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Abstract: Environmental science and pollution research has benefits around the globe. Human activity
produces more garbage throughout the day as the world’s population and lifestyles rise. Choosing
a garbage disposal site (GDS) is crucial to effective disposal. In illuminated of the advancements
in society, decision-makers concede a significant challenge for assessing an appropriate location for
a garbage disposal site. This research used a multi-attribute decision-making (MADM) approach
based on q-rung orthopair hesitant fuzzy rough (q-ROHFR) Einstein aggregation information for
evaluating GDS selection schemes and providing decision-making (DM) support to select a suitable
waste disposal site. In this study, first, q-ROHFR Einstein average aggregation operators are integrated.
Some intriguing characteristics of the suggested operators, such as monotonicity, idempotence and
boundedness were also explored. Then, a MADM technique was established using the novel concept
of q-ROHFR aggregation operators under Einstein t-norm and t-conorm. In order to help the decision
makers (DMs) make a final choice, this technique aims to rank and choose an alternative from a
collection of feasible alternatives, as well as to propose a solution based on the ranking of alternatives
for a problem with conflicting criteria. The model’s adaptability and validity are then demonstrated
by an analysis and solution of a numerical issue involving garbage disposal plant site selection. We
performed a the sensitivity analysis of the proposed aggregation operators to determine the outcomes
of the decision-making procedure. To highlight the potential of our new method, we performed
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a comparison study using the novel extended TOPSIS and VIKOR schemes based on q-ROHFR
information. Furthermore, we compared the results with those existing in the literature. The findings
demonstrate that this methodology has a larger range of information representation, more flexibility in
the assessment environment, and improved consistency in evaluation results.

Keywords: the q-rung orthopair hesitant fuzzy rough sets; Einstein aggregation operators; Garbage
disposal site selection; decision making; sensitivity analysis
Mathematics Subject Classification: 03B52, 03E72

List of Abbreviations

Abbreviation Description
MAGDM Multi-attribute group decision making
MADM Multi-attribute decision making
FS Fuzzy set
IFS Intuitionistic fuzzy set
PFS Pythagorean fuzzy set
q-ROFS q-rung orthopair fuzzy set
DMs Decision-makers
AOps Aggregation operators
q-ROHFRS q-rung orthopair hesitant fuzzy rough set

1. Introduction

In the current economic and social management system, we need to deal with numerous MADM
challenges. Many researchers in the fields of operations research and decision sciences have taken
keen interest in MADM theories and techniques, and their noteworthy contributions have been
acknowledged [1–8]. Choosing a suitable GDS is one of the most important steps for proper disposal
of rubbish. Garbage has risen to be a real problem for international society, causing an increasing
hazard to human health [9]. Garbage disposal which is not harmful to the environment and the
conversion of garbage into money have become vital aspects for each community in planning and
executing sustainable growth and maintaining an intellectual atmosphere [10]. At the start of the
twenty-first century, the worldwide average annual waste growth rate has accelerated to 8.42 %, while
in developing regions, the figure has even reached 10% [11]. The implementation of waste disposal
systems begins with the identification of a location. The choice of selecting a GDS is complicated
because so many elements are taken into consideration, such as the local economy, climate, transport
services, ground hydrological factors, and geological conditions in the environment. In practical DM
challenges, several influencing circumstances, such as lack of understanding of DMs, tight schedules,
and restricted budgets, prevent DMs from providing correct assessment values of alternatives with
regard to qualities [12]. Imprecise assessments play a crucial role in DM techniques in these situations.
It can be seen that the MADM approaches have been used in the assessment of the GDS selection
scheme. However, most existing studies were conducted using Zadeh’s fuzzy sets (FSs) [13] and
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Attansov’s intuitionistic fuzzy sets (IFSs) [14]. Existing research of IFSs-based MAGDM approaches
has demonstrated the effectiveness and efficiency of IFSs in coping with challenging assessment
schemes presented by DMs [15]. Afterwards, Yager [16] suggested a novel extension of IFSs called
Pythagorean FSs (PFSs). The constraint of IFSs is that the sum of membership and nonmembership
degree must be less than or equal to 1, while PFSs fulfill the constraint that the sum of the square
of membership and nonmembership degree must not be greater than 1. Obviously, PFSs provide a
wider range of information than IFSs, and PFS-based MADM methodologies have emerged as a novel
and dynamic research field in comparison to IFSs [17]. Despite their capability to deal with complex
fuzzy information in certain situations in real life, it is found that both IFSs and PFSs still have some
shortcomings. Later on, Yager [18] introduced the notion of a q-rung orthopair fuzzy (q-ROF) set,
which is an extension of the conventional IFS. The q-ROF set has the constraint that the sum of the
qth-powers of membership and non-membership degree must be less than or equal to 1.

There are several situations in which DMs have strong opinions regarding evaluating or assessing
plans, initiatives or governmental statements issued by a government. For example, let an organization
start a huge construction project in order to demonstrate its success and performance. Members of
the organization may attribute favorable membership (β = 0.9) to their initiative, whereas others may
assess the same exertion as a wastage of resources and strive to invalidate it by providing fiercely
contrasting perspectives. Therefore, they ascribe a negative membership (ψ = 0.7). In this situation,
βz(`) + ψz(`) > 1, and (βz(`))2 + (ψz(`))2 > 1, but (βz(`))q + (ψz(`))q < 1 for q > 3. Therefore, (β, ψ)
is a q-rung orthopair fuzzy number (q-ROFN) rather than an intuitionistic fuzzy number (IFN) or a
Pythagorean fuzzy number (PFN). Thus, Yager’s q-ROFNs are effective in addressing information
imprecision. The disadvantages of the aforementioned information make evaluating the selection
process under such complicated information complex. Zhang et al. [19] integrated q-ROFSs into
a multi-granular three-way decision framework and explored a unique MADM technique in q-ROF
information systems. Zhang et al. [20] investigated a fuzzy intelligence learning technique based
on limited rationality in internet of medical things systems, giving a suitable scheme for biomedical
data processing. Zhang et al. [21] investigated MADM with imprecise and incomplete information in
incomplete q-ROF information systems using multi-granulation probabilistic models, MULTIMOORA
(multi-objective optimisation by ratio analysis plus the full multiplicative form) and the technique of
precise order preference. For MADM, Hussain et al. [22] discussed a covering-based q-rung orthopair
fuzzy rough set (q-ROFRS) model hybrid with technique for order preference by similarity to ideal
solution (TOPSIS) approach. Chakraborty [23] conducted thorough simulation-based comparisons
and mathematical analyses of TOPSIS and modified TOPSIS approaches in order to clear up incorrect
assumptions about their applications in MADM resolving issues. Hanine et al. [24] proposed and
explored the use of two well-known MCDM approaches, the analytic hierarchy process and TOPSIS
methodologies, in decision-making situations. Gupta et al. [25] introduced a trapezoidal IF number-
based decision approach for MADM challenges, including plant site selection. They additionally
applied the VIKOR technique based on IF environment. A VIKOR approach was proposed by
Hafezalkotob et al. [26] with both interval target values of attributes and interval ratings of alternatives
on attributes. Additionally, they sought to use the power of interval estimations to reduce the
degeneration of undetermined data. Soner et al. [27] employed the analytic hierarchy process and
the VIKOR scheme to develop a complete framework for dealing with uncertainty during linguistic
evaluation of decision-makers in marine transportation enterprises. Gul et al. [28] carried out an
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innovative literature review in order to categorize, analyze and evaluate current research on VIKOR
applications. They also explored the applications of the VIKOR approach in fuzzy settings. Opricovi et
al. [29] enhanced the VIKOR approach with a stability analysis identifying the weight stability intervals
and with a trade-offs analysis, demonstrating its application in MCDM challenges with conflicting and
non-commensurable criteria.

Several approaches have been presented to address data uncertainty. The rough set (RS) theory,
proposed by Pawlak [30] in 1982, is a non-statistical mathematical technique for dealing with the
difficulties of ambiguity and uncertainty. This theory is based on associating a subset with two crisp
sets known as lower and upper approximations, which are used to establish the subset’s boundary
region and accuracy measure [31]. Several extensions to the RS concept have been explored. Fuzzy-
rough set (FRS) theory and RS theory may be integrated to organize information with continuous
features and evaluate information discrepancies. The FRS approach has proven to be extremely
beneficial in a wide range of application fields because it is an appropriate approach for evaluating
inconsistent and conflicting information. The FRS theory, introduced in [34], is an enhancement of
the RS theory that can support information with continuous numerical properties. The importance of
FRS theory is highlighted in a variety of applications. Pan et al. [35] modified the fuzzy preference
relation RS framework with an additive consistent fuzzy preference relation. Li et al. [36] proposed
an effective FRS technique for feature evaluation. The problem of continuous observer design for
integer order nonlinear systems has received a lot of consideration in the literature. However, there
are a couple of investigations that are directly connected to granular computing theory in order to
better estimate system states. Zhan [37] discussed the granular function description and provided a
unique impulsive observer design technique to assure error dynamic system cognitive convergence.
The derived criteria, in particular, accurately captured the relationship between the fractional order
and the pulse signal. A numerical simulation was presented to demonstrate the efficacy of the
suggested approach. Ren et al. [38] investigated logical systems with mixed decision implications.
The mixed decision implications semantical system was designed to express and originate acceptable
mixed decision implications while avoiding contradicting mixed decision implications. The syntactical
system introduced mixed augmentation and mixed combination, and the soundness, completeness,
and non-redundancy of these two inference rules were demonstrated. Lian et al. [39] investigated
the concept of relative knowledge distances in light of relative cognitive principles. Then in the
context of precise and fuzzy settings, they depicted the transformation challenges between any two
types of knowledge given the condition of specific knowledge, and they further provided the newly
possessed features due to the increase of relative knowledge distances and the refinement of conditional
knowledge granularities, which can well reflect progressive features. Feng et al. [40] minimized
multi-granulation by using uncertainty measures based on FRSs by minimizing both the negative
and positive regions. Sun et al. [41] employed a constructive approach to generate three varieties
of multi-granulation FRSs over two universes. Zhang et al. [42] discussed the FRS theory for feature
selection based on information entropy. Based on FRS theory, Vluymans et al. [43] proposed a novel
type of classification for unbalanced multi-instance data. Wang and Hu [44] proposed new L-FRSs to
generalize the concept of L-FRSs. Zhang et al. [45] suggested the dual hesitant FRS and its application.
Peng et al. [46] suggested an interactive fuzzy linguistic term set to represent interactive information
in a MADM problem. The geometric features and benefits of the interactive fuzzy linguistic term set
for decision information consistency were examined. Numerical examples illustrated its application to
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a MADM problem using interactive information, which may enhance decision outcomes and improve
artificial intelligence. An improved evaluation based on the distance from average solution (EDAS)
of the interval-valued intuitionistic trapezoidal fuzzy set was proposed by Peng et al. [47]. They
provided a numerical example of flood disaster rescue to demonstrate the feasibility and efficacy of
the suggested strategy, which was also compared to current methods. Tang et al. [48] introduced
a decision-theoretic RS model using q-ROF information with their applications in stock investment
assessment. For three-way decisions under GDM, Liang et al. [49] suggested q-ROFSs on decision-
theoretic FRSs. Zhang et al. [50] proposed GDM using incomplete q-ROF preference relations. Peng
et al. [51] suggested similarity measures for linguistic q-ROF MADM using a projection technique and
presented a numerical example to demonstrate its feasibility and efficacy by comparing it to existing
approaches. Sensitivity and stability analyses of the suggested approach were also provided. These
q-ROFRS extensions have been demonstrated to be beneficial in resolving DM evaluation values in
MADM challenges in applications.

1.1. Motivation of this article

In recent years, researchers have significantly merged the MADM technique with uncertainty
theories in response to the rising ambiguity and the complexity of real-world problems. Motivated
by the above description, existing research piqued our interest in investigating the generalization of
FRS theory to propose a substantial information representation. The innovative features of generalized
RS theory addressed the limitations of traditional fuzzy set theory extensions such as FS, IFS, PFS,
q-ROFS, LDFS, and many more. Several approaches to fuzzy generalisations of RS theory have been
developed and implemented. Considering situations where experts hesitate among several evaluation
values, q-rung orthopair hesitant FRSs (q-ROHFRSs), as a new generalizations of intuitionistic fuzzy
rough sets, can describe uncertain information flexibly in the decision-making process. The q-
ROHFRSs, a hybrid intelligent structure of rough sets, and q-rung orthopair hesitant fuzzy sets
(q-ROHFSs) are advanced classification strategies that have captured our interest in working with
ambiguous and incomplete data. The q-ROHFRSs improves on traditional models that utilize the value
of lower and upper approximations with membership and non- membership from the unit interval to
represent the ambiguity of real world challenges, which can effectively describe the uncertainty of
complicated problems and the vagueness of human cognition. In accordance with the assessments,
aggregation operators (AOps) play a key role in DM in collecting information from diverse sources into
a single value. According to existing knowledge, the establishment of AOps with the hybridization of
q-ROHFS with RS is not found in the q-ROF information. As a result, the current q-ROHF rough
structure has captivated our attention, and we construct a list of algebraic AOps based on rough
information, such as q-ROHF weighted averaging (WA), order WA and hybrid WA operators, using
the algebraic t-norm and t-conorm.

1.2. Main contributions of this article

In light of the above research motivations, this paper enhances the existing literature of FRS theory
by introducing novel ideas. The following describes the major contributions of the present work.

(i) We establish novel q-ROHFRS concepts and examine their fundamental operational rules.

(ii) To construct AOps, q-ROHFREWA, q-ROHFREOWA and q-ROHFREHWA operators, based on

AIMS Mathematics Volume 8, Issue 10, 22830–22874.



22835

Einstein’s t-norm and t-conorm and thoroughly investigate their associated features.

(iii) To establish a DM approach based on the specified aggregation operators to synthesize ambiguous
information in real-world DM challenges.

(iv) Carried out the sensitivity analysis of the proposed aggregation operators with decision-making
outcomes.

(v) A real-world case study with DM complications in GDS selection assessment has been established.

(vi) The outcomes have been compared to those demonstrated in the available the scientific literature.

(vii) Finally, enhanced q-ROHFR-TOPSIS and VIKOR approaches are employed, and we compare
the findings obtained through the suggested operators to validate the proposed DM methodology.
The main contributions of the study are summarized in Figure 1.

Figure 1. Diagram of the present work.

1.3. Outline of the paper

The remainder of this article is outlined as follows: Section 2 briefly explores several fundamental
concepts of IFSs, q-ROFSs and RS theory. In Section 3, an innovative notion of q-ROHFRSs is
described together with their fundamental relevant operating rules. Section 4 displays several Einstein
AOps that are constructed to aggregate ambiguous information and are based on Einstein operational
laws. Section 5 is devoted to a DM approach based on the established AOps. Section 6 provides a
numerical example of the assessment of site selection for garbage disposal site selection. This part
also discusses the application of the established approach. The sensitivity analysis of ranking order
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for different values of parameters is presented in Section 7. Section 8 addresses the comparison of
suggested AOps with previous outcomes and the enhanced q-ROHFR-TOPSIS and VIKOR methods
for evaluating the proposed AOps-based MADM methodology. This manuscript is concluded at
Section 9.

2. Preliminaries

In this section, we provide some relevant fundamental information, such as IFS, q-ROFS, q-ROHFS,
RS and q-ROFRS, and some related operational laws, which are listed below. These core concepts will
assist readers in comprehending the proposed framework.

Definition 1. [14] Let U = {∝1,∝2,∝3, ...,∝n} be a universal set, an IFS z over U is described by

z = {〈∝ı, βz(∝ı), ψz(∝ı)〉|∝ı ∈ U} .

For each ∝ı ∈ U, the functions βz : U → [0 ,1] and ψz : U → [0, 1] symbolize the membership grade
(MG) and non-membership grade (NMG), which must fulfill the property 0 ≤ βz(∝ı) + ψz(∝ı) ≤ 1.

Definition 2. [18] Let U = {∝1,∝2,∝3, ...,∝n} be a universal set, a q-ROFS F over U is defined by

F = {〈∝ı, βF(∝ı), ψF(∝ı)〉|∝ı ∈ U} .

For each ∝ı ∈ U, the functions βF : U → [0, 1] and ψF : U → [0, 1] signify the MG and NMG, which
must satisfy the property that (ψF(∝ı))q + (βF(∝ı))q ≤ 1, (q > 2 ∈ Z). Figure 2 depicts a diagrammatic
portrayal of an IFS and q-ROFSs (q = 1 − 5).

Figure 2. Graphical depiction of IFS and q-ROFSs (q=1-5).

Definition 3. [58] Let U = {∝1,∝2,∝3, ...,∝n} be a universal set, a q-ROHFS F is defined by

F = {
〈
∝ı, βhF (∝ı), ψhF (∝ı)

〉
|∝ı ∈ U},
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where βhF (∝ı) and ψhF (∝ı) are sets of some values in [0, 1] symbolizing the MG and NMG, respectively.
Which must satisfy the following properties: ∀ ∝ı ∈ U, ∀$F (∝ı) ∈ βhF (∝ı), ∀νF (∝ı) ∈ ψhF (∝ı) with(
max

(
βhF (∝ı)

))q
+

(
max

(
ψhF (∝ı)

))q
≤ 1. We utilize a pair F= (βhF , ψhF ) for simplicity to mean a

q-ROHF number.

Definition 4. [58] Let F1 = (βhF1
, ψhF1

) and F2 = (βhF2
, ψhF2

) be two q-ROHFNs. The fundamental set
theoretic operations are as follows:

(1) F1 ⊕ F2 =
⋃

µ1∈ψhF1
,µ2∈ψhF2

ν1∈βhF1
,ν2∈βhF2

{
((µ1)q + (µ2)q

− (µ1)q
· (µ2)q)

1
q , (ν1 · ν2)

}
;

(2) F1 ⊗ F2 =
⋃

µ1∈ψhF1
,µ2∈ψhF2

ν1∈βhF1
,ν2∈βhF2

{
(µ1 · µ2) , ((ν1)q + (ν2)q

− (ν1)q
· (ν2)q)

1
q
}

;

(3) γ · F1 =
⋃

µ1∈ψhF1
,ν1∈βhF1

{(
1 − (1 − µq

1)γ
) 1

q
, (ν1)γ

}
;

(4) (F1)γ =
⋃

µ1∈ψhF1
,ν1∈βhF1

{
(µ1)γ ,

(
1 − (1 − νq

1)γ
) 1

q
}

;

(5) F c
1 =

{
ψhF1

, βhF1

}
.

Definition 5. Let F1 = (βhF1
, ψhF1

) and F2 = (βhF2
, ψhF2

) be two q-ROHFNs, q > 2 and γ > 0 be any
real number. The fundamental operations based on Einstein’s t-norm and t-conorm are described in
the following:

(1) F1
⊕
F2 =


⋃

µ1∈βhF1
µ2∈βhF2

{
q
√
µ

q
1+µ

q
2

q
√

1+µ
q
1.µ

q
2

}
,

⋃
ν1∈ψhF1
ν2∈ψhF2

{
ν1.ν2

q
√

1+(1−νq
1).(1−νq

2)

} ;

(2) F1
⊗
F2 =


⋃

µ1∈βhF1
µ2∈βhF2

{
µ1.µ2

q
√

1+(1−µq
1).(1−µq

2)

}
,

⋃
ν1∈ψhF1
ν2∈ψhF2

{
q
√
ν

q
1+ν

q
2

q
√

1+ν
q
1.ν

q
2

} ;

(3) F ˆγ
1 =

 ⋃
µ1∈βhF1

{
q
√

2(µq
1)γ

q
√

(2−µq
1)γ+(µq

1)γ

}
,

⋃
ν1∈ψhF1

{
q
√

(1+ν
q
1)γ−(1−νq

1)γ

q
√

(1+ν
q
1)γ+(1−νq

1)γ

} ;

(4) γ.F1 =

 ⋃
µ1∈βhF1

{
q
√

(1+µ
q
1)γ−(1−µq

1)γ

q
√

(1+µ
q
1)γ+(1−µq

1)γ

}
,

⋃
ν1∈ψhF1

{
q
√

2(νq
1)γ

q
√

(2−νq
1)γ+(νq

1)γ

} .
Definition 6. Let U = {∝1,∝2,∝3, ...,∝n} be a universal set and i ⊆ U ×U be a (crisp) relation. Then,
(1)The relation i is reflexive iff ∝ı i ∝ı for all ∝ı∈ U
(2)The relation i is symmetric if ∝ı i ∝ j then ∝ j i ∝ı for all ∝ı,∝ j∈ U
(3)The relation i is transitive if ∝ı i ∝ j and ∝ j i ∝k implies ∝ı i ∝k ∀ ∝ı,∝ j,∝k∈ U.
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Definition 7. [32] Let U = {∝1,∝2,∝3, ...,∝n} be a universal set and i be any relation on U. Define
i∗ : U → M(U) by i∗(∝) = {ϕ ∈ U |(∝, ϕ) ∈ i}, for ∝∈ U where i∗(∝) is known as a successor
neighborhood of the element ∝ with respect to the relation i. The pair (U,i) is called a (crisp)
approximation space. Now, for any set £ ⊆ U, the lower approximation (LA) and upper approximation
(UA) of ∝ with respect to approximation space (U,i) are defined as

i(£) = {∝∈ U |i∗(∝) ⊆ £},

i(£) = {∝∈ U |i∗(∝) ∩ £ , φ}.

The pair
(
i(£),i(£)

)
is called a rough set if i(£) , i(£) and both i(£),i(£) : M(U)→ M(U) are LA

and UA operators.

Definition 8. Let U = {∝1,∝2,∝3, ...,∝n} be a universal set, and i ∈ IFS (U × U) be an IF relation.
Then,
(1) i is reflexive if µi(∝ı,∝ı) = 1 and νi(∝ı,∝ı) = 0,∀ ∝ı∈ U,
(2) i is symmetric if ∀(∝ı,∝ ) ∈ U × U, µi(∝ı,∝κ) = µi(∝ ,∝ı) and νi(∝ı,∝κ) = νi(∝κ,∝ı);
(3) i is transitive if ∀(∝ı,∝ ) ∈ U × U,

µi(∝ı,∝κ) ≥
∨
∝ ∈U

[
µi(∝ı,∝ ) ∧ µi(∝ ,∝κ)

]
;

and
νi(∝ı,∝κ) =

∧
∝ ∈U

[
νi(∝ı,∝ ) ∧ νi(∝ ,∝κ)

]
.

Definition 9. [18] Let U = {∝1,∝2,∝3, ...,∝n} be a universal set. Then, any i ∈ q − RFS (U × U)
is called a q-rung relation. The pair (U × i) is said to be a q-rung approximation space. Now, for
any T ⊆ q − RFS (U), the LA and UA of T with respect to q-RF approximation space (U,i) are two
q-RFSs, which are represented by i(T ) and i(T ) and characterized as

i(T ) = {
〈
∝ı, µi(T )(∝ı), νi(T )(∝ı)

〉
| ∝ı∈ U},

i(T ) = {
〈
∝ı, µi(T )(∝ı), νi(T )(∝ı)

〉
| ∝ı∈ U},

where

µi(T )(∝ı) =
∨
g∈U

[µi(∝ı, g)
∨

µT (g)],

νi(T )(∝ı) =
∧
g∈U

[νi(∝ı, c)
∧

νT (g)],

µi(T )(∝ı) =
∧
g∈U

[µi(∝ı, c)
∧

µT (g)],

νi(T )(∝ı) =
∨
g∈U

[νi(∝ı, c)
∨

νT (g)],

such that 0 ≤ ((µi(T )(∝ı))
q + (νi(T )(∝ı))

q) ≤ 1, and 0 ≤
((
µi(T )(∝ı)

)q
+

(
νi(T )(∝ı)

)q)
≤ 1. As(

i(T ),i(T )
)

are q−RFS s, i(T ), i(T ) : q−RFS (U)→ q−RFS (U) are LA and UA operators. The

pair i(T ) = (i(T ),i(T )) = {
〈
∝ı, (µi(T )(∝ı), νi(T )(∝ı), (µi(T )(∝ı), νi(T )(∝ı))

〉
| ∝ı∈ T } is known as a

q-ROFS. For simplicity i(T ) = {
〈
∝ı, µi(T )(∝ı), νi(T )(∝ı), (µi(T )(∝ı), νi(T )(∝ı))

〉
| ∝ı∈ U} is represented

as i(T ) = ((µ, ν), (µ, ν)) and is referred to as a q-ROFR values.
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3. The construction of q-rung orthopair hesitant fuzzy rough sets

This section introduces the concept of a q-ROHFRS, which is a rough set and q-ROFS hybrid
structure. In addition, we initiate the new score and accuracy functions to assess the q-ROHFRS and
provide its key operational rules.

Definition 10. Let U = {∝1,∝2,∝3, ...,∝n} be a universal set. Then, any subset i ∈ q−ROHFS (U×U)
is said to be a q-RHF relation. The pair (U,i) is said to be q-ROHF approximation space. For any
T ⊆ q − ROHFS (U), then the LA and UA of T with respect to q-ROHF approximation space (U,i)
are two q-ROHFSs, which are represented by i(T ) and i(T ) and characterized as

i(T ) =
{〈
∝ı, βh

i(T )
(∝ı), ψh

i(T )
(∝ı)

〉
| ∝ı∈ U

}
,

i(T ) =
{〈
∝ı, βhi(T )(∝ı), ψhi(T )(∝ı)

〉
| ∝ı∈ U

}
,

where

βh
i(T )

(∝ı) =
∨
k∈U

[
βhi(∝ı, k)

∨
βhT (k)

]
,

ψh
i(T )

(∝ı) =
∧
k∈U

[
ψhi(∝ı, k)

∧
ψhT (k)

]
,

βhi(T )(∝ı) =
∧
k∈U

[
βhi(∝ı, k)

∧
βhT (k)

]
,

ψhi(T )(∝ı) =
∨
k∈U

[
ψhi(∝ı, k)

∨
ψhT (k)

]
,

such that 0 ≤
(
max(βh

i(T )
(∝ı))

)q
+
(
min(ψh

i(T )
(∝ı))

)q
≤ 1 and 0 ≤

(
min(βhi(T )(∝ı)

)q
+
(
max(ψhi(T )(∝ı))

)q
≤

1. As
(
i(T ),i(T )

)
are q − ROHFS s, i(T ),i(T ) : q − ROHFS (U) → q − RFS (U) are LA and UA

operators. The pair

i(T ) =
(
i(T ),i(T )

)
=

{〈
∝ı,

(
βhi(T )(∝ı), ψhi(T )(∝ı)

)
,
(
βh
i(T )

(∝ı), ψh
i(T )

(∝ı)
)〉
| ∝ı∈ T

}
will be referred to as a q-ROHFRS. For simplicity,

i(T ) =
{〈
∝ı,

(
βhi(T )(∝ı), ψhi(T )(∝ı)

)
,
(
βh
i(T )

(∝ı), ψh
i(T )

(∝ı)
)〉
| ∝ı∈ T

}
is symbolized as i(T ) =

(
(β, ψ), (β, ψ)

)
and is referred to as a q-ROHFR values. For explanation of

the above concept of a q-ROHFRS, we present the following example.

Example 1. Let U = {∝1,∝2,∝3,∝4} be any arbitrary set, and (U,i) is a q-ROHF approximation
space where i ∈ q − ROHFRS (U × U) is the q-ROHFR relation as displayed in Table 1, where the
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value of q is 3. A decision expert provides the decision evaluation in the form of a q-ROHFS as follows:

Table 1. The q-ROHFR relation in U.
T c1 c2 c3 c4

∝1

(
{0.1, 0.3, 0.4} ,
{0.2, 0.5, 0.7}

) (
{0.2, 0.3} ,
{0.7, 0.9}

) (
{0.2, 0.5, 0.7} ,
{0.2, 0.3}

) (
{0.3, 0.5} ,
{0.8}

)
∝2

(
{0.2, 0.3, 0.5} ,
{0.2, 0.7}

) (
{0.2, 0.3, , 0.5} ,
{0.3, 0.4}

) (
{0.1, 0.4, 0.6} ,
{0.7, 0.9}

) (
{0.2, 0.4} ,
{0.7}

)
∝3

(
{0.5, 0.6} ,
{0.7, 0.9}

) (
{0.5, 0.8, 0.9} ,
{0.1, 0.9}

) (
{0.2, 0.3} ,
{0.5, 0.9}

) (
{0.7, 0.9} ,
{0.1, 0.2, 0.3}

)
∝4

(
{0.2, 0.5, 0.9} ,
{0.6, 0.7, 0.9}

) (
{0.3, 0.8, 0.9} ,
{0.4, 0.8}

) (
{0.2, 0.5} ,
{0.6, 0.9}

) (
{0.5, 0.7} ,
{0.1, 0.8}

)
and

T =

{
〈∝1, {0.2, 0.3, 0.4} , {0.5, 0.7}〉 , 〈∝2, {0.2, 0.3, 0.7} , {0.1, 0.7, 0.8}〉 ,
〈∝3, {0.5, 0.7, 0.8} , {0.1, 0.5, 0.7}〉 , 〈∝4, {0.6, 0.8, 0.9} , {0.2, 0.6, 0.7}〉

}
.

It follows that

βh
i(T )

(∝1) =
∨
k∈U

[
βhi(∝, c)

∨
βhT (k)

]

=


{0.1 ∨ 0.2, 0.3 ∨ 0.3, 0.4 ∨ 0.4} ∨
{0.2 ∨ 0.2, 0.3 ∨ 0.3, 0 ∨ 0.7} ∨
{0.2 ∨ 0.5, 0.5 ∨ 0.7, 0.7 ∨ 0.8} ∨
{0.3 ∨ 0.6, 0.5 ∨ 0.8, 0 ∨ 0.9}


=

{
{0.2, 0.3, 0.4} ∨ {0.2, 0.3, 0} ∨
{0.5, 0.7, 0.8} ∨ {0.6, 0.8, 0.9}

}
= {0.6, 0.8, 0.9} .

The other values are determined in a similar manner as follows:

βh
i(T )

(∝2) = {0.6, 0.8, 0.9} , βh
i(T )

(∝3) = {0.7, 0.9} ,
βh
i(T )

(∝4) = {0.6, 0.8, 0.9} .

Similarly,

ψh
i(T )

(∝1) =
∧
k∈U

[
ψhi(∝, c)

∧
ψhT (k)

]

=


{0.2 ∧ 0.5, 0.5 ∧ 0.7, 0 ∧ 0.7} ∧
{0.7 ∧ 0.1, 0.9 ∧ 0.7, 0 ∧ 0.8} ∧
{0.2 ∧ 0.1, 0.3 ∧ 0.5, 0 ∧ 0.7} ∧
{0.8 ∧ 0.2, 0 ∧ 0.6, 0 ∧ 0.7}


= {{0.2, 0.5} ∧ {0.1, 0.7} ∧ {0.2, 0.3} ∧ {0.2}} ,
= {0.2} .

By routine calculations, we get

ψh
i(T )

(∝2) = {0.1} , ψh
i(T )

(∝3) = {0.1, 0.2} , ψh
i(T )

(∝4) = {0.1, 0.5} .
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Further,

βhi(T )(∝1) =
∧
k∈U

[
βhi(∝, c)

∧
βhT (k)

]

=


{0.1 ∧ 0.2, 0.3 ∧ 0.3, 0.4 ∧ 0.4} ∧
{0.2 ∧ 0.2, 0.3 ∧ 0.3, 0 ∧ 0.7} ∧
{0.2 ∧ 0.5, 0.5 ∧ 0.7, 0.7 ∧ 0.8} ∧
{0.3 ∧ 0.6, 0.5 ∧ 0.8, 0 ∧ 0.9}


=

{
{0.1, 0.3, 0.4} ∧ {0.2, 0.3} ∧
{0.2, 0.5, 0.7} ∧ {0.3, 0.5}

}
= {0.1, 0.3} .

By routine calculations, we get

βhi(T )(∝2) = {0.1, 0.3} , βhi(T )(∝3) = {0.2, 0.3} , βhi(T )(∝4) = {0.2, 0.3} .

Now,

ψhi(T )(∝1) =
∨
k∈U

[
ψhi(∝, c)

∨
ψhT (k)

]

=


{0.2 ∨ 0.5, 0.5 ∨ 0.7, 0.7 ∨ 0} ∨
{0.7 ∨ 0.2, 0.9 ∨ 0.3, 0 ∨ 0.7} ∨
{0.2 ∨ 0.1, 0.3 ∨ 0.5, 0 ∨ 0.7} ∨
{0.8 ∨ 0.2, 0 ∨ 0.6, 0 ∨ 0.7}


=

{
{0.5, 0.7, 0.7} ∨ {0.7, 0.9, 0.7} ∨
{0.2, 0.5, 0.7} ∨ {0.8, 0.6, 0.7}

}
= {0.8, 0.9, 0.7} .

Following the same procedure, we obtain the other values,

ψhi(T )(∝2) = {0.7, 0.9} , ψhi(T )(∝3) = {0.7, 0.9, 0.8} , ψhi(T )(∝4) = {0.6, 0.9, 0.9} .

Thus, the LA and UA operators based on the q-ROHFR are presented as follows:

i(T ) =

{
〈∝1, {0.1, 0.3} , {0.8, 0.9, 0.7}〉 , 〈∝2, {0.1, 0.3} , {0.7, 0.9}〉 ,
〈∝3, {0.2, 0.3} , {0.7, 0.9, 0.8}〉 , 〈∝3, {0.2, 0.3} , {0.6, 0.9, 0.9}〉

}
,

i(T ) =

{
〈∝1, {0.6, 0.8, 0.9} , {0.2}〉 , 〈∝2, {0.6, 0.8, 0.9} , {0.1}〉 ,

〈∝3, {0.7, 0.9, 0.9} , {0.1, 0.2}〉 , 〈∝4, {0.6, 0.8, 0.9} , {0.1, 0.5}〉

}
.

Hence,

i(T ) = (i(T ),i(T ))

=


〈∝1, ({0.1, 0.3} , {0.8, 0.9, 0.7}) , ({0.6, 0.8, 0.9} , {0.2})〉 ,
〈∝2, ({0.1, 0.3} , {0.7, 0.9}) , ({0.6, 0.8, 0.9} , {0.1})〉 ,

〈∝3, ({0.2, 0.3} , {0.7, 0.9, 0.8}) , ({0.7, 0.9, 0.9} , {0.1, 0.2})〉 ,
〈∝3, ({0.2, 0.3} , {0.6, 0.9, 0.9}) , ({0.6, 0.8, 0.9} , {0.1, 0.5})〉

 .
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Definition 11. Let i(T1) = (i(T1),i(T1)) and i(T2) = (i(T2),i(T2)) be two q-ROHFRSs. Then, we
have the following.

(1) i(T1)∪ i(T2) = {(i(T1) ∪ i(T2)), (i(T1) ∪ i(T2))}

(2) i(T1)∩ i(T2) = {(i(T1) ∩ i(T2)), (i(T1) ∩ i(T2))}

(3) i(T1)
⊕
i(T2) = {(i(T1)

⊕
i(T2)), (i(T1)

⊕
i(T2))}

(4) i(T1)
⊗
i(T2) = {(i(T1)

⊗
i(T2)), (i(T1)

⊗
i(T2))}

(5) i(T1) ⊆ i(T2) = {(i(T1) ⊆ i(T2)) and (i(T1) ⊆ i(T2))}

(6) γi(T1) = (γi(T1), γi(T1)) for γ ≥ 1

(7) (i(T1))γ = ((i(T1))γ, (i(T1))γ) for γ ≥ 1

(8) i(T1)c = (i(T1)c, i(T1)c) where i(T1)c and i(T1)c represent the complement of q-rung fuzzy
rough approximation operators i(T1) and i(T1), that is, i(T1)c =

(
ψhi(T ) , βhi(T )

)
(9) i(T1) = i(T2) iff i(T1) = i(T2) and i(T1) = i(T2).

Definition 12. The score function for q-ROHFRN i(T ) = (i(T ),i(T )) = ((β, ψ), (β, ψ)) is given as:

S R(i(T )) =
1
4


2 + 1

MF

∑
µı∈βhi(T )

{
µı
}

+ 1
NF

∑
µı∈βh

i(T )

{µı} −

1
MF

∑
νı∈ψhi(T )

(νı) − 1
MF

∑
νı∈ψh

i(T )

(νı)

 .
The accuracy function for q-ROHFRV i(T ) = (i(T ),i(T )) = ((β, ψ), (β, ψ)) is defined by:

ACi(T ) =
1
4


1

MF

∑
µı∈βh

i(T )

(µı) + 1
MF

∑
µı∈βh

i(T )

(µı)+

1
MF

∑
νı∈ψhi(T )

(νı) + 1
MF

∑
νı∈ψh

i(T )

(νı)

 ,
where MF and NF indicate the numbers of elements in βhg and ψhg , respectively. We will use the
score function to compare and rank two or more q-ROHFR values. The q-ROHFR number with the
highest score is considered greater, while the q-ROHFRNs with the lowest score is considered smaller.
If the score values are equal, the accuracy function will be employed. The q-ROHFRN having higher
accuracy values are considered greater, whereas lower accuracy q-ROHFR values are considered
smaller.

Definition 13. Suppose i(T1) = (i(T1),i(T1)) and i(T2) = (i(T2),i(T2)) are two q-ROHFRVs.
Then, we have the following.

(1) If S R(i(T1)) > S R(i(T2)), then i(T1) > i(T2).

(2) If S R(i(T1)) ≺ S R(i(T2)), then i(T1) ≺ i(T2).
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(3) If S R(i(T1)) = S R(i(T2)), then we will find the accuracy functions and there are three possibilities
that are as follows:

(a) If ACi(T1) > ACi(T2) then, i(T1) > i(T2).

(b) If ACi(T1) ≺ ACi(T2) then, i(T1) ≺ i(T2).

(c) If ACi(T1) = ACi(T2) then, i(T1) = i(T2).

4. The q-ROHFR Einstein aggregation operators

In this part, we introduce the new concept of q-ROHF rough AOps by integrating RSs and q-
ROPHF AOps to get aggregation notions of q-ROHFREWA, q-ROHFREOWA, and q-ROHFREHWA.
In addition, certain important characteristics of the ideas are explored.

4.1. The q-ROHFR Einstein weighted averaging operator

Definition 14. Let i(κt) = (i(κt),i(κt)) (t = 1, 2, 3, ..., r) be the collection of q-ROHFRVs. The q-
ROHFREWA operator is designated as

q − ROHFREWA (i(κ1),i(κ2), ...,i(κn)) =

 n⊕
t=1

γti(κt),
r⊕

t=1

γti(κt)

 ,
where γ = (γ1, γ2, ..., γr)T is the weights vector such that

r⊕
t=1

γt = 1 and 0 ≤ γt ≤ 1.

Theorem 4.1. Let i(κt) = (i(κt),i(κt)) (t = 1, 2, 3, ..., r) be the collection of q-ROHFRVs. Then, the
q-ROHFREWA operator is defined by

q − ROHFREWA (i(κ1),i(κ2), ...,i(κr))

=

 r⊕
t=1

γti(κt),
r⊕

t=1

γti(κt)



=





⋃
µht∈βhi(κ)


q

√
r⊗

t=1

(
1+µht

q
)γt
−

r⊗
t=1

(
1−µht

q
)γt

q

√
r⊗

t=1

(
1+µht

q
)γt

+
r⊗

t=1

(
1−µht

q
)γt

 ,
⋃

νht∈ψhi(κ)


q

√
2

r⊗
t=1

(
ν

q
ht

)γt

q

√
r⊗

t=1

(
2−νq

ht

)γt
+

r⊗
t=1

(
ν

q
ht

)γt





⋃
µht∈ψh

i(κ)
,ðht∈ðh

i(κ)


q

√
r⊗

t=1

(
1+µ

q
ht

)γt
−

r⊗
t=1

(
1−µq

ht

)γt

q

√
r⊗

t=1

(
1+µ

q
ht

)γt
+

r⊗
t=1

(
1−µq

ht

)γt

 ,
⋃

νht∈ψh
i(κ)

,∂ht∈∂h
i(κ)


q

√
2

r⊗
t=1

(
ν

q
ht

)γt

q

√
r⊗

t=1

(
2−νq

ht

)γt
+

r⊗
t=1

(
ν

q
ht

)γt







,
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where γ = (γ1, γ2, ..., γr)T is the weight vector such that
⊕r

t=1 γt = 1 and 0 ≤ γt ≤ 1.

Proof. We will use mathematical induction to prove this theorem, starting with r = 2.(
i(κ1)

⊕
i(κ2)

)
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⊕
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so the result is true for r = 2. Now, suppose that the result is true for r = k, that is,
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.

Now, we have to prove that the result holds for r = k + 1. It follows that

q − ROHFREWA (i(κ1),i(κ2), ...,i(κk),i(κk+1))
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.

Thus, the result is valid for r = k + 1. Therefore, it holds for every r ≥ 1. �

Theorem 4.2. Let i(κt) = (i(κt),i(κt)) (t = 1, 2, 3, ..., r) be the collection of q-ROPHFRVs, and
γ = (γ1, γ2, ..., γr)T is the weight vector such that γt ∈ [0, 1] and

⊕r
t=1 γt = 1. The q-ROHFREWA

operator must fulfill the following features:

(1) Idempotency: If i(κt) = Q(κ) for t = 1, 2, 3, ..., r where Q(κ) =
(
Q(κ),Q(κ)

)
=(

(bh(∝ı), dh(∝ı)), (bh(∝ı), dh(∝ı)

)
, then
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(3) Monotonicity: Suppose Q(κ) =
(
Q(κt),Q(κt)

)
(t = 1, 2, ..., r) is another collection of q-ROPHFRVs

such that Q(κt) ≤ i (κt) and Q(κt) ≤ i(κt). Then,

q − ROHFREWA (Q(κ1),Q(κ2), ...,Q(κr)) ≤ q − ROHFREWA (i(κ1),i(κ2), ...,i(κr)) .

Proof. (1) Idempotency: As i(κt) = Q(κ) (for all t = 1, 2, 3, ..., r) where Q(κt) =
(
Q(κ),Q(κ)

)
=(
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)
, it follows that
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
AIMS Mathematics Volume 8, Issue 10, 22830–22874.



22846

=





⋃
µht∈βhi(κ)


q

√
r⊗

t=1

(
1+µht

q
)γt
−

r⊗
t=1

(
1−µht

q
)γt

q

√
r⊗

t=1

(
1+µht

q
)γt

+
r⊗

t=1

(
1−µht

q
)γt

 ,
⋃

νht∈ψhi(κ)


q

√
2

r⊗
t=1

(
ν

q
ht

)γt

q

√
r⊗

t=1

(
2−νq

ht

)γt
+

r⊗
t=1

(
ν

q
ht

)γt

 ,



⋃
µht∈ψh

i(κ)
,ðht∈ðh

i(κ)


q

√
r⊗

t=1

(
1+µ

q
ht

)γt
−

r⊗
t=1

(
1−µq

ht

)γt

q

√
r⊗

t=1

(
1+µ

q
ht

)γt
+

r⊗
t=1

(
1−µq

ht

)γt

 ,
⋃

νht∈ψh
i(κ)

,∂ht∈∂h
i(κ)


q

√
2

r⊗
t=1

(
ν

q
ht

)γt

q

√
r⊗

t=1

(
2−νq

ht

)γt
+

r⊗
t=1

(
ν

q
ht

)γt







,

for all t, i(κt) = Q(κ) =
(
Q(κ),Q(κ)

)
=

(
(bh(∝ı), dh(∝ı)), (bh(∝ı), dh(∝ı))

)
. Hence,

=





⋃
bh(∝ı)∈βhi(κ)


q

√
r⊗

t=1

(
1+

(
bh(∝ı)

)q)γt
−

n⊗
t=1

(
1−

(
bh(∝ı)

)q)γt

q

√
r⊗

t=1

(
1+

(
bh(∝ı)

)q)γt
+

r⊗
t=1

(
1−

(
bh(∝ı)

)q)γt

 ,
⋃

dh(∝ı)∈ψhi(κ)


q

√
2

r⊗
t=1

((
dh(∝ı)

)q)γt

q

√
r⊗

t=1

(
2−

(
dh(∝ı)

)q)γt
+

r⊗
t=1

((
dh(∝ı)

)q)γt





⋃
bh(∝ı)∈βh

i(κ)


q

√
r⊗

t=1

(
1+(bh(∝ı))

q)γt
−

r⊗
t=1

(
1−(bh(∝ı))

q)γt

q

√
r⊗

t=1

(
1+(bh(∝ı))

q)γt
+

r⊗
t=1

(
1−(bh(∝ı))

q)γt

 ,
⋃

dh(∝ı)∈ψh
i(κ)


q

√
2

r⊗
t=1

(
(dh(∝ı))

q)γt

q

√
r⊗

t=1

(
2−(dh(∝ı))

q)γt
+

r⊗
t=1

(
(dh(∝ı))

q)γt







=




 q

√(
1+

(
bh(∝ı)

)q)
−

(
1−

(
bh(∝ı)

)q)
q
√(

1+

(
bh(∝ı)

)q)
+

(
1−

(
bh(∝ı)

)q)
 ,

 q
√

2
((

dh(∝ı)

)q)
q
√(

2−
(
dh(∝ı)

)q)
+

((
dh(∝ı)

)q)

 ,(

q
√(

1+(bh(∝ı))
q)
−
(
1−(bh(∝ı))

q)
q
√(

1+(bh(∝ı))
q)

+
(
1−(bh(∝ı))

q)
)
,

(
q
√

2
(
(dh(∝ı))

q)
q
√(

2−(dh(∝ı))
q)

+
(
(dh(∝ı))

q)
)


=

(
Q(κ),Q(κ)

)
= Q(κ).

Therefore, q-ROHFREWA(i(κ1),i(κ2), ...,i(κr)) = Q(κ).

(2) Boundedness: As (
i (κ)

)−
=

[(
min

t

{
µht

}
,max

t

{
νht

})
,
(
min

t
{µht},max

t

{
νhı

})]
(
i (κ)

)+
=

[(
max

t
{µht},min

t

{
νht

})
,
(
max

t
{µht/ðht},min

t

{
νhı

})]
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and i(κt) =
[(
βt, ψt

)
,
(
βt, ψt

)]
. To prove that

(i(κ))− ≤ q − ROHFREWA (i(κ1),i(κ2), ...,i(κr)) ≤ (i(κ))+ ,

let f (G) =
3
√

1−G3

1+G3 , G ∈ [0, 1]. Then, f
′

(G) = −2G

(1+G3)3

3
√(

1−G3

1+G3

)−2
< 0. Thus, f (G) is a decreasing

function over [0, 1]. Since {µhmax} ≤ {µht} ≤ {µhmin} for all t, g
(
µhmin

)
≤ g

(
µht

)
≤ g

(
µhmax

)
(t =

1, 2, 3, ..., n) i.e.,

⇔
3

√√√√√√1 −
(
µhmin

)3

1 +
(
µhmin

)3 ≤
3

√√√√√√1 −
(
µht

)3

1 +
(
µht

)3 ≤
3

√√√√√√1 −
(
µhmax

)3

1 +
(
µhmax

)3 , (t = 1, 2, 3, ..., n).

Let γ = (γ1, γ2, ..., γr)T be a weight vector such that γt ∈ [0, 1] and
⊕r

t=1 γt = 1, and we have

⇔
3

√√√√√√ r⊗
t=1

1 −
(
µhmin

)3

1 +
(
µhmin

)3


γt

≤
3

√√√√√√ r⊗
t=1

1 −
(
µht

)3

1 +
(
µht

)3


γt

(4.1)

≤
3

√√√√√√ r⊗
t=1

1 −
(
µhmax

)3

1 +
(
µhmax

)3


γt

⇔
3

√√√√√√√1 −
(
µhmin

)3

1 +
(
µhmin

)3


⊕r

t=1 γt

≤
3

√√√√√√ r⊗
t=1

1 −
(
µht

)3

1 +
(
µht

)3


γt

≤
3

√√√√√√√1 −
(
µhmax

)3

1 +
(
µhmax

)3


⊕r

t=1 γt

⇔ µhmax ≤
3

√√√√√√ r⊗
t=1

1 −
(
µht

)3

1 +
(
µht

)3


γt

≤ µhmin (4.2)

⇔ µhmax ≤
3

√√√√√√ r⊗
t=1

1 −
(
µht

)3

1 +
(
µht

)3


γt

≤ µhmin .

In a similar way, we can show that

⇔ µhmax ≤
3

√√
r⊗

t=1

2 −
(
µht

)3(
µht

)3

γt

≤ µhmin .
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Again, let S(κ)= 3
√

2−κ3

κ3 , κ ∈ (0, 1]. Then, S′(κ) = −2
κ4

3
√(

2−κ3

κ3

)−2
< 0. So, S(κ) is a decreasing

function on (0, 1]. Since {νhmin} ≤ {νht} ≤ {νhmax} for all t. So, S
(
νhmax

)
≤ S

(
νht

)
≤ S

(
νhmin

)
(t = 1, 2, 3, ..., r), i.e.,

3

√√√√√√2 −
(
νhmax

)3

(
νhmax

)3 ≤
3

√√√√√√2 −
(
νht

)3

(
νht

)3 ≤
3

√√√√√√2 −
(
νhmin

)3

(
νhmin

)3 .

Let γ = (γ1, γ2, ..., γr)T be a weight vector such that γt ∈ [0, 1] and
⊕r

t=1 γt = 1, and we have

⇔
3

√√√√√ r⊗
t=1

2 −
(
νhmax

)3(
νhmax

3
)


γt

≤
3

√√√√√ r⊗
t=1

2 −
(
νht

)3(
νht

3
)


γt

≤
3

√√√√√√ r⊗
t=1

2 −
(
νhmax

)3

(
νhmax

)3


γt

(4.3)

⇔
3

√√√√√√√2 −
(
νhmax

)3

(
νhmax

)3


⊕r

t=1 γt

≤
3

√√√√√ r⊗
t=1

2 −
(
νht

3
)

(
νht

)3


γt

≤
3

√√√√√√√ r⊗
t=1

2 −
(
νhmax

)3

(
νhmax

)3


⊕r

t=1 γt

⇔ νhmin ≤
3

√√√√√√ r⊗
t=1

2 −
(
νht

)3

(
νht

)3


γt

≤ νhmax .

Likewise, we can show that

⇔ νhmin ≤
3

√√
r⊗

t=1

2 −
(
νht

)3(
νht

)3

γt

≤ νhmax . (4.4)

By routine calculation, we can show that it is true for q > 3. Thus, from Eqs (4.1)–(4.4), we have

(i(κ))− ≤ q − ROHFREWG (i(κ1),i(κ2), ...,i(κr)) ≤ (i(κ))+ .

(3) Monotonicity: The proof is similar to the proof of Theorem 4.1.
�

4.2. The q-ROHFR Einstein ordered weighted averaging operator

In this subsection, we introduce the concept of the q-ROHFREOWA operator and suggest the
essential features of the operator.

Definition 15. Let i(κt) = (i(κt),i(κt)) (t = 1, 2, 3, 4, ..., r) be the collection of q-ROHFRNs. Then,
the q-ROHFREOWA operator is defined as

q − ROHFREOWA (i(κ1),i(κ2), ...,i(κr)) =

 r⊕
t=1

γtiρ(t)(κt),
r⊕

t=1

γtiρ(t)(κt)

 ,
where (ρ(1), ρ(2), ..., ρ(n)) is a permutation in such a way that iρ(κt) ≤ iρ(κt − 1), and the weights

vector γ = (γ1, γ2, ..., γr)T such that
r⊕

t=1
γt = 1 and 0 ≤ γt ≤ 1.
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Theorem 4.3. Let i(κt) = (i(κt),i(κt)) (t = 1, 2, 3, ..., r) be the collection of q-ROHFRVs. Then, the
q-ROHFREOWA operator is defined as:

q − ROHFREOWA (i(κ1),i(κ2), ...,i(κr)) =

 r⊕
t=1

γtiρ(κt),
r⊕

t=1

γtiρ(κt)



=





⋃
µρht∈βhiρ(κ)


q

√
r⊗

t=1

(
1+µρht

q

)γt
−

r⊗
t=1

(
1−µρht

q

)γt

q

√
r⊗

t=1

(
1+µρht

q

)γt
+

r⊗
t=1

(
1−µρht

q

)γt


⋃

νρht
∈ψhiρ(κ)


q

√
2

r⊗
t=1

(
ν

q
ρht

)γt

q

√
r⊗

t=1

(
2−νq

ρht

)γt
+

r⊗
t=1

(
νρht

q
)γt

 ,



⋃
µρht
∈ψh

iρ(κ)


q

√
r⊗

t=1

(
1+µ

q
ρht

)γt
−

r⊗
t=1

(
1−µq

ρht

)γt

q

√
r⊗

t=1

(
1+µ

q
ρht

)γt
+

r⊗
t=1

(
1−µq

ρht

)γt

 ,
⋃

νρht
∈ψh

iρ(κ)


q

√
2

r⊗
t=1

(
ν

q
ρht

)γt

q

√
r⊗

t=1

(
2−νq

ρht

)γt
+

r⊗
t=1

(
ν

q
ρht

)γt







,

where γ = (γ1, γ2, ..., γr)T is a weight vector such that
⊕r

t=1 γt = 1 and 0 ≤ γt ≤ 1.

Proof. It follows from Theorem 4.1. �

Theorem 4.4. Let i(κt) = (i(κt),i(κt)) (t = 1, 2, 3, ..., r) be the collection of q-ROHFRVs, and γ =

(γ1, γ2, ..., γr)T is a weights vector such that γt ∈ [0, 1] and
⊕r

t=1 γt = 1. Then, the q-ROHFREOWA
operator must fulfill the following features:

(1) Idempotency: If i(κt) = Q(κ) for (t = 1, 2, 3, ..., r) where

Q(κ) =
(
Q(κ),Q(κ)

)
=

(
(bh(∝ı), dh(∝ı)), (bh(∝ı), dh(∝ı)

)
,

then
q − ROHFREOWA (i(κ1),i(κ2), ...,i(κr)) = Q(κ).

(2) Boundedness: Let (i(κ))min =

(
min

t
i (κt) ,max

t
i(κt)

)
and (i(κ))max =

(
max

t
i (κt) ,min

t
i(κt)

)
. Then,

(i(κ))min ≤ q − ROHFREOWA (i(κ1),i(κ2), ...,i(κr)) ≤ (i(κ))max .

(3) Monotonicity: SupposeQ(κ) =
(
Q(κt),Q(κt)

)
(t = 1, 2, 3, ..., n) is another collection of q-ROHFRVs

such that Q(κt) ≤ i (κt) and Q(κt) ≤ i(κt). Then,

q − ROHFREOWA (Q(κ1),Q(κ2), ...,Q(κr)) ≤ q − ROHFREOWA (i(κ1),i(κ2), ...,i(κr)) .

Proof. The proof is comparable to the proof of Theorem 4.2. �
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4.3. The q-ROHFR Einstein hybrid weighted averaging operator

In this part, we present the q-ROHFREHWA operator, which simultaneously weights the value and
ordered position of q-ROHFR information. The key features of the proposed operator are described in
detail as follows:

Definition 16. Let i(κt) = (i(κt),i(κt)) (t = 1, 2, 3, ..., n) be the collection of q-ROHFRVs and let the

weight vector γ = (γ1, γ2, ..., γr)T of the given collection of q-ROHFRVs such that
r⊕

t=1
γt = 1 and 0 ≤

γt ≤ 1. Let (%1, %2, ..., %r)T be the associated weight vector such that
r⊕

t=1
%t = 1 and 0 ≤ %t ≤ 1. Then,

the q-ROHFREHWA operator is determined as

q − ROHFREHWA (i(κ1),i(κ2), ...,i(κr)) =

 r⊕
t=1

γtîρ(κt),
r⊕

t=1

γtîρ(κt)

 ,
where

(
îρ(κt), îρ(κt)

)
=

(
nγtiρ(κt), nγtiρ(κt)

)
.

Theorem 4.5. Let i(κt) = (i(κt),i(κt)) (t = 1, 2, 3, 4, ..., r) be the collection of q-ROHFRVs. Then,
the q-ROHFREHWA operator is defined as:

q − ROHFREHWA (i(κ1),i(κ2), ...i(κr)) =

 r⊕
t=1

%tîρ(κt),
r⊕

t=1

%tîρ(κt)



=





⋃
µρht
∈βh
îρ(κ)


q

√
r⊗

t=1

(
1+µ̂ρht

q
)%t
−

r⊗
t=1

(
1−µ̂ρht

q
)%t

q

√
r⊗

t=1

(
1+µ̂ρht

q
)%t

+
r⊗

t=1

(
1−µ̂ρht

q
)%t


⋃

νρht
∈ψh

îρ(κ)


q

√
2

r⊗
t=1

(̂
ν

q
ρht

)%t

q

√
r⊗

t=1

(
2−̂νq

ρht

)%t
+

r⊗
t=1

(̂
ν

q
ρht

)%t

 ,



⋃
µρht
∈ψh

îρ(κ)


q

√
r⊗

t=1

(
1+µ̂

q
ρht

)%t
−

r⊗
t=1

(
1−µ̂q

ρht

)%t

q

√
r⊗

t=1

(
1+µ̂

q
ρht

)%t
+

r⊗
t=1

(
1−µ̂q

ρht

)%t

 ,
⋃

νρht
∈ψh

îρ(κ)


q

√
2

r⊗
t=1

(̂
ν

q
ρht

)%t

q

√
r⊗

t=1

(
2−̂νq

ρht

)%t
+

r⊗
t=1

(̂
ν

q
ρht

)%t







,

where
(
îρ(κt), îρ(κt)

)
=

(
nγtiρ(κt), nγtiρ(κt)

)
and (%1, %2, ..., %r)T is the associated weight vector such

that
r⊕

t=1
%t = 1 and 0 ≤ %t ≤ 1.

Proof. The proof follows from the proof of Theorem 4.1. �
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Theorem 4.6. Let i(κt) = (i(κt),i(κt)) (t = 1, 2, 3, ..., n) be the collection of q-ROHFRVs and let

(%1, %2, ..., %r)T be the associated weight vector such that
r⊕

t=1
%t = 1 and 0 ≤ %t ≤ 1. Let the weight

vector of the given collection of q-ROHFRVs be γ = (γ1, γ2, ..., γr)T such that
r⊕

t=1
γt = 1 and 0 ≤ γt ≤ 1.

Then, q-ROHFREHWA operator satisfies the following properties:

(1) Idempotency: If i(κt) = Q(κ) for t = 1, 2, ..., r where Q(κ) =
(
Q(κ),Q(κ)

)
=(

(bh(∝ı), dh(∝ı)), (bh(∝ı), dh(∝ı)

)
, then

q − ROHFREHWA (i(κ1),i(κ2), ...,i(κr)) = Q(κ).

(2) Boundedness: Let (i(κ))min =

(
min

t
i (κt) ,max

t
i(κt)

)
and (i(κ))max =

(
max

t
i (κt) ,min

t
i(κt)

)
. Then,

(i(κ))min ≤ q − ROHFREHWA (i(κ1),i(κ2), ...,i(κr)) ≤ (i(κ))max .

(3) Monotonicity: Suppose Q(κ) =
(
Q(κt),Q(κt)

)
(t = 1, 2, 3, ..., r) is another collection of q-ROHFRVs

such that Q(κt) ≤ i (κt) and Q(κt) ≤ i(κt). Then,

q − ROHFREHWA (Q(κ1),Q(κ2), ...,Q(κr)) ≤ q − ROHFREHWA (i(κ1),i(κ2), ...,i(κr)) .

Proof. The proof is similar to the proof of Theorem 4.2. �

5. Multi-attribute decision making algorithm format

Here, we develop an algorithm in order to deal with uncertainty in MAGDM under q-ROHFR
information. Consider a DM problem with a set {A1, A2, ..., Ar} of n alternatives and a set of n attributes
{χ1, χ2, ..., χr} with the weight vector (γ1, γ2, ..., γr)T , that is, γt ∈ [0, 1],

⊕r
t=1 γt = 1. To test the

reliability of kth alternative At under the attribute χt, let
{
D̊1, D̊2, ..., D̊ẑ

}
be a set of DMs. The expert

assessment matrix is defined as follows:

M =
[
i(κẑ

t j)
]

m×n

=



(
i(κ11),i(κ11)

) (
i(κ12),i(κ12)

)
· · ·

(
i(κ1 j),i(κ1 j)

)(
i(κ21),i(κ21)

) (
i(κ22),i(κ22)

)
· · ·

(
i(κ2 j),i(κ2 j)

)(
i(κ31),i(κ31)

) (
i(κ32),i(κ32)

)
· · ·

(
i(κ3 j),i(κ3 j)

)
...

...
. . .

...(
i(κt1),i(κt1)

) (
i(κt2),i(κt2)

)
· · ·

(
i(κt j),i(κt j)

)


,

where
i(κ) =

{〈
∝ı, βhi(κ)(∝ı), ψhi(κ)(∝ı)

〉
| ∝ı∈ U

}
,

and
i(κt j) =

{〈
∝ı, βh

i(κ)
(∝ı), ψh

i(κ)
(∝ı)

〉
| ∝ı∈ U

}
,
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0 ≤
(
max(βh

i(κ)
(∝ı))

)q
+

(
min(ψh

i(κ)
(∝ı))

)q
≤ 1,

and
0 ≤

(
min(βhi(κ)(∝ı))

)q
+

(
max(ψhi(κ)(∝ı))

)q
≤ 1,

are the q-ROHFR values. The main steps for MAGDM are as follows:

Step-1. Construct the experts evaluation matrices as

(E)ẑı =



(
i(κẑı

11),i(κẑı
11)

) (
i(κẑı

12),i(κẑı
12)

)
· · ·

(
i(κ∝̂ı1 j),i(κẑı

1 j)
)(

i(κẑı
21),i(κẑı

21)
) (
i(κẑı

22),i(κẑı
22)

)
· · ·

(
i(κ∝̂ı2 j),i(κẑı

2 j)
)(

i(κẑı
31),i(κẑı

31)
) (
i(κẑı

32),i(κẑı
32)

)
· · ·

(
i(κ∝̂ı3 j),i(κẑı

3 j)
)

...
...

. . .
...(

i(κẑı
t1),i(κẑı

t1)
) (
i(κẑı

t2),i(κẑı
t2)

)
· · ·

(
i(κ∝̂ıt j ),i(κẑı

t j)
)


,

where ẑı shows the number of experts.

Step-2. Evaluate the normalized expert matrices (N)ẑı , as

(N)ẑı =
i(κt j) =

(
i

(
κt j

)
,i

(
κt j

))
if for benefit,(

i(κt j)
)c

=
((
i

(
κt j

))c
,
(
i

(
κt j

))c)
if for cost .

Step-3. Compute the q-ROHFRVs for each considered alternative with respect to the given list of
criteria/attributes by utilizing the proposed aggregation information.

Step-4. Determine the ranking of alternatives based on the score function as follows:

S R(i(κ)) =
1
4


2 + 1

MF

∑
µht∈βhi(κ)

(µht) + 1
NF

∑
µht∈ψh

i(κ)

(µht)

1
MF

∑
νht∈ψhi(κ)

(νht) − 1
MF

∑
νht∈ψh

i(κ)

(νht)

 .
Step-5. Rank all the alternative scores in descending order. The alternative with the largest value will

be superior/best.

6. An illustrative example

To validate the established operators, we consider a numerical MCGDM example for the analysis
of the site selection for a garbage disposal plant.

6.1. Case study (assessment for the location of a GDS)

The production of garbage in human activities is growing day by day as the world population grows
and people’s living standards improve. Garbage has become significant problem for international
society, creating an increasing threat to human health [43]. Environmentally friendly garbage disposal
and the conversion of garbage into wealth have become critical issues for all countries to achieve
sustainable growth and establish a scientific ecosystem [10]. Choosing the most appropriate location
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for garbage disposal is one of the most essential elements in assuring successful garbage disposal. An
ideal garbage disposal location will minimize the enterprise’s operating costs, increase the efficiency
of rubbish disposal and improve the preservation of the city’s environment. Environment, natural
conditions, social factors and economic factors are all significant in GDS selection. Soil, water and
air pollution are the three most significant environmental problems [54]. The waste water produced
from a high number of landfills in a short period of time may rupture the leachate collection system,
damaging the other cover film. Plastic garbage particles are so small that they can enter into the human
body through water, causing a great risk for the health of an individual [53]. Plastic materials, heavy
metals, cleaning products and other harmful chemicals in the garbage will end up in the soil while
occupying many areas. Air pollution primarily implies that many germs are transported in the garbage,
and the transmission of these germs to humans poses a severe health threat. Further, poisonous gases,
dust and tiny particles produced by garbage decomposition spread into the air, causing suspended sulfur
dioxide particles to reach the atmosphere, resulting in pollution from acid rain and dust. The primary
and essential factor is the natural conditions for GDS selection. To maintain the water resistance
of soil and rock density, the site must be kept away from unfavorable construction locations, water
sources, rivers, and streams. Moreover, places far below ground level must be addressed [33,52]. This
eliminates the need for many people to dig trenches and makes waste disposal more simple. Moreover,
part of social factors is that allowing the public to participate and evaluate the establishment of the GDS
is essential. Garbage disposal facilities will become interconnected and interdependent with society in
the future as people’s knowledge of environmental protection grows, as do quality of life and living
environment needs [54]. If the public’s negative perception of the GDS cannot be changed, and the
odor is detected on a daily basis, negative impressions will grow. Economic factors are identified as
the income and expenditure [53].
The evaluation procedure for selecting a GDS: Suppose an organization wants to select a GDS for
plant. They invite a panel of experts to analyze an appropriate GDS location. Let {A1, A2, A3, A4} be
four alternatives for a garbage disposal site, and we must select the ideal one. Let {χ1, χ2, χ3, χ4} be
the attributes of each alternative based on the influencing factors determined as follows: environmental
protection level (χ1), suitability of natural conditions (χ2), social benefit (χ3) and economic benefit
(χ4) of the GDS. Because of uncertainty, the DMs’ selection information is presented as q-ROHFR
information. The weight vector for criteria is γ = (0.13, 0.27, 0.29, 0.31)T . The following computations
are carried out in order to evaluate the MCDM problem utilizing the defined approach for evaluating
alternatives:

Step 1. The information of a professional expert is presented in the form of q-ROHFRSs, where the
value of q is 3, as shown in Tables 2–5.
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Table 2. Decision making information.
χ1 χ2

A1


(

(0.1, 0.2, 0.5) ,
(0.3, 0.4)

)
,(

(0.8) ,
(0.4, 0.6)

)



(

(0.5, 0.7) ,
(0.5, 0.6)

)
,(

(0.4, 0.5) ,
(0.7, 0.9)

)


A2


(

(0.6, 0.7) ,
(0.7, 0.9)

)
,(

(0.3, 0.5) ,
(0.6)

)



(

(0.2, 0.4, 0.5) ,
(0.5)

)
,(

(0.6, 0.7) ,
(0.3)

)


Table 3. Decision making information.
χ3 χ4

A1


(

(0.4) ,
(0.3, 0.7)

)
,(

(0.5) ,
(0.9)

)



(

(0.6) ,
(0.7)

)
,(

(0.6, 0.8, 0.9) ,
(0.7, 0.9)

)


A2


(

(0.8) ,
(0.4, 0.5, 0.7)

)
,(

(0.2, 0.5) ,
(0.4, 0.5)

)



(

(0.8) ,
(0.5)

)
,(

(0.7) ,
(0.1, 0.3, 0.4)

)


Table 4. Decision making information.
χ1 χ2

A3


(

(0.4, 0.5, 0.6) ,
(0.6, 0.7)

)
,(

(0.9) ,
(0.5)

)



(

(0.1) ,
(0.5, 0.6)

)
,(

(0.4, 0.6, 0.7) ,
(0.5, 0.7)

)


A4


(

(0.4) ,
(0.5, 0.6)

)
,(

(0.3, 0.4) ,
(0.8)

)



(

(0.4, 0.5) ,
(0.4)

)
,(

(0.1, 0.2) ,
(0.2, 0.3)

)


Table 5. Decision making information.
χ3 χ4

A3


(

(0.3) ,
(0.7, 0.8)

)
,(

(0.7, 0.8) ,
(0.1, 0.4, 0.7)

)



(

(0.3, 0.6) ,
(0.8)

)
,(

(0.7) ,
(0.3)

)


A4


(

(0.3) ,
(0.7, 0.8)

)
,(

(0.7) ,
(0.6)

)



(

(0.6, 0.7, 0.9) ,
(0.3, 0.4)

)
,(

(0.2, 0.7) ,
(0.7, 0.8, 0.9)

)

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Step 2. The expert information is benefit type, so in this case, we do not need to normalize the q-
ROHFRVs.

Step 3. In this problem, we consider only one expert for the collection of uncertain information. So,
we do not need to find the collected information.

Step 4. Aggregation information of the alternative under the given list of attributes is evaluated using
proposed AOps as follows:
Case 1. Aggregation information using the Einstein weighted averaging operator is presented in
Table 6.

Table 6. Aggregated information using q-ROHFREWA.

A1


(

{0.4934, 0.5659, 0.9634, 0.56680.5143, 0.5817} ,
{0.0047, 0.0113, 0.0057, 0.0136, 0.0063, 0.0150, 0.0076, 0.0181}

)
,(

{0.5932, 0.6759, 0.9871, 0.5777, 0.6647, 0.7320} ,
{0.0281, 0.0371, 0.0370, 0.0488, 0.0423, 0.0558, 0.0556, 0.0735}

)


A2


(
{0.7074, 0.7160, 0.8976, 0.7074, 0.7160, 0.7252} ,
{0.0105, 0.0132, 0.0187, 0.0137, 0.0171, 0.0243}

)
,(

{0.5584, 0.5915, 0.9867, 0.6235, 0.5714, 0.6030, 0.6057, 0.6336} ,
{0.0011, 0.0032, 0.0043, 0.0013, 0.0040, 0.0054}

)


A3


(

{0.2916, 0.4384, 0.9834, 0.4518, 0.3556, 0.4707} ,
{0.0262, 0.0302, 0.0315, 0.0364, 0.0306, 0.0353, 0.0369, 0.0426}

)
,(

{0.6968, 0.7310, 0.9674, 0.7522, 0.7408, 0.7695} ,
{0.0011, 0.0063, 0.0079, 0.0016, 0.0063, 0.0112}

)


A4


(

{0.4659, 0.5233, 0.9234, 0.4899, 0.5424, 0.6876} ,
{0.0063, 0.0084, 0.0073, 0.0097, 0.0076, 0.0102, 0.0088, 0.0117}

)
,(

{0.4784, 0.5990, 0.9543, 0.6006, 0.4852, 0.6032, 0.4879, 0.6048} ,
{0.0103, 0.0119, 0.0136, 0.0155, 0.0179, 0.0204}

)


Case 2. The score values from Tables 2–5 have been computed and are presented in Table 7. The
information has been ordered on the basis of the score values, as shown in Tables 8–11. Aggregation
information using the Einstein ordered weighted averaging operator is given in Table 12.

Table 7. Score value of Tables 2–5.
χ1 χ2 χ3 χ4

A1 0.5542 0.4250 0.3750 0.4667
A2 0.4000 0.5542 0.5417 0.6833
A3 0.5625 0.3792 0.4750 0.5125
A4 0.3500 0.4875 0.4125 0.5083
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Table 8. Ordered expert information.
χ1 χ2

A1


(

(0.1, 0.2, 0.5) ,
(0.3, 0.4)

)
,(

(0.8) ,
(0.4, 0.6)

)



(

(0.6) ,
(0.7)

)
,(

(0.6, 0.8, 0.9) ,
(0.7, 0.9)

)


A2


(

(0.8) ,
(0.5)

)
,(

(0.7) ,
(0.1, 0.3, 0.4)

)



(

(0.2, 0.4, 0.5) ,
(0.5)

)
,(

(0.6, 0.7) ,
(0.3)

)


Table 9. Ordered expert information.
χ3 χ4

A1


(

(0.5, 0.7) ,
(0.5, 0.6)

)
,(

(0.4, 0.5) ,
(0.7, 0.9)

)



(

(0.4) ,
(0.3, 0.7)

)
,(

(0.5) ,
(0.9)

)


A2


(

(0.8) ,
(0.4, 0.5, 0.7)

)
,(

(0.2, 0.5) ,
(0.4, 0.5)

)



(

(0.6, 0.7) ,
(0.7, 0.9)

)
,(

(0.3, 0.5) ,
(0.6)

)


Table 10. Ordered expert information.
χ1 χ2

A3


(

(0.4, 0.5, 0.6) ,
(0.6, 0.7)

)
,(

(0.9) ,
(0.5)

)



(

(0.3, 0.6) ,
(0.8)

)
,(

(0.7) ,
(0.3)

)


A4


(

(0.6, 0.7, 0.9) ,
(0.3, 0.4)

)
,(

(0.2, 0.7) ,
(0.7, 0.8, 0.9)

)



(

(0.4, 0.5) ,
(0.4)

)
,(

(0.1, 0.2) ,
(0.2, 0.3)

)


Table 11. Ordered expert information.
χ3 χ4

A3


(

(0.3) ,
(0.7, 0.8)

)
,(

(0.7, 0.8) ,
(0.1, 0.4, 0.7)

)



(

(0.1) ,
(0.5, 0.6)

)
,(

(0.4, 0.6, 0.7) ,
(0.5, 0.7)

)


A4


(

(0.3) ,
(0.7, 0.8)

)
,(

(0.7) ,
(0.6)

)



(

(0.4) ,
(0.5, 0.6)

)
,(

(0.3, 0.4) ,
(0.8)

)

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Table 12. Aggregated information using q-ROHFREOWA.

A1


(

{0.4865, 0.5656, 0.4878, 0.5665, 0.5081, 0.5814} ,
{0.4419, 0.5744, 0.4669, 0.6049, 0.4583, 0.5945, 0.4841, 0.6257}

)
,(

{0.5898, 0.5729, 0.6640, 0.6513, 0.7238, 0.7139} ,
{0.7150, 0.7732, 0.7692, 0.8277, 0.7481, 0.8067, 0.8026, 0.8609}

)


A2


(
{0.6682, 0.6957, 0.6783, 0.7048, 0.6889, 0.7144} ,
{0.5235, 0.5766, 0.5573, 0.6127, 0.6149, 0.6737}

)
,(

{0.4876, 0.5265, 0.5306, 0.5637, 0.5343, 0.5669, 0.5704, 0.5991} ,
{0.3535, 0.3777, 0.4065, 0.4339, 0.4217, 0.4500}

)


A3


(

{0.2875, 0.4372, 0.3167, 0.4507, 0.3529, 0.4697} ,
{0.6461, 0.6810, 0.6738, 0.7094, 0.6591, 0.6944, 0.6872, 0.7230}

)
,(

{0.6896, 0.7180, 0.7408, 0.7247, 0.7495, 0.7695} ,
{0.2751, 0.3088, 0.4092, 0.4578, 0.4847, 0.5407}

)


A4


(

{0.4187, 0.4480, 0.4502, 0.4758, 0.5473, 0.5647} ,
{0.4897, 0.5188, 0.5127, 0.5429, 0.5075, 0.5375, 0.5313, 0.5622}

)
,(

{0.4833, 0.4989, 0.4859, 0.5014, 0.5400, 0.5525, 0.5421, 0.5545} ,
{0.5111, 0.5659, 0.5217, 0.5773, 0.5325, 0.5889}

)


Case 3. The weighted information is depicted in Tables 13 and 14, and the score values of the weighted
matrix are given in Table 15. The ordered information is presented in Tables 16 and 17, respectively.
Finally, the aggregation information using the Einstein hybrid weighted averaging operator is shown
in Table 18.

Table 13. Weighted information (EWA).
χ1 χ2

A1


(

(0.0479, 0.0958, 0.2400) ,
(0.9159, 0.9339)

)
,(

(0.3960) ,
(0.9339, 0.9599)

)



(

(0.3276, 0.4638) ,
(0.8609, 0.8933)

)
,(

(0.3276, 0.2618) ,
(0.8989, 0.9734)

)


A2


(

(0.2890, 0.3400) ,
(0.9703, 0.9897)

)
,(

(0.1438, 0.2400) ,
(0.9599)

)



(

(0.1308, 0.2618, 0.3276) ,
(0.8609)

)
,(

(0.3944, 0.4638) ,
(0.7285)

)


A3


(

(0.1917, 0.2400, 0.2890) ,
(0.9599, 0.9703)

)
,(

(0.4666) ,
(0.9481)

)



(

(0.0654) ,
(0.8609, 0.8933)

)
,(

(0.2618, 0.3944, 0.4638) ,
(0.8609, 0.9217)

)


A4


(

(0.1917) ,
(0.9481, 0.9599)

)
,(

(0.1438, 0.1917) ,
(0.9801)

)



(

(0.2618, 0.3276) ,
(0.8222)

)
,(

(0.0654, 0.1308) ,
(0.7058, 0.7733)

)


AIMS Mathematics Volume 8, Issue 10, 22830–22874.



22858

Table 14. Weighted information (EWA).
χ3 χ4

A1


(

(0.2679) ,
(0.7563, 0.9158)

)
,(

(0.3352) ,
(0.9715)

)



(

(0.4080) ,
(0.9128)

)
,(

(0.4080, 0.5578, 0.6539) ,
(0.9128, 0.9705)

)


A2


(

(0.5518) ,
(0.8087, 0.8503, 0.9158)

)
,(

(0.1339, 0.3352) ,
(0.8087, 0.8503)

)



(

(0.5578) ,
(0.8450)

)
,(

(0.4797) ,
(0.5574, 0.7478, 0.8020)

)


A3


(

(0.2008) ,
(0.9158, 0.9440)

)
,(

(0.4745, 0.5518) ,
(0.5704, 0.8087, 0.9158)

)



(

(0.2031, 0.4080) ,
(0.9421)

)
,(

(0.4797) ,
(0.7478)

)


A4


(

(0.2008) ,
(0.9158, 0.9440)

)
,(

(0.4745) ,
(0.8851)

)



(

(0.4080, 0.4797, 0.6539) ,
(0.7478, 0.8020)

)
,(

(0.1354, 0.4797) ,
(0.9128, 0.9421, 0.9705)

)


Table 15. Score values of weighted (EWA) matrix.
χ1 χ2 χ3 χ4

A1 0.1630 0.2193 0.1989 0.2734
A2 0.1416 0.2700 0.2746 0.3725
A3 0.1984 0.1676 0.2548 0.2738
A4 0.1064 0.2078 0.2151 0.2762

Table 16. Ordered weighted information (EWA).
χ1 χ2

A1


(

(0.4080) ,
(0.9128)

)
,(

(0.4080, 0.5578, 0.6539) ,
(0.9128, 0.9705)

)



(

(0.3276, 0.4638) ,
(0.8609, 0.8933)

)
,(

(0.3276, 0.2618) ,
(0.8989, 0.9734)

)


A2


(

(0.5578) ,
(0.8450)

)
,(

(0.4797) ,
(0.55740.74780.8020)

)



(

(0.5518) ,
(0.80870.8503, 0.9158)

)
,(

(0.13390.3352) ,
(0.80870.8503)

)


A3


(

(0.2031, 0.4080) ,
(0.9421)

)
,(

(0.4797) ,
(0.7478)

)



(

(0.2008) ,
(0.9158, 0.9440)

)
,(

(0.4745, 0.5518) ,
(0.5704, 0.8087, 0.9158)

)


A4


(

(0.4080, 0.4797, 0.6539) ,
(0.7478, 0.8020)

)
,(

(0.1354, 0.4797) ,
(0.9128, 0.9421, 0.9705)

)



(

(0.2008) ,
(0.9158, 0.9440)

)
,(

(0.4745) ,
(0.8851)

)

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Table 17. Ordered weighted information (EWA).
χ3 χ4

A1


(

(0.2679) ,
(0.7563, 0.9158)

)
,(

(0.3352) ,
(0.9715)

)



(

(0.0479, 0.0958, 0.2400) ,
(0.9159, 0.9339)

)
,(

(0.3960) ,
(0.9339, 0.9599)

)


A2


(

(0.1308, 0.2618, 0.3276) ,
(0.8609)

)
,(

(0.3944, 0.4638) ,
(0.7285)

)



(

(0.2890, 0.3400) ,
(0.9703, 0.9897)

)
,(

(0.1438, 0.2400) ,
(0.9599)

)


A3


(

(0.1917, 0.2400, 0.2890) ,
(0.9599, 0.9703)

)
,(

(0.4666) ,
(0.9481)

)



(

(0.0654) ,
(0.8609, 0.8933)

)
,(

(0.2618, 0.3944, 0.4638) ,
(0.8609, 0.9217)

)


A4


(

(0.2618, 0.3276) ,
(0.8222)

)
,(

(0.0654, 0.1308) ,
(0.7058, 0.7733)

)



(

(0.1917) ,
(0.9481, 0.9599)

)
,(

(0.1438, 0.1917) ,
(0.9801)

)


Table 18. Aggregated information using q-ROHFREHWA.

A1


(

{0.3647, 0.3527, 0.3967, 0.3866, 0.42520.4165} ,
{0.9331, 0.9412, 0.9531, 0.9610, 0.9406, 0.9487, 0.9604, 0.9681}

)
,(

{0.3647, 0.3527, 0.3967, 0.3866, 0.4252, 0.4165} ,
{0.9331, 0.9412, 0.9531, 0.9610, 0.9406, 0.9487, 0.9604, 0.9683}

)


A2


(
{0.4246, 0.4331, 0.4329, 0.4410, 0.4415, 0.4494} ,
{0.8802, 0.8869, 0.8912, 0.8978, 0.9087, 0.9152}

)
,(

{0.3233, 0.3336, 0.3556, 0.3643, 0.3511, 0.3600, 0.3791, 0.3867} ,
{0.7996, 0.8109, 0.8260, 0.8373, 0.8331, 0.8443}

)


A3


(

{0.1755, 0.1946, 0.2180, 0.2361, 0.2473, 0.2626} ,
{0.9157, 0.9254, 0.9189, 0.9286, 0.9234, 0.9330, 0.9266, 0.9362}

)
,(

{0.4279, 0.4510, 0.4696, 0.4564, 0.4768, 0.4935} ,
{0.7915, 0.8110, 0.8585, 0.8776, 0.8874, 0.9061}

)


A4


(

{0.2641, 0.2861, 0.2884, 0.6061, 0.3606, 0.3729} ,
{0.8781, 0.8821, 0.8861, 0.8900, 0.8850, 0.8889, 0.8929, 0.8968}

)
,(

{0.3117, 0.3159, 0.3136, 0.3178, 0.3539, 0.3573, 0.3554, 0.3587} ,
{0.8686, 0.8879, 0.8726, 0.8918, 0.8765, 0.8957}

)


Step 5. Table 19 and Figure 3 show the score values for all alternatives under established aggregation
operators.

Table 19. Score values.
Operators S R (A1) S R (A2) S R (A3) S R (A4)
q-ROHFREWA 0.4690 0.6064 0.5051 0.5181
q-ROHFREOWA 0.4665 0.5597 0.5052 0.4823
q-ROHFRHWA 0.2198 0.2680 0.2259 0.2322
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Figure 3. Graphical representation of score values obtained through q-ROHFREWA, q-
ROHFREOWA and q-ROHFRHWA.

Step-6. The alternatives Ak (k = 1, 2, ..., 4) have been arranged in ascending order, as shown in
Table 20.

Table 20. The ordering of the alternatives.
Operator Scores Best Alternative
q-ROHFREWA S R (A2) > S R (A4) > S R (A3) > S R (A1) A2

q-ROHFREOWA S R (A2) > S R (A3) > S R (A4) > S R (A1) A2

q-ROHFRHWA S R (A2) > S R (A4) > S R (A3) > S R (A1) A2

Based on the results of the preceding computational procedure, we determined that the alternative
A2 is the best option among all and is thus strongly suggested.

6.2. The link between theoretical properties and the case analysis

Garbage disposal plant site selection involves a complex process that requires a thorough
understanding of the determination aspects of the process. The following are some of the most
significant factors that should be considered while selecting a location for a garbage disposal plant:

(i) Environmental protection level: One of the most critical aspects of site selection is considering the
environmental factors. This includes the potential impact on air and water quality, noise pollution,
land use and local biodiversity. The site should be located in an area that minimizes any negative
environmental impact.

(ii) Suitability of natural conditions: The suitability of natural conditions and the geographic location
of the site is another critical factor in the site selection process. The site should be easily
accessible and located in a region with a significant population and a consistent supply of waste
materials. It includes the availability of infrastructure, such as roads, water supply, electricity, and
communication systems.
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(iii) Social benefit: Social factors such as the local community’s attitude towards waste disposal,
employment opportunities, and economic benefits are also important in the site selection process.

(iv) Economic benefit: The economic viability of the site is a crucial factor in site selection. The site
should be cost-effective to operate, and the waste disposal fees should be competitive with other
options. It includes the availability of infrastructure, such as roads, water supply, electricity, and
communication systems.

Garbage disposal plant site selection requires a thorough consideration of environmental, geographic,
technical, social, legal and economic factors to ensure safe and efficient operation. The present
study demonstrates a prudent development in selection of a site for garbage disposal by incorporating
the key variables for assessment, namely environmental, geographic, technical, social, legal, and
economic factors. This has been accomplished to ensure a safe and efficient operation, and requires the
implementation of appropriate strategies through a compact model that is based on a high degree of
sustainability. The site selection process should adhere to local, state and federal laws and regulations.
Compliance with these regulations ensures that the plant operates in a safe and efficient manner.
Global warming and climate change are serious environmental threats. To maintain environmental
sustainability, site selection has to contemplate technological feasibility.

7. Sensitivity analysis

The q-ROHFREWAA consists of the parameter q which gives the q-ROHFREWAA significant
flexibility in handling fuzzy information. In our case, the value q=3 was used. We study the possible
variation in the results obtained from the q-ROHFREWAA operator. In the following, Table 21
and Figure 4 show the ranking orders based on score values obtained through the q-ROHFREWAA
operator. The parameter q, was varied with values of 1 to 5, 10, 15, 20, 50 and 100, and the
alternatives were arranged in ascending order based on q-ROHFR score values. When the value q
in the q-ROHFREWAA was varied, the optimal alternative was always the same for 1 to 5 and 10,
as were the orderings of alternatives (A2 � A4 � A3 � A1). For the values 15, 20, 50 and 100, the
optimal alternative was always the same, as were the orderings of alternatives (A2 � A4 � A1 � A3).
Using the q-ROHFREWAA operator and the score function, A2 had the highest score value, as the
optimal alternative. A3 had the lowest score for the parameter values 1 to 5 and 10, and A1 had the
lowest score for the parameter values 15, 20, 50 and 100, as presented in Table 21. Therefore, the most
appropriate alternative was the same for all values of q among 1 to 5, 10, 15, 20, 50 and 100. Figure
4 depicts a graphical representation of Table 21. The effect of varying q on ranking order using the
q-ROHFREWAA operator is visualized in Figure 4.
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Table 21. Ranking order for different values of q in the q-ROHFREWAA operator.

q
Score values of alternatives

A1 A2 A3 A4
Ranking Best Alternative

1 0.5992 0.7522 0.6395 0.6623 A2 � A4 � A3 � A1 A2

2 0.5122 0.6657 0.5545 0.5698 A2 � A4 � A3 � A1 A2

3 0.4690 0.6064 0.5051 0.5181 A2 � A4 � A3 � A1 A2

4 0.4441 0.5657 0.4734 0.4868 A2 � A4 � A3 � A1 A2

5 0.4282 0.5366 0.4518 0.4660 A2 � A4 � A3 � A1 A2

10 0.3969 0.4658 0.4033 0.4185 A2 � A4 � A3 � A1 A2

15 0.3876 0.4382 0.3874 0.4003 A2 � A4 � A1 � A3 A2

20 0.3833 0.4235 0.3804 0.3905 A2 � A4 � A1 � A3 A2

50 0.3759 0.3953 0.3537 0.3717 A2 � A4 � A1 � A3 A2

100 0.2989 0.3844 0.2306 0.3144 A2 � A4 � A1 � A3 A2

Figure 4. The effect of q on ranking order using q-ROHFRWAA operator.

8. The comparative analysis

In this section, we compare the outcomes with Ashraf et al. [55] and the enhanced TOPSIS and
VIKOR methodologies for the q-ROHFR information in order to deal with MCGDM problems and to
verify the results obtained through the suggested aggregation operators. To demonstrate the importance
and credibility of the developed q-ROHFR Einstein weighted averaging aggregation operators, a
comparison of their features with those of existing decision support approaches is presented.

AIMS Mathematics Volume 8, Issue 10, 22830–22874.



22863

8.1. Comparison with Ashraf et al. [55]

Ashraf et al. [55] developed the list of q-rung orthopair fuzzy rough weighted aggregation operators
to sort out the best alternative. We take the collective expert information from Ashraf et al. [55] to
evaluate the finest alternative. The collective expert information is displayed in Table 22 as follows:

Table 22. Collected experts information.
χ1 χ2 χ3 χ4 χ5

A1

(
(0.64, 0.13) ,
(0.46, 0.15)

) (
(0.8, 0.16) ,
(0.63, 0.26)

) (
(0.75, 0.22) ,
(0.58, 0.18)

) (
(0.67, 0.13) ,
(0.60, 0.17)

) (
(0.78, 0.1) ,
(0.67, 0.15)

)
A2

(
(0.55, 0.15) ,
(0.62, 0.24)

) (
(0.71, 0.18) ,
(0.4, 0.26)

) (
(0.43, 0.17) ,
(0.51, 0.20)

) (
(0.61, 0.26) ,
(0.40, 0.20)

) (
(0.63, 0.19) ,
(0.46, 0.26)

)
A3

(
(0.57, 0.24) ,
(0.40, 0.27)

) (
(0.71, 0.17) ,
(0.65, 0.23)

) (
(0.49, 0.22) ,
(0.36, 0.39)

) (
(0.54, 0.40) ,
(0.45, 0.36)

) (
(0.56, 0.36) ,
(0.32, 0.18)

)
A4

(
(0.56, 0.17) ,
(0.59, 0.23)

) (
(0.50, 0.32) ,
(0.43, 0.42)

) (
(0.27, 0.13) ,
(0.36, 0.29)

) (
(0.46, 0.19) ,
(0.37, 0.36)

) (
(0.49, 0.25) ,
(0.37, 0.26)

)
Now, we utilize the q-ROHFR Einstein weighted average aggregation operator and the q-ROHFR
Einstein ordered weighted average aggregation operator to find out the best alternative presented in
Table 23 as follows:

Table 23. Aggregated information (q-ROHFREWA).
A1 ((0.7338, 0.1396) , (0.6058, 0.1743))
A2 ((0.5992, 0.1959) , (0.4774, 0.2263))
A3 ((0.5717, 0.2878) , (0.4502, 0.2807))
A4 ((0.4656, 0.1988) , (0.4204, 0.3077))

Comparative analysis of the proposed operators with collected expert data by Ashraf et al. [55] is
expressed in Table 24:

Table 24. Score and ranking of q-ROFRSs.
Score

Ashraf et al. S R (A1) S R (A2) S R (A3) S R (A4) Ranking
q-ROFREWA 0.999 0.489 0.201 0.011 A1 > A2 > A3 > A4

Score
Developed method S R (A1) S R (A2) S R (A3) S R (A4) Ranking

q-ROHFREWA 0.7564 0.6636 0.6134 0.5949 A1 > A2 > A3 > A4

q-ROHFREOWA 0.7612 0.6741 0.6166 0.5991 A1 > A2 > A3 > A4

Comparison findings show that the proposed operators are generalized and effective to for
aggregating uncertain information as compared to the existing operators developed by Ashraf et
al. [55]. For this reason, our recommended techniques are likely to become more comprehensive
and more adaptable to control q-rung orthopair hesitant fuzzy rough MADM challenges.

8.2. The improved TOPSIS methodology based on q-ROHFR information

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method is widely
used in various fields, including engineering, management, and social sciences, for decision-making
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in situations where there are multiple criteria to be considered. It is a simple and effective method
that provides a clear and systematic approach to decision-making. However, it requires a clear
understanding of the problem and careful consideration of the criteria and their weights. The TOPSIS
is a MADM method used for selecting the best option among a set of alternatives based on a set of
criteria. This method was first introduced by Hwang and Yoon [57] in 1981 for solutions and allows
policy makers and authorities to assess positive ideal solutions (PIS) and negative ideal solutions (NIS).
The TOPSIS is established on the assumption that the optimal option is the one that is closest to the
ideal while being the furthest distant from the perfect negative solutions [56,59]. The TOPSIS method
involves the following steps:

Step 1. Let the set of alternatives be A = {A1, A2, A3, ..., Am} and χ = {χ1, χ2, χ3, ..., χr} be the set of
criteria. The expert decision matrix is presented as

M =
[
i(κẑı

ı j),i(κẑı
ı j)

]
m×n

=



(
i(κ11),i(κ11)

) (
i(κ12),i(κ12)

)
· · ·

(
i(κ1 j),i(κ1 j)

)(
i(κ21),i(κ21)

) (
i(κ22),i(κ22)

)
· · ·

(
i(κ2 j),i(κ2 j)

)(
i(κ31),i(κ31)

) (
i(κ32),i(κ32)

)
· · ·

(
i(κ3 j),i(κ3 j)

)
...

...
. . .

...(
i(κı1),i(κı1)

) (
i(κı2),i(κı2)

)
· · ·

(
i(κı j),i(κı j)

)


,

where
i(κı j) =

{〈
∝ı, βh

i(κ)
(∝ı), ψh

i(κ)
(∝ı)

〉
| ∝ı∈ T

}
and

i(κ) =
{〈
∝ı, βhi(κ)(∝ı), ψhi(κ)(∝ı)

〉
| ∝ı∈ T

}
such that

0 ≤
(
max(βh

i(κ)
(∝ı))

)q
+

(
min(ψh

i(κ)
(∝ı))

)q
≤ 1

and
0 ≤

(
min(βhi(κ)(∝ı)

)q
+

(
max(ψhi(κ)(∝ı))

)q
≤ 1

are the q-ROHF rough values.

Step 2. Initially, we collect information from decision makers based of q-ROHFRNs.

Step 3. Second, we normalize the information provided by DMs, since the decision matrix may involve
both benefit and cost criteria, as depicted below:

(H)ẑı =



(
i(κẑı

11),i(κẑı
11)

) (
i(κẑı

12),i(κẑı
12)

)
· · ·

(
i(κ∝̂ı1 j),i(κẑı

1 j)
)(

i(κẑı
21),i(κẑı

21)
) (
i(κẑı

22),i(κẑı
22)

)
· · ·

(
i(κ∝̂ı2 j),i(κẑı

2 j)
)(

i(κẑı
31),i(κẑı

31)
) (
i(κẑı

32),i(κẑı
32)

)
· · ·

(
i(κ∝̂ı3 j),i(κẑı

3 j)
)

...
...

. . .
...(

i(κẑı
ı1),i(κẑı

ı1)
) (

i(κẑı
ı2),i(κẑı

ı2)
)
· · ·

(
i(κ∝̂ıı j ),i(κẑı

ı j)
)


where ẑı represents the number of experts.
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Step 4. We examine the expert matrices that are normalized (N)ẑı , as

(N)ẑı =

 i(κı j) =
(
i

(
κı j

)
,i

(
κı j

))
if for benefit,(

i(κı j)
)c

=
((
i

(
κı j

))c
,
(
i

(
κı j

))c)
if for cost .

Step 5. The PIS and NIS are computed based on the score value. The PIS and NIS are referred to
as k+ =

(
1+ג , ג

+
2 , ג

+
3 , ג...

+
r

)
and k− =

(
1−ג , ג

−
2 , ג
−
3 , ..., ג

−
r

)
, respectively. PIS k+ is determined using the

formula

k+ =
(
1+ג , ג

+
2 , ג

+
3 , ..., ג

+
r
)

=

(
max
ı

score(גı1),max
ı

scoreגı2,max
ı

scoreגı3, ...,max
ı

scoreגın
)
.

Similarly, the NIS is determined with the following formula:

k− =
(
1−ג , ג

−
2 , ג
−
3 , ..., ג

−
r
)

=

(
min
ı

scoreגı1,min
ı

scoreגı2,min
ı

scoreגı3, ...,min
ı

scoreגır
)
.

After that, we compute the geometric distances between all of the alternatives and PIS k+ as
follows:

d(αı j, k+) =
1
8




1

#ℵ

∑#ℵ
s=1

∣∣∣∣∣(µı j(s)

)2
−

(
µ+

ı

)2
∣∣∣∣∣

+
∣∣∣∣(µı j(s)

)2
−

(
µ+
ı(s)

)2∣∣∣∣


+

 1
#H

∑#H
s=1

∣∣∣∣(νı j(s)

)2
−

(
ν+
ı(s)

)2∣∣∣∣
+

∣∣∣∣(νhı j

)2
−

(
νh

+

ı

)2∣∣∣∣



,

where ı = 1, 2, 3, ..., r, and j = 1, 2, 3, ...,m.

Where #ℵ and #H represents the number of elements in membership and non-membership,
respectively. Consequently, the geometric distances between all alternatives and NIS k− are
described as follows:

d(αı j, k−) =
1
8




1

#ℵ

∑#ℵ
s=1

∣∣∣∣∣(µı j(s)

)2
−

(
µ−
ı(s)

)2∣∣∣∣∣
+

∣∣∣∣(µı j(s)

)2
−

(
µ−ı(s)

)2∣∣∣∣


+

 1
#H

∑#H
s=1

∣∣∣∣(νı j(s)

)2
−

(
ν−
ı(s)

)2∣∣∣∣
+

∣∣∣∣(νhı j

)2
−

(
νh
−

ı

)2∣∣∣∣



,

where ı = 1, 2, 3, ..., r, and j = 1, 2, 3, ...,m.

Step 6. The following is a description of the relative closeness indices that were calculated for each
decision maker based on the alternatives:

RC(αı j) =
d(αı j, k+)

d(αı j, k−) + d(αı j, k+)
.

Step 7. The most desirable alternative with the shortest distance may be chosen by determining the
ranking orders of the alternatives.
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8.3. Numerical example

To illustrate the viability of the method, a numerical example applicable to “site selection for a
garbage disposal plant” is presented as follows:

Step 1. Tables 2–5 contain decision makers information based on q-ROHFRNs.

Step 2. Table 25 determines PIS and NIS as follows:

Table 25. Ideal solutions.
Criteria k+ k−

χ1


(

(0.4, 0.5, 0.6) ,
(0.6, 0.7)

)
,(

(0.9) ,
(0.5)

)



(

(0.4) ,
(0.5, 0.6)

)
,(

(0.3, 0.4) ,
(0.8)

)


χ2


(

(0.2, 0.4, 0.5) ,
(0.5)

)
,(

(0.6, 0.7) ,
(0.3)

)



(

(0.1) ,
(0.5, 0.6)

)
,(

(0.4, 0.6, 0.7) ,
(0.5, 0.7)

)


χ3


(

(0.8) ,
(0.4, 0.5, 0.7)

)
,(

(0.2, 0.5) ,
(0.4, 0.5)

)



(

(0.4) ,
(0.3, 0.7)

)
,(

(0.5) ,
(0.9)

)


χ4


(

(0.8) ,
(0.5)

)
,(

(0.7) ,
(0.1, 0.3, 0.4)

)



(

(0.6) ,
(0.7)

)
,(

(0.6, 0.8, 0.9) ,
(0.7, 0.9)

)


Step 3. The PIS and NIS distances are calculated as follows:

0.6019 0.2140 0.3849 0.5427

and

0.3265 0.5313 0.5035 0.4266

Step 4. The following are the relative closeness indices of the alternatives for decision makers:

0.6483 0.2871 0.4333 0.5599

Step 5. According to the aforementioned ranking of alternatives visualized in Figure 5, A2 has the
shortest distance. Hence, A2 is the best option.
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Figure 5. The pictorial depiction of the ranking utilizing the TOPSIS approach.

8.4. The improved VIKOR technique based on q-ROHFR information

VIKOR (Vise Kriterijumska Optimizacija I Kompromisno Resenje), is a decision-making method
used to rank a set of alternatives based on multiple criteria. The VIKOR technique is particularly
useful in situations where the decision-maker needs to consider both the optimal solution and the level
of compromise among the alternatives. The method allows for the consideration of multiple criteria
and multiple alternatives, and it can help to identify the best compromise solution. The VIKOR method
is widely used in various fields, including engineering, management, and social sciences, for decision-
making in situations where there are multiple criteria to be considered. It provides a systematic and
objective approach to decision-making and allows the decision-maker to identify the best compromise
solution among a set of alternatives. The following is a detailed explanation of the modified form of
the VIKOR approach based on q-ROHFR information:

Step 1. Identify the problem and the decision criteria. Construct evaluation matrices for the experts in
the form of q-ROHFRVs that shows the performance of each alternative on each criterion.

Step 2. Through using the q-ROHFRWA aggregation operator, compute the collected information of
decision makers along their weights vector and obtain the aggregated decision matrix.

Step 3. Compute the positive ideal solutions (PIS) k+ and negative ideal solutions (NIS) k− in the form
of q-ROHFR information as follows:

k+ =
(
Y+

1 ,Y
+
2 ,Y

+
3 , ...,Y

+
`

)
=

(
max
ı
Yı1,max

ı
Yı2,max

ı
Yı3, ...,max

ı
Yın.

)
,

k− =
(
Y−1 ,Y

−
2 ,Y

−
3 , ...,Y

−
`

)
=

(
min
ı
Yı1,min

ı
Yı2,min

ı
Yı3, ...,min

ı
Yın.

)
.

Step 4. Determine the q-ROHFR group utility measure S ı (ı = 1, 2, 3, ..., `) and the regret measure
Rı (ı = 1, 2, 3, ..., `) for all alternatives L = (A1, A2, A3, ..., A`) applying the formulas mentioned
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below:

S ı =
⊕̀

j=1

∝ j d
(
Yı j,Y

+
j

)
d
(
Y+

j ,Y
−
j

) , ı = 1, 2, 3, 4, ...,m,

Rı = max
∝ j d

(
Yı j,Y

+
j

)
d
(
Y+

j ,Y
−
j

) , ı = 1, 2, 3, 4, ...,m.

Step 5. Determine the maximum and minimum values of S and R, respectively, as follows:

S ? = min
ı

S ı, S / = max
ı

S ı, R? = min
ı

Rı, R/ = max
ı

Rı, ı = 1, 2, 3, ..., `.

Lastly, we integrate the features of both the group utility S ı and the individual regret Rı in order
to assess the ranking measure Qı for the alternatives L = (A1, A2, A3, ..., A`) as follows:

Qı = χ
S ı − S ?

S / − S ?
+ (1 − χ)

Rı − R?

R/ − R?
,Rı, ı = 1, 2, 3, ..., `,

where χ is the strategic weight of the majority of parameters (the parameter with the largest group
utility) and is essential for assessing the compromise solution. The value is chosen from the range
[0, 1], and 0.5 is a common number and was utilized it.

Step 6. Furthermore, the alternatives are ordered in decreasing order for the group utility measure S i,
individual regret measure Rı, and ranking measure Qı. Here, we obtained three ranking lists that
will help us determine the best compromise alternative.

8.5. Numerical example of the improved q-ROHFR-VIKOR methodology

In this section, we implement an improved q-ROHFR-VIKOR approach to the MAGDM problem
in order to identify the best location for a GDS using four criteria mentioned in the following numerical
example.

Step 1. The information based on q-ROHFRVs of the three professional experts is analyzed in
Tables 2–5.

Step 2. The aggregated information of the team of experts, as determined by the q-ROHFRWA
aggregation operator, is summarized in Table 6.

Step 3. The q-ROHFR PIS (k+) and the q-ROHFR NIS (k−) are computed in Table 25.

Step 4. The q-ROHFR group utility measure values S ı (ı = 1, 2, 3, 4) and the regret measure Rı (ı =

1, 2, 3, 4) of the alternatives under consideration are summarized in Table 26.

Table 26. S ı, Rı, Qı for each alternative.
alternatives S ı Rı Qı

A1 0.1460 0.2472 0.2137
A2 0.5324 0.4042 0.5631
A3 0.3637 0.3781 0.4319
A4 0.3426 0.2682 0.3142
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Figure 6. The graphical depiction of rankings according to the modified VIKOR-method.

Steps-5 & 6. Alternative rankings based on the group utility measure S ı, the individual regret measure
Rı, and the ranking measure Qı are indicated in Table 27. Figure 6 depicts a graphical illustration
of the rankings according to the modified VIKOR approach.

Table 27. Alternative rankings depending on S ı, Rı, and Qı.

Alternatives Ranking order of S ı Ranking order of Rı Ranking order of Qı

A1 4 4 4
A2 1 1 1
A3 2 2 2
A4 3 3 3

9. Conclusions, future recommendations and limitations

There are numerous factors to consider while choosing a garbage disposal location, but human
intelligence has certain limitations. Hence, it is essential to develop an efficient framework for
analyzing garbage disposal location. Many researchers have addressed various approaches for
evaluating garbage disposal location schemes, particularly the assessment approach based on fuzzy
set theory. The basic technology of the ongoing fuzzy theory-based evaluation technique is to provide
the assessment value via the membership function of the fuzzy set, then utilize the operational rules
between fuzzy numbers for information aggregation and, lastly, obtain the evaluation result. However,
the expression space for analyzing the information in fuzzy sets is restricted, making it difficult to
handle problems of assessing GDS options in complex environmental situations. Therefore, a novel
approach based on q-ROHFRS has been proposed for evaluation to overcome these limitations. It is
worth noting that the approach presented in this study provides a broad space for analyzing information,
enabling DMs to incorporate the features of uncertain data and have high computing capabilities
for imprecise information. On the basis of the Einstein t-norm and t-conorm, several aggregation
operators, the q-ROHFREWA, q-ROHFREOWA and q-ROHFREHWA operators, are described. In
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addition, a comprehensive discussion is presented on the fundamental concepts exhibited by the
developed operators. The aforementioned operators consider the complexity of the MADM approach
based on the q-ROHFR operators, and the evaluation information has significant rationality. A case
study in the assessment of GDS location is also utilized to show the applicability and validity of the
proposed technique. According to the empirical results, utilizing the suggested approach to perform
the final site selection based on the ranking findings is appropriate and practical. We assessed the
impact of variations of parameters on the decision-making outcomes through sensitivity analysis of
the proposed aggregation operators. The findings indicated that the outcomes were consistent. The
present study involves a comparative analysis of the proposed models with the existing literature
outcomes. Additionally, an evaluation is carried out utilizing the extended q-ROHFR-TOPSIS and
VIKOR methodologies in order to demonstrate the viability, superiority and reliability of the proposed
techniques. The findings of the comparison indicated that the novel approach provides numerous
benefits in assessing and analyzing the consequences of high-value assessment information.

Future recommendations and limitations of the study: The method is beneficial for top-level
executives who make decisions with conflicting paths in areas such as planning and control, industrial
production, financing decisions, and health-care planning processes. There are numerous directions
and ideas for future research in this field. As a follow-up to this study, future work could investigate
the application of linguistic term usage to the structure explored here. Since q-ROHF rough set theory
presupposes discrete values, it might not be applicable for all types data. The q-ROHF rough set theory
may not work for continuous or mixed information. Fuzzy rough set theory computational complexity
grows significantly with dataset advancement. This makes the theory inappropriate for enormous data
sets.
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