
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(10): 22875–22895.
DOI: 10.3934/math.20231164
Received: 19 May 2023
Revised: 28 June 2023
Accepted: 11 July 2023
Published: 19 July 2023

Research article

Computing quaternion matrix pseudoinverse with zeroing neural networks

Vladislav N. Kovalnogov1, Ruslan V. Fedorov1, Denis A. Demidov1, Malyoshina A. Malyoshina1,
Theodore E. Simos1,2,3,4,5*, Spyridon D. Mourtas6,7 and Vasilios N. Katsikis6

1 Laboratory of Interdisciplinary Problems in Energy Production, Ulyanovsk State Technical
University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia

2 Department of Medical Research, China Medical University Hospital, China Medical University,
Taichung City 40402, Taiwan

3 Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology,
West Mishref, 32093 Kuwait

4 Data Recovery Key Laboratory of Sichun Province, Neijing Normal Univ., Neijiang 641100, China
5 Section of Mathematics, Dept. of Civil Engineering, Democritus Univ. of Thrace, Xanthi 67100,

Greece
6 Department of Economics, Mathematics-Informatics and Statistics-Econometrics, National and

Kapodistrian University of Athens, Sofokleous 1 Street, 10559 Athens, Greece
7 Laboratory “Hybrid Methods of Modelling and Optimization in Complex Systems”, Siberian

Federal University, Prosp. Svobodny 79, 660041 Krasnoyarsk, Russia

* Correspondence: Email: simos@ulstu.ru.

Abstract: In recent years, it has become essential to compute the time-varying quaternion (TVQ)
matrix Moore-Penrose inverse (MP-inverse or pseudoinverse) to solve time-varying issues in a range
of disciplines, including engineering, physics and computer science. This study examines the problem
of computing the TVQ matrix MP-inverse using the zeroing neural network (ZNN) approach, which
is nowadays considered a cutting edge technique. As a consequence, three new ZNN models are
introduced for computing the TVQ matrix MP-inverse in the literature for the first time. Particularly,
one model directly employs the TVQ input matrix in the quaternion domain, while the other two
models, respectively, use its complex and real representations. In four numerical simulations and a
real-world application involving robotic motion tracking, the models exhibit excellent performance.

Keywords: quaternion; Moore-Penrose inverse; zeroing neural network; dynamical system; mobile
object localization
Mathematics Subject Classification: 15A24, 65F20, 68T05

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20231164


22876

1. Introduction

The real-time solution to the Moore-Penrose inverse (MP-inverse or pseudoinverse) [1, 2], that fre-
quently arises in robotics [3–5], game theory [6], nonlinear systems [7] and other technical and scien-
tific disciplines [8–10], has attracted a lot of interest in recent times. Quaternions, on the other hand,
are crucial in a wide range of domains, such as computer graphics [11–13], robotics [14, 15], navi-
gation [16], quantum mechanics [17], electromagnetism [18] and mathematical physics [19, 20]. Let
Hm×n present the set of all m × n matrices on the quaternion skew field H = {δ1 + δ2ı + δ3 ȷ + δ4k | ı2 =
ȷ2 = k2 = ı ȷk = −1, δ1, δ2, δ3, δ4 ∈ R}. Considering that Ã ∈ Hm×n, its conjugate transpose is denoted by
Ã∗, and its rank by rank(Ã). The generalization of the inverse matrix Ã−1 is the MP-inverse Ã†, whereas
Ã† is just one solution X̃ that satisfies the next Penrose equations [21, 22]:

(i) ÃX̃Ã = Ã, (ii) X̃ÃX̃ = X̃, (iii) (ÃX̃)∗ = ÃX̃, (iv) (X̃Ã)∗ = X̃Ã. (1.1)

Recently, research has begun to focus on time-varying quaternion (TVQ) problems involving matri-
ces, such as inversion of TVQ matrices [23], solving the dynamic TVQ Sylvester matrix equation [24],
addressing the TVQ constrained matrix least-squares problem [25] and solving the TVQ linear matrix
equation for square matrices [26]. Furthermore, real-world applications involving TVQ matrices are
employed in kinematically redundant manipulator of robotic joints [15, 27], chaotic systems synchro-
nization [25], mobile manipulator control [23,28] and image restoration [26,29]. All these studies have
one thing in common: they all use the zeroing neural network (ZNN) approach to derive the solution.

ZNNs are a subset of recurrent neural networks that are especially good at parallel processing and
are used to address time-varying issues. They were initially developed by Zhang et al. [30] to han-
dle the problem of time-varying matrix inversion, but their subsequent iterations were dynamic mod-
els for computing the time-varying MP-inverse of full-row/column rank matrices [31–34] in the real
and complex domain. Today, their use has expanded to include the resolution of generalized inver-
sion issues [35–40], linear and quadratic programming tasks [41–43], certain types of matrix equa-
tion [44,45], systems of nonlinear equations [46,47], systems of linear equations [48–50] and systems
of equations with noise [51]. The TVQ MP-inverse (TVQ-MPI) problem for any TVQ matrix will be
addressed in this paper using the ZNN approach. Of greater significance, we will determine whether a
direct solution in the quaternion domain or an indirect solution through representation in the complex
and real domains is more efficient. To do this, we will create three ZNN models, one for each domain,
and rigorously validate them on four numerical simulations and a real-world application involving
robotic motion tracking. By doing theoretical analysis and analyzing the computational complexity of
all presented models, this research strengthens the existing body of literature.

The rest of the article is divided into the following sections. Section 2 presents introductory in-
formation and the TVQ-MPI problem formulation. Section 3 introduces the three ZNN models, while
their theoretical analysis is presented in Section 4. Numerical simulations and applications are explored
in Section 5 and, finally, Section 6 provides concluding thoughts and comments.

2. Introductory information and problem formulation

This part outlines some introductory information about TVQ matrices, the TVQ-MPI problem,
ZNNs and the notation that will be used throughout the remainder of the study as well as the primary
findings that will be covered.
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A division algebra or skew-field over the field of real numbers makes up a quaternion. As a re-
sult, the set of quaternions H is not commutative under the operation of multiplication, which causes
complexity to rise quickly in real-world applications [52]. On the other hand, a real 4 × 4 matrix or
a complex 2 × 2 matrix can both be used to easily express a scalar quaternion [53]. The dimensions
of the representation matrices scale suitably, and this fact also applies to matrices of quaternions. In
order to tackle quaternion-based problems, it is now customary to first solve an analogous issue in the
real or complex domain before converting the result back to quaternion form. This method, which is
undeniably effective even in a static setting, excels at solving issues with time-varying characteristics.

Let Ã(t) = A1(t) + A2(t)ı + A3(t) ȷ + A4(t)k ∈ Hm×n, with Ai(t) ∈ Rm×n for i = 1, 2, 3, 4, be a TVQ
matrix and t ∈ [0, t f ) ⊆ [0,+∞) be the time. The conjugate transpose of a TVQ matrix Ã(t) is the
following [52, 53]:

Ã∗(t) = AT
1 (t) − AT

2 (t)ı − AT
3 (t) ȷ − AT

4 (t)k, (2.1)

where the operator ()T denotes transposition. The product of the two TVQ matrices Ã(t) and B̃(t) =
B1(t) + B2(t)ı + B3(t) ȷ + B4(t)k ∈ Hn×g, with Bi(t) ∈ Rn×g for i = 1, · · · , 4, is:

Ã(t)B̃(t) = Ỹ(t) = Y1(t) + Y2(t)ı + Y3(t) ȷ + Y4(t)k ∈ Hm×g (2.2)

where
Y1(t)=A1(t)B1(t)−A2(t)B2(t)−A3(t)B3(t)−A4(t)B4(t),
Y2(t)=A1(t)B2(t)+A2(t)B1(t)+A3(t)B4(t)−A4(t)B3(t),
Y3(t)=A1(t)B3(t)+A3(t)B1(t)+A4(t)B2(t)−A2(t)B4(t),
Y4(t)=A1(t)B4(t)+A4(t)B1(t)+A2(t)B3(t)−A3(t)B2(t),

(2.3)

with Yi(t) ∈ Rm×g for i = 1, · · · , 4. Additionally, one complex representation of the TVQ matrix Ã(t) is
the following [24, 54]:

Â(t) =
[
A1(t) − A4(t)ı −A3(t) − A2(t)ı
A3(t) − A2(t)ı A1(t) + A4(t)ı

]
∈ C2m×2n, (2.4)

and one real representation of the TVQ matrix Ã(t) is the following [26]:

A(t) =


A1(t) A4(t) −A3(t) A2(t)
−A4(t) A1(t) −A2(t) −A3(t)
A3(t) A2(t) A1(t) −A4(t)
−A2(t) A3(t) A4(t) A1(t)

 ∈ R4m×4n. (2.5)

In this paper, the following TVQ matrix equations problem is taken into consideration for computing
the TVQ-MPI of any Ã(t) ∈ Hm×n [21, 22]:{

Ã∗(t)Ã(t)X̃(t) − Ã∗(t) = 0n×m, m ≥ n
X̃(t)Ã(t)Ã∗(t) − Ã∗(t) = 0n×m, m < n

, (2.6)

where the TVQ matrix X̃(t) = X1(t)+X2(t)ı+X3(t) ȷ+X4(t)k ∈ Hn×m, with Xi(t) ∈ Rn×m for i = 1, 2, 3, 4,
is the TVQ matrix of interest. Additionally, we consider that Ã(t) is a smoothly time-varying matrix
and its time derivative is either given or can be accurately estimated. It is important to note that (2.6)
is the TVQ-MPI problem and it is satisfied only for X̃(t) = Ã†(t).
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On the one hand, taking into account that the complex representation of the TVQ matrix acquired
by multiplying two TVQ matrices is similar to the TVQ matrix acquired by multiplying the complex
representations of two TVQ matrices [24, Theorem 1], solving (2.6) is equivalent to solving the real
matrix equation: {

Â∗(t)Â(t)X̂(t) − Â∗(t) = 02n×2m, m ≥ n
X̂(t)Â(t)Â∗(t) − Â∗(t) = 02n×2m, m < n

, (2.7)

where X̂(t) ∈ C2n×2m. On the other hand, taking into account that the real representation of the TVQ
matrix acquired by multiplying two TVQ matrices is similar to the TVQ matrix acquired by multiplying
the real representations of two TVQ matrices [26, Corollary 1], solving (2.6) is equivalent to solving
the real matrix equation: {

AT(t)A(t)X(t) − AT(t) = 04n×4m, m ≥ n
X(t)A(t)AT(t) − AT(t) = 04n×4m, m < n

, (2.8)

where X(t) ∈ R4n×4m.
Three novel ZNN models are introduced for solving the TVQ-MPI problem of (2.6) in this research.

One model, dubbed as ZNNQ, is created for directly resolving the TVQ-MPI problem of (2.6). The
two additional models, dubbed as ZNNQC and ZNNQR, are created to indirectly solve the TVQ-MPI
problem of (2.6) through (2.7) in the complex domain and (2.8) in the real domain, respectively. The
creation of a ZNN model typically involves two fundamental steps. First, one defines an error matrix
equation (ERME) function E(t). Second, the next ZNN dynamical system under the linear activation
function must be used:

Ė(t) = −λE(t), (2.9)

where the operator ( ˙ ) denotes the time derivative. Additionally, the design parameter λ > 0 is a
positive real number, though one may adjust the convergence rate of the model. For instance, a higher
value for λ will result in the model converging even faster [55–57]. It is important to point out that
continual learning is defined as learning continually from non-stationary data, while transferring and
preserving prior knowledge. It is true that as time evolves, the ZNN’s architecture relies around driving
each entry of the error function E(t) to 0. The continuous-time learning rule, which is the consequence
of the definition of the ERME function (2.9), is used to do this. Therefore, it is possible to think of the
error function as a tool for tracking the learning of ZNN models.

The key conclusions of the paper are listed next:
(1) For the first time, the TVQ-MPI problem is addressed through the ZNN approach.
(2) With the purpose of addressing the TVQ-MPI problem, three novel ZNN models are provided.
(3) Matrices of any dimension can be used with the proposed ZNN models.
(4) The models are subjected to a theoretical analysis that validates them.
(5) Numerical simulations and applications are carried out to complement the theoretical concepts.

The following notations are employed in the remainder of this article: Iu refers to the identity u × u
matrix; 0u and 0m×n, respectively, refer to the zero u × u and m × n matrices; ∥·∥F denotes the matrix
Frobenius norm; vec(·) denotes the vectorization process; ⊙ denotes the elementwise multiplication; ⊗
denotes the Kronecker product.
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3. ZNN models in solving the TVQ-MPI

Three ZNN models, each working in a distinct domain, will be developed in this section. Further,
we assume that Ã(t) ∈ Hm×n is a differentiable TVQ matrix, and X̃(t) ∈ Hn×m is the unknown MP-inverse
matrix of Ã(t) to be found.

3.1. The ZNNQ model

To develop the ZNNQ model, the TVQ-MPI of (2.6) is considered. According to (2.1) and (2.2),
we set Ã∗(t)Ã(t) = Ũ(t) = U1(t) + U2(t)ı + U3(t) ȷ + U4(t)k, where

U1(t) =AT
1 (t)A1(t) + AT

2 (t)A2(t) + AT
3 (t)A3(t) + AT

4 (t)A4(t),
U2(t) =AT

1 (t)A2(t) − AT
2 (t)A1(t) − AT

3 (t)A4(t) + AT
4 (t)A3(t),

U3(t) =AT
1 (t)A3(t) − AT

3 (t)A1(t) − AT
4 (t)A2(t) + AT

2 (t)A4(t),
U4(t) =AT

1 (t)A4(t) − AT
4 (t)A1(t) − AT

2 (t)A3(t) + AT
3 (t)A2(t),

(3.1)

with Ui(t) ∈ Rn×n for i = 1, · · · , 4, and Ã(t)Ã∗(t) = Ṽ(t) = V1(t) + V2(t)ı + V3(t) ȷ + V4(t)k, where

V1(t) =A1(t)AT
1 (t) + A2(t)AT

2 (t) + A3(t)AT
3 (t) + A4(t)AT

4 (t),
V2(t) = − A1(t)AT

2 (t) + A2(t)AT
1 (t) − A3(t)AT

4 (t) + A4(t)AT
3 (t),

V3(t) = − A1(t)AT
3 (t) + A3(t)AT

1 (t) − A4(t)AT
2 (t) + A2(t)AT

4 (t),
V4(t) = − A1(t)AT

4 (t) + A4(t)AT
1 (t) − A2(t)AT

3 (t) + A3(t)AT
2 (t),

(3.2)

with Vi(t) ∈ Rm×m for i = 1, · · · , 4. Taking into account (3.1) and (3.2), the TVQ-MPI (2.6) can be
rewritten as below: {

Ũ(t)X̃(t) − Ã∗(t) = 0n×m, m ≥ n
X̃(t)Ṽ(t) − Ã∗(t) = 0n×m, m < n

, (3.3)

or equivalent,{
C1(t) − AT

1 (t) + (C2(t) + AT
2 (t))ı + (C3(t) + AT

3 (t)) ȷ + (C4(t) + AT
4 (t))k = 0n×m, m ≥ n

D1(t) − AT
1 (t) + (D2(t) + AT

2 (t))ı + (D3(t) + AT
3 (t)) ȷ + (D4(t) + AT

4 (t))k = 0n×m, m < n
, (3.4)

where
C1(t) =U1(t)X1(t) − U2(t)X2(t) − U3(t)X3(t) − U4(t)X4(t),
C2(t) =U1(t)X2(t) + U2(t)X1(t) + U3(t)X4(t) − U4(t)X3(t),
C3(t) =U1(t)X3(t) + U3(t)X1(t) + U4(t)X2(t) − U2(t)X4(t),
C4(t) =U1(t)X4(t) + U4(t)X1(t) + U2(t)X3(t) − U3(t)X2(t),

(3.5)

with Ci(t) ∈ Rn×m for i = 1, · · · , 4, and

D1(t) =X1(t)V1(t) − X2(t)V2(t) − X3(t)V3(t) − X4(t)V4(t),
D2(t) =X1(t)V2(t) + X2(t)V1(t) + X3(t)V4(t) − X4(t)V3(t),
D3(t) =X1(t)V3(t) + X3(t)V1(t) + X4(t)V2(t) − X2(t)V4(t),
D4(t) =X1(t)V4(t) + X4(t)V1(t) + X2(t)V3(t) − X3(t)V2(t),

(3.6)
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with Ci(t) ∈ Rn×m for i = 1, · · · , 4. Then, setting

Z1(t) =


U1(t) −U2(t) −U3(t) −U4(t)
U2(t) U1(t) −U4(t) U3(t)
U3(t) U4(t) U1(t) −U2(t)
U4(t) −U3(t) U2(t) U1(t)

 , Z2(t) =


V1(t) V2(t) V3(t) V4(t)
−V2(t) V1(t) −V4(t) V3(t)
−V3(t) V4(t) V1(t) −V2(t)
−V4(t) −V3(t) V2(t) V1(t)

 ∈ R4n×4m,

Y1(t) =[XT
1 (t), XT

2 (t), XT
3 (t), XT

4 (t)]T ∈ R4n×m, Y2(t) = [X1(t), X2(t), X3(t), X4(t)] ∈ Rn×4m,

W1(t) =[A1(t),−A2(t),−A3(t),−A4(t)]T ∈ R4n×m, W2(t) = [AT
1 (t),−AT

2 (t),−AT
3 (t),−AT

4 (t)] ∈ Rn×4m,
(3.7)

where Z1(t) ∈ R4m×4n, Z2(t) ∈ R4n×4m, Y1(t),W1(t) ∈ R4n×m and Y2(t),W2(t) ∈ Rn×4m, the following
ERME is considered:

EQ(t) =
{

E1(t) = Z1(t)Y1(t) −W1(t), m ≥ n
E2(t) = Y2(t)Z2(t) −W2(t), m < n

, (3.8)

where E1(t) ∈ R4n×m and E2(t) ∈ Rn×4m. The first time derivative of (3.8) is as follows:

ĖQ(t) =
{

Ė1(t) = Ż1(t)Y1(t) + Z1(t)Ẏ1(t) − Ẇ1(t), m ≥ n
Ė2(t) = Ẏ2(t)Z2(t) + Y2(t)Ż2(t) − Ẇ2(t), m < n

. (3.9)

When EQ(t) of (3.8) and ĖQ(t) of (3.9) are replaced in (2.9) and solving in terms of Ẏ1(t) and Ẏ2(t),
we have the next result:{

Z1(t)Ẏ1(t) = −λE1(t) − Ż1(t)Y1(t) + Ẇ1(t), m ≥ n
Ẏ2(t)Z2(t) = −λE2(t) − Y2(t)Ż2(t) + Ẇ2(t), m < n

. (3.10)

Then, with the aid of the Kronecker product and the vectorization process, the dynamic model of (3.10)
may be simplified:{

(Im ⊗ Z1(t))vec(Ẏ1(t)) = vec(−λE1(t) − Ż1(t)Y1(t) + Ẇ1(t)), m ≥ n
(Z2(t) ⊗ In)vec(Ẏ2(t)) = vec(−λE2(t) − Y2(t)Ż2(t) + Ẇ2(t)), m < n

, (3.11)

and after setting:

K(t) =


Im ⊗ Z1(t), m ≥ n & rank(Ã(t)) = n
Im ⊗ Z1(t) + γI4mn, m ≥ n & rank(Ã(t)) < n
Z2(t) ⊗ In, m < n & rank(Ã(t)) = m
Z2(t) ⊗ In + γI4mn, m < n & rank(Ã(t)) < m

, ẏ(t) =
{

vec(Ẏ1(t)), m ≥ n
vec(Ẏ2(t)), m < n

,

L(t) =
{

vec(−λE1(t) − Ż1(t)Y1(t) + Ẇ1(t)), m ≥ n
vec(−λE2(t) − Y2(t)Ż2(t) + Ẇ2(t)), m < n

, y(t) =
{

vec(Y1(t)), m ≥ n
vec(Y2(t)), m < n

,

(3.12)

the next ZNNQ model is derived for solving the TVQ-MPI of (2.6):

K(t)ẏ(t) = L(t) (3.13)

where ẏ(t), y(t), L(t) ∈ R4mn, K(t) ∈ R4mn×4mn is a nonsingular mass matrix and γ ≥ 0 is the regulariza-
tion parameter.

Given that we perform 4mn additions/subtractions and (4mn)2 multiplications in each iteration of
(3.13), the complexity of solving (3.13) is O((4mn)2) operations. In addition, the complexity of solving
(3.13) through use of an implicit ode MATLAB solver is O((4mn)3 as it involves a (4mn) × (4mn)
matrix. As a consequence, the computational complexity of the ZNNQ model of (3.13) is O((4mn)3).
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3.2. The ZNNQC model

To develop the ZNNQC model, the TVQ-MPI of (2.7) is considered. Let Â(t) ∈ C2m×2n and X̂(t) ∈
C2n×2m, we set the following ERME:

EC(t) =
{

E1(t) = Â∗(t)Â(t)X̂(t) − Â∗(t), m ≥ n
E2(t) = X̂(t)Â(t)Â∗(t) − Â∗(t), m < n

, (3.14)

where E1(t), E2(t) ∈ C2n×2m. The first time derivative of (3.14) is as follows:

ĖC(t) =

 Ė1(t) = ( ˙̂A∗(t)Â(t) + Â∗(t) ˙̂A(t))X̂(t) + Â∗(t)Â(t) ˙̂X(t) − ˙̂A∗(t), m ≥ n
Ė2(t) = ˙̂X(t)Â(t)Â∗(t) + X̂(t)( ˙̂A(t)Â∗(t) + Â(t) ˙̂A∗(t)) − ˙̂A∗(t), m < n

. (3.15)

When EC(t) of (3.14) and ĖC(t) of (3.15) are replaced in (2.9) and solving in terms of ˙̂X(t), we have
the next result: Â∗(t)Â(t) ˙̂X(t) = −λE1(t) − ( ˙̂A∗(t)Â(t) + Â∗(t) ˙̂A(t))X̂(t) + ˙̂A∗(t), m ≥ n

˙̂X(t)Â(t)Â∗(t) = −λE2(t) − X̂(t)( ˙̂A(t)Â∗(t) + Â(t) ˙̂A∗(t)) + ˙̂A∗(t), m < n
. (3.16)

Then, with the aid of the Kronecker product and the vectorization process, the dynamic model of (3.16)
may be simplified: (I2m ⊗ Â∗(t)Â(t))vec( ˙̂X(t)) = vec(−λE1(t) − ( ˙̂A∗(t)Â(t) + Â∗(t) ˙̂A(t))X̂(t) + ˙̂A∗(t)), m ≥ n

(Â(t)Â∗(t) ⊗ I2n)vec( ˙̂X(t)) = vec(−λE2(t) − X̂(t)( ˙̂A(t)Â∗(t) + Â(t) ˙̂A∗(t)) + ˙̂A∗(t)), m < n
, (3.17)

and after setting:

W(t) =


I2m ⊗ Â∗(t)Â(t), m ≥ n & rank(Â(t)) = 2n
I2m ⊗ Â∗(t)Â(t) + γI4mn, m ≥ n & rank(Â(t)) < 2n
Â(t)Â∗(t) ⊗ I2n, m < n & rank(Â(t)) = 2m
Â(t)Â∗(t) ⊗ I2n + γI4mn, m < n & rank(Â(t)) < 2m

,

H(t) =

 vec(−λE1(t) − ( ˙̂A∗(t)Â(t) + Â∗(t) ˙̂A(t))X̂(t) + ˙̂A∗(t)), m ≥ n
vec(−λE2(t) − X̂(t)( ˙̂A(t)Â∗(t) + Â(t) ˙̂A∗(t)) + ˙̂A∗(t)), m < n

,

˙̂x(t) = vec( ˙̂X(t)), x̂(t) = vec(X̂(t)),

(3.18)

the ZNNQC model is derived for solving the TVQ-MPI of (2.6):

W(t) ˙̂x(t) = H(t) (3.19)

where ˙̂x(t), x̂(t),H(t) ∈ C4mn, W(t) ∈ C4mn×4mn is a nonsingular mass matrix and γ ≥ 0 is the regulariza-
tion parameter.

In terms of computational complexity, it is important to note that multiplying two complex numbers
results in the calculation (c+dı)(k+hı) = ck−dh+chı+dkı, which calls for a total of 4 multiplications
and 2 addition/subtraction operations. Taking this into account, the complexity of computing (3.19)
is O(4(4mn)2) = O((8mn)2) as each iteration of (3.19) has 4(4mn)2 multiplication and 2(4mn) addi-
tion/subtraction operations. In addition, the complexity of solving (3.19) through use of an implicit
odeMATLAB solver is O((8mn)3) as it involves a (4mn) × (4mn) matrix in the complex domain. As a
consequence, the computational complexity of the ZNNQC model of (3.19) is O((8mn)3).
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3.3. The ZNNQR model

To develop the ZNNQR model, the TVQ-MPI of (2.8) is considered. Let A(t) ∈ C4m×4n and X(t) ∈
R4n×4m, we set the following ERME:

ER(t) =
{

E1(t) = AT(t)A(t)X(t) − AT(t), m ≥ n
E2(t) = X(t)A(t)AT(t) − AT(t), m < n

, (3.20)

where E1(t), E2(t) ∈ R4n×4m. The first time derivative of (3.20) is as follows:

ĖR(t) =
{

Ė1(t) = (ȦT(t)A(t) + AT(t)Ȧ(t))X(t) + AT(t)A(t)Ẋ(t) − ȦT(t), m ≥ n
Ė2(t) = Ẋ(t)A(t)AT(t) + X(t)(Ȧ(t)AT(t) + A(t)ȦT(t)) − ȦT(t), m < n

. (3.21)

When ER(t) of (3.20) and ĖR(t) of (3.21) are replaced in (2.9) and solving in terms of X(t), we have
the next result:{

AT(t)A(t)Ẋ(t) = −λE1(t) − (ȦT(t)A(t) + AT(t)Ȧ(t))X(t) + ȦT(t), m ≥ n
Ẋ(t)A(t)AT(t) = −λE2(t) − X(t)(Ȧ(t)AT(t) + A(t)ȦT(t)) + ȦT(t), m < n

. (3.22)

Then, with the aid of the Kronecker product and the vectorization process, the dynamic model of (3.22)
may be simplified:{

(I4m ⊗ AT(t)A(t))vec(Ẋ(t)) = vec(−λE1(t) − (ȦT(t)A(t) + AT(t)Ȧ(t))X(t) + ȦT(t)), m ≥ n
(A(t)AT(t) ⊗ I4n)vec(Ẋ(t)) = vec(−λE2(t) − X(t)(Ȧ(t)AT(t) + A(t)ȦT(t)) + ȦT(t)), m < n

, (3.23)

and after setting:

M(t) =


I4m ⊗ AT(t)A(t), m ≥ n & rank(A(t)) = 4n
I4m ⊗ AT(t)A(t) + γI16mn, m ≥ n & rank(A(t)) < 4n
A(t)AT(t) ⊗ I4n, m < n & rank(A(t)) = 4m
A(t)AT(t) ⊗ I4n + γI16mn, m < n & rank(A(t)) < 4m

,

P(t) =
{

vec(−λE1(t) − (ȦT(t)A(t) + AT(t)Ȧ(t))X(t) + ȦT(t)), m ≥ n
vec(−λE2(t) − X(t)(Ȧ(t)AT(t) + A(t)ȦT(t)) + ȦT(t)), m < n

,

ẋ(t) = vec(Ẋ(t)), x(t) = vec(X(t)),

(3.24)

the ZNNQR model is derived for solving the TVQ-MPI of (2.6):

M(t)ẋ(t) = P(t) (3.25)

where ẋ(t), x(t), P(t) ∈ R16mn, M(t) ∈ R16mn×16mn is a nonsingular mass matrix and γ ≥ 0 is the regular-
ization parameter.

Given that we perform 16mn additions/subtractions and (16mn)2 multiplications in each iteration
of (3.25), the complexity of solving (3.25) is O((16mn)2) operations. In addition, the complexity of
solving (3.25) through use of an implicit odeMATLAB solver is O((16mn)3 as it involves a (16mn) ×
(16mn) matrix. As a consequence, the computational complexity of the ZNNQR model of (3.25) is
O((16mn)3).
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4. Stability and convergence analysis

This section examines the convergence and stability of the ZNNQ (3.13), ZNNQC (3.19), and
ZNNQR (3.25) models.

Theorem 4.1. Assuming that Z1(t) ∈ R4m×4n, Z2(t) ∈ R4n×4m, Y1(t),W1(t) ∈ R4n×m and Y2(t),W2(t) ∈
Rn×4m, and Z1(t),Z2(t),W1(t) and W2(t) are differentiable, the dynamical system (3.10) converges to
Ã†(t), which is the theoretical solution (THSO) of the TVQ-MPI (2.6). The solution is then stable,
based on Lyapunov.

Proof. The substitution Ȳi(t) := Y̌i(t)−Yi(t), i = 1, 2, implies Yi(t) = Y̌i(t)− Ȳi(t), where Y̌i(t) is a THSO.
The time derivative of Yi(t), i = 1, 2, is Ẏi(t) = ˙̌Yi(t) − ˙̄Yi(t). Notice that

{
Z1(t)Y̌1(t) −W1(t) = 04n×m, m ≥ n
Y̌2(t)Z2(t) −W2(t) = 0n×4m, m < n

, (4.1)

and its first derivative  Ż1(t)Y̌1(t) + Z1(t) ˙̌Y1(t) − Ẇ1(t) = 04n×m, m ≥ n
˙̌Y2(t)Z2(t) + Y̌2(t)Ż2(t) − Ẇ2(t) = 0n×4m, m < n

. (4.2)

As a result, following the substitution of Yi(t) = Y̌i(t) − Ȳi(t), i = 1, 2, into (3.8), one can verify

ĒQ(t) =
{

Z1(t)(Y̌1(t) − Ȳ1(t)) −W1(t), m ≥ n
(Y̌2(t) − Ȳ2(t))Z2(t) −W2(t), m < n

. (4.3)

Further, the implicit dynamics (2.9) imply

˙̄EQ(t) =

 Ż1(t)(Y̌1(t) − Ȳ1(t)) + Z1(t)( ˙̌Y1(t) − ˙̄Y1(t)) − Ẇ1(t), m ≥ n
( ˙̌Y2(t) − ˙̄Y2(t))Z2(t) + (Y̌2(t) − Ȳ2(t))Ż2(t) − Ẇ2(t), m < n

= −λĒQ(t).

(4.4)

We then determine the candidate Lyapunov function so as to confirm convergence:

L(t) =
1
2

∥∥∥ĒQ(t)
∥∥∥2

F
=

1
2

Tr
(
ĒQ(t)

(
ĒQ(t)

)T)
. (4.5)

Then, the next identities can be verified:

L̇(t) =
2Tr
((

ĒQ(t)
)T ˙̄EQ(t)

)
2

= Tr
((

ĒQ(t)
)T ˙̄EQ(t)

)
= −λTr

((
ĒQ(t)

)T
ĒQ(t)

)
. (4.6)
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Consequently, it holds

dL(t)
dt

< 0, ĒQ(t) , 0

= 0, ĒQ(t) = 0,

⇔ L̇(t)


< 0,

Z1(t)(Y̌1(t) − Ȳ1(t)) −W1(t) , 0,m ≥ n

(Y̌2(t) − Ȳ2(t))Z2(t) −W2(t) , 0,m < n

= 0,

Z1(t)(Y̌1(t) − Ȳ1(t)) −W1(t) = 0,m ≥ n

(Y̌2(t) − Ȳ2(t))Z2(t) −W2(t) = 0,m < n
,

⇔ L̇(t)


< 0,

Ȳ1(t) , 0,m ≥ n
Ȳ2(t) , 0,m < n

= 0,

Ȳ1(t) = 0,m ≥ n
Ȳ2(t) = 0,m < n

,

(4.7)

With Ȳ(t) =
{

Ȳ1(t), m ≥ n
Ȳ2(t), m < n

being the equilibrium point of the system (4.4) and EQ(0) = 0, we have

that:
dL(t)

dt
≤ 0, ∀ Ȳ(t) , 0. (4.8)

By the Lyapunov stability theory, we infer that the equilibrium state:{
Ȳ1(t) = Y̌1(t) − Y1(t) = 0, m ≥ n
Ȳ2(t) = Y̌2(t) − Y2(t) = 0, m < n

, (4.9)

is stable. Thus, Yi(t)→ Y̌i(t), i = 1, 2, as t → ∞.

Theorem 4.2. Let Ã(t) ∈ Hm×n be differentiable. For any initial value y(0) that one may consider, the
ZNNQ model (3.13) converges exponentially to the THSO y̌(t) at each time t.

Proof. First, the ERME of (3.8) is declared so as to determine the THSO of the TVQ-MPI. Second, the
model (3.10) is developed utilizing the ZNN’s architecture (2.9) for zeroing (3.8). So, when t → ∞,
Y(t) → Y̌(t) for any initial value, according to Theorem 4.1. Third, with the aid of the Kronecker
product and the vectorization process, the dynamic model of (3.10) is simplified into the ZNNQ model
(3.13). Therefore, the ZNNQ model (3.13) converges to the THSO y̌(t) for any initial value y(0) when
t → ∞, as it is simply an alternative version of (3.10). The proof is thus completed.

Theorem 4.3. Assuming that Â(t) ∈ C2m×2n is differentiable, the dynamical system (3.16) converges to
Â†(t), which is the THSO of the TVQ-MPI (2.7). The solution is then stable, based on Lyapunov.

Proof. Given that the proof mirrors the proof of Theorem 4.1, it is omitted.

Theorem 4.4. Let Â(t) ∈ C2m×2n be differentiable. For any initial value x̂(0) that one may consider, the
ZNNQC model (3.19) converges exponentially to the THSO ˇ̂x(t) at each time t.

Proof. Given that the proof mirrors the proof of Theorem 4.2 once we replace Theorem 4.1 with
Theorem 4.3, it is omitted.
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Theorem 4.5. Assuming that A(t) ∈ R4m×4n is differentiable, the dynamical system (3.22) converges to
A†(t), which is the THSO of the TVQ-MPI (2.8). The solution is then stable, based on Lyapunov.

Proof. Given that the proof mirrors the proof of Theorem 4.1, it is omitted.

Theorem 4.6. Let A(t) ∈ R4m×4n be differentiable. For any initial value x(0) that one may consider, the
ZNNQR model (3.25) converges exponentially to the THSO x̌(t) at each time t.

Proof. Given that the proof mirrors the proof of Theorem 4.2 once we replace Theorem 4.1 with
Theorem 4.5, it is omitted.

5. Experiments

In this section, four numerical simulations (NSs) and a real-world application involving robotic
motion tracking are presented. The essential clarifications that have been used across all NSs and
application are shown below. The ZNN design parameter λ is used with values of 10 and 100 in NSs
and 10 in application, while the initial values of the ZNNQ, ZNNQC and ZNNQR models have been set
to y(0) = 04mn, x̂(0) = 04mn and x(0) = 016mn, respectively. Additionally, we have set α(t) = sin(t) and
β(t) = cos(t) and we will refer to the four Penrose equations in (1.1) as (P-i), (P-ii), (P-iii) and (P-iv)
for convenience. The notation QMP (i.e. quartenion MP) in the figures legend refers to the MP-inverse
of the input TVQ matrix Ã(t), i.e. Ã†(t). Finally, the NSs have used the MATLAB ode15s solver in
the time interval [0, 10] using the default double precision arithmetic (eps = 2.22 · 10−16), whereas the
application has used the solver in the time interval [0, 20]. As a consequence, the minimum value in
all of the figures of this section are mostly of order 10−5.

5.1. Numerical simulations

Example 5.1. Considering the next coefficients:

A1(t) =


2α(t) + 7 1 1
−2 1 1
4 1 1

 , A2(t) =


5 1 1

2α(t) + 1 1 1
3 1 1

 , A3(t) =


3α(t) + 2 1 1

12 1 1
5 1 1

 , A4(t) =


−2 1 1

2α(t) + 1 1 1
7 1 1

 ,
the input matrix Ã(t) ∈ H3×3 is a singular TVQ matrix with rank(Ã(t)) = 2. As a consequence, we set
γ = 10−8 in the ZNNQ, ZNNQC and ZNNQR models. The performance of the ZNN models is shown
in Figures 1, 2 and 3.

Example 5.2. Utilizing the next coefficients:

A1(t) =


2α(t) + 1 7
3β(t) + 2 7

1 β(t) + 2
2β(t) + 4 7

 , A2(t) =


2 2α(t) + 1

2α(t) − 3 7
−2β(t) + 4 β(t) + 6

7 2α(t) + 1

 ,

A3(t) =


3α(t) + 2 6
2α(t) + 1 7
−β(t) + 2 3
−β(t) + 5 7

 , A4(t) =


3 2α(t) + 1
7 7

3α(t) + 2 5
7 2α(t) + 1

 ,
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the input matrix Ã(t) ∈ H4×2 is a full rank TVQ matrix with rank(Ã(t)) = 2. As a consequence, we set
γ = 0 in the ZNNQ, ZNNQC and ZNNQR models. The performance of the ZNN models is shown in
Figures 1, 2 and 3.
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Figure 1. ERMEs in NSs 5.1–5.4 for λ with values 10 and 100.

Example 5.3. Using the following coefficients:

A1(t) =


2α(t) + 7 −2 4 β(t) 8 5
2α(t) + 7 −2 4 β(t) 9 1
2α(t) + 7 −2 4 β(t) 9 1

 , A2(t) =


5 2α(t) + 1 3 β(t) 8 5
5 2α(t) + 1 3 β(t) 9 1
5 2α(t) + 1 3 β(t) 9 1

 ,

A3(t) =


3α(t) + 2 12 5 β(t) 8 5
3α(t) + 2 12 5 β(t) 9 1
3α(t) + 2 12 5 β(t) 9 1

 , A4(t) =


−2 2α(t) + 1 7 β(t) 8 5
−2 2α(t) + 1 7 β(t) 9 1
−2 2α(t) + 1 7 β(t) 9 1

 ,
the input matrix Ã(t) ∈ H3×6 is a rank deficient TVQ matrix with rank(Ã(t)) = 2. As a consequence,
we set γ = 10−8 in the ZNNQ, ZNNQC and ZNNQR models. The performance of the ZNN models is
shown in Figures 1, 2 and 3.

Example 5.4. Considering the following matrix

K =


1 0 0 0 0 0 0 1 1 1 1 1
1 1 0 0 0 0 0 0 1 1 1 1
1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 1 1 1

 ,
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the coefficients of the input matrix Ã(t) have been set to

A1(t) =KT ⊙ (1 + α(t)), A2(t) = KT ⊙ (1 + 2α(t)),

A3(t) =KT ⊙ (1 + 2β(t)), A4(t) = KT ⊙ (1 + 4β(t)).

As a consequence, Ã(t) ∈ H12×4 is a rank deficient TVQ matrix with rank(Ã(t)) = 3 and, thus, we set
γ = 10−8 in the ZNNQ, ZNNQC and ZNNQR models. The performance of the ZNN models is shown
in Figures 1, 2 and 3.
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Figure 2. Real and imaginary parts of the trajectories of X̃(t) in NSs 5.1–5.4 for λ = 10.
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Figure 3. Error of Penrose equations (1.1) in NSs 5.1–5.4 for λ = 10.

5.2. Application to robotic motion tracking

The applicability of the ZNNQ, ZNNQC and ZNNQR models is validated in this experiment using
a 3-link planar manipulator (PM), as shown in Figure 4a. It is important to mention that the 3-link
PM’s kinematics equations at the position level r(t) ∈ Rm and the velocity level ṙ(t) ∈ Rm are expressed
as follows:

r(t) = f (θ(t)), ṙ(t) = J(θ)θ̇(t),
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where θ ∈ Rn is the angle of the 3-link PM, f (·) is a smooth nonlinear mapping function, r(t) is the
end-effector’s position, and J(θ) = ∂ f (θ)/∂θ ∈ Rm×n.

To comprehend how this 3-link PM tracked motion, the inverse kinematic equation is solved. The
equation of velocity can be thought of as a system of linear equations when the end-effector motion
tracking task is assigned with ṙ(t) known and θ̇(t) unknown. To put it another way, by setting Ã(t) =
J(θ), we find X̃(t) = A†(t) to solve θ̇(t) = X̃(t)ṙ(t). Therefore, we may track control of the 3-link PM
by using the ZNN models to resolve the underlying linear equation system.

The 3-link PM’s end-effector is anticipated to follow a “M”-shaped path in the simulation exper-
iment; [58] contains the X and Y-axis velocity functions of this path along with the specifications of
3-link PM. The task duration 4T is 20 seconds (i.e., T = 5 seconds) in these functions, and the design
parameter is s = 6 cm. Additionally, the link length is α = [1, 2/3, 5/4]T and the initial value of the
joints is θ(0) = [π/4, π/4, π/4]T. The performance of the ZNN models is shown in Figure 4.
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Figure 4. Robotic motion tracking application results in Section 5.2.

5.3. Numerical simulations discussion

The performance of the ZNNQ (3.13), ZNNQC (3.19) and ZNNQR (3.10) models for solving the
TVQ-MPI (2.6) is investigated throughout the NSs 5.1–5.4. While the input TVQ matrices Ã(t) used
have varied dimensions and rank conditions, each NS solves the TVQ-MPI problem. Particularly, NS
5.1 has a singular TVQ matrix of dimensions 3 × 3, NS 5.2 has a full rank TVQ matrix of dimensions
4 × 2, NS 5.3 has a rank deficient TVQ matrix of dimensions 3 × 6, while NS 5.4 has a rank deficient
TVQ matrix of dimensions 12 × 4, which is much larger than the other NSs.

Figsure 1a–1d and Figure 1e–1h show the ERME’s Frobenius norms of the ZNNQ, ZNNQC and
ZNNQR models for λ values of 10 and 100 in NSs 5.1–5.4, respectively. In the case of λ = 10 in Figure
1a–1d, it can be observed that the error values in all NSs start from a high error value at t = 0 and,
by the time-mark of t ≈ 1, they experience a steep decline that brings them to the range [10−4, 10−2].
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Notice that a higher value for λ will typically cause the ZNN models to converge even more quickly.
This is demonstrated in the case of λ = 100 in Figures 1e–1h, where we observe that the error values in
all NSs start from a high error value at t = 0 and, by the time-mark of t ≈ 0.1, they experience a steep
decline that brings them to the range [10−4, 10−3]. Also, all ZNN models exhibit the same convergence
speed, but the ZNNQC has the highest overall error in the region [0, 10] while the ZNNQ has the
lowest. In other words, the ZNNQ model shows better performance than the ZNNQC and ZNNQR
models.

The fact that all three models successfully converged is further highlighted in Figure 2, which
contrasts the THSO’s real and imaginary parts trajectories with the corresponding X̃(t) trajectories
produced by the three models. Particularly, Figure 2a depicts the real part and Figure 2b–2d depict
the imaginary parts in NS 5.1, Figure 2e depicts the real part and Figure 2f–2h depict the imaginary
parts in NS 5.2, Figure 2i depicts the real part and Figure 2j–2l depict the imaginary parts in NS 5.3,
and Figure 2m depicts the real part and Figure 2n–2p depict the imaginary parts in NS 5.4. In these
figures, it can be observed that the three models’ X̃(t) trajectories coincide with the corresponding
THSO’s trajectories, whereas their convergence speed follows the convergence tendency of the ZNNQ,
ZNNQC and ZNNQR models’ ERMEs shown in Figure 1. It is important to note that the convergence
and stability theorems of Section 4 are validated in all of the figures in this section by the convergence
tendency of the ERME’s Frobenius norms alongside the solution trajectories that match the THSO’s
trajectories. That is, the ZNNQ, ZNNQC and ZNNQR models of Section 3 converge exponentially to
the QMP, i.e. Ã†(t), for any initial value when t → ∞.

By assessing the error of Penrose equations (1.1), the three models’ performance is examined in
order to further validate them. Particularly, Figure 3a, 3e, 3i and 3m depict the error of (P-i) in NSs
5.1–5.4, respectively, Figure 3b, 3f, 3j and 3n depict the error of (P-ii) in NSs 5.1–5.4, respectively,
Figure 3c, 3g, 3k and 3o depict the error of (P-iii) in NSs 5.1–5.4, respectively, and Figure 3d, 3h, 3l
and 3p depict the error of (P-iv) in NSs 5.1–5.4, respectively. In these figures, it can be observed that
convergence speed of the error produced by the three models follows the convergence tendency of the
ZNNQ, ZNNQC and ZNNQR models’ ERMEs shown in Figure 1. In NSs 5.1 and 5.2, the ZNNQ
and ZNNQR have identical performance. Additionally, the ZNNQC has the highest overall error in
the region [0, 10] while the ZNNQ and ZNNQR have has the lowest. In NSs 5.3 and 5.4, all models
produces almost identical overall error values.

Additionally, the applicability of the ZNNQ, ZNNQC and ZNNQR models is validated in the exper-
iment of Section 5.2 using a 3-link PM. Particularly, Figure 4b shows the ERME’s Frobenius norms of
the ZNN models. It can be observed that the error values start from a high error value at t = 0 and, by
the time-mark of t ≈ 1, they experience a steep decline that brings them to the range [10−5, 10−4]. The
error values fall more gradually after t ≈ 1 until t = 20, when they drop to a range of [10−13, 10−11]. All
ZNN models exhibit the same convergence speed and very similar overall error in the region [0, 20],
but the ZNNQR has the highest overall error while the ZNNQ has the lowest. Figsure 4c–4f depict
the error of (P-i)-(P-iv), respectively. In these figures, it can be observed that convergence speed of
the error produced by the three models follows the convergence tendency of the ZNNQ, ZNNQC and
ZNNQR models’ ERMEs shown in Figure 4b. In other words, the ZNNQ model shows better perfor-
mance than the ZNNQC and ZNNQR models. Figure 4g and 4h depict the trajectories of the velocity
and the “M”-shaped path tracking. As seen in these figures, all ZNN model solutions match the actual
velocity θ̇(t), and the 3-link PM successfully completes the “M”-shaped path tracking task, where ṙ(t)
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is the actual “M”-shaped path.
Not to mention, once we take into account the complexity of each model, the results above can be

placed into better context. Because the dimensions of the associated real valued matrix A(t) are 2 times
larger than those of the complex valued matrix Â(t) and 4 times larger than those of the quaternion
valued matrix Ã(t), the ZNNQR is, by far, the most complex model. Because of this, choosing to solve
the TVQ-MPI problem in the real domain has a significant memory penalty, with RAM fast being a
limiting factor as Ã(t) grows in size. When everything is taken into account, all three ZNN models can
solve the TVQ-MPI problem, although the ZNNQ appears to have the most potential.

6. Conclusions

Three models, namely ZNNQ, ZNNQC and ZNNQR, have been presented in order to address the
TVQ-MPI problem for TVQ matrices of arbitrary dimension. The creation of those models has been
aided by theoretical research and an examination of their computing complexity, in addition to sim-
ulated examples and the real-world application involving robotic motion tracking. The TVQ-MPI
problem has been successfully solved both directly in the quaternion domain and indirectly, through
representation in the complex and real domains. Of the three methods, the direct method, implemented
by the ZNNQ model, has been suggested as the most effective and efficient. In light of this, the estab-
lished findings pave the path for more engaging research projects. The following considerations ought
to be taken into account:

• Using the predefined-time ZNN architecture to TVQ-based problems is something that can be
looked into.
• Solving nonlinear TVQ-based matrix equations is another task that could be taken into consider-

ation.
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