moreover, as Z tends to co, we
have the limit of uniform C-Ts extropy as follows:

T'(2) =

. . Z- NN z-1
lim TEx,(X) = lim ——|1-|1- = lim — =1.
Z—+00 Z 7 Zo+o [

AIMS Mathematics Volume 8, Issue 10, 24176-24195.
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From the maximum C-Ts extropy given in Theorem 3.1, C-Ts extropy is less than or equal to 1. Or,
we can implement the proof simply by using Bernoulli’s inequality, as follows:

b
TEx,(X) = UTII (b -—a-1- f (1- b(x))”dx)

b
< (b—a—l—f(l—nb(x))dX)
n-1 a
< ! b-a-1-b-a-n)
n—1
<1.

4. Continuous Renyi extropy

Inspired by the idea of the discrete Renyi extropy introduced by Liu and Xiao [6], we presented the
C-Re extropy in this section. Let X be a continuous RV supported in [a, b], —c0 < a < b < 0o, having
a pdf h(.). It is obvious from the logarithmic function that its domain is (0, o). Therefore, the C-Re
extropy exists only when 4(x) < 1 and b—a > 1. Otherwise, it will return to a complex result or vanish.
Then, the C-Re extropy, 1 # n > 0, is given by

b
REx,(X) = ﬁ -b-a-1)Inb-a-1)+b-a- 1)lnf (1- b(x))”dx) , 4.1)

where h(x) < land b —a > 1.

Proposition 4.1. Provided that X is a continuous RV supported in [a,b], —o0 < a < b < oco. Then,
from (2.1) and (4.1), we have

lim REx,(X) = Ex(X). (4.2)
n—

Proof. From (4.1), with applying L' Hopital' s rule, we get

b
lin}REx,l(X) = lirrll %7 (—(b —a—-1DInb-a-1)+b-a- l)lnf (1- b(x))”dx)
n— -1 - a

1 [ mam D [ 000 nd — b
71 = poyrdx

n—1 -1
b
. f (1= 50 In(1 — b))
= Ex(X).
O

Example 4.1. Suppose that the continuous RV X has U(a, b) distribution, provided that b —a + 1.

AIMS Mathematics Volume 8, Issue 10, 24176-24195.
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Then, the C-Re extropy is given by
1
REx,(X) = ( b-—a-1)Inb-a-1)+b-a- l)lnf (1- b(x))”dx)

1 ) dx) 4.3)
1—n

b
((b a—l)ln(b—a—1)+(b—a—1)lnf (1—b1

—-a
b-a

b—a-1)In—
=(b-a )nb T

where b —a + 1.

4.1. The maximum C-Re extropy

In this subsection, we will present the maximum C-Re extropy by the following theorem.

Theorem 4.1. Provided that X is a continuous RV supported in [a,b], —c0o < a < b < co. Thus,
from (4.1), X has the maximum C-Re extropy iff it follows the continuous uniform distribution.

Proof. From (4.1), we have

b
REx,(X) = %7 (—(b —a-1)Inb-a-1)+b-a- l)lnf (1- b(x))”dx),

subject to
b
f bx)dx = 1. (4.4)
We can obtain the maximization of REXx,(X), using Lagrange multipliers method as follows:

L(X) = 177( b-—a-1DInb-—a-1)+ (b - a—l)lnf(l—b(x))"dx)+u(f b(x)dx—l)

Differentiating L(X) with respect to h(x) then equating to zero, we obtain

dLx) o 1 [=nb=a= A =pey |
d(x) L=nl [P0 - by ’
therefore, we get
hx)=1- (i f (1- (x))”dx)l (4.5)
(b 1) '
To find the value of u, we substitute (4.5) in the constrain (4.4), thus

nb-a-1) (1 1 )"_1
= - . 4.6
(1-n) [[A=booydx\  b-a *0

Substituting (4.6) in (4.5), it holds bh(x) = ﬁ is the pdf of the continuous U(a, b) distribution. O

AIMS Mathematics Volume 8, Issue 10, 24176-24195.
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5. Non-parametric estimation

The non-parametric estimation is used in many works to estimate the extropy and its related
measures. The non-parametric kernel density estimation is a common procedure used in many works
of literature as a smoothed estimator, see, for example, Qiu and Jia [5], Noughabi and Jarrahiferiz [10]
and Jahanshahi et al. [12]. In this section, we present the empirical estimator of the pdf to estimate the
C-Ts extropy using the kernel non-parametric estimator. Let the sequence {X;, 1 < j < n} be a random
sample drawn from a population with pdf h(.). From Definition 2.1, the empirical Tsallis extropy is
defined as

1 b
TEx(b) = —— f (1—bn<x>>(1—(1—bn<x)>"-1)dx)

n-l1 Xj+1:n
-2 [ A (1-a -nr) as

Xjn

5.1

J=1

1 n—1
=— Z(Xjﬂzn - Xjn)(l - bn(Xj:n)) (1 — (1 - bn(Xj:n))n_l)] ,
=1

n—1
where X, < X3, < ... < X, is the order statistic of the random sample. Furthermore, b,(.) is the
density kernel estimator of f)(.) defined by (see, Parzen [8])

b,(x) = %Zkr(x ),

where kr(x) is the kernel function (we use the Gaussian kernel) and B is the bandwidths. To choose
the bandwidths, we use different methods like plug-in selectors (includes rule-of-thumb Bgy and direct
plug-in Bpp;) and cross-validation selectors (includes unbiased cross-validation By ¢y and biased cross-
validation Bpcy). Figure 4 shows the Gaussian kernel density estimator rule-of-thumb bandwidth
(BRrT—Gaussian) compared with different bandwidths selection. Tables 1 and 2 show the Tsallis extropy
estimator with different values of n and sample size n = 10, 20, 30, 70, 90, 100, 150, 200, and we can
conclude the following:

(1) For fixed i and n increases, Tsallis extropy decreases.

(2) For fixed n and 7 increases, Tsallis extropy decreases.

(3) The Tsallis extropy under the bandwidths Bgr gives a large value than the other bandwidths
selections.

Density

RT-Gaussian
RT
DPI
ucv
BCV

Density
000 001 002 003

0 20 40 60 80
N =70 Bandwidth =3.848

Figure 4. Compared bandwidths selection.
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Table 1. Tsallis extropy estimator with = 0.1,0.9.

Bandwidths with = 0.1

Bandwidths with = 0.9

Bgrr

Bppr Bycy

Bpgcy Brr

Bppr Bycy

Bgcy

10
20
30
70
90
100
150
200

0.01568894

0.00648184

0.004392641
0.003419211
0.001635452
0.001509869
0.001472468
0.001071068

0.01225054

0.007448753
0.004579266
0.003454668
0.001550102
0.001433574
0.001406587
0.001004348

0.0129823
0.006082191
0.004121339
0.00345291
0.001539633
0.001422614
0.00141964
0.001027615

0.012995
0.006076309
0.004128011
0.003452436
0.001540461
0.001420712
0.00141884
0.001027698

0.01529039

0.006403521
0.004352873
0.003409897
0.001629029
0.001504396
0.001469182
0.001069151

0.01200904 0.01271073

0.00734512 0.006013289
0.004536029 0.004086354
0.003445159 0.00344341

0.001544334 0.001533942
0.001428641 0.001417757
0.001403589 0.001416586
0.001002663 0.001025851

0.01272289

0.006007541
0.004092911
0.00344294

0.001534764
0.001415868
0.001415789
0.001025934

Table 2. Tsallis extropy estimator with n

=3,6.

Bandwidths with = 3

Bandwidths withn = 6

Bgrr

Bpp; Bycy

Bpgcy Bgrr

Bppr Bycy

Bgcy

10
20
30
70
90
100
150
200

0.01430656

0.006203853
0.004250744
0.003385607
0.001612328
0.001490156
0.001460602
0.001064142

0.01140461 0.01203303

0.007082083 0.005837306
0.004425095 0.003996382
0.003420364 0.003418641
0.001529326 0.001519136
0.001415801 0.001405111
0.001395758 0.00140861

0.00099825760.001021239

0.01204388 0.01304385
0.005831896 0.005932838
0.00400265 0.004110336
0.003418176 0.003351307
0.001519943 0.001588865
0.001403256 0.001470123
0.001407822 0.001448461
0.001021322 0.00105704

0.01061012 0.01114672
0.006727799 0.00559768
0.004272832 0.003872394
0.003385354 0.003383666
0.001508223 0.001498314
0.001397723 0.001387306
0.001384673 0.001397319
0.000992009 0.001014699

0.0111559%4

0.005592718
0.00387827

0.003383211
0.001499099
0.001385498
0.001396544
0.001014781

5.1. Pharmaceutical market dataset

In this subsection, we illustrate a dataset that compares sales and consumption across several
From Figures 5 and 6, this study focuses on the
OECD countries which contain 8 countries in the pharmaceutical market variables (Antidepressants;
Anxiolytics; Drugs used in diabetes; Respiratory system) from 2010 to 2021 (Defined daily dosage
per 1000 inhabitants per day), see [7]. Table 3 shows the Tsallis extropy estimator with different values
of 1 and we can conclude the following:

countries in the pharmaceutical business.

(1) When n increases, Tsallis extropy decreases.
(2) The Tsallis extropy under the bandwidths Bpp; gives a large value than the other bandwidths

selections.
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Figure 5. Pharmaceutical market variables.
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Figure 6. Pharmaceutical market country.
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Table 3. Tsallis extropy estimator of OECD pharmaceutical market.

n Bandwidths
Bgr Bppi Bycy Bgcy

0.1 0.0004175204 0.0006107105 4.314579 x107%  0.000392944
0.9 0.0004175065 0.0006106806 4.314578 x107° 0.0003929316
3 0.0004174699 0.0006106023 4.314574 x107%  0.0003928992
6  0.0004174176 0.0006104904 4.314568 x107%  0.0003928529
9  0.000417313  0.0006102668 4.314557 x107% 0.0003927603
12 0.0004171737 0.0006099688 4.314542 x107% 0.0003926369

5.1.1. Forecasting time series

In this part, we study the forecasting time series of Austria pharmaceutical market from 2021
to 2030 for the two variables, anxiolytics and drugs used in diabetes. Then, we obtain the Tsallis
extropy estimator of the obtained results. Figures 7 and 8 show the fitted model to the anxiolytics and
drugs used in diabetes variables which both fitted to ARIMA(0, 1, 0) with (AIC=54.09, BIC=54.39 and

AIMS Mathematics
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p-value 0.74) and (AIC=14.13, BIC=14.44 and p-value 0.505), respectively.

Fitted ARIMA(0,1,0) model of drugs used in diabetes variable
10.0-

75-
50-
25-
00-

2010 2012 2014 2016 2018 2020

. B B s R 5
4-
03
3o

ACF
o
value

ey | | = D'I | VR | |
1 2 3 4 10 5 0 5 10
Lag residuals

Figure 7. Fitted anxiolytics variable of Austria pharmaceutical market.

Fitted ARIMA(Q,1,0) model of anxiclytics variable

2010 2012 2014 2016 2018 2020

w o
Q0.0 (_3“
>
2-
03
et 0
1 2 3 4 1
Lag residuals

Figure 8. Fitted drugs used in diabetes variable of Austria pharmaceutical market.

Figure 9 shows the time series and its forecasting of Austria pharmaceutical market from 2021
to 2030 for the two variables Anxiolytics and Drugs used in diabetes. Tables 4 and 5 show the Tsallis
extropy estimator of 80% and 95% forecasting interval of anxiolytics and drugs used in diabetes of
Austria pharmaceutical market, respectively, and we can conclude the following:

AIMS Mathematics Volume 8, Issue 10, 24176-24195.
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(1) When n increases, Tsallis extropy decreases.
(2) The Tsallis extropy under the bandwidths Bgr gives a large value than the other bandwidths
selections.

70

8
I
60

50

Anxiolytics
Drugs used in diabetes

40

) |\

30
L

T T T T T T T T T
2010 2015 2020 2025 2030 2010 2015 2020 2025 2030
Years Years

Figure 9. Forecasting time series of Austria pharmaceutical market.

Table 4. Tsallis extropy estimator of anxiolytics in Austria pharmaceutical market.

n Bandwidths (80% forecasting interval) Bandwidths (95% forecasting interval)
Bgrr Bppr Bycv Bgcy Brr Bppr Bycy Bscv
0.1 [0.01278551, [0.0118221, [0.01200616, [0.01199755, [0.01282185, [0.01184626, [0.01203778, [0.01202923,
0.02367084] 0.02306017] 0.02319374] 0.02318694] 0.02371729] 0.02310411] 0.02323823] 0.02323139]
0.9 [0.01203026, [0.01117969, [0.01134294, [0.01133531, [0.01233652, [0.01143332, [0.01161111, [0.01160317,
0.02267522] 0.02211642] 0.02223877] 0.02223254] 0.02307425] 0.02249436] 0.02262128] 0.02261481]
3 [0.0103122, [0.009701415,00.009820118,[0.009814586,[0.01117408, [0.01043706, [0.01058318, [0.01057667,
0.02031479] 0.0198728] 0.01996984] 0.0199649] 0.02149344] 0.02099279] 0.02110254] 0.02109695]
6 [0.008393795,[0.008018444,[0.008092826,[0.008089374,[0.009757514,/0.009207808,[0.009317947,[0.009313052,
0.01748806] 0.01717329] 0.01724268] 0.01723915] 0.01947896] 0.0190735] 0.01916259] 0.01915805]
9 [0.006945648,[0.006720525,[0.00676616, [0.006764053,[0.008578555,[0.008170232,[0.008252944,[0.008249277,
0.01518132] 0.01495867] 0.01500796] 0.01500546] 0.01771483] 0.01738691] 0.01745914] 0.01745546]
12 [0.005838708,[0.005708993,[0.005736063,/0.005734821,[0.007592507,/0.007290802,[0.007352628,[0.007349894,
0.01328733] 0.01313129] 0.013166] 0.01316424] 0.01616612] 0.01590135] 0.01595982] 0.01595684]
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Table 5. Tsallis extropy estimator of drugs used in diabetes in Austria pharmaceutical
market.

n Bandwidths (80% forecasting interval) Bandwidths (95% forecasting interval)

Bgr Bppi Bycv Bpev Bgr Bppi Bycv Bpev
0.1 [0.01287194, [0.01188874, [0.0120817, [0.01207308, [0.01287625, [0.01189883, [0.01208585, [0.01207643,
0.02378289] 0.02316626] 0.02330113] 0.02329425] 0.02378862] 0.02317169] 0.02330662] 0.02329974]
0.9 [0.01277373, [0.01180502, [0.01199523, [0.01198674, [0.01281218, [0.01184414, [0.01202942, [0.01202009,
0.02365185] 0.02304195] 0.02317536] 0.02316856] 0.02370307] 0.02309053] 0.02322451] 0.02321768]
3 [0.01252066, [0.01158896, [0.01177214, [0.01176396, [0.012646, [0.01170216, [0.01188297, [0.01187386,
0.02331242] 0.02271983] 0.02284949] 0.02284288] 0.02348046] 0.02287929] 0.02301081] 0.0230041]
6  [0.01217064, [0.01128939, [0.01146296, [0.01145521, [0.01241357, [0.01150326, [0.01167784, [0.01166905,
0.02283873] 0.02227002] 0.02239451] 0.02238816] 0.02316725] 0.02258196] 0.02271004] 0.02270352]
9 [0.01183364, [0.01100012, [0.01116459, [0.01115725, [0.01218683, [0.01130886, [0.01147744, [0.01146895,
0.02237785] 0.02183207] 0.02195159] 0.0219455] 0.02285961] 0.02228979] 0.02241452] 0.02240816]
12 [0.01150912, [0.01072077, [0.01087661, [0.01086966, [0.01196562, [0.01111885, [0.01128163, [0.01127343,
0.0219294] 0.02140563] 0.02152038] 0.02151453] 0.02255743] 0.02200266] 0.02212413] 0.02211794]

6. Conclusions

In this consideration, we have discussed the C-Ts and C-Re extropy under the continuous case,
and discuss the conditions when the continuous distributions can be valid to apply in C-Ts and C-
Re extropy. We have illustrated some properties of the presented models with examples of some
distributions like uniform and power function distributions. Besides, our models with the other
uncertainty measures and order statistics are compared. Moreover, we have discussed the condition
of the maximum C-Ts and C-Re extropy, which both returned to the uniform distribution. A non-
parametric estimation has been introduced of the Tsallis extropy and we see that its increases depend
on the values of n, i and the selection of the bandwidth. In comparing C-T's and C-Re extropy with the
original version of entropy, we can see that no constraints are held on the pdf of the entropy measures.
Moreover, we must have some restrictions on the pdf in C-Ts and C-Re extropy. Furthermore, when
the Tsallis entropy parameter r7 approaches 1, it converges to the classical Shannon entropy. In contrast,
the C-Ts extropy converges to the extropy measure when 7 tends to 1, only at h(x) < 1. The choice of
the non-extensive parameter 1 can significantly impact the behavior and interpretation of the entropy
measure; therefore, when n = 2, the C-Ts extropy and entropy coincide, which means that the two
models have the same performance in evaluating uncertain information. In future work, some relative
works of entropy, e.g., Quantum X-entropy in generalized quantum evidence theory (Xiao [16]); On the
maximum entropy negation of a complex-valued distribution (Xiao [17]); Evidential fuzzy multicriteria
decision making based on belief entropy (Xiao [18]) can be implemented in extropy and its related
measures.
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