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Abstract: In this study, a nonlinear mathematical SIR system is explored numerically based on the 

dynamics of the waterborne disease, e.g., cholera, that is used to incorporate the delay factor through 

the antiseptics for disease control. The nonlinear mathematical SIR system is divided into five 

dynamics, susceptible X(u), infective Y(u), recovered Z(u) along with the B(u) and Ch(u) be the 

contaminated water density. Three cases of the SIR system are observed using the artificial neural 

network (ANN) along with the computational Levenberg-Marquardt backpropagation (LMB) called 

ANNLMB. The statistical performances of the SIR model are provided by the selection of the data 

as 74% for authentication and 13% for both training and testing, together with 12 numbers of neurons. 

The exactness of the designed ANNLMB procedure is pragmatic through the comparison procedures 

of the proposed and reference results based on the Adam method. The substantiation, constancy, 
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reliability, precision, and ability of the proposed ANNLMB technique are observed based on the state 

transitions measures, error histograms, regression, correlation performances, and mean square error 

values. 

Keywords: SIR system; delay term; artificial neural network; stochastic procedure; Levenberg-

Marquardt backpropagation 
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1. Introduction 

The number of deaths worldwide is around 4500 among children at a young age based on waterborne 

diseases like typhoid, hepatitis E, cholera, hepatitis A, Shigella, and giardiasis [1−6]. The pathogens 

based on such diseases provide the aquatic environment using the wastes or feces of symptomatic or 

asymptomatic diseased animals or persons and pollute it-consuming dirty water for waterborne 

illnesses like cholera. From the start, cholera was considered an epidemic based on fecaloral 

transmission. However, Snow’s influential investigations [7], proved that ingesting contaminated water 

by the susceptible is a significant reason for the spreading of cholera contagion [8]. In the mid of the 18th 

century, Filippo Pacini proved the occurrence of Vibrio cholerae (V) in polluted water [9]. After 30 

years, these investigations were performed by Robert Koch with V cholerae in humans [10]. They 

accrue an enterotoxin yield that represents diarrhea, acidosis, and vomiting. A person faces terrible 

health due to the lack of proper treatment, and death may occur. The V cholerae permanence for the 

water environment was considered in the last quarter of the 19th century. A few years later, it was 

proved that the V cholerae could be survived for a long time in freshwater [11]. A reservoir comprises 

dirty water, where V cholerae is accountable for the epidemic based on cholera. Most developing 

countries faces cholera disease based on inadequate hygiene, inadequate supply of safe water and 

inappropriate treatment of reservoirs. In the sixth decade of the last century, the 7th phase of the 

pandemic, cholera started in the Indonesian region and spread worldwide. Most Asian and African 

countries are still facing this disease. Fifteen years ago, the clear cholera cases were 177,963 with 4031 

deaths in 53 countries, where 99% of cases were reported in the African regions [12]. In recent years, 

cholera again spread in Haiti after one century spreading rapidly with 452,189 positive cases and 6334 

deaths [13]. 

Many SIS and SIRS systems, have been discovered and examined in the last few years to 

recognize the spread dynamics based on transferrable diseases [14−20]. Based on these systems, it is 

accessed that the disease spreads directly between the susceptible and the infectives. Cholera disease 

is not a spreading virus from one person to another. Consequently, direct interaction with healthy 

individuals is not a danger of contracting the infection, whereas healthy individuals can contract the 

infection by drinking dirty water in the presence of the V cholerae. There have been many investigations 

that present the cholera disease dynamics [21−25]. Capasso et al. designed the mathematical 

formulation to provide the dynamics of cholera occurrences in Italy. Codeco presented this system to 

investigate the water reservoir based on cholera. Pascual et al. proposed Codec-o’s system by 

incorporating of another model to describe the water volume with V cholera. Hartley et al. provided 

the Codec-o’s system to consider the hyper infectious bacterium's role in the cholera spread. Jensen et al. 

investigated the bacteriophage, role in controlling cholera outbreaks. Earn et al. formulated a 
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mathematical model to investigate waterborne disease dynamics, like Campylobacter, giardiasis, 

hepatitis A and hepatitis E. The current modeling shows the infection between susceptible and 

infectives and the dirty water supply, including pathogens. Recently, Tian and Wang proposed a 

nonlinear cholera system to consider the standard incidence function based on the multiple spreads along 

with the function’s growth rate using the pathogens. 

The experience provides that the occurrence of diseases based on waterborne infection produces 

mortality in millions and a massive amount of money in disease control and health care. Healthcare 

organizations have formulated numerous strategies to prevent epidemics, like awareness, vaccination, 

and quarantine. Various vaccination systems have been presented to prevent and control epidemics [26−30]. 

In recent years, Misra provided a mathematical system to provide the awareness driven by the media 

based on the occurrence of infectious viruses. The outbreaks of cholera in Haiti have been examined 

in the references [31,32]. These investigations provide a more promising structure based on the 

potential effects of different control stratagems for cholera, like vaccination, the establishment of clean 

and safe drinking water, proper sanitation, minimizing scarcity based on the decontaminated food, 

good sewage model to excreta clearance and wastage of water conduct. 

The motive of this research study is to provide a nonlinear mathematical SIR system based on the 

dynamics of waterborne disease. The mathematical SIR nonlinear system is categorized into five 

dynamics, susceptible X(u), infective Y(u), recovered Z(u), along with the B(u) and Ch(u), be the 

contaminated water density containing the pathogen. The solutions of the SIR system are provided by 

using the stochastic artificial neural network (ANN) along with the computational Levenberg-

Marquardt backpropagation (LMB) called ANNLMB. The stochastic computing performances have 

been used to solve several complicated models, such as food supply systems [33,34], the coronavirus 

dynamical models [35], dynamical HIV systems [36], thermal explosion theory [37], eye surgery 

systems [38,39], singular differential systems [40] and smoking differential systems [41]. The novel 

features of the proposed investigations are signified as: 

• A mathematical SIR system is explored numerically using the dynamics of the waterborne 

disease, e.g., cholera, and is analyzed to incorporate the delay factor by using the antiseptics 

for disease control. 

• The mathematical SIR model, numerical performances are presented using the stochastic 

procedures based on the ANNLMB. 

• Three different cases based on the mathematical SIR delay model are numerical stimulated 

through the proposed stochastic structure of the ANNLMB. 

• The correctness of the computing ANNLMB solver is authenticated by comparing the obtained 

and reference results. 

• The trustworthiness of the ANNLMB numerical method is obtained by using the absolute error 

(AE) performances for solving the mathematical SIR delay differential model. 

• The performances of the state transitions (STs) measures, error histograms (EHs), regression, 

correlation performances, and MSE values are provided through the ANNLMB computing 

approach scheme for solving the mathematical SIR delay differential model. 

The rest of the paper is organized as follows: The mathematical formulations of the SIR delay 

differential model are provided in Section 2. Then, the proposed stochastic structure is given in Section 3. 

Next, the results simulations are provided in Section 4. Finally, the concluding remarks are presented 

in Section 5. 
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2. Mathematical model 

This study section presents the mathematical formulations of the nonlinear SIR delay differential 

model. First, the mathematical form of the SIR system is given in system (1), while the parameter 

details are provided in Table 1 [42]. 
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Table 1. Description of the parameters based on the SIR mathematical delay differential model. 

Parameters Details 

( )X u  
Susceptible 

( )Y u  
Infected 

( )Z u  
Recovered 

  
The transmission rate of susceptibility to an infective category based on the 

contaminated water consumption 

A Disease death ratio 

  Constant birth and immigration rates based on the susceptible population 

  Natural death rate 

  Introduction rate of disinfectants  

  Infective rate to be recovered 

  Growth rate based on the density of V 

1
  The natural decay rate of V 

1
  Absorption disinfectants rate 

1
  Natural disaster rate 

2


 
The decay rate of V 

  Delay term 


 Cholerae 

u
 

Time 

1 2 3 4 5
, , , ,i i i i i  Initial conditions 
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3. Stochastic computing ANNLMB procedure 

This section presents the ANNLMB computing procedure for solving the SIR mathematical delay 

differential model is given as: 

• The actual operator performances through the ANNLMB computing solver are presented. 

• The execution procedures using the ANNLMB stochastic scheme are derived to solve the SIR 

mathematical delay differential model. 

Table 2 states the parameters for the SIR mathematical delay differential model based on the 

ANNLMB stochastic scheme. Minor modification and adjustment can lead to subpar results or 

premature convergence. As a result, these alternatives will be appropriately included following 

extensive numerical testing and knowledge. The data is used between 0 and 1 with the 0.01 step size, 

and the Matlab built-in command nftool is applied to solve the SIR mathematical delay differential 

model. 

Table 2. The setting of the parameters to implement the ANNLMB scheme. 

Index Settings 

Hidden neurons 12 

Fitness (MSE) 0 

Statics selection Random 

Maximum Epochs 1000 

Decreasing values of Mu 0.2 

Test data 13% 

Mu maximum performances 1008 

Train data 13% 

Generation of dataset Adam approach 

Adaptive parameter 0.002 

Hidden/output/input layers construction Single 

Increasing mu performances 9 

Verification data 74% 

Authentication count fails 7 

Minimum values of the gradient 10-07 

Execution of Adam and dismissing standards Default 

The numerical computing values using three different deviations of the SIR mathematical delay 

differential model based on the ANNLMB stochastic scheme. The SIR mathematical delay differential 

model is presented with the data selection as 74% for authentication and 13% for training and testing 

together with 12 neurons. The construction of the input, hidden layer, output layer, and output is 

provided in Figure 1. Figure 2 signifies the optimization procedures based on the multi-layer 

performances of the stochastic ANNLMB solver. 
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Figure 1. Input, hidden layer, output, and output of the mathematical delay differential 

system are derived through the proposed ANNLMB scheme. 

 

 

 

Figure 2. Designed ANNLMB computing solver for solving the SIR mathematical delay 

differential system. 
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4. Discussion 

This section presents the numerical representations of the SIR mathematical delay differential 

system using the stochastic computing ANNLMB solver. The mathematical depictions of each case 

are presented as: 

Case 1: Suppose 10 =  , 0.0000001 =  , 0.2 =  , 0.00005 =  , 0.001d =  , 25 =  , 
1

0.03 =  ,

0.000002 =   
2

0.99 =  , 0.001 =  , 
1

1 =   ,
1

0.0004, = ( ) 0.1,N u = 0.1, =
  1

0.1,i =
  2

0.2,i =
 

3
0.3,i =

4
0.4,i = and 

5
0.5i =  is used in the system (1) as follows: 
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Case 3: Suppose 10 =  , 0.0000001 =  , 0.2 =  , 0.00005 =  , 0.001d =  , 25 =  , 
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The values based on the numerical procedures of the mathematical delay differential system are 

derived through the proposed ANNLMB scheme and are plotted in Figures 3−5. The best validation 

performances based on the MSE are provided in Figure 3a−c, while the gradient, Mu, and validation 

checks based on STs values are provided in Figure 3d−f. The best validation measures using the 

mathematical SIR delay differential model are illustrated at epochs 958 for Case 1, whereas 1000 

iterations for Cases 2 and 3. The performances have been calculated around 5.7035×10-11, 1.312×10-10 

and 1.8378×10-11, respectively. The gradient operators have been derived as 9.9661×10-08, 

1.3471×10-07 and 1.9157×10-07 for the mathematical SIR delay differential model. These graphical 

illustrations present the convergence of the statistical ANNLMB process to solve the SIR mathematical 

form of the delay differential model. Figure 4a−c performs the results assessments based on training 

targets, training outputs, validation targets, validation outputs, test targets, test outputs, errors, and 

fitness performances. These graphical measures indicate the result comparisons for each case of the 

SIR mathematical form of the delay differential model. The EHs based on the training, validation, test 

and zero error for each case of the SIR mathematical form of the delay differential model are provided 

in Figure 4d−f using the stochastic ANNLMB measures. The EHs performances have been derived as 

4.87×10-08, 2.64×10-06 and 2.44×10-07 for each case of the SIR mathematical form of the delay 

differential model. The regression plots are derived in Figure 5 based on the training, validation, and 

testing performances for the mathematical SIR delay differential model. The correlation plots 1 for 

each case of the mathematical SIR delay differential model using the stochastic ANNLMB technique. 

Based on the validation, training, and testing these measures authenticate the exactness of the 

stochastic ANNLMB scheme to solve the mathematical SIR delay, differential model. The MSE 

convergence via validation, generations, training, testing, complexity, and backpropagation is 

presented in Table 3 based on the ANNLMB solver. 

Table 3. Design statics via ANNLMB solver for the mathematical delay differential system. 

Case MSE Gradient Mu Iterations Performance Time 

Testing Training Endorsement 

(1) 1.13×10-10 5.90×10-11 5.70×10-11 1.00×10-07 1×10-08 958 5.91×10-11 02 Sec 

(2) 3.11×10-10 1.08×10-10 1.31×10-10 1.35×10-07 1×10--08 1000 1.08×10-10 03 Sec 

(3) 1.13×10-11 1.11×10-11 1.83×10-11 1.92×10-07 1×10-09 1000 1.11×10-11 03 Sec 
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(a) Case 1: MSE       (d) Case 1: STs 

  

(b) Case 2: MSE       (e) Case 2: STs 

  

(c) Case 3: MSE       (f) Case 3: STs 

Figure 3. MSE and STs values through the ANNLMB stochastic procedure for the 

mathematical SIR delay differential model. 
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(a) Case 1: Results       (d) Case 1: EHs 

   

(b) Case 2: Results       (e) Case 2: EHs 

   

(c) Case 3: Results       (f) Case 3: EHs 

Figure 4. Result assessments and EHs measures for the mathematical SIR delay differential model. 
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(a) Regression: Case 1      (b) Regression: Case 2 

 

(c) Regression: Case 3 

Figure 5. Regression values for the mathematical SIR delay differential model. 

The comparison of the results and the absolute error (AE) for three different cases of the 

mathematical SIR delay differential model using the ANNLMB stochastic procedure is provided in 

Figures 6 and 7. These plots authenticate the exactness of the stochastic ANNLMB method for solving 

the mathematical SIR delay differential model. Figure 6 compares the obtained and reference results 

for the mathematical SIR delay differential model based on the stochastic ANNLMB scheme. The 

obtained and reference overlapping of the results indicates the correctness of the ANNLMB method to 

solve the obtained and reference solutions. The AE values based on three different deviations of the 

mathematical SIR delay differential model are provided in Figure 7. The mathematical SIR system is 

divided into five dynamics, susceptible X(u), infective Y(u), recovered Z(u) along with the B(u) and 

Ch(u) be the contaminated water density containing pathogen V. The AE for susceptible X(u) is 
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calculated as 10-05 to 10-06, 10-06 to 10-05, and 10-06 to 10-05 for individual cases of the mathematical SIR 

delay differential model. The AE of the infective Y(u) is found as 10-05 to 10-06, 10-05 to 10-06 and 10-05 

to 10-08 for individual cases of the mathematical SIR delay differential model. The AE for the recovered 

Z(u) are found as 10-04 to 10-06, 10-04 to 10-05, and 10-06 to 10-07 for individual cases of the mathematical 

SIR delay differential model. The values based on the ( )B u  are found as 10-05 to 10-08, 10-05 to 10-07 

and 10-06 to 10-07, while the ( )
h

C u  values are calculated as 10-05 to 10-06, 10-05 to 10-06, and 10-06 to 10-07 

mathematical SIR delay differential model. These accurate performances indicate the correctness and 

exactness of the stochastic ANNLMB method for the mathematical SIR delay differential model. 

    

(a) Results: ( )X u       (b) Results: ( )Y u  

    

(c) Results: ( )Z u       (d) Results: ( )B u  

 

(e) Results: ( )
h

C u  

Figure 6. Comparison performances for the mathematical SIR delay differential model. 
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(a) AE: ( )X u         (b) AE: ( )Y u  

    

(c) AE: ( )Z u         (d) AE: ( )B u  

 

(e) AE: ( )
h

C u  

Figure 7. AE performances for the mathematical SIR delay differential model. 
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5. Conclusions 

These investigations aim to perform the numerical performances of the SIR mathematical delay 

differential system using the proposed ANNLMB method. The nonlinear mathematical SIR system is 

divided into five dynamics, susceptible X(u), infective Y(u), recovered Z(u), along with the B(u) and 

Ch(u), be the contaminated water density containing the pathogen. Finally, some concluding remarks 

on current work are presented: 

• The mathematical form of the SIR system has been presented by using the dynamics of the 

waterborne disease to incorporate the delay factor with the antiseptics for disease control. 

• The numerical performances for three cases of the mathematical SIR delay differential model 

have been presented using the stochastic procedures based on the ANNLMB. 

• The data selection provides statistic procedures for solving the SIR mathematical delay 

differential model as 74% for authentication and 13% for both training and testing together 

with 12 numbers of neurons. 

• The correctness of the computing ANNLMB solver has been authenticated by comparing of 

the obtained and reference results. 

• The reliability of the ANNLMB numerical scheme is obtained through the absolute error 

performances, which are found as 10-06 to 10-07 for individual cases of the mathematical SIR 

delay differential model. 

• The performances of the state transition, error histograms, regression, correlation, and MSE 

values are provided through the ANNLMB computing scheme for solving the mathematical 

SIR delay differential model. 

• The delay term in the mathematical SIR differential model is challenging to handle. Therefore 

the ANNLMB stochastic scheme is an excellent choice to present the numerical simulations. 

In upcoming studies, the ANNLMB stochastic scheme can be implemented to solve the fractional 

models [43−47], biological systems [48,49] and fluid dynamical models [50−53], and many more [54−56]. 
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