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Abstract: In this paper, we consider the regularity of the weak solution to the compressible Navier-
Stokes-Poisson equations in period domain Q C R? provided that the density p(z, x) with integrability
on the space L™(0,T; L?(Q)) where g, satisfies a certain condition and 7 > 0, by which we could
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velocity ||u||.~ by the Moser iteration method and Gronwall inequality.
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1. Introduction

In this article, we will investigate the regularity of weak solutions of the compressible Navier-
Stokes-Poisson (NSP) equations. The compressible (NSP) system is used to simulate the motion of
charged particles. It consists of the compressible Navier-Stokes (NS) equations with the electrostatic
potential controlled by the self-consistent Poisson equation. A carrier type of NSP system is
represented as the following form in R:

0,0 + div(pu) = 0,
0,(pu) + div(pu ® u) + Vp(p) — uAu — (u + v)Vdivu — pVO = pf, (1.1)
AD =p—p, |l‘im d(t,x) = 0.

Here, p = p(t, x) > 0 is the density, u(t, x) = (u;, us, u3)(t, x) is the velocity, p(p) denotes the pressure
and ® denotes the electrostatic potential. p > 0 is a constant. u > 0 and v are constant viscous
coeflicients that satisfy 2u + 3v > 0. The term f denotes a given external force.
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There are many conclusions about NS equations on the condition that V@ = 0 in (1.1). In the
past, people have studied the existence of weak solution to the compressible NS equations. P. L.
Lions [12] proved the global existence of finite energy weak solution to NS equations when p(p) =
Ro”,y > % in 1998; Feireisl [6] claimed the existence of the weak solution when p(p) = Rp”,y > %
in 2001. Afterwards, Choe, Kim and Cho [2, 3] showed the local existence of the strong solution to
NS equations. In 2011, Sun, Wang and Zhang [19] proved a blow-up criterion for a strong solution
to the compressible viscous heat-conductive flows in R on condition that y > %v in accordance with
the upper bound of (p, p~!, 6). Valli [24] proved the uniqueness of the solution if the data pg, uy and f
satisfy some condition in bounded smooth domain Q C R? . In 2013, Wen and Zhu [25] established a
blow-up criterion for strong solutions to the Cauchy problem of compressible isentropic NS equations
with vacuum provided u > %v in the light of the integrability of the density. Though Choe [4] proved
the regularity to the weak solution, which is defined by D. Hoff [9], it is indeterminate whether the
weak solutions is the same to the finite energy weak solution.

However, there are not many conclusions related to the solution to NSP equation. In a series of
articles [14, 15, 18], M. Okada et al. [17, 18] studied the vacuum problem of NSP equations which
are spherically symmetrical with solid core. They [17] considered a free boundary problem for the
equation of the one-dimensional isentropic motion with density-dependent viscosity and proved that
there exists a unique weak solution globally in time; Then, Kobayashi and Suzuki [11] proved the
existence of weak solution to NSP equations of which the method is similar to the method of [6].
In 2007, Zhang and Tan [27] proved the existence of the global weak solution to the compressible NSP
equations where p(p) = ap log? p for sufficiently large densities by using suitable Orlicz spaces in R? .
We may refer to [1,7,20-22,26] for more about NS or NSP equations. As far as we are concerned, to
the author’s best knowledge, there are not many studies on the regularity for the corresponding weak
solution to the compressible NSP equations.

For simplicity, let f = 0 of (1.1) in the paper. Thus, the problem we are concerned with in our study
is the regularity of weak solutions to the isentropic compressible NSP equations in the periodic domain
Q=R>-73as

0,0 + div(pu) =0, for (t,x) € (0,T) X Q,
0(pu) + div(pu @ u) — uAu — (u +v)Vdivu + Vp(p) — pVO = 0, (1.2)
AD = P _p’

with the following initial conditions:

Pt V=0 =po >0, u(t, x)|=0 = up, x € Q,
po € WH(Q),  up € Hy(Q) N LV(Q), (1.3)
0<m<pyg <M< +oo,

where p > 0 is a constant, p(p) = Rp¥,R > 0,y > 1 and m and M both are constants.

Definition 1.1. (p, u) is called the finite energy weak solution of the Eq (1.2) for (t, x) € Qr = (0, T)XQ,
if (0, u) satisfies

p € L™0,T;L"(Q)NL0,T;L'(Q), uecLL*0,T;H (Q))
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and the energy inequality

dé(t)

”‘f \Vul?dx + (u + v)f |div ul*dx < 0,
dt 0

Q

holds in 9 ((0, o0)) with the finite total energy, where

1 1
&) = f (Splul® + o), SIVOP)dx < 0o, fort € (0, 00).
02 y—-1 2

All the priori estimates of this paper depend on the assumption that p and u are C* for the time
interval as mentioned in [4, 5].

Theorem 1.1. Suppose (p,u) is the weak solutions denoted by the Definition 1.1 to the Egs (1.2)
and (1.3). If p € L=(0, T; L™(Q)) for time T > 0 and for qy depending only on 7y, then

0 <infp <p < supp < +oo, sup |u| < +oo.
Qr Qr Qr

Furthermore, we show that p € C(0,T; L1(Q)) N L*(Qr) for all g € [1, ), and +Jpu, € L*(Q7),Pu €
L*(0,T; HX(Q)),G € L*(0,T; H*(Q)),Vu € L=(0,T; L*(Q)), where Pu refers to the divergence-free
partofu, G = 2u+ v)div u — p(p).

The paper is structured as follows. In Section 2, we give some preliminaries to study the regularity
of the weak solution to the NSP equations. In Section 3, one develops the priori estimate of p under
some condition by many techniques; In Section 4, we shall perfect the proof of Section 3; Finally, in
Section 5, we present a prior L™ estimate of u by Moser iteration.

2. Preliminary

In this section, we collect some auxiliary results which will be used to investigate subsequent
studies.

First, we define the divergence-free part of any vector field u as Pu, and the gradient part of u as Qu
which means Qu = VA™! div u. Naturally, the following propositions hold.

Proposition 2.1.
curl (Qu) =0, div(Pu) =0, Au = V(divu) — curl curl u, Pu =u — Qu.
Proposition 2.2. (Page 67 of [13]). Suppose that f € L*(Q), and

Av=Vp+f xeQ,
divv =0,

Voo =0,
thenv € W?2(Q), and Vp € L*(Q). Furthermore,
IVllw22) + VP2 < Clifllz@)-
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Proposition 2.3. Suppose that p € L*(0,T;L™(Q)) for py = max{w,% where « is a
nonnegative real number. Then, we obtain

Q2y- 1)[”47
2 2 o2 2
f plul*“dx < f Poluol*“dx + sup |loll Jer Wy 1+ ||p—p||‘{4*(g) SUP ol @™+

Q 1€[0,T] @ r€l0,

Proof. Let |u|”u as a test function to (1.2), then one obtain

1 d
S fp|u|“+2dx + u(a + 1) f lu||Vul>dx + a(u + v)f lul* divu - Vudx + (u + v) f | div ul*|ul®dx
a
= prylul‘l div udx + apr’IuI“Vudx + fprblulo‘udx. 2.1
Q Q Q
Applying Holder’s inequality and Young’s inequality to (2.1), implies that
. 1 ) ) Q@y-Datdy ) o
f Ro”|ul® div udx < = f u|*|Vul*dx + 2R* sup ||ol| (ZZ*EM( f plul*dx)=2. (2.2)
Q 2 Ja 1€[0,T] Q
Similarly, we obtain
1 9 252 Qy-Da+4y 5 o
a/pryluI"Vudx < —flul |Vu|“dx + 2a°R” sup ||pl| (2;’+12)M4y(fp|u|“+ dx)2. (2.3)
Q 2 Ja €f0.T] L Q

Noting that A® = p — p, and using Holder’s inequality and Sobolev inequality, we could have
fpV(DIMI"udx < e = pllps@) sup ||P||ZT(ZQ)(f |u|a+2dX) =3 (2.4)
Q 1€[0,T]

Combining (2.2)—(2.4) with (2.1), and letting U(¢) = fg plu|***dx, one could have

d Qy-Da+4y o+l
U (1) < sup |lpll <2;”f>a+4y [U®]7 + 1o = Pl SUP lloll ZT(ZQ)[U (D],
1€[0,T] ©
This reduces to
Q2y— I)a+4y a2 42
U@ s UO) + sup [loll opes, 17 +llp = p||L4(Q) sup ol ™
©€f0r] L2 (Q)
O
3. A priori estimates for density p
3.1. The estimates for P(H), Q(H) and G
Now, applying the operator “divergence-free fields” # to (1.2) , we consequently obtain that
Plou; + pu - Vu — pV®) — uAPu = 0. 3.1
Denote H = pu, + pu - Vu — pV®, then (3.1) will be reformulated equivalently as
P(H) — uAPu = 0. (3.2)
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Then, by taking divergence operator to the Eq (1.2), one deduces that
div(ou, + pu - Vu — pVO) — A(2u + v) divu — p(p)) = 0.
Denote G = (2u + v) divu — p(p), and we have again by formula (3.3) that

G = A div(pu, + pu - Vu — pV®).

Note that the definition of Qu = VA~ div u, then (3.4) will be reformulated equivalently as

Q(H) - VG =0.
By virtue of (3.2) and (3.5), we get

UAPu +VG = P(H) + QH),
div(Pu) = 0.

(3.3)

(3.4)

(3.5)

Note that H = P(H) + Q(H), and from Proposition 2.2 and the Stokes problem (see 2.2 The stokes

problem and the operator A of Chapter 2 in Temam [23]), it follows that
IV*Pullzy @ + IVGllr@ < I1Hll@, for 1<r<oo.
Observe that H = pu, + pu - Vu — pVO, then clearly we have
1Hlzr ) < cllpudlr ) + llow - Vullpr ) + loVDlr@), for 1 <r < oo,

where ¢ = ¢(N), and N denotes the dimension.
By virtue of Proposition 2.1, we can get

IVullr < IVPullpr + |l divull, for 1<r<oo.
From the Gagliardo-Nirenberg-Sobolev (G-N-S) inequality, we have
||u||L% <|IVull;, for 1<r<3.

From G = 2u + v)divu — p(p), we obtain

| div ull, < 3 (IGllzr + Rlloll?,).

0+ v

Combining (3.8)—(3.10), immediately we have

2
r < r
||Vu||L%(Q) < IV*Pullr ) + 2+

(IVGllz @ + Rllpllzaﬂ)-
3-r

(3.6)

(3.7

(3.8)

(3.9)

(3.10)

(3.11)
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3.2. The estimates for sup p(x,t), and i(rzlf p(x, 1)
Qr T

Lemma 3.1. Suppose that py € L°(Q) and uy € H'(Q), and assume that V*Pu and VG is bounded,
and p € L0, T; LP'(Q)), where p; = max{pg, 39, 57,40y — 19}. Then we could obtain that

sup p(x,t) < oo, infp(x, 1) > 0.
QT QT

Proof. From p, + div(pu) = 0, we get the following relations

dp(x,t )
pi; ) = —p(x, ) div u(x, t).

We can rewrite it in differential notation and integrate the equality above from O to 7, then we have

!
Inp(x,1) =Inpy — f div u(x, s)ds.
0
Using the equation G = (2u + v)divu — p(p), one deduces that
1 !
Inp(x,t) =Inpy — —— f (G + Rp")ds. 3.12)
2/,( +v Jo

Note that G = A~! div ((pu)t+div(pu®u) —de)). Now, considering the term with respect to G of (3.12),
we can infer that

fo t Gds= fo [ A" div ((pu), + div(pu ® u) — pV®)ds
= fo t (A" div((ou),)ds + fo t A~ div (div(ou ® u))ds — fo [ A~ div (oV®D)ds.
Note that
fo t (A~ div(pu),)ds =A~" div(ou) — A" div(pgug) — j; t u - VA~ div(ou)ds.
Then, one obtains

1 !
Inp(t, x) = Inpy — A~ div(ou)(x, 1) — A7 diV(pouo)) Y f Rp”ds
H TV Jo

2,u+v(

! 1 !
+ f A" div(pVD)ds — ——— f (A7 div? (pu®@u) —u- VA~ divipw))ds  (3.13)
0 2u+v Jo

2u+v

L

! t
Inpy — (f Rpds + (Ao — ap) + f (A1 + Ay)ds),
0 0

2u+v

where Ag = A~ div(pu), ag = A~ div(poug), A; = A~ div(pVD), A, = A~ divz(pu@)u)—u-VA‘1 div(pu),
and div? is an operator defined by div’ M = 0, iM;; for a 3 X 3 matrix M = (M;;).
Therefore, we have

!
Inp(x, 1) < Inllpollz=@) + IAo — aollz=@) + f (IA1C5 )o@ + A2, ll=@))dSs, (3.14)
0
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! !
Inp(x, 1) 2 ln(igfpo) - f Rllpllfeyds — 140 — aoll=(@) — f(”Al(', Iz + [[A2(, )l|z=))ds.
0 0
(3.15)

Using (3.14), one could obtain that

f
Inp(x, 1) = In|lpollz=@) < Ao — aollz=) + f (A1, )Mz + 1420, )llze@))ds = AD).
0
Hence, one yields that

p(t, x) < llpollz=q) exp{A}.

From above inequality, (3.15) implies that

!
Inp(t.2) > Inint p0) = A~ [ Rlpol g, xp (s
0

Therefore

t
p=2 (lgpr) exp{ -A- ‘f(; RHPOHZM(Q) eXp (‘)/ﬂ)dS}

Obviously, once one proves sup A(f) < co, we may obtain
1€[0,7]

sup p(x, t) < oo, and inf p(x, ) > 0.
Qr Qr
Therefore, it’s necessary to study the estimates of (A(¢).

3.3. The estimates for A(t)

First, observe Ay = A~ div(pu), A, = A" div(pV®D), A> = A" div*(pu ® u) — u - VA~ div(pu), then
we obtain

AAy = div(pu), AA| = div(pVO).
Meanwhile, we have
AA,; = div (AAg - u + p(u - Vu+ V(u - VAyp)).
Using the Calderon-Zygmund theorem (Theorem 9.9 of [8]), we get

IVAollr ) < cllpullr @),
IVAllr@) < clloVDllrr ),
VA2l < cll(plul + IVA)IVulllr @)

where 1 < p < oo, ¢ depends on p. For all v € W*(Q), one yields

Vllzo) < cllVVI s
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Hence, we have

1
Aol < VAl < lloull) < ||P||L7(Q) llo® ullzs()-
Applying the same method of estimating ||Ao||~ ) to estimate ||A;[|.~q), We obtain that
1A= S IVAlls@) S eVl < llolls@) - VPl sq)-

According to A® = p — p and the Calderon-Zygmung inequality [16], we have
IVOI % <llp=pllp, B> 1.
L3R Q)
Moreover, we estimate that

lA1llz=@) < llollzs@) - llo — P||Lﬁ(g) ||,0||Ls(g) + llollzso)-

Similarly for A,, we could obtain
1Az ||z < VA2l S Hl(olul + [VADIVulll 20
< llGolul + [VAoDI 20 - IVulls o)
< ||pu||L20(Q) + ”VMHLS(Q)
2 B} + B;.

Applying Holder’s inequality to By, we obtain

1
By < llpullzo@) < ||P||L39(Q) llo ul| L0 qy-
Similarly, by using the Calderon-Zygmung inequality and Holder’s inequality, one has
By < |IVPullps) + |1 div ull 5
S IVPullsi) + (IGlls@ + Rllollys, )

< IV2Pull ¢ o +IIVGl 5, + RlloI]

T (Q) LY (Q)"

Hence, we get the estimate of A, by Young inequality,

1 2 2 2
00 < 20
1Azl S IIPIIL;Q(Q) +llo®ull s, + IV PuIIL%(Q) + IIVGIIL% @ +R||p||L5y(Q)

Therefore, combining (3.16), (3.17) and (3.19), one could have
t
A f lollzs ) - llo —/_)IIL%(Q)ds

2 2 2
L‘ {”p u||L40(Q) + ”p' LSQ(Q) + ”V Pu”L%(Q) + ”VG”L% Q + R”p”LSy(Q)}

1
+||P||L7(Q) llo® ullz3q)-

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

Observe Proposition 2.3 and that if V>®Pu and VG is bounded which we will prove in the Lemma 4.3

of the next section, then we could obtain that sup A(r) < co.
1€[0.T]

O
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4. A priori bounds for V>*Py and VG

Lemmad4.1. Let 1 <r <2, peL”0,T;L*(Q)), and p,(r) = max{py, pi, % 5,4}, then

f (IV*Pul, ) + IVGIE, )t

2-r
A\ —
< sup lloll, 2 f f pluPdxdt + sup {loll 7, fg plu7) ||VM||22(9)}+tES[13I;]||P||Lr(Q)||P—P||L4(Q)-

1€[0,T] 1€[0,T] L7277 ()

Proof. Using (3.6) and (3.7), we obtain
||V27)M||Lr(sz) + VGl < cllpudlir) + llou - Vullpr ) + oVl @),

where 1 < r < 00, ¢ = ¢(N) and N is the dimension. For 1 < r < 2, it follows that

ol < ||p||z s | Voullrg),

2
llou - Vullr@) < ||p| m( o ull s [IVidlpq)-

L35 (@)
According to A® = p — p, we obtain
oVl @) < llollr@ll VO~ < lloll@llAPl 40 < llell@lle = pll@)-
Hence, if 1 < r < 2, we obtain
IV*Pull}, o) + IVGli7 g, 4.1)
<ol | VP 0y + 5 2( 0% ul, 2 o IV ) + 01l = Pl

Hence, integrating (4.1) over [0, T'], we could get
T
f (IV*Pull}, ) + VGl ))dt
0

T
2r 2 2 2 —12
f {llol, 22 | VDU, + Tl m(g)u G u||L%(Q)||Vu||Lz(Q)+||p||m)||p—p||L4(Q)}dr

O

Lemma 4.2. Let 2 <r <2, and p5(r) = max {4y, M, 66_—75’r, %, %, 23_1 + 2y, 3(27 1)

we assume pg € L°° (0, T; LP3(Q)). Then, one chould obtain that

T 1 T
f f plu*(t, x)dxdt + . sup f Vu(t, x)Pdx + — f f (R*(y — 1)p*")dxdt
0 Jo 1€[0,T] JQ M= Jo Ja

T
<3e f (IV*Pull}, ) + IVGIlF ) )dt + €. forany & > 0,
0

+2y}. Here

where C = C(u, v, R, [luoll g1 lloll2r ) SUP llollzrs @)-

[0,
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Proof. Multiply u, to (1.2), and integrate over Q7, then we could obtain that

T
f lou? |dxdt+— sup f Wl dx+ 222 sup f | div uf? dx + f f V(o) - u, dxdt
te[OT] 1€[0,T]
f f oV - u,| dxdt + = f Vol dx+— f | div uol* dx + f f lo(u - V) - u,| dxdt
sf flpV(D-u,l dxdt+—f|Vuo|2 dx+—f|divu0|2 dx
f f lou?| dxdt + ~ f f lou*(Vu)?| dxdt. (4.2)

Therefore, we have

T T
f Ipu | dxdt + u sup |Vu|2 dx + (u+v) sup f |div u)? dx + Zf pr(p) - u, dxdt
0 0o Ja

t€[0,T] te[0,T] JQ

T
<2 f f oV - u, |dxdt + f \Vuol* dx + (u + v) f | div uo|* dx + f f lou?|Vul?| dxdt. (4.3)
0 Q Q Q 0 Q

Set
I:pr(p)-utdx, j:fpV(D-u,dx.
Q Q

Noting that p; + div(pu) = 0, one obtains that
(Ro"): = Ryp”'p, = —Ryp” ™" div(pu) = —u - V(Rp”) — Ryp” div u.
Note that G = (2u + v) divu — p(p), we deduce that
d
I = fV(RpV) cudx = —— pry div udx + f(Rp’), div udx. 4.4)
Q dt Jq Q
Further, one obtains
f (Ro?), div udx
Q
- f u-V(Rp")divu — f Ryp” (div u)*dx
Q Q
- f (u- V(Rp”)div u + Rp”(div u)*)dx — R(y — 1) fpy(div u)*dx
Q Q
- f div(Rp”u) divudx — R(y — 1) fp”(div u)’dx
Q
= fp”u - V(G + Rp”)dx - Ry=D
2/.1 +v Q

Qu+vy
= R fpyu -VGdx + fpyu - V(Rp”)dx
2u+v Jo 2u+v Jo

R(v -1 R3 -1 2R2 -1
_ Ry )2 0'G2dx + 84 2) fpyp%'dx _2RGo-D fPZy div udx
(2/1 + y) Q (2/1 + V) Q 2# tv Q

p"(G* = R*p* + 2(2u + v)Rp? div u)dx
Q
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K f Yu-VGd K f 2 div ud
= u - X — 1V udx
2w+v Jo° 22u+v JoF

Ry-1)  , o, Ruy-1 [ 2R2(7—1)f 2
2T 6t vax - 2D 2 iy ud
Qa2 JoF T T e Lo T Ty o
R R4y -3) . Ry-1) R(y-1)
= Yu-VGdx — 2)’d dx — szd
2,u+ng;pu T 2 u+ ) vuix = o v)2 LT oy

Hence, we have

d ) 1 Ay-3
J=—— Ro” div ud Ro’u - VGdx —
dzfg p ‘V”“zuwfg N T v )

fR(y - Dp’G*dx + fR3()/ - 1)p37dx.
Q Q

R2p27 div udx

1
C Qu+ )2 Qu +v)?

Integrate 7 over [0, T'], then one could obtain
T
f I(tdt = - f Rp” div u(T, x)dx + prg div ugdx
0

R \% — (R°p* d
2u+vf f( 0"u - VG)dxdt — 2(2,u v)ff 1v u)dxdt

- —1 _ 2 3 3
(2,1 + V)2 L L(R(Y l)pyG )dXdl+ (2# v)2 f f(R ('}/ 1)p V)dxdl.

Observing that A® = p — p, estimate the term J , then one obtains

T S IVl Vioudl 2ol Vellzz @)
< ||P — Pllsoll Voudl 2ol Vol

\@ |

Hence, we obtain

! 1 ! —14 2 \/E ! 2
- Tdi s - |l =Pl + Pl + = || puidxr
Combining (4.5) and (4.6), (4.3) can be written as
T
f f plu,*dxdt + sup f |Vul’dx + sup f | div u|*dx
0 Q te[0,T] JQ t€[0,T]1 JQ
T
+ f f (R*(y — 1)p*")dxdt
0 Q
< f Vuol*dx + f | div ugl*dx + f IRo} div uoldx
Q Q Q

T
+ sup fRIpydivuldx+f flpru-VGldxdt
t€[0,T] JQ 0 Q

pdx.

(4.5)

(4.6)
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T
f f IR(y — D)p"G?|dxdt + f f low*(Vu)?|dxdt
TO Q
v [ aivataars [ 1o -Pitig, + ok i
. 0
éZ,
=1

In what follows, estimate i; — i. First, based on Cauchy’s inequality, we have

4.7)

PV‘

is S sup f IRp” div u| dx < c(&)R* sup ||p||m +& sup f | div ul® dx.

t€[0,T] te[0,T t€[0,T]

Similarly, we obtain

T
is < f flpru - VG| dxdt
0o Jo

T
Sf (||VG||U(Q) . ||RPVM||Lﬁ(Q))df

0
T
1 o =1 (2771.)r+l
< 8f ”VG”%r(Q)dt"' 4_R2 sup ((fp|u|r—1dx) "o ”p” (2y’—1)r+1 )T'
0 E Q L r-1

te[0,T]

Observe that ||p|| v S < ||p|| o and make use of the same method as i, then one obtains that
—5r (Q)

T
is < f f |(R(y = D)p"G?)| dxdt
0 Q
! 1
< f f (8G2+—R2(7—1)2p27G2) dxdt

<e f IVGIR g, dt sz—l) sup oI, f IG1q it

t€[0,T]

Note that || div u||;s < om +V(||G”Lq +R||p|| ,.) on account of G = (2u+v) divu— p(p). Make use of (3.11),
Cauchy inequality and the interpolation inequality, then one yields

T
. 2 2
i7 < f IVulP , (Ivpul? ., dt
0 L3-r(Q) L2r-3(Q)
T 3
< f Ivul s |Vu||2 QIVoulE o di
<— Vull ,, dt+— 8 Vu
fn [P, fnfn 2 VI 2 o 4

3¢
<= f (||V2Pu||y(g)+2 S(IVGlE oy + RIPI, )ds

1 ! 16
te3 fo (Pl + 119l 2 )
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38

2
<5 (IVPulsg + (||VG||L2(Q)+R||p||L;,Z(Q)))dt
1 T
4
ra [ o S hel” 9l

where % < r < 2. Similarly, we have

_dr-3
y=- f f|(R2 27d1vu)|dxdt
47’ 3 2 > ! 4 :
f f | div ul’dxdt)’( f f p"dxd)
0 Q
4 3 1T
TR f f \VulPdxdr + ~ f f pYdxd).
€ Jo Ja

Combining i; — iy with (4.7), we arrive at the conclusion of the lemma easily. O

Combining Lemma 4.1 with Lemma 4.2, let £ be small sufficiently, then the following lemma is
obtained naturally.

Lemma 4.3. Suppose that py and uq satisfy the assumptions of Lemma 4.2. Assume p €
L>(0, T; LP*(QY)), then we obtain that

ff pu?dxdt+ sup fqulzdxs C,
Qr 0<<i<T Ja

f ”VZP’/‘”U(Q) + ||VG||U(Q) t<C,

where C = C(u, R, T, |luol|g1 s 100l @)» Sup llpllirs)), and pa(r) = max{py(r), pi(r), p2(r), p3(r)}.
1€[0,T]

Moreover, combining the results of the Lemma 4.3 with (3.20), we could obtain sup A(f) < oo

0<t<T
easily, which is obvious that we prove that Lemma 3.1 completely.

5. The estimate of ||u|;~

In the following, we shall present the L™ bound of u by the Moser iteration [4, 10] provided that the
result of the Lemma 3.1 holds on. Furthermore, we could get the local L™ estimate of u by Gronwall
inequality.

Lemma 5.1. Let all conditions satisfy the assumptions of Proposition 2.3 and Lemma 3.1, then we
have

sup |u(x, )| < C,
(t,x)eQr

where the constant C = C(T, sup p(x, t), 1nf p(x, 1), lluollL=)) > 0.
Qr
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Proof. Integrating the equality (2.1) on (0, T), one could arrive at

1 T
sup f plul™? dx + u(a + 1) f f \Vul*|u|® dxdt
@+ 2 o<t Jo 0 Jo
T T
+ a(u + v)f f lul* div u - Vu dxdt + (u + V)f f | div ul?|u|® dxdt
0o Ja 0o Ja

1 T

f poluo]*™ dx + f f Rp”|u|® div u dxdt
a+2
+ af prylul"Vu dxdt + f fpV(Dlul u dxdt

fp0|u0|“+2 dx + f (J1 + jo + J3)(@) dt.

<

A

a+?2

Now, we consider the estimates of the right terms of (5.1).

T T
f Ji(ndt < ¢y f f |e|®] div u| dxdt
0 0o Jo

T
= L [l div u”Lz(Q)”Iu'%”LZ(Q) dt

T a
Sclf ”l”l% diV””LZ(Q)”“ Z”*z(Q)
1 2 C% T «
- f Wl |Vul dxdr + = f (2] .
1 .
<3 f | Vul? dxdt+— f 22 ) )7 T 7

1 +
= f |l/l| |VI/£| dxdt + — ff |l/l|al+2 dx dl’)a 2Tzr+2
2 Qr

where ¢; = p(p) and p = sup p(¢, x). Similarly, we have
Qr

g 1 c? o
f ja(t)dt < = f f |u|“|vu|2dxdz+—1( f f |u|“+2dxdz)“Ta%.
0 2 Qr 2 Qr

Note that A® = p — p and (2.4), then we have

dt

dt

[\

-

T
f Ja()dt < [)f |D div(u|"u)| dxdt
0 Qr

T
< (/32+/3)f f(lul"ldivu|+lu|"|Vu|) dxdt

ot + p?

1 +p a+2 5
Ef Wl |Vul? dxdt + £ > (fg u|**? dx dt) Tos.

(5.1)
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Hence, one could get

sup f | dx + c(u, v, @) f (IVul*ul®) dxdt
Q Qrp

@+ 2 o1
M a+2 2/n A2 A4 a+2 L2
< ——lluollz=iq) + (P7(0) + 07 + p7)( |u|™** dxdt)*> T2,
a+?2 Qr

where p = igf p(x, t). Observe
T

lal” + |b|?, 0<p<l,

al + |b))? <
(l | | |) {2P‘1(Ialp+|blp), p> 1

Hence, we could obtain that

T
5 2(a+2)
ff (. D1 dxd < f ™51 3 g 0 s
Qr 0

T
_ @42 1 NF 122
_~f0‘ (L|u| d.X)% ”l/l 2 ”Lﬁ(Q)dt

T
27\3 @20
< ( sup f jul**2dx)* - f 10" 121 gl
Q 0

t€[0,T]

< ( sup f |u|"+2a’x)%-( f (V]u| T )2 dxdt + f jul*dxdt)
Q Qr Qr

t€[0,T]

2 2)?
< ( sup flul“”dx)% '((a+ ) ff lu|*|Vul*dxdt + ff |u|“+2dxdt).
t€[0,T]1 JQ 4 Qr Qr

Combining (5.2) and (5.3), we could get

5 5
f f e, )P dlxds < Clar +2)5( f f ul™*2dxdr)’ + Cla +2)5,
QT -QT

where C = C(T, M, sup p, inf p, ||uo||z=(0))-
o

Letr = %, r* = 2 + a;, where k > 2, then the inequality (5.4) is rearranged to be
f ™" dxdt < C,r*%( f jul” dxdt)” + C11*¢,
QT QT

where C; = C (T, M, sup p, inf p, [lug||~)) > 1, and C, = Co(T, M, sup p, inf p, [[ug||r~)) > 1.
o O o Qr

Make use of the inequality (5.5), then we obtain

f f lu(t, )3 D dxdt = f f """ dxdt
QT QT

< Clrkcz(ff Iul’kdxdt)r + C
Qr

< 2710 ey PRI f f ul”” dxdn)” + €,V + €A
Qr

(5.2)

(5.3)

(5.4)

(5.5
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2 _ k—1 2 2 —
— 23C%+rrC2(k+r(k 1))(ff |u|r dxdt)’ + 23Ci+rrC2(k+r(k 1) + C]I‘kC2
Qr

5 _ _ k=2
< 2§C%+rrC2(k+r(k e, r* 2)Cz(ff lu|” “dxdr)”
Qr

3 2 —
+ Clr(k—Z)Cz]r + 23cl+rrC2(k+r(k 1)) + ClrkC2

IA

IA

-1
2(r—1)+(r2—1)+---+(rk_1—I)C}+r+---+r’(—2ng(k+r(k—1)+---+rk_2-2)( ff |u|’2dxdt)rk
Qr

+ 2(r—l)+(r2—l)+---+(rk’l—1)C%+r+r2+---+rk’2ng(k+r(k—l)+---+r"’2-2)
" 2(r—1)+(r2—1)+~~-+(rk’2—I)Cll+r+r2+-~~+rk’3 ng(k+r(k—1)+~~~+rk’3~3)

+o 4 C Ok,

Next, we will consider the following inequality
k—

2
D
+1 _ 2_ k—1_ = 2 r 2 k—1
ff |u|rk < 2(r D+(ro=1)+-+(r 1)Ci—0 P = (f |u|r dth)r
Q.T Q'T

k=2

P
(r=D+(2 =D+ (1 =1) ~i=0
+ (k- 1)2 C

! k=2
TG ¥ k=D

- r =0 .
Denote g = 20D+ =D+-+0""=D then we have the inequality

k=2

A S e ) )
2 - _
0 e =0 (f lu|” dxdt)”
Qr

k=2
I-k—1 k=2

o Ca 3, (k=Dyr'~*!

- - r =0 .

™M

1
”u”erH(QT) <a®t-C

—_
Il

e g

+(k-1) a®t - Cy’ (5.6)
k=1 k=1 )
Observe that b = Y r'%2 < 400, c = Y (k- Dr'*? < +00,d = (k- 1) < +o00. Moreover, we
=1 I=1
have 2(=D++A2=1)~ e
Obviously when k goes to oo, we could obtain that
b b
lu(x, Dll=ory < 2C7lull, 2, + 2dCT.
Hence, we obtain the inequality
b cC b cC
sup |u| < 2C7r° 2”””U2(9T) +2dCir>.
Qr
Combining the above result and Proposition 2.3, we could obtain that
sup |u(x,t)| < C,
Qr
where C = C(T, sup p, i(rzlfp, lletollz))- O
Qr T
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Finally, let us give the proof of Theorem 1.1.

Proof. Under the assumptions of Lemmas 4.1-4.3, we employ the result in Lemma 3.1, Proposition 2.3
and the a prior estimates in Lemma 5.1. Therefore, we could achieve the results of Theorem 1.1
easily. O
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