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Abstract: This paper aims to extend the spore dispersal model to the Healthy-Latent-Infectious-
Removed (HLIR) epidemic model for assessing the severity of rice blast disease. The model was
solved by the Finite Difference Method (FDM). The results of the model were compared to data from
the Prachinburi Rice Research Center (PRRC) on the severity of rice blast disease. Because of a small
error, the comparison results showed good agreement between the PRRC data and the simulation by
looking at the value of Willmott’s index of agreement (d). The first bed d was 0.7166, while the
second bed d was 0.6421, indicating the model’s performance. Furthermore, the optimal parameter,
the fraction of spores deposited on the crop, was determined to be 0.173 and 0.016 for beds 1 and 2,
respectively. The model can simulate and analyze rice blast outbreaks for educational purposes in
future preparedness planning.
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1. Introduction

Rice is a staple meal for many people around the world. Rice blast disease is one of the diseases
that reduce rice yields [1]. Moreover, rice blast epidemics have caused crop yield losses ranging
from 50–100% in various parts of the world, compared to 20–50% by sheath blight, 50–70% by brown
spot disease, 25% by bacterial leaf blight, and 20–80% by sheath rot disease [2]. The disease severity
is the percentage of the total area infected that can tell the behavior of an outbreak. Many factors affect
the outbreak, including weather factors such as temperature, relative humidity, leaf wetness, or the
spore dispersion which can disperse depending on many factors such as wind, water, insect, animals,
and humans [3, 4].

Many researchers constructed and developed a mathematical model to assess the rice blast disease
severity. In 2021, Kirtphaiboon et al. [5] simulated several locations in Thailand under varied weather

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023125


2420

conditions, including temperature and rain. The results showed that the main factor affecting the
disease severity was the temperature. Besides, low temperatures and high humidity also caused high
disease severity. On the other hand, disease severity is low when temperatures are high and humidity
is low. Additionally, the model can forecast the regional distribution of disease severity and the timing
of outbreaks under specific climatic conditions. Kapoor et al. [6] investigated the prediction of rice
blast disease in Himachal Pradesh’s Kangra district in 2004. They discovered that the overall severity
of the rice blast in the Kangra district was mild to moderate from 1997 to 1999. During the
rice-growing season, there was a wide range in rainfall quantity and distribution. All three years had
temperatures between 18 and 28 degrees Celsius and relative humidity levels greater than 9 hours
(>90%), which are the appropriate conditions for disease development. The quantitative prediction
equations developed were not useful in forecasting rice blast disease because no variables such as
temperature, wetness duration, rainy days, and hours of relative humidity (>90%) were supported.
However, spore dispersal has not been studied in either literature.

A diffusive mathematical model can describe the spread of an infectious disease within a human,
plant, and computer [7]. Modeling the evolution dynamics of infectious diseases requires Partial
Differential Equations (PDE), known as reaction-diffusion systems [8]. In the same way, spore
dispersion also requires PDE to describe the behavior dispersal. The spore dispersal was studied by
Jarroudi et al. [3] in 2020. They proposed a mathematical model to simulate spore dispersal by the
wind and the density of a healthy host. The non-local diffusion equation incorporates the non-local
factor and the dispersal kernel, simulated spore dispersal, and the wind component contained in the
dispersal kernel. According to the findings, spore dispersal by wind induces spore liberation,
dependent on wind velocity. The wind direction angle, spore weight, and spore shape are all factors
that influence the aerial distribution of spores throughout plant fields. In 2022, Tabonglek et al. [9]
proposed a mathematical model for spore dispersal, adding the weather factors to Jarroudi’s model
but not separating the host populations to other stages. However, the disease severity has not been
considered in both papers. In 2008, Buries et al. [10] examined the spatiotemporal spread of a fungal
disease over a vineyard using an Susceptible-Exposed-Infected-Removed (SEIR) model coupled with
a set of describing spore dispersal. The model accounts for short and long-range spore dispersal and
foliar surface growth. This work did not include the weather factors.

Following the above discussions, no studies have been reported on rice blast disease’s severity
and the distribution of spores influenced by climatic factors at the same time. The host population
should be separated into healthy, latent, infectious, and removed to correspond as possible with reality.
Therefore, this work aims to extend a mathematical model to assess the severity of rice blast outbreaks
that are currently occurring by separating the host population into the healthy host, latent, infectious,
and removed with the PDE that describes the spore dispersion from Tabonglek et al., 2022.

2. Methodology

This paper extends the spore dispersal model in Tabonglek et al. [9] to the HLIR epidemic model
based on the SEIR model. After that, we used the FDM to estimate the solution. Subsequently, we
simulated the disease severity for rice blast disease using meteorological data from the PRRC. Finally,
we evaluated the severity of rice blast disease using Willmott’s index of agreement [11, 12].
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2.1. Disease severity of rice blast

The disease severity (y) is a percentage of symptoms or lesions which causes by the disease, and
it considers the area or proportion of symptomatic plant tissue. The diseased leaf area measures the
disease severity over the whole leaf area since this research is interested in the HLIR model with
the spore dispersal equation. Therefore, the whole area is equal to the sum of the densities of the
healthy host, latent, infectious, and removed. In addition, the disease leaf area is equal to the combined
densities of the latent and infectious. Finally, the percent disease severity at time t and position x can
be calculated from:

y(x, t) =
L(x, t) + I(x, t)

H(x, t) + L(x, t) + I(x, t) + R(x, t)
× 100, (2.1)

where y(x, t) is the disease severity at time t and position x. H(x, t), L(x, t), I(x, t), and R(x, t) are the
densities of healthy host, latent, infectious, and removed at time t and position x, respectively. Before
assessing the disease severity of rice blast disease, we must find the densities of a healthy host, latent,
infectious, removed at time t and position x from the model in the following section.

2.2. Model extension

The mathematical model for spore dispersion via wind and rain is described by Tabonglek et al. [9].
Assume that time t and position x are both continuous variables which x belong to a bounded domain
Ω ⊂ R and t > 0. The rate of change in the densities of healthy host and spore are described by
Eqs (2.2) and (2.3), respectively.

∂H(x, t)
∂t

= −α(t)u(x, t)H(x, t), (2.2)

∂u(x, t)
∂t

=

∫
Ω

J(x − y)[u(y, t) − u(x, t)]dy + f (x, t), (2.3)

H(x, 0) = H0(x) ≥ 0, (2.4)
u(x, 0) = u0(x) ≥ 0. (2.5)

The Eq (2.2) is only a healthy host’s reduction due to infection, and Eq (2.3) depends on spore
dispersal and spore production. Where H(x, t) and u(x, t) are densities of healthy host and spore at time
t and position x, respectively. α(t) is the proportion of the plant that will become infected at time t.
J(x − y) is the probability of a pathogen migrating from location y to the position x, and f (x, t) is the
spores production by infectious hosts or lesions at time t and position x. The proportion of infecting a
susceptible individual at time t (α(t)) can be calculated from the Eq (2.6):

α(t) = µ · φmax · φT (t) · φD(t), (2.6)

where µ is the fraction of spore deposition on the crop, φmax is the maximum infection efficiency, φT (t)
and φD(t) are the infection efficiency based on the temperature and dew period at a time t, respectively.
The infection efficiency is the proportion of spores that can infect and cause lesions after spores fall on
susceptible host tissue. Which the infection efficiency depending on temperature at time t (φT (t)) [5]
can be describe in Eq (2.7):

φT (t) =
(

T (t) − TIEmin

TIEmax − TIEmin

)xIE( TIEmax − T (t)
TIEmax − TIEmin

)yIE

, (2.7)
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where T (t) is the daily temperature, TIEmax is the maximum temperature, TIEmin is the minimum
temperature, and xIE, yIE are constants. The infection efficiency depending on dew period at time t
(φD(t)) [5] can be describe in Eq (2.8):

φD(t) = 1 − e−d1(D(t)−Wmin), (2.8)

where D(t) is the daily relative humidity, Wmin is the minimum wetness period of the infection
efficiency, and d1 is constant.

The probability that a spore migrates from position y to position x by wind and rain can be
described in Eq (2.9). This term corresponds to the density probability function. In 1999, van den
Bosch et al. [13] explained that the spore dispersal distribution is approximated by exponential
distribution and Bessel density. Since Bessel’s graph is higher than the exponential graph (see
Figure 2 in [13]), the spores tend to concentrate, making them less diffuse than the exponential
density. In addition, the average flight time (1/µ) is relatively tiny compared to the average airflow
duration (1/γ) in a fixed direction. The spores fall far from their source. Therefore, the spore dispersal
is approximated by the exponential distribution [3, 13]. On the other hand, the Bessel function
estimated the spore dispersion when the amount of time a spore spends in the wind (1/µ) exceeds the
time it spends migrating in a fixed direction (1/γ). The wind blows the spores back down near the
source.

J(x − y) =


µ2

2π(Fv1 + v2)2 exp
(
−

µ

Fv1 + v2
|x − y|

)
if µ > γ,

µ2

8π(Fv1 + v2)2 K0

(
µ

(Fv1 + v2)
√

2
|x − y|

)
if µ < γ,

(2.9)

where J(x − y) is the probability of a pathogen migrating from location y to the position x. v1 is the
velocity of fluid fragmentation after rainfall on the host, v2 is the wind velocity, and F is the probability
of rain in the day. If there is rain, F = 1 denotes that wind and rain play a role in spore spreading.
Furthermore, if there is no rain, F = 0, the spore dispersal depends on wind only.

The spores production by lesions at time t, position x ( f (x, t)) is the number of spores produced by
lesions or infectious hosts per unit of time at position x, which can be computed as follows:

f (x, t) = κ
∫ t

0
u(x, t − s)H(x, t − s)α(s)β(s)ds, (2.10)

where κ is the average number of spores produced per lesion until the start removal stage, α(s) is the
proportion of infecting a healthy host at time s, and β(s) is the sporulation curve at time s, which can
be expressed as Eq (2.11):

β(s) =


0 if s < τ,

ab(s − τ)b−1e−a(s−τ)

Γ(b)
if s ≥ τ,

(2.11)

where τ is the latent period, s is the age of infection, Γ is the gamma function, and a, b are constants.
The age of infection begins when the spore penetrates the host tissue through sporulation and enters
the latent stage.

Model in Eqs (2.2) and (2.3) considered the densities of healthy host and spore, focusing on the
spore dispersal. The spores are active, inactive, or have penetrated plant tissues but do not show
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lesions. We count them all as the spores density. To correspond to the real situation, we will separate
the host populations into the HLIR model. Since plant populations can senescence at each stage, the
extended model will include a term about senescence. The flow diagram for the disease dynamics with
compartments H, L, I, R, and u is given in Figure 1.

Figure 1. Diagram of the extended model.

Figure 1 illustrates the flow diagram for the disease dynamics, in which the arrows represent the host
population changes. If the arrow points out from the compartment meaning that the population or the
density decreases, whereas the arrow points to the compartment, meaning that the density increases.
RG, RI , RT , RR, and RS are the rates of growth, infection, transmission, removal, and senescence,
respectively. Let the total density N(x, t) = H(x, t) + L(x, t) + I(x, t) + R(x, t). The rate of senescence
will appear in all stages of host populations. Moreover, leaf senescence will appear in the last stage of
plant development and is influenced by various genetic and environmental variables. Because of the
loss of green pigment chlorophyll, leaf yellowing is a visible sign of senescence [14]. Therefore, the
rate of senescence term contained the Heaviside function, which can be calculated from:

h(t − ts) =

1, t > ts,

0, t ≤ ts,
(2.12)

this function controls the senescence term, which appears when daily time is more than the time of
senescence (t > ts).

The epidemic of rice blast disease had no impact on population growth. Moreover, the general
model separates into two parts: population growth and disease epidemic. Population growth involves
the growth rate and the senescence rate. Therefore, the change in total population can be described as
follow:

∂N(x, t)
∂t

= rGN(x, t)
(
1 −

N(x, t)
KG

)
− 2h(t − ts)rs(H(x, t) + L(x, t) + I(x, t)), (2.13)

where N(x, t), H(x, t), L(x, t), and I(x, t) are the densities of total, healthy, latent, and infectious at time
t and position x, respectively. rG is the relative rate of growth, KG is the carrying capacity, rs is the
relative rate of senescence, h(t − ts) is the Heaviside function, and ts is date of senescence.
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Firstly, the rate of change of healthy host individuals is considered with respect to time t. Healthy
host density changes depending on three terms: growth, infection, and senescence. For the growth rate,
we used logistic growth because rice has limited growth. The infection rate was calculated using the
same component in Tabonglek et al. because this term is based on the weather variable. Therefore, we
can write the PDE as follows:

∂H(x, t)
∂t

= rGN(x, t)
(
1 −

N(x, t)
KG

)
︸                      ︷︷                      ︸

RG

−α(t)u(x, t)H(x, t)︸              ︷︷              ︸
RI

− h(t − ts)rsH(x, t)︸              ︷︷              ︸
RS

, (2.14)

where H(x, t), u(x, t), and N(x, t) are the densities of healthy host, spore, and total, respectively at time
t and position x. rG is the relative rate of growth, KG is the carrying capacity, rs is the relative rate of
senescence, ts is date of senescence, and α(t) is the proportion of plant that will become infected at
time t. The second considers the latent density change rate with respect to time t depending on three
terms: infection, transmission, and senescence rates. We can write a PDE as Eq (2.15):

∂L(x, t)
∂t

= α(t)u(x, t)H(x, t)︸              ︷︷              ︸
RI

−
1
τ

L(x, t)︸   ︷︷   ︸
RT

− h(t − ts)rsL(x, t)︸              ︷︷              ︸
RS

, (2.15)

where L(x, t) is the latent density at time t and position x and τ is the latent period. The third considers
the infectious density change rate with respect to time t depending on three terms: transmission,
removal, and senescence. We can write a PDE as Eq (2.16):

∂I(x, t)
∂t

=
1
τ

L(x, t)︸   ︷︷   ︸
RT

−
1
p

I(x, t)︸  ︷︷  ︸
RR

− h(t − ts)rsI(x, t)︸             ︷︷             ︸
RS

, (2.16)

where I(x, t) is the density of infectious at time t and position x and p is the infectious period. Finally,
considering the rate of change of removed density with respect to time t depending on two terms,
including the removal rate and the senescence rate from healthy, latent, and infectious because at this
stage, we considered removing from disease only given as (2.17):

∂R(x, t)
∂t

=
1
p

I(x, t)︸  ︷︷  ︸
RR

− h(t − ts)rs
(
H(x, t) + L(x, t) + I(x, t)

)︸                                         ︷︷                                         ︸
RS

, (2.17)

where R(x, t) is the density of removed at time t and position x. Since spore dispersal is still important
to the epidemic of the disease, we used a structure following Tabonglek et al., 2022 for the spore
dispersal with a little-term change. The total density of the spore stands for u(x, t), which is described
in the Eq (2.3). Still, we changed the spore production that depends on the healthy host and spore
densities to healthy and infectious densities because the spore that can produce a new spore is the
spore in the infectious density. Therefore, the spore production can be described by Eq (2.18):

f (x, t) = κ
∫ t

0
I(x, t − s)H(x, t − s)α(s)β(s)ds. (2.18)
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Hence, the rate of change of spore density with respect to time t can describe in Eq (2.19):

∂u(x, t)
∂t

=

∫
Ω

J(x − y)[u(y, t) − u(x, t)]dy + f (x, t). (2.19)

The model for the epidemic of rice blast disease is described by the system of Eqs (2.20)–(2.24):

∂H(x, t)
∂t

= rGN(x, t)
(
1 −

N(x, t)
KG

)
− α(t)u(x, t)H(x, t) − h(t − ts)rsH(x, t), (2.20)

∂L(x, t)
∂t

= α(t)u(x, t)H(x, t) −
1
τ

L(x, t) − h(t − ts)rsL(x, t), (2.21)

∂I(x, t)
∂t

=
1
τ

L(x, t) −
1
p

I(x, t) − h(t − ts)rsI(x, t), (2.22)

∂R(x, t)
∂t

=
1
p

I(x, t) − h(t − ts)rs
(
H(x, t) + L(x, t) + I(x, t)

)
, (2.23)

∂u(x, t)
∂t

=

∫
Ω

J(x − y)[u(y, t) − u(x, t)]dy + f (x, t). (2.24)

For x ∈ Ω and t > 0 with nonnegative initial conditions:
H(x, 0) = H0(x) ≥ 0, L(x, 0) = L0(x) ≥ 0, I(x, 0) = I0(x) ≥ 0,R(x, 0) = R0(x) ≥ 0, and
u(x, 0) = u0(x) ≥ 0.

2.3. Numerical solutions

In this work, we want to forecast future disease severity using past data. Therefore, we selected
a forward finite difference or explicit method to solve the model. First, set the domains Ω = [0, 1]
and t = [0, 100], and then discretize time into Nt = 100 intervals and discretize space into Nx = 100
intervals as illustrated in Figure 2. The space step size denoted by δx and the time step size denoted
by δt are equal to 0.01 and 1, respectively. Assume that H j

i , L j
i , I j

i , R j
i and u j

i are approximations of
H(xi, t j), L(xi, t j), I(xi, t j), R(xi, t j), and u(xi, t j), respectively.

Figure 2. Discretization of time t and spatial x.
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We can write the Eqs (2.20)–(2.24) to the vector Eq (2.25):

∂U
∂t
= F(U), (2.25)

where

U =


H
L
I
R
u


and F(U) =



rGN
(
1 −

N
KG

)
− αuH − hrsH

αuH −
1
τ

L − hrsL
1
τ

L −
1
p

I − hrsI

1
p

I − hrs(H + L + I)∫
Ω

J(x − y)[u(y, t) − u(x, t)]dy + f


.

The Eq (2.24) includes the integral terms. The first term and second terms can approximate to
Eqs (2.26) and (2.27), respectively.( ∫

Ω

J(x − y)[u(y, t) − u(x, t)]dy
) j

i
≈

Nx+1∑
p=1

J(xi − xp)(u j
p − u j

i )δx, (2.26)

where i = 1, 2, 3, ...,Nx + 1 and j = 1, 2, 3, ...,Nt + 1. The second term of the right-hand-side is called
the spore production and is approximated as follows:

f j
i =

(
κ

∫ t

0
I(x, t − s)H(x, t − s)α(s)β(s)ds

) j

i
≈ κ

j∑
l=1

αlβ(t j − tl)(IH) j
i δt, (2.27)

where i = 1, 2, 3, ...,Nx + 1 and j = 1, 2, 3, ...,Nt + 1. After that, substitute Eqs (2.26) and (2.27) into
the integral terms and approximate the Eq (2.25) using explicit method, we get:

Un+1
i − Un

i

δt
= Fn

i

Un+1
i = Un

i + δtF
n
i (2.28)

or


H
L
I
R
u



n+1

i

=


H
L
I
R
u



n

i

+δt



rGNn
i

(
1 −

Nn
i

KG

)
− αnun

i Hn
i − hrsHn

i

αnun
i Hn

i −
1
τ

Ln
i − hrsLn

i

1
τ

Ln
i −

1
p

In
i − hrsIn

i

1
p

In
i − hrs(H + L + I)n

i

Nx+1∑
p=1

J(xi − xp)(u j
p − u j

i )δx + κ
j∑

l=1

αlβ(t j − tl)(IH) j
i δt



,

for every i = 1, 2, 3, ...,Nx + 1 and n = 1, 2, 3, ...,Nt.
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2.4. Data

This section will present the data used in this research, which can be divided into three primary
categories: environmental data, disease severity data, and parameter data.

2.4.1. Environmental data

Temperature (T ), relative humidity (D), and rain (R) were the three types of environmental data used
in this research. We got all data from the PRRC, which considered two beds. The average temperature
in bed 1 was 27.23 ◦C, while the range was 24.2–34.65 ◦C. The relative humidity ranged from 68
to 91.5%, with the mean value being 81.84%. The average rainfall was 6.53 mm, the highest rainfall
was 71 mm, and the lowest rainfall was 0 mm. The data are shown in Figure 3(a). For bed 2, the
mean temperature was 26.02 ◦C, and the temperature was between 17.7–29.2 ◦C. The mean relative
humidity was 71.52%, and the relative humidity was between 47–84.5%. Mean rain was 0.08 mm, the
maximum rain was 5.8 mm, and the minimum rain was 0 mm. The data are shown in Figure 3(b).

Figure 3. Environmental data for the period between 28 July 2015 and 25 November 2015
from PRRC. (a) Bed 1 and (b) bed 2.

2.4.2. Disease severity data

We obtained disease severity data from the PRRC. Bed 1, the rice blast outbreak date is 16
August 2015–2 October 2015 (day 20–day 67). The disease severity on day 20 is 0.12%, day 67
is 0.02%, and the maximum disease severity is 86.4%, shown in the top box of Figure 3(a). Bed 2, the
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rice blast outbreak date is 23 December 2015–7 March 2016 (day 25–day 100). The disease severity
on day 25 is 0.04%, day 100 is 90%, and the maximum disease severity is 90%, shown in the top box
of Figure 3(b).

2.4.3. Parameters data and initial conditions

The initial conditions: H0(x) = 0.015 (fitted from LAI), L0(x) = I0(x) = R0(x) = 0, and u0(x) = 0
are used for simulation and all parameters shown in Table 1.

Table 1. Description and the value of variables and parameters.
Symbol Description Value Source
µ The fraction of spore deposition on the crop for bed 1 0.173 Modified

The fraction of spore deposition on the crop for bed 2 0.016 Modified
φmax The maximum infection efficiency 0.307 [15]

TIEmax The maximum temperature for bed 1 34.65 PRRC.
The maximum temperature for bed 2 30.25 PRRC.

TIEmin The minimum temperature for bed 1 24.2 PRRC.
The minimum temperature for bed 2 17.7 PRRC.

kIE The maximum number of infection efficiency 3 [15]
xIE , yIE Constants 1,0.6 [15]
Wmin The minimum wetness period for bed 1 68 PRRC.

The minimum wetness period for bed 2 47 PRRC.
d1 Constant 0.1 [15]
v1 The velocity of fluid fragmentation 7 [16]

after rain falls on the host
v2 The wind velocity 4 [17]
τ The latent period 5 [18]
κ The average number of spores produced per lesion 5000 [15]

a, b Constants 0.24,2.86 [3]
rG The relative rate of growth 0.209 [5]
rs The relative rate of senescence 0.103 [5]
p The infectious period 20 [18]

KG The carrying capacity 5.524 [5]
ts The date of senescence 95 Fitted from LAI

2.5. Model evaluation

Model evaluation is important and helps find the best model with our observation data. We will use
Willmott’s agreement index to evaluate the model in this work.

Willmott’s index of agreement (d), which ranges from 0 to 1, is a standardized indicator of the level
of model prediction error. The agreement index demonstrates the potential error ratio and the mean
square error. A perfect match is indicated by a value of 1, whereas a value of 0 shows no agreement.
Therefore, the index of agreement is expressed as [11, 12]:

d = 1 −

n∑
i=1

(
Pi − Oi

)2

n∑
i=1

(
| Pi − Ō | + | Oi − Ō |

)2

, (2.29)

where d is Willmott’s index of agreement. n is the total number of position, Pi is the simulation value
at position i, and Oi is the observation value at position i.
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3. Results

3.1. Densities of healthy host, latent, infectious, removed, and spore

We used the numerical solution from Eq (2.28) and all the values for the variables and parameters
in Table 1 to simulate the epidemic model for rice blast disease. Moreover, we calculated it using
MATLAB software version R2022a (license 40844420), and the curves were simulated for 100 days.
The results of simulations are shown in Figures 4 and 5 for beds 1 and 2, respectively. Tabonglek
et al. [9] considered two densities: a healthy host and a spore. While this research, we separated the
host populations into healthy, latent, infectious, and removed with spore density. The initial condition
of a healthy host is H0(x) = 0.015 while the latent, infectious, removed, and spore are equal to zero
(L0(x) = I0(x) = R0(x) = u0(x) = 0) because the disease no occurs. In this research, the disease
onset on day 20 after planting means starting a latent period. Therefore, the latent density starts on
day 20. After that, we set the latent and spore conditions as L20(x) = x (fitted from observation data)
and u20(x) = 100(1 − x2)2 (from [3]).

Figure 4. Density curves of epidemic model for rice blast disease in bed 1. (a) Healthy hosts
individual, (b) latent, (c) infectious, (d) removed, and (e) spore.

Figures 4 and 5 illustrate the result from simulation in beds 1 and 2, respectively that including
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the densities of a healthy host, latent, infectious, removed, and spore are shown in sub-figures (a)–(e),
respectively. The x-axis stands for time t, which ranges from 0 to 100 days, the y-axis stands for
space x, considered one unit, and the z-axis stands for the densities of all stages. In all beds, The
host population density will not exceed the carrying capacity (KG). The healthy host density increases
by the growth stages to the peak value and decreases to zero. After the disease onset, the latent and
infectious density curves are in the same direction, and the removed density increases to the peak value
until the end crop. In addition, the spore density curve rises to a high level till the end of the process.

Figure 5. Density curves of epidemic model for rice blast disease in bed 2. (a) Healthy hosts
individual, (b) Latent, (c) infectious, (d) removed, and (e) spore.

3.2. Percent disease severity

In section 2.3, we got the densities of the healthy host, latent, infectious, and removed. After that,
we simulated the rice blast disease severity, which used the Eq (2.1) with MATLAB software version
R2022a (license 40844420) for calculations. The results show in Figure 6. When (a) represents the
disease severity for bed 1 and (b) represents bed 2. Both figures show the disease severity of rice
blasts. We see that after the disease onset, the disease severity slightly decreases in all beds. After that,
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increasing to some value and then decreases to zero.

Figure 6. Density curve of disease severity. (a) Bed 1 and (b) bed 2.

3.3. Adjusted parameter

We modified the parameter’s value using their value with the following details. The value of a
fraction of spore deposited on the crop was given a number between 0 and 1. Consequently, we
varied the value from this interval. For step size of this parameter was considered as 0.001. Then,
we substituted each parameter case into the model and calculated the disease severity. After that, we
compared the simulated disease severity with the referred disease severity from PRRC. As a result, we
received a small error for both beds by looking at Figure 7(a,b).

Figure 7. Scatterplots of simulated and observed datasets of disease severity. (a) Bed 1 and
(b) bed 2.

Figure 7 illustrates scatterplots of simulation and observation of disease severity for beds 1 and 2. x-
axis represents the observation of disease severity while the y-axis represents the simulation of disease
severity. Each dots in the figure are the coordinate of simulated and observed. Suppose each dot is
near a 45o line, which means a small error. Moreover, d values indicate the model performance. In
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comparison, bed 1 gave d = 0.7166 with a suitable fraction of spore deposited on the crop being 0.173.
The result of bed 2, d = 0.6421 with a suitable fraction of spore deposited on the crop being 0.016.

4. Discussions

Assessing the severity of rice blast disease can tell the percentage of the infected area. We can
devise a plan to deal with the violence if we know the disease severity. Currently, researchers are
finding ways to deal with diseases that will spread in rice using a mathematical model to explain.
Tabonglek et al., 2022 studied the spore dispersal and the healthy host density affected by climate
factors. We expanded Tabonglek’s model to make it more realistic by separating the host population
into healthy, latent, infectious, and removed stages. Each stage contained the leaf senescence, and the
final stage was considered specifically removed from the disease. After that, we simulated the disease
severity and compared it with the PRRC data.

The weather and severity data received from the PRRC are daily data. In the research, we study
spatial in one dimension, therefore, there are many positions throughout the day, but we do not have
severity data on each point. Consequently, we assumed that the data at each point were the same
throughout the day. The result shows in Figure 7. For this reason, some simulations and the
observation data have high differences affecting the d value. However, when calculating d,[∑n

i=1
(
Pi −Oi

)2]
/
[∑n

i=1
(
| Pi − Ō | + | Oi − Ō |

)2] is small, affecting the d value close to 1. Therefore,
the result indicates the model’s performance.

5. Conclusions

Following the results, the extended model corresponds to the real situation. Moreover, one
parameter, a fraction of spore deposited on a crop (µ), was modified to make it more suited for
epidemic simulation. The process for modification is mentioned in section 3.3. µ were 0.173
and 0.016 for beds 1 and 2, respectively. These values were received by comparing the disease
severity from the model and the disease severity from the PRRC. We chose the suitable µ from a small
error by looking at the value of Willmott’s index of agreement (d). The d were 0.7166 and 0.6421.
Therefore, this parameter improved the referred data, which means a perfect match between simulated
and observed. We used the disease severity data from the PRRC, which was collected daily. We
assumed the disease severity data at every point was the same, but the value should not be the same.
Therefore, our suggestion should be to collect the data at all study area points to improve the model.

Acknowledgments

The authors would like to express the gratitude to the Ministry of Higher Education, Science,
Research and Innovation for grant support under the Science Achievement Scholarship of Thailand.
In addition, this research project was supported by the Thailand Science Research and Innovation
(TSRI). Basic Research Fund: Fiscal year 2022 under project number FRB650048/0164 and Graduate
Development Scholarships under the National Research Council of Thailand (NRCT) fiscal year 2021
grant number N41D640010.

AIMS Mathematics Volume 8, Issue 1, 2419–2434.



2433

Conflict of interest

The authors declare no conflicts of interest.

References

1. D. O. TeBeest, C. Guerber, M. Ditmore, 2007, Rice blast, The Plant Health Instructor.
https://doi.org/10.1094/PHI-I-2007-0313-07 . Reviewed 2012.

2. N. L. Suriani, D. N. Suprapta, N. Nazir, N. M. S. Parwanayoni, A. A. K. Darmadi, D. A.
Dewi, et al., A mixture of piper leaves extracts and rhizobacteria for sustainable plant growth
promotion and bio-control of blast pathogen of organic bali rice, Sustainability, 12 (2020), 8490.
https://doi.org/10.3390/su12208490

3. M. E. Jarroudi, H. Karjoun, L. Kouadio, M. E. Jarroudi, Mathematical modelling of non-local spore
dispersion of wind-borne pathogens causing fungal diseases, Appl. Math. Comput., 376 (2020), 1–
11.https://doi.org/10.1016/j.amc.2020.125107

4. B. Hau, C. J. de Vallavieille-Pope, Wind-dispersed diseases, In: The epidemiology of plant
diseases, Netherlands: Springer, 2006.

5. S. Kirtphaiboon, U. Humphries, A. Khan, A. Yusuf, Model of rice blast disease
under tropical climate conditions, Chaos Soliton. Fract., 143 (2021), 1–8.
https://doi.org/10.1016/j.chaos.2020.110530

6. A. S. Kapoor, R. Prasad, G. Sood, Forecasting of rice blast in Kangra district of Himachal Pradesh,
Indian Phytopathol., 57 (2004), 440–445.

7. W. Li, J. Ji, L. Huang, Dynamics of a controlled discontinuous computer worm system, Proc. Amer.
Math. Soc., 148 (2020), 4389–4403. https://doi.org/10.1090/proc/15095

8. W. Li, J. Ji, L. Huang, Z. Guo, Global dynamics of a controlled discontinuous
diffusive SIR epidemic system, Appl. Math. Lett., 121 (2021), 107420.
https://doi.org/10.1016/j.aml.2021.107420

9. S. Tabonglek, U. W. Humphries, A. Khan, Mathematical model for rice blast disease
caused by spore dispersion affected from climate factors, Symmetry, 14 (2022), 1131.
https://doi.org/10.3390/sym14061131

10. J. B. Burie, A. Calonnec, M. Langlais, Modeling of the invasion of a fungal disease over a vineyard,
Model. Simu. Sci. Eng. Tec., 2 (2008), 11–21. https://doi.org/10.1007/978-0-8176-4556-4 2

11. C. J. Willmott, S. G. Ackleson, R. E. Davis, J. J. Feddema, K. M. Klink, D. R. Legates, et al.,
Statistics for the evaluation and comparison of models, J. Geophys. Res. Oceans, 90 (1985), 8995–
9005. https://doi.org/10.1029/JC090iC05p08995

12. M. H. Ali, I. Abustan, A new novel index for evaluating model performance, J. Nat. Resour. Dev.,
4 (2021), 1–9. https://doi.org/10.5027/jnrd.v4i0.01

13. F. van den Bosch, J. A. J. Metz, J. C. Zadoks, Pandemics of focal plant disease, a model,
Phytopathology, 89 (1999), 495–505. https://doi.org/10.1094/PHYTO.1999.89.6.495

AIMS Mathematics Volume 8, Issue 1, 2419–2434.

http://dx.doi.org/https://doi.org/10.1094/PHI-I-2007-0313-07
http://dx.doi.org/https://doi.org/10.3390/su12208490
http://dx.doi.org/https://doi.org/10.1016/j.amc.2020.125107
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2020.110530
http://dx.doi.org/https://doi.org/10.1090/proc/15095
http://dx.doi.org/https://doi.org/10.1016/j.aml.2021.107420
http://dx.doi.org/https://doi.org/10.3390/sym14061131
http://dx.doi.org/https://doi.org/10.1007/978-0-8176-4556-4_2
http://dx.doi.org/https://doi.org/10.1029/JC090iC05p08995
http://dx.doi.org/https://doi.org/10.5027/jnrd.v4i0.01
http://dx.doi.org/https://doi.org/10.1094/PHYTO.1999.89.6.495


2434

14. S. Lee, C. Masclaux-Daubresse, Current understanding of leaf senescence in rice, Int. J. Mol. Sci.,
22 (2021), 1–19. https://doi.org/10.3390/ijms22094515

15. S. Bregaglio, P. Titone, G. Cappelli, L. Tamborini, G. Mongiano, R. Confalonieri, Coupling a
generic model to the WARM rice simulator to assess leaf and panicle blast impact in a temperature
climate, Eur. J. Agron., 76 (2016), 107–117. https://doi.org/10.1016/j.eja.2016.02.009

16. T. Gilet, L. Bourouiba, Fluid fragmentation shapes rain-induced foliar disease transmission, J. Roy.
Soc. Interface, 12 (2015), 1–12. https://doi.org/10.1098/rsif.2014.1092

17. O. Singh, J. Bathula, D. K. Singh, Rice blast modeling and forecasting, Int. J. Chem. Stud., 7
(2019), 2788–2799.

18. S. Savary, A. Nelson, L. Willocquet, I. Pangga, J. Aunario, Modeling and
mapping potential epidemics of rice disease globally, Crop Prot., 34 (2012), 6–17.
https://doi.org/10.1016/j.cropro.2011.11.009

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 1, 2419–2434.

http://dx.doi.org/https://doi.org/10.3390/ijms22094515
http://dx.doi.org/https://doi.org/10.1016/j.eja.2016.02.009
http://dx.doi.org/https://doi.org/10.1098/rsif.2014.1092
http://dx.doi.org/https://doi.org/10.1016/j.cropro.2011.11.009
http://creativecommons.org/licenses/by/4.0

	Introduction
	Methodology
	Disease severity of rice blast
	Model extension
	Numerical solutions
	Data
	Environmental data
	Disease severity data
	Parameters data and initial conditions

	Model evaluation

	Results
	Densities of healthy host, latent, infectious, removed, and spore
	Percent disease severity
	Adjusted parameter

	Discussions
	Conclusions

