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Abstract: In this paper, we consider the regularity of the weak solution to the compressible Navier-
Stokes-Poisson equations in period domain Ω ⊆ R3 provided that the density ρ(t, x) with integrability
on the space L∞(0,T ; Lq0(Ω)) where q0 satisfies a certain condition and T > 0, by which we could
present that supt,x ρ(t, x) < ∞ and inft,x ρ(t, x) > 0. Furthermore, we develop the estimate for the
velocity ‖u‖L∞ by the Moser iteration method and Gronwall inequality.
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1. Introduction

In this article, we will investigate the regularity of weak solutions of the compressible Navier-
Stokes-Poisson (NSP) equations. The compressible (NSP) system is used to simulate the motion of
charged particles. It consists of the compressible Navier-Stokes (NS) equations with the electrostatic
potential controlled by the self-consistent Poisson equation. A carrier type of NSP system is
represented as the following form in R3:

∂tρ + div(ρu) = 0,
∂t(ρu) + div(ρu ⊗ u) + ∇p(ρ) − µ∆u − (µ + ν)∇ div u − ρ∇Φ = ρ f ,

∆Φ = ρ − ρ̄, lim
|x|→∞

Φ(t, x) = 0.
(1.1)

Here, ρ = ρ(t, x) > 0 is the density, u(t, x) = (u1, u2, u3)(t, x) is the velocity, p(ρ) denotes the pressure
and Φ denotes the electrostatic potential. ρ > 0 is a constant. µ > 0 and ν are constant viscous
coefficients that satisfy 2µ + 3ν ≥ 0. The term f denotes a given external force.
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There are many conclusions about NS equations on the condition that ∇Φ = 0 in (1.1). In the
past, people have studied the existence of weak solution to the compressible NS equations. P. L.
Lions [12] proved the global existence of finite energy weak solution to NS equations when p(ρ) =

Rργ, γ > 9
5 in 1998; Feireisl [6] claimed the existence of the weak solution when p(ρ) = Rργ, γ > 3

2
in 2001. Afterwards, Choe, Kim and Cho [2, 3] showed the local existence of the strong solution to
NS equations. In 2011, Sun, Wang and Zhang [19] proved a blow-up criterion for a strong solution
to the compressible viscous heat-conductive flows in R3 on condition that µ > 1

7ν in accordance with
the upper bound of (ρ, ρ−1, θ). Valli [24] proved the uniqueness of the solution if the data ρ0, u0 and f
satisfy some condition in bounded smooth domain Ω ⊆ R3 . In 2013, Wen and Zhu [25] established a
blow-up criterion for strong solutions to the Cauchy problem of compressible isentropic NS equations
with vacuum provided µ > 3

29ν in the light of the integrability of the density. Though Choe [4] proved
the regularity to the weak solution, which is defined by D. Hoff [9], it is indeterminate whether the
weak solutions is the same to the finite energy weak solution.

However, there are not many conclusions related to the solution to NSP equation. In a series of
articles [14, 15, 18], M. Okada et al. [17, 18] studied the vacuum problem of NSP equations which
are spherically symmetrical with solid core. They [17] considered a free boundary problem for the
equation of the one-dimensional isentropic motion with density-dependent viscosity and proved that
there exists a unique weak solution globally in time; Then, Kobayashi and Suzuki [11] proved the
existence of weak solution to NSP equations of which the method is similar to the method of [6].
In 2007, Zhang and Tan [27] proved the existence of the global weak solution to the compressible NSP
equations where p(ρ) = aρ logd ρ for sufficiently large densities by using suitable Orlicz spaces in R2 .
We may refer to [1, 7, 20–22, 26] for more about NS or NSP equations. As far as we are concerned, to
the author’s best knowledge, there are not many studies on the regularity for the corresponding weak
solution to the compressible NSP equations.

For simplicity, let f ≡ 0 of (1.1) in the paper. Thus, the problem we are concerned with in our study
is the regularity of weak solutions to the isentropic compressible NSP equations in the periodic domain
Ω = R3 − Z3 as 

∂tρ + div(ρu) = 0, for (t, x) ∈ (0,T ) ×Ω,

∂t(ρu) + div(ρu ⊗ u) − µ∆u − (µ + ν)∇ div u + ∇p(ρ) − ρ∇Φ = 0,
∆Φ = ρ − ρ̄,

(1.2)

with the following initial conditions:
ρ(t, x)|t=0 = ρ0 > 0, u(t, x)|t=0 = u0, x ∈ Ω,

ρ0 ∈ W1,6(Ω), u0 ∈ H1
0(Ω) ∩ L∞(Ω),

0 < m ≤ ρ0 ≤ M < +∞,

(1.3)

where ρ > 0 is a constant, p(ρ) = Rργ,R > 0, γ > 1 and m and M both are constants.

Definition 1.1. (ρ, u) is called the finite energy weak solution of the Eq (1.2) for (t, x) ∈ ΩT = (0,T )×Ω,
if (ρ, u) satisfies

ρ ∈ L∞
(
0,T ; L1(Ω)

)
∩ L∞

(
0,T ; Lγ(Ω)

)
, u ∈ L2(0,T ; H1(Ω)

)
AIMS Mathematics Volume 8, Issue 10, 22944–22962.
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and the energy inequality

dE(t)
dt

+ µ

∫
Ω

|∇u|2dx + (µ + ν)
∫

Ω

| div u|2dx ≤ 0,

holds inD′((0,∞)) with the finite total energy, where

E(t) =

∫
Ω

(1
2
ρ|u|2 +

p(ρ)
γ − 1

+
1
2
|∇Φ|2

)
dx < ∞, for t ∈ (0,∞).

All the priori estimates of this paper depend on the assumption that ρ and u are C∞ for the time
interval as mentioned in [4, 5].

Theorem 1.1. Suppose (ρ, u) is the weak solutions denoted by the Definition 1.1 to the Eqs (1.2)
and (1.3). If ρ ∈ L∞

(
0,T ; Lq0(Ω)

)
for time T > 0 and for q0 depending only on γ, then

0 < inf
ΩT
ρ ≤ ρ ≤ sup

ΩT

ρ < +∞, sup
ΩT

|u| < +∞.

Furthermore, we show that ρ ∈ C(0,T ; Lq(Ω)) ∩ L∞(ΩT ) for all q ∈ [1,∞), and
√
ρut ∈ L2(ΩT ),Pu ∈

L2(0,T ; H2(Ω)),G ∈ L2(0,T ; H2(Ω)),∇u ∈ L∞(0,T ; L2(Ω)), where Pu refers to the divergence-free
part of u , G = (2µ + ν)div u − p(ρ).

The paper is structured as follows. In Section 2, we give some preliminaries to study the regularity
of the weak solution to the NSP equations. In Section 3, one develops the priori estimate of ρ under
some condition by many techniques; In Section 4, we shall perfect the proof of Section 3; Finally, in
Section 5, we present a prior L∞ estimate of u by Moser iteration.

2. Preliminary

In this section, we collect some auxiliary results which will be used to investigate subsequent
studies.

First, we define the divergence-free part of any vector field u as Pu, and the gradient part of u as Qu
which means Qu = ∇∆−1 div u. Naturally, the following propositions hold.

Proposition 2.1.

curl (Qu) = 0, div(Pu) = 0, ∆u = ∇(div u) − curl curl u, Pu = u − Qu.

Proposition 2.2. (Page 67 of [13]). Suppose that f ∈ L2(Ω), and
∆v = ∇p + f , x ∈ Ω,

div v = 0,
v|∂Ω = 0,

then v ∈ W2,2(Ω), and ∇p ∈ L2(Ω). Furthermore,

‖v‖W2,2(Ω) + ‖∇p‖L2(Ω) ≤ C‖ f ‖L2(Ω).

AIMS Mathematics Volume 8, Issue 10, 22944–22962.
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Proposition 2.3. Suppose that ρ ∈ L∞(0,T ; Lp0(Ω)) for p0 = max{ (2γ−1)α+4γ
2 , 4}, where α is a

nonnegative real number. Then, we obtain∫
Ω

ρ|u|α+2dx .
∫

Ω

ρ0|u0|
α+2dx + sup

t∈[0,T ]
‖ρ‖

(2γ−1)α+4γ
2

L
(2γ−1)α+4γ

2 (Ω)
t
α+2

2 + ‖ρ − ρ‖α+2
L4(Ω) sup

t∈[0,T ]
‖ρ‖L1(Ω)tα+2.

Proof. Let |u|αu as a test function to (1.2), then one obtain

1
α + 2

d
dt

∫
Ω

ρ|u|α+2dx + µ(α + 1)
∫

Ω

|u|α|∇u|2dx + α(µ + ν)
∫

Ω

|u|α div u · ∇udx + (µ + ν)
∫

Ω

| div u|2|u|αdx

=

∫
Ω

Rργ|u|α div udx + α

∫
Ω

Rργ|u|α∇udx +

∫
Ω

ρ∇Φ|u|αudx. (2.1)

Applying Hölder’s inequality and Young’s inequality to (2.1), implies that∫
Ω

Rργ|u|α div udx .
1
2

∫
Ω

|u|α|∇u|2dx + 2R2 sup
t∈[0,T ]

‖ρ‖
(2γ−1)α+4γ

α+2

L
(2γ−1)α+4γ

2

( ∫
Ω

ρ|u|α+2dx
) α
α+2 . (2.2)

Similarly, we obtain

α

∫
Ω

Rργ|u|α∇udx .
1
2

∫
Ω

|u|α|∇u|2dx + 2α2R2 sup
t∈[0,T ]

‖ρ‖
(2γ−1)α+4γ

α+2

L
(2γ−1)α+4γ

2

( ∫
Ω

ρ|u|α+2dx
) α
α+2 . (2.3)

Noting that ∆Φ = ρ − ρ, and using Hölder’s inequality and Sobolev inequality, we could have∫
Ω

ρ∇Φ|u|αudx . ‖ρ − ρ‖L4(Ω) sup
t∈[0,T ]

‖ρ‖
1
α+2

L1(Ω)

( ∫
Ω

ρ|u|α+2dx
) α+1
α+2 . (2.4)

Combining (2.2)–(2.4) with (2.1), and letting U(t) =
∫

Ω
ρ|u|α+2dx, one could have

d
dt

U(t) . sup
t∈[0,T ]

‖ρ‖
(2γ−1)α+4γ

α+2

L
(2γ−1)α+4γ

2 (Ω)
[U(t)]

α
α+2 + ‖ρ − ρ‖L4(Ω) sup

t∈[0,T ]
‖ρ‖

1
α+2

L1(Ω)[U(t)]
α+1
α+2 .

This reduces to

U(t) . U(0) + sup
t∈[0,T ]

‖ρ‖
(2γ−1)α+4γ

2

L
(2γ−1)α+4γ

2 (Ω)
t
α+2

2 + ‖ρ − ρ‖α+2
L4(Ω) sup

t∈[0,T ]
‖ρ‖L1(Ω)tα+2.

�

3. A priori estimates for density ρ

3.1. The estimates for P(H), Q(H) and G

Now, applying the operator “divergence-free fields” P to (1.2) , we consequently obtain that

P(ρut + ρu · ∇u − ρ∇Φ) − µ∆Pu = 0. (3.1)

Denote H = ρut + ρu · ∇u − ρ∇Φ, then (3.1) will be reformulated equivalently as

P(H) − µ∆Pu = 0. (3.2)

AIMS Mathematics Volume 8, Issue 10, 22944–22962.
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Then, by taking divergence operator to the Eq (1.2), one deduces that

div(ρut + ρu · ∇u − ρ∇Φ) − ∆
(
(2µ + ν) div u − p(ρ)

)
= 0. (3.3)

Denote G = (2µ + ν) div u − p(ρ), and we have again by formula (3.3) that

G = ∆−1 div(ρut + ρu · ∇u − ρ∇Φ). (3.4)

Note that the definition of Qu = ∇∆−1 div u, then (3.4) will be reformulated equivalently as

Q(H) − ∇G = 0. (3.5)

By virtue of (3.2) and (3.5), we getµ∆Pu + ∇G = P(H) + Q(H),
div(Pu) = 0.

Note that H = P(H) + Q(H), and from Proposition 2.2 and the Stokes problem (see 2.2 The stokes
problem and the operator A of Chapter 2 in Temam [23]), it follows that

‖∇2Pu‖Lr(Ω) + ‖∇G‖Lr(Ω) ≤ ‖H‖Lr(Ω), for 1 < r < ∞. (3.6)

Observe that H = ρut + ρu · ∇u − ρ∇Φ, then clearly we have

‖H‖Lr(Ω) ≤ c(‖ρut‖Lr(Ω) + ‖ρu · ∇u‖Lr(Ω) + ‖ρ∇Φ‖Lr(Ω)), for 1 < r < ∞, (3.7)

where c = c(N), and N denotes the dimension.
By virtue of Proposition 2.1, we can get

‖∇u‖Lr ≤ ‖∇Pu‖Lr + ‖ div u‖Lr , for 1 < r < ∞. (3.8)

From the Gagliardo-Nirenberg-Sobolev (G-N-S) inequality, we have

‖u‖
L

3r
3−r
≤ ‖∇u‖Lr , for 1 < r < 3. (3.9)

From G = (2µ + ν) div u − p(ρ), we obtain

‖ div u‖Lr ≤
1

2µ + ν
(‖G‖Lr + R‖ρ‖γLγr ). (3.10)

Combining (3.8)–(3.10), immediately we have

‖∇u‖
L

3r
3−r (Ω)

≤ ‖∇2Pu‖Lr(Ω) +
1

2µ + ν

(
‖∇G‖Lr(Ω) + R‖ρ‖γ

L
3rγ
3−r

)
. (3.11)
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3.2. The estimates for sup
ΩT

ρ(x, t), and inf
ΩT
ρ(x, t)

Lemma 3.1. Suppose that ρ0 ∈ L∞(Ω) and u0 ∈ H1(Ω), and assume that ∇2Pu and ∇G is bounded,
and ρ ∈ L∞

(
0,T ; Lp1(Ω)

)
, where p1 = max{p0, 39, 5γ, 40γ − 19}. Then we could obtain that

sup
ΩT

ρ(x, t) < ∞, inf
ΩT
ρ(x, t) > 0.

Proof. From ρt + div(ρu) = 0, we get the following relations

dρ(x, t)
dt

= −ρ(x, t) div u(x, t).

We can rewrite it in differential notation and integrate the equality above from 0 to t, then we have

ln ρ(x, t) = ln ρ0 −

∫ t

0
div u(x, s)ds.

Using the equation G = (2µ + ν) div u − p(ρ), one deduces that

ln ρ(x, t) = ln ρ0 −
1

2µ + ν

∫ t

0
(G + Rργ)ds. (3.12)

Note that G = ∆−1 div
(
(ρu)t+div(ρu⊗u)−ρ∇Φ

)
. Now, considering the term with respect to G of (3.12),

we can infer that∫ t

0
G ds =

∫ t

0
∆−1 div

(
(ρu)s + div(ρu ⊗ u) − ρ∇Φ

)
ds

=

∫ t

0

(
∆−1 div((ρu)s

)
ds +

∫ t

0
∆−1 div

(
div(ρu ⊗ u)

)
ds −

∫ t

0
∆−1 div

(
ρ∇Φ

)
ds.

Note that ∫ t

0

(
∆−1 div(ρu)s

)
ds =∆−1 div(ρu) − ∆−1 div(ρ0u0) −

∫ t

0
u · ∇∆−1 div(ρu)ds.

Then, one obtains

ln ρ(t, x) = ln ρ0 −
1

2µ + ν

(
∆−1 div(ρu)(x, t) − ∆−1 div(ρ0u0)

)
−

1
2µ + ν

∫ t

0
Rργds

+
1

2µ + ν

∫ t

0
∆−1 div(ρ∇Φ)ds −

1
2µ + ν

∫ t

0

(
∆−1 div2 (ρu ⊗ u) − u · ∇∆−1 div(ρu)

)
ds (3.13)

, ln ρ0 −
1

2µ + ν
(
∫ t

0
Rργds + (A0 − a0) +

∫ t

0
(−A1 + A2)ds),

where A0 = ∆−1 div(ρu), a0 = ∆−1 div(ρ0u0), A1 = ∆−1 div(ρ∇Φ), A2 = ∆−1 div2(ρu⊗u)−u·∇∆−1 div(ρu),
and div2 is an operator defined by div2 M = ∂i jMi j for a 3 × 3 matrix M = (Mi j).

Therefore, we have

ln ρ(x, t) . ln ‖ρ0‖L∞(Ω) + ‖A0 − a0‖L∞(Ω) +

∫ t

0

(
‖A1(·, s)‖L∞(Ω) + ‖A2(·, s)‖L∞(Ω)

)
ds, (3.14)

AIMS Mathematics Volume 8, Issue 10, 22944–22962.
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ln ρ(x, t) & ln(inf
Ω
ρ0) −

∫ t

0
R‖ρ‖γL∞(Ω)ds − ‖A0 − a0‖L∞(Ω) −

∫ t

0
(‖A1(·, s)‖L∞(Ω) + ‖A2(·, s)‖L∞(Ω))ds.

(3.15)

Using (3.14), one could obtain that

ln ρ(x, t) − ln ‖ρ0‖L∞(Ω) . ‖A0 − a0‖L∞(Ω) +

∫ t

0

(
‖A1(·, s)‖L∞(Ω) + ‖A2(·, s)‖L∞(Ω)

)
ds , A(t).

Hence, one yields that

ρ(t, x) ≤ ‖ρ0‖L∞(Ω) exp{A}.

From above inequality, (3.15) implies that

ln ρ(t, x) ≥ ln(inf
Ω
ρ0) −A −

∫ t

0
R‖ρ0‖

γ

L∞(Ω) exp
{
γA

}
ds.

Therefore

ρ ≥ (inf
Ω
ρ0) exp

{
−A −

∫ t

0
R‖ρ0‖

γ

L∞(Ω) exp
(
γA

)
ds

}
.

Obviously, once one proves sup
t∈[0,T ]

A(t) < ∞, we may obtain

sup
ΩT

ρ(x, t) < ∞, and inf
ΩT
ρ(x, t) > 0.

Therefore, it’s necessary to study the estimates ofA(t).

3.3. The estimates forA(t)

First, observe A0 = ∆−1 div(ρu), A1 = ∆−1 div(ρ∇Φ), A2 = ∆−1 div2(ρu ⊗ u) − u · ∇∆−1 div(ρu), then
we obtain

∆A0 = div(ρu),∆A1 = div(ρ∇Φ).

Meanwhile, we have

∆A2 = div
(
∆A0 · u + ρ(u · ∇)u + ∇(u · ∇A0)

)
.

Using the Calderon-Zygmund theorem (Theorem 9.9 of [8]), we get

‖∇A0‖Lp(Ω) ≤ c‖ρu‖Lp(Ω),

‖∇A1‖Lp(Ω) ≤ c‖ρ∇Φ‖Lp(Ω),

‖∇A2‖Lp(Ω) ≤ c‖
(
ρ|u| + |∇A0|

)
|∇u|‖Lp(Ω),

where 1 < p < ∞, c depends on p. For all v ∈ W1,4(Ω), one yields

‖v‖L∞(Ω) ≤ c‖∇v‖L4(Ω).

AIMS Mathematics Volume 8, Issue 10, 22944–22962.
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Hence, we have

‖A0‖L∞(Ω) . ‖∇A0‖L4(Ω) . ‖ρu‖L4(Ω) . ‖ρ‖
7
8

L7(Ω) · ‖ρ
1
8 u‖L8(Ω). (3.16)

Applying the same method of estimating ‖A0‖L∞(Ω) to estimate ‖A1‖L∞(Ω), we obtain that

‖A1‖L∞(Ω) . ‖∇A1‖L4(Ω) . ‖ρ∇Φ‖L4(Ω) . ‖ρ‖L8(Ω) · ‖∇Φ‖L8(Ω).

According to ∆Φ = ρ − ρ and the Calderon-Zygmung inequality [16], we have

‖∇Φ‖
L

3β
3−β (Ω)

. ‖ρ − ρ‖Lβ , (β > 1).

Moreover, we estimate that

‖A1‖L∞(Ω) . ‖ρ‖L8(Ω) · ‖ρ − ρ‖L
24
11 (Ω)
. ‖ρ‖2L8(Ω) + ‖ρ‖L8(Ω). (3.17)

Similarly for A2, we could obtain

‖A2‖L∞(Ω) . ‖∇A2‖L4(Ω) . ‖(ρ|u| + |∇A0|)|∇u|‖L4(Ω)

. ‖(ρ|u| + |∇A0|)‖L20(Ω) · ‖∇u‖L5(Ω)

. ‖ρu‖2L20(Ω) + ‖∇u‖2L5(Ω)

, B2
1 + B2

2. (3.18)

Applying Hölder’s inequality to B1, we obtain

B1 . ‖ρu‖L20(Ω) . ‖ρ‖
39
40

L39(Ω) · ‖ρ
1
40 u‖L40(Ω).

Similarly, by using the Calderon-Zygmung inequality and Hölder’s inequality, one has

B2 . ‖∇Pu‖L5(Ω) + ‖ div u‖L5(Ω)

. ‖∇Pu‖L5(Ω) + (‖G‖L5(Ω) + R‖ρ‖γ
L5γ(Ω)

)

. ‖∇2Pu‖
L

15
8 (Ω)

+ ‖∇G‖
L

15
8 (Ω)

+ R‖ρ‖γ
L5γ(Ω)

.

Hence, we get the estimate of A2 by Young inequality,

‖A2‖L∞(Ω) . ‖ρ‖
39
10

L39(Ω) + ‖ρ
1
40 u‖4L40(Ω) + ‖∇2Pu‖2

L
15
8 (Ω)

+ ‖∇G‖2
L

15
8 (Ω)

+ R‖ρ‖2γ
L5γ(Ω)

. (3.19)

Therefore, combining (3.16), (3.17) and (3.19), one could have

A .

∫ t

0
‖ρ‖L8(Ω) · ‖ρ − ρ‖L

24
11 (Ω)

ds

+

∫ t

0

{
‖ρ

1
40 u‖4L40(Ω) + ‖ρ‖

39
10

L39(Ω) + ‖∇2Pu‖2
L

15
8 (Ω)

+ ‖∇G‖2
L

15
8 (Ω)

+ R‖ρ‖2γ
L5γ(Ω)

}
ds

+ ‖ρ‖
7
8

L7(Ω) · ‖ρ
1
8 u‖L8(Ω). (3.20)

Observe Proposition 2.3 and that if ∇2Pu and ∇G is bounded which we will prove in the Lemma 4.3
of the next section, then we could obtain that sup

t∈[0,T ]
A(t) < ∞. �
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4. A priori bounds for ∇2Pu and ∇G

Lemma 4.1. Let 1 < r < 2, ρ ∈ L∞(0,T ; Lp2(Ω)), and p2(r) = max{p0, p1,
5r−2
2−r ,

r
2−r , 4}, then∫ T

0

(
‖∇2Pu‖2Lr(Ω) + ‖∇G‖2Lr(Ω)

)
dt

. sup
t∈[0,T ]

‖ρ‖L
r

2−r (Ω)

"
ΩT

ρ|ut|
2dxdt + sup

t∈[0,T ]

{
‖ρ‖

5r−2
2r

L
5r−2
2−r (Ω)

( ∫
Ω

ρ|u|
4r

2−r
) 2−r

2r
‖∇u‖2L2(Ω)

}
+ sup

t∈[0,T ]
‖ρ‖Lr(Ω)‖ρ − ρ‖L4(Ω).

Proof. Using (3.6) and (3.7), we obtain

‖∇2Pu‖Lr(Ω) + ‖∇G‖Lr(Ω) ≤ c(‖ρut‖Lr(Ω) + ‖ρu · ∇u‖Lr(Ω) + ‖ρ∇Φ‖Lr(Ω)),

where 1 < r < ∞, c = c(N) and N is the dimension. For 1 < r < 2, it follows that

‖ρut‖Lr(Ω) . ‖ρ‖
1
2

L
r

2−r (Ω)
‖
√
ρut‖L2(Ω),

‖ρu · ∇u‖Lr(Ω) . ‖ρ‖
5r−2

4r

L
5r−2
2−r (Ω)

‖ρ
2−r
4r u‖

L
4r

2−r (Ω)
‖∇u‖L2(Ω).

According to ∆Φ = ρ − ρ, we obtain

‖ρ∇Φ‖Lr(Ω) . ‖ρ‖Lr(Ω)‖∇Φ‖L∞(Ω) . ‖ρ‖Lr(Ω)‖∆Φ‖L4(Ω) . ‖ρ‖Lr(Ω)‖ρ − ρ‖L4(Ω).

Hence, if 1 < r < 2, we obtain

‖∇2Pu‖2Lr(Ω) + ‖∇G‖2Lr(Ω) (4.1)

.‖ρ‖L
r

2−r (Ω)‖
√
ρut‖

2
L2(Ω) + ‖ρ‖

5r−2
2r

L
5r−2
2−r (Ω)

‖ρ
2−r
4r u‖

L
4r

2−r (Ω)
‖∇u‖2L2(Ω) + ‖ρ‖2Lr(Ω)‖ρ − ρ‖

2
L4(Ω).

Hence, integrating (4.1) over [0,T ], we could get∫ T

0

(
‖∇2Pu‖2Lr(Ω) + ‖∇G‖2Lr(Ω)

)
dt

.

∫ T

0

{
‖ρ‖L

r
2−r (Ω)‖

√
ρut‖

2
L2(Ω) + ‖ρ‖

5r−2
2r

L
5r−2
2−r (Ω)

‖ρ
2−r
4r u‖2

L
4r

2−r (Ω)
‖∇u‖2L2(Ω) + ‖ρ‖2Lr(Ω)‖ρ − ρ‖

2
L4(Ω)

}
dt.

�

Lemma 4.2. Let 6
5 < r < 2, and p3(r) = max

{
4γ, (2γ−1)r+1

r−1 , 6γr
6−5r ,

3γr
3−r ,

3
2r−3 ,

2γ−1
r−1 + 2γ, 3(2γ−1)

2r−3 + 2γ
}
. Here

we assume ρ0 ∈ L∞(0,T ; Lp3(Ω)). Then, one chould obtain that∫ T

0

∫
Ω

ρ|ut|
2(t, x)dxdt + µ sup

t∈[0,T ]

∫
Ω

|∇u(t, x)|2dx +
1
µ2

∫ T

0

∫
Ω

(R3(γ − 1)ρ3γ)dxdt

≤ 3ε
∫ T

0

(
‖∇2Pu‖2Lr(Ω) + ‖∇G‖2Lr(Ω)

)
dt + C, for any ε > 0,

where C = C(µ, ν,R, ‖u0‖H1(Ω), ‖ρ0‖L2γ(Ω), sup
t∈[0,T ]

‖ρ‖Lp3 (Ω)).
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Proof. Multiply ut to (1.2)2 and integrate over ΩT , then we could obtain that∫ T

0

∫
Ω

|ρu2
t | dxdt +

µ

2
sup

t∈[0,T ]

∫
Ω

|∇u|2 dx +
µ + ν

2
sup

t∈[0,T ]

∫
Ω

| div u|2 dx +

∫ T

0

∫
Ω

∇p(ρ) · ut dxdt

≤

∫ T

0

∫
Ω

|ρ∇Φ · ut| dxdt +
µ

2

∫
Ω

|∇u0|
2 dx +

µ + ν

2

∫
Ω

| div u0|
2 dx +

∫ T

0

∫
Ω

|ρ(u · ∇u) · ut| dxdt

≤

∫ T

0

∫
Ω

|ρ∇Φ · ut| dxdt +
µ

2

∫
Ω

|∇u0|
2 dx +

µ + ν

2

∫
Ω

| div u0|
2 dx

+
1
2

∫ T

0

∫
Ω

|ρu2
t | dxdt +

1
2

∫ T

0

∫
Ω

|ρu2(∇u)2| dxdt. (4.2)

Therefore, we have∫ T

0

∫
Ω

|ρu2
t | dxdt + µ sup

t∈[0,T ]

∫
Ω

|∇u|2 dx + (µ + ν) sup
t∈[0,T ]

∫
Ω

| div u|2 dx + 2
∫ T

0

∫
Ω

∇p(ρ) · ut dxdt

≤2
∫ T

0

∫
Ω

|ρ∇Φ · ut |dxdt + µ

∫
Ω

|∇u0|
2 dx + (µ + ν)

∫
Ω

| div u0|
2 dx +

∫ T

0

∫
Ω

|ρu2|∇u|2| dxdt. (4.3)

Set
I =

∫
Ω

∇p(ρ) · ut dx, J =

∫
Ω

ρ∇Φ · ut dx.

Noting that ρt + div(ρu) = 0, one obtains that

(Rργ)t = Rγργ−1ρt = −Rγργ−1 div(ρu) = −u · ∇(Rργ) − Rγργ div u.

Note that G = (2µ + ν) div u − p(ρ), we deduce that

I =

∫
Ω

∇(Rργ) · utdx = −
d
dt

∫
Ω

Rργ div udx +

∫
Ω

(Rργ)t div udx. (4.4)

Further, one obtains∫
Ω

(Rργ)t div udx

= −

∫
Ω

u · ∇(Rργ) div u −
∫

Ω

Rγργ(div u)2dx

= −

∫
Ω

(
u · ∇(Rργ) div u + Rργ(div u)2)dx − R(γ − 1)

∫
Ω

ργ(div u)2dx

= −

∫
Ω

div(Rργu) div udx − R(γ − 1)
∫

Ω

ργ(div u)2dx

=
R

2µ + ν

∫
Ω

ργu · ∇(G + Rργ)dx −
R(γ − 1)
(2µ + ν)2

∫
Ω

ργ(G2 − R2ρ2γ + 2(2µ + ν)Rργ div u)dx

=
R

2µ + ν

∫
Ω

ργu · ∇Gdx +
R

2µ + ν

∫
Ω

ργu · ∇(Rργ)dx

−
R(γ − 1)
(2µ + ν)2

∫
Ω

ργG2dx +
R3(γ − 1)
(2µ + ν)2

∫
Ω

ργρ2γdx −
2R2(γ − 1)

2µ + ν

∫
Ω

ρ2γ div udx
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=
R

2µ + ν

∫
Ω

ργu · ∇Gdx −
R2

2(2µ + ν)

∫
Ω

ρ2γ div udx

−
R(γ − 1)
(2µ + ν)2

∫
Ω

ργG2dx +
R3(γ − 1)
(2µ + ν)2

∫
Ω

ρ3γdx −
2R2(γ − 1)

2µ + ν

∫
Ω

ρ2γ div udx

=
R

2µ + ν

∫
Ω

ργu · ∇Gdx −
R2(4γ − 3)
2(2µ + ν)

∫
Ω

ρ2γ div udx −
R(γ − 1)
(2µ + ν)2

∫
Ω

ργG2dx +
R3(γ − 1)
(2µ + ν)2

∫
Ω

ρ3γdx.

Hence, we have

I = −
d
dt

∫
Ω

Rργ div udx +
1

2µ + ν

∫
Ω

Rργu · ∇Gdx −
4γ − 3

2(2µ + ν)

∫
Ω

R2ρ2γ div udx

−
1

(2µ + ν)2

∫
Ω

R(γ − 1)ργG2dx +
1

(2µ + ν)2

∫
Ω

R3(γ − 1)ρ3γdx.

Integrate I over [0,T ], then one could obtain∫ T

0
I(t)dt = −

∫
Ω

Rργ div u(T, x)dx +

∫
Ω

Rργ0 div u0dx

+
1

2µ + ν

∫ T

0

∫
Ω

(Rργu · ∇G)dxdt −
4γ − 3

2(2µ + ν)

∫ T

0

∫
Ω

(R2ρ2γ div u)dxdt

−
1

(2µ + ν)2

∫ T

0

∫
Ω

(R(γ − 1)ργG2)dxdt +
1

(2µ + ν)2

∫ T

0

∫
Ω

(R3(γ − 1)ρ3γ)dxdt. (4.5)

Observing that ∆Φ = ρ − ρ̄, estimate the term J , then one obtains

J . ‖∇Φ‖L∞(Ω)‖
√
ρut‖L2(Ω)‖

√
ρ‖L2(Ω)

. ‖ρ − ρ‖L4(Ω)‖
√
ρut‖L2(Ω)‖

√
ρ‖L2(Ω)

≤
1
4ε
‖ρ − ρ‖4L4(Ω) +

√
ε

2
‖
√
ρut‖

2
L2(Ω) +

1
4ε
‖
√
ρ‖4L2(Ω).

Hence, we obtain∫ T

0
J(t)dt .

1
4ε

∫ T

0

{
‖ρ − ρ‖4L4(Ω) + ‖ρ‖2L1(Ω)

}
dt +

√
ε

2

∫ T

0

∫
Ω

ρu2
t dxdt. (4.6)

Combining (4.5) and (4.6), (4.3) can be written as∫ T

0

∫
Ω

ρ|ut|
2dxdt + sup

t∈[0,T ]

∫
Ω

|∇u|2dx + sup
t∈[0,T ]

∫
Ω

| div u|2dx

+

∫ T

0

∫
Ω

(R3(γ − 1)ρ3γ)dxdt

≤

∫
Ω

|∇u0|
2dx +

∫
Ω

| div u0|
2dx +

∫
Ω

|Rργ0 div u0|dx

+ sup
t∈[0,T ]

∫
Ω

R|ργ div u|dx +

∫ T

0

∫
Ω

|Rργu · ∇G|dxdt
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+

∫ T

0

∫
Ω

|R(γ − 1)ργG2|dxdt +

∫ T

0

∫
Ω

|ρu2(∇u)2|dxdt

+

∫ T

0

∫
Ω

|R2ρ2γ div u|dxdt +

∫ T

0

{
‖ρ − ρ‖4L4(Ω) + ‖ρ‖2L1(Ω)

}
dt

,
9∑

k=1

ik. (4.7)

In what follows, estimate i1 − i9. First, based on Cauchy’s inequality, we have

i4 . sup
t∈[0,T ]

∫
Ω

|Rργ div u| dx ≤ c(ε)R2 sup
t∈[0,T ]

‖ρ‖
2γ
L2γ + ε sup

t∈[0,T ]

∫
Ω

| div u|2 dx.

Similarly, we obtain

i5 .

∫ T

0

∫
Ω

|Rργu · ∇G| dxdt

≤

∫ T

0

(
‖∇G‖Lr(Ω) · ‖Rργu‖L r

r−1 (Ω)

)
dt

≤ ε

∫ T

0
‖∇G‖2Lr(Ω)dt +

1
4ε

R2 sup
t∈[0,T ]

(( ∫
Ω

ρ|u|
2r

r−1 dx
) r−1

r · ‖ρ‖
(2γ−1)r+1

r

L
(2γ−1)r+1

r−1

)
T.

Observe that ‖ρ‖2γ
L2γ(Ω) . ‖ρ‖

2γ

L
6γr

6−5r (Ω)
, and make use of the same method as i4, then one obtains that

i6 ≤

∫ T

0

∫
Ω

∣∣∣(R(γ − 1)ργG2)
∣∣∣ dxdt

≤

∫ T

0

∫
Ω

(
εG2 +

1
4ε

R2(γ − 1)2ρ2γG2) dxdt

≤ ε

∫ T

0
‖∇G‖2L2(Ω) dt +

1
4ε

R2(γ − 1)2 sup
t∈[0,T ]

‖ρ‖
2γ

L
6γr

6−5r

∫ T

0
‖G‖2L2(Ω) dt.

Note that ‖ div u‖Lq ≤ 1
2µ+ν

(‖G‖Lq +R||ρ||γLγq) on account of G = (2µ+ν) div u− p(ρ). Make use of (3.11),
Cauchy inequality and the interpolation inequality, then one yields

i7 ≤

∫ T

0
‖∇u‖2

L
2r

3−r (Ω)
‖
√
ρu‖2

L
2r

2r−3 (Ω)
dt

≤

∫ T

0
‖∇u‖

3
2

L
3r

3−r (Ω)
‖∇u‖

1
2

L
r

3−r (Ω)
‖
√
ρu‖2

L
2r

2r−3 (Ω)
dt

≤
3ε
4

∫ T

0
‖∇u‖2

L
3r

3−r (Ω)
dt +

1
4ε3

∫ T

0
‖
√
ρu‖8

L
2r

2r−3 (Ω)
‖∇u‖2

L
r

3−r (Ω)
dt

≤
3ε
4

∫ T

0

(
‖∇2Pu‖2Lr(Ω) +

1
2µ + ν

(
‖∇G‖2Lr(Ω) + R‖ρ‖2γ

L
3rγ
3−r (Ω)

))
dt

+
1

8ε3

∫ T

0

(
‖
√
ρu‖16

L
2r

2r−3 (Ω)
+ ‖∇u‖4

L
r

3−r (Ω)

)
dt
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≤
3ε
4

∫ T

0

(
‖∇2Pu‖2L2(Ω) +

1
2µ + ν

(
‖∇G‖2L2(Ω) + R‖ρ‖2γ

L
3rγ
3−r (Ω)

))
dt

+
1

8ε3

∫ T

0

(( ∫
Ω

ρu
4r

2r−3 dx
) 4(2r−3)

r ‖ρ‖
12
r

L
3

2r−3 (Ω)
+ ‖∇u‖4L2(Ω)

)
dt,

where 3
2 < r < 2. Similarly, we have

i8 ≤
4γ − 3
µ

∫ T

0

∫
Ω

∣∣∣(R2ρ2γ div u)
∣∣∣dxdt

≤
4γ − 3
µ

R2
( ∫ T

0

∫
Ω

| div u|2dxdt
) 1

2
( ∫ T

0

∫
Ω

ρ4γdxdt
) 1

2

≤
4γ − 3
µ

R2
(
ε

∫ T

0

∫
Ω

|∇u|2dxdt +
1
ε

∫ T

0

∫
Ω

ρ4γdxdt
)
.

Combining i1 − i9 with (4.7), we arrive at the conclusion of the lemma easily. �

Combining Lemma 4.1 with Lemma 4.2, let ε be small sufficiently, then the following lemma is
obtained naturally.

Lemma 4.3. Suppose that ρ0 and u0 satisfy the assumptions of Lemma 4.2. Assume ρ ∈

L∞
(
0,T ; Lp4(Ω)

)
, then we obtain that"

ΩT

ρu2
t dxdt + sup

0<≤t≤T

∫
Ω

|∇u|2dx ≤ C,∫ T

0
‖∇2Pu‖2Lr(Ω) + ‖∇G‖2Lr(Ω)dt ≤ C,

where C = C(µ,R,T, ‖u0‖H1(Ω), ‖ρ0‖L2γ(Ω), sup
t∈[0,T ]

‖ρ‖Lp4 (Ω)), and p4(r) = max{p0(r), p1(r), p2(r), p3(r)}.

Moreover, combining the results of the Lemma 4.3 with (3.20), we could obtain sup
0<t<T

A(t) < ∞

easily, which is obvious that we prove that Lemma 3.1 completely.

5. The estimate of ‖u‖L∞

In the following, we shall present the L∞ bound of u by the Moser iteration [4,10] provided that the
result of the Lemma 3.1 holds on. Furthermore, we could get the local L∞ estimate of u by Gronwall
inequality.

Lemma 5.1. Let all conditions satisfy the assumptions of Proposition 2.3 and Lemma 3.1, then we
have

sup
(t,x)∈ΩT

|u(x, t)| ≤ C,

where the constant C = C(T, sup
ΩT

ρ(x, t), inf
ΩT
ρ(x, t), ‖u0‖L∞(Ω)) > 0.
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Proof. Integrating the equality (2.1) on (0,T ), one could arrive at

1
α + 2

sup
0≤t≤T

∫
Ω

ρ|u|α+2 dx + µ(α + 1)
∫ T

0

∫
Ω

|∇u|2|u|α dxdt

+ α(µ + ν)
∫ T

0

∫
Ω

|u|α div u · ∇u dxdt + (µ + ν)
∫ T

0

∫
Ω

| div u|2|u|α dxdt

≤
1

α + 2

∫
Ω

ρ0|u0|
α+2 dx +

∫ T

0

∫
Ω

Rργ|u|α div u dxdt

+ α

∫ T

0

∫
Ω

Rργ|u|α∇u dxdt +

∫ T

0

∫
Ω

ρ∇Φ|u|αu dxdt

,
1

α + 2

∫
Ω

ρ0|u0|
α+2 dx +

∫ T

0
( j1 + j2 + j3)(t) dt. (5.1)

Now, we consider the estimates of the right terms of (5.1).∫ T

0
j1(t)dt ≤ c1

∫ T

0

∫
Ω

|u|α| div u| dxdt

≤ c1

∫ T

0

∥∥∥|u| α2 div u
∥∥∥

L2(Ω)

∥∥∥|u| α2 ∥∥∥
L2(Ω)

dt

≤ c1

∫ T

0

∥∥∥|u| α2 div u
∥∥∥

L2(Ω)

∥∥∥u
∥∥∥ α

2

Lα+2(Ω)
dt

≤
1
2

"
ΩT

|u|α|∇u|2 dxdt +
c2

1

2

∫ T

0

∥∥∥u
∥∥∥α

Lα+2(Ω)
dt

≤
1
2

"
ΩT

|u|α|∇u|2 dxdt +
c2

1

2

( ∫ T

0
‖u‖α+2

Lα+2(Ω) dt
) α
α+2 T

2
α+2

=
1
2

"
ΩT

|u|α|∇u|2 dxdt +
c2

1

2

("
ΩT

|u|α+2 dxdt
) α
α+2 T

2
α+2 ,

where c1 = p(ρ̂) and ρ̂ = sup
ΩT

ρ(t, x). Similarly, we have

∫ T

0
j2(t)dt ≤

1
2

"
ΩT

|u|α|∇u|2dxdt +
c2

1

2

("
ΩT

|u|α+2dxdt
) α
α+2 T

2
α+2 .

Note that ∆Φ = ρ − ρ and (2.4), then we have∫ T

0
j3(t)dt ≤ ρ̂

"
ΩT

|Φ div(|u|αu)| dxdt

. (ρ̂2 + ρ̂)
∫ T

0

∫
Ω

(|u|α| div u| + |u|α|∇u|) dxdt

.
1
2

"
ΩT

|u|α|∇u|2 dxdt +
ρ̂4 + ρ̂2

2

("
ΩT

|u|α+2 dxdt
) α
α+2 T

2
α+2 .
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Hence, one could get

ρ̃

α + 2
sup

t∈[0,T ]

∫
Ω

|u|α+2 dx + c(µ, ν, α)
"

ΩT

(|∇u|2|u|α) dxdt

≤
M

α + 2
‖u0‖

α+2
L∞(Ω) +

(
p2(ρ̂) + ρ̂2 + ρ̂4)("

ΩT

|u|α+2 dxdt
) α
α+2 T

2
α+2 , (5.2)

where ρ̃ = inf
ΩT
ρ(x, t). Observe

(|a| + |b|)p ≤

|a|p + |b|p, 0 ≤ p ≤ 1,
2p−1(|a|p + |b|p), p > 1.

Hence, we could obtain that"
ΩT

|u(t, x)|
5
3 (α+2)dxdt ≤

∫ T

0
‖u

2(α+2)
3 ‖

L
3
2 (Ω)
‖uα+2‖L3(Ω)dt

=

∫ T

0

( ∫
Ω

|u|α+2dx
) 2

3 · ‖u
α+2

2 ‖2L6(Ω)dt

.
(

sup
t∈[0,T ]

∫
Ω

|u|α+2dx
) 2

3 ·

∫ T

0
‖u

α+2
2 ‖2H1(Ω)dt

.
(

sup
t∈[0,T ]

∫
Ω

|u|α+2dx
) 2

3 ·
("

ΩT

(∇|u|
α+2

2 )2dxdt +

"
ΩT

|u|α+2dxdt
)

.
(

sup
t∈[0,T ]

∫
Ω

|u|α+2dx
) 2

3 ·
( (α + 2)2

4

"
ΩT

|u|α|∇u|2dxdt +

"
ΩT

|u|α+2dxdt
)
. (5.3)

Combining (5.2) and (5.3), we could get"
ΩT

|u(t, x)|
5
3 (α+2)dxdt ≤ C(α + 2)

8
3
("

ΩT

|u|α+2dxdt
) 5

3
+ C(α + 2)

8
3 , (5.4)

where C = C(T,M, sup
ΩT

ρ, inf
ΩT
ρ, ‖u0‖L∞(Ω)).

Let r = 5
3 , rk = 2 + αk, where k ≥ 2, then the inequality (5.4) is rearranged to be"

ΩT

|u|r
k+1

dxdt ≤ C1rkC2(
"

ΩT

|u|r
k
dxdt)r + C1rkC2 , (5.5)

where C1 = C1(T,M, sup
ΩT

ρ, inf
ΩT
ρ, ‖u0‖L∞(Ω)) > 1, and C2 = C2(T,M, sup

ΩT

ρ, inf
ΩT
ρ, ‖u0‖L∞(Ω)) > 1.

Make use of the inequality (5.5), then we obtain"
ΩT

|u(t, x)|
5
3 (αk+2)dxdt =

"
ΩT

|u|r
k+1

dxdt

≤ C1rkC2(
"

ΩT

|u|r
k
dxdt)r + C1rkC2

≤ 2r−1C1rkC2[C1rr(k−1)C2(
"

ΩT

|u|r
k−1

dxdt)r2
+ C1rr(k−1)C2] + C1rkC2
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= 2
2
3 C1+r

1 rC2(k+r(k−1))(
"

ΩT

|u|r
k−1

dxdt)r2
+ 2

2
3 C1+r

1 rC2(k+r(k−1)) + C1rkC2

≤ 2
2
3 C1+r

1 rC2(k+r(k−1))[C1r(k−2)C2(
"

ΩT

|u|r
k−2

dxdt)r

+ C1r(k−2)C2]r3
+ 2

2
3 C1+r

1 rC2(k+r(k−1)) + C1rkC2

≤ · · ·

≤ 2(r−1)+(r2−1)+···+(rk−1−1)C1+r+···+rk−2

1 rC2(k+r(k−1)+···+rk−2·2)
("

ΩT

|u|r
2
dxdt

)rk−1

+ 2(r−1)+(r2−1)+···+(rk−1−1)C1+r+r2+···+rk−2

1 rC2(k+r(k−1)+···+rk−2·2)

+ 2(r−1)+(r2−1)+···+(rk−2−1)C1+r+r2+···+rk−3

1 rC2(k+r(k−1)+···+rk−3·3)

+ · · · + C1rC2k.

Next, we will consider the following inequality"
ΩT

|u|r
k+1
≤ 2(r−1)+(r2−1)+···+(rk−1−1)C

k−2∑
l=0

rl

1 · r
C2

k−2∑
l=0

(k−l)rl

(
"

ΩT

|u|r
2
dxdt)rk−1

+ (k − 1)2(r−1)+(r2−1)+···+(rk−1−1)C

k−2∑
l=0

rl

1 · r
C2

k−2∑
l=0

(k−l)rl

.

Denote a = 2(r−1)+(r2−1)+···+(rk−1−1), then we have the inequality

‖u‖Lrk+1 (ΩT ) ≤ a
1

rk+1 ·C

k−2∑
l=0

rl−k−1

1 · r
C2

k−2∑
l=0

(k−l)rl−k−1

(
∫

ΩT

|u|r
2
dxdt)r−2

+ (k − 1)r−(k+1)
a

1
rk+1 ·C

k−2∑
l=0

rl−k−1

1 · r
C2

k−2∑
l=0

(k−l)rl−k−1

. (5.6)

Observe that b =
k−1∑
l=1

rl−k−2 < +∞, c =
k−1∑
l=1

(k − l)rl−k−2 < +∞, d = (k − 1)r−(k+1)
< +∞. Moreover, we

have 2
(

(r−1)+···+(rk−2−1)
)
·r−(k+1)

< ∞.
Obviously when k goes to∞, we could obtain that

‖u(x, t)‖L∞(ΩT ) ≤ 2Cb
1rcC2‖u‖Lr2 (ΩT ) + 2dCb

1rcC2 .

Hence, we obtain the inequality

sup
ΩT

|u| ≤ 2Cb
1rcC2‖u‖Lr2 (ΩT ) + 2dCb

1rcC2 .

Combining the above result and Proposition 2.3, we could obtain that

sup
ΩT

|u(x, t)| ≤ C,

where C = C(T, sup
ΩT

ρ, inf
ΩT
ρ, ‖u0‖L∞(Ω)). �
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Finally, let us give the proof of Theorem 1.1.

Proof. Under the assumptions of Lemmas 4.1–4.3, we employ the result in Lemma 3.1, Proposition 2.3
and the a prior estimates in Lemma 5.1. Therefore, we could achieve the results of Theorem 1.1
easily. �
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14. Š. Matušů-Nečasová, M. Okada, T. Makino, Free boundary problem for the equation of spherically
symmetric motion of viscous gas (II), Japan J. Indust. Appl. Math., 12 (1995), 195–203.
https://doi.org/10.1007/BF03167288
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