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Abstract: Recently, Chen et al. [3] investigated the precise large deviations of aggregate claims in
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1. Introduction

It is well known that the precise large deviations with applications in finance and insurance
have attracted much attention from many researchers. See, e.g., Cline and Hsing [5], Klüppelberg
and Mikosch [12], Mikosch and Nagaev [19], Tang et al. [24], Ng et al. [20], Konstantinides and
Loukissas [11], Loukissas [17], Lu et al. [18] and Jiang et al. [9], just to name a few in this study. The
above-referenced results hold under the independence assumption, which appears far too unrealistic
in practice and then considerably limits the usefulness of the obtained results. More contributions in
risk theory have imposed various dependence structures in investigations of precise large deviations
and other risk-related topics. The readers are referred to Kass and Tang [10], Tang [23], Wang and
Wang [27], Liu [14], Chen et al. [4], Wang and Cheng [28], Yang and Wang [29], He et al. [8], Wang
and Chen [26] and many others. Especially in risk models, the dependence structures between the
claim size and its waiting time were considered by Li et al. [13], Chen and Yuen [2], Shen et al. [22],
Liu et al. [16], Gao et al. [7] and references therein.

Following the earlier works of this study, we first introduce the renewal risk model with the
assumptions as below.
Assumption H1. The claim sizes {Xi, i ≥ 1} form a sequence of nonnegative, independent and
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identically distributed (i.i.d) random variables (r.v.s) with the common distribution F.
Assumption H2. The claim inter-arrival times {θi, i ≥ 1} form another sequence of nonnegative and
i.i.d. r.v.s with the common distribution G and finite mean λ−1. Denote the arrival times of claims by
τn =

∑n
i=1 θi, n ≥ 1, which constitute the renewal counting process

N(t) = sup{n ≥ 1 : τn ≤ t}, t ≥ 0,

with a finite renewal function λ(t) = EN(t) such that λ(t)→ ∞ and λ(t)/λt → 1 as t → ∞.
Assumption H3. Assume that {Xi, i ≥ 1} and {θi, i ≥ 1} are mutually independent.

In this way, the aggregate amount of claims accumulated up to time t ≥ 0 is a random sum of the
form

S (t) =

N(t)∑
i=1

Xi, (1.1)

where, and henceforth, a summation over an empty index set is 0.
A recent trend in risk theory is to introduce various dependence structures to risk models. So, now

we present some dependence structures, among which the widely upper orthant dependence structure
was proposed by Wang et al. [25]. Say that r.v.s {ξi, i ≥ 1} are widely upper orthant dependent (WUOD),
if there exists a sequence of finite and positive numbers {gU(n), n ≥ 1} such that, for each n ≥ 1 and for
all xi ∈ (−∞,∞), 1 ≤ i ≤ n,

P

 n⋂
i=1

{
ξi > xi

} ≤ gU(n)
n∏

i=1

P(ξi > xi).

Adopting the term of Liu et al. [15], say that {ξi, i ≥ 1} are upper-tail asymptotically independent
(UTAI), if P(ξi > x) > 0 for all x ∈ (−∞,∞), i ≥ 1 and

lim
min{xi,x j}→∞

P
(
ξi > xi|ξ j > x j

)
= 0 for all 1 ≤ i , j < ∞.

He et al. [8] initiated a dependence structure among r.v.s {ξi, i ≥ 1} such that, for any γ > 0,

lim
n→∞

sup
x≥γn

sup
1≤i< j≤n

xP(ξi > x|ξ j > x) = 0. (1.2)

Remark that the UTAI structure can properly cover the WUOD structure; see Example 3.1 of Liu
et al. [15]. And, the dependence structure defined by the relation (1.2) is a special case of the UTAI
structure. In fact, He et al. [8] showed that, if {Xi, i ≥ 1} are WUOD, then the relation (1.2) follows
from

lim
x→∞

xF(x) = 0,

which is slightly weaker than that the r.v. has a finite mean. In doing so, the dependence structure
defined by (1.2) at least properly covers the WUOD r.v.s with finite means. See an example of Liu
et al. [16], indicating that there exist WUOD r.v.s such that (1.2) holds, while two examples given by
He et al. [8] show that there exist UTAI r.v.s satisfying (1.2), that are not WUOD.
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Practitioners in non-life insurance are interested in distributions with a heavy tail, which is formally
adopted to model the large claims caused by extremal events. Finally, in the section, we give some
heavy-tailed distribution classes. For a proper distribution V , we denote its tail by V(x) = 1−V(x) and
its upper Matuszewska index by

J+
V = − lim

y→∞

log V∗(y)
log y

with V∗(y) = lim inf
x→∞

V(xy)

V(x)
, y > 1.

Say that a distribution V on [0,∞) belongs to the long-tailed class, denoted by V ∈ L , if, for any y > 0,

lim
x→∞

V(x + y)

V(x)
= 1;

it belongs to the dominated variation class, denoted by V ∈ D , if, for any 0 < y < 1,

V
∗
(y) < ∞,

where V
∗
(y) = lim supx→∞ V(xy)/V(x); it belongs to the consistent variation class, denoted by V ∈ C ,

if
lim
y↘1

V∗(y) = 1, or, equivalently, lim
y↗1

V
∗
(y) = 1.

More generally, we say that a distribution V on (−∞,∞) belongs to a distribution class if V(x)1{x≥0}

belongs to the class, where 1A denotes the indicator function of a set A. Note that the class C is an
important subclass of L ∩D . For more details on heavy-tailed distributions and their applications, we
refer to Bingham et al. [1] and Embrechts et al. [6].

Based on the above-mentioned preparatory work, in the present paper, we make an effort to relax the
independence assumptions imposed in the renewal risk model, and further study the precise deviations
of the aggregate amount of claims described by (1.1) with various dependence structures.

The rest of this paper is organized as follows: Section 2 states the main results, Section 3 presents
some lemmas and Section 4 proves the main results.

2. Motivation and main results

All limit relationships hereafter are taken as t → ∞ unless mentioned otherwise. For two
positive functions a(·) and b(·), we write a(t) . b(t) if lim sup a(t)/b(t) ≤ 1, write a(t) & b(t) if
lim inf a(t)/b(t) ≥ 1, write a(t) ∼ b(t) if both and write a(t) = o(1)b(t) if lim a(t)/b(t) = 0.

As was stated in Section 1, an increasing number of researchers have paid attentions to the precise
large deviations and their applications. More recently, Chen et al. [3] considered the renewal risk model
with arbitrary dependence between the claim size X and its waiting time θ, and obtained a precise large
deviation formula of the aggregate amount of claims, as follows:
Theorem A. Consider the aggregate claims described by (1.1) in the renewal risk model with
Assumptions H1 and H2. If F ∈ C and G(x) = o(1)F(x) as x → ∞, then, for any 0 < γ < Γ < ∞, it
holds uniformly for all x ∈ [γt,Γt] that

P(S (t) − µλt > x) ∼ λtF(x),
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namely,

lim
t→∞

sup
x∈[γt,Γt]

∣∣∣∣∣∣P(S (t) − µλt > x)

λtF(x)
− 1

∣∣∣∣∣∣ = 0.

It is worth noting that, because of the arbitrary dependence between X and θ, we can get rid of the
independence assumption in Assumption H3 and some specific dependence structures, such as the size
dependence originated by Chen and Yuen [2]. Motivated by Chen et al. [3], we will extend their
result to a nonstandard renewal risk model with various dependence structures satisfying the following
assumptions.

Assumption H∗1. The claim sizes {Xi, i ≥ 1} are nonnegative r.v.s with the common distribution F, and
they satisfy the dependence structure defined by (1.2).
Assumption H∗∗1 . The claim sizes {Xi, i ≥ 1} are nonnegative and WUOD r.v.s with the common
distribution F, and they satisfy

lim
n→∞

n−1 log gU(n) = 0. (2.1)

Assumption H∗2. The claim inter-arrival times {θi, i ≥ 1} are nonnegative r.v.s with the common
distribution G and finite mean λ−1.
Assumption H∗3. For any i ≥ 1, the claim size Xi and its waiting time θi are arbitrarily dependent.

Obviously, Assumptions H∗1 and H∗∗1 impose two specific dependence structures on the claim
sizes to weaken the independence assumption in Assumption H1; Assumption H∗2 indicates that no
assumption is made on the dependence structure of claim inter-arrival times, namely, that the claim
inter-arrival times are allowed to be arbitrarily dependent in order to drop the independence assumption
in Assumption H2; Assumption H∗3 implies that, for any fixed i ≥ 1, neither independence, nor
a specific dependence structure, is taken between Xi and θi, which means that we can avoid the
independence assumption and a specific dependence structure between both. As for the relation (2.1) in
Assumption H∗∗1 , see an example given by Liu et al. [16], which illustrates that there exists a sequence
of WUOD r.v.s such that the relation (2.1) holds.

The main results of this paper are given below, where the first theorem provides an asymptotic lower
bound of the precise large deviations of aggregate claims in a nonstandard renewal risk model.

Theorem 2.1. Consider the aggregate claims described by (1.1) in the nonstandard renewal risk model
with Assumptions H∗1– H∗3. If F ∈ C and G(x) = o(1)F(x) as x → ∞, then, for any 0 < γ < Γ < ∞, it
holds uniformly for all x ∈ [γt,Γt] that

P (S (t) > x) & λtF(x), (2.2)

namely,

lim inf
t→∞

inf
x∈[γt,Γt]

P(S (t) > x)

λtF(x)
≥ 1.

The second theorem gives an asymptotic upper bound of the precise large deviations of aggregate
claims with some conditions that are slightly stronger than those in the first theorem.
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Theorem 2.2. Under the same conditions of Theorem 2.1 except Assumption H∗1, which is replaced by
H∗∗1 , it still holds uniformly for all x ∈ [γt,Γt] that

P (S (t) − µλt > x) . λtF(x), (2.3)

namely,

lim sup
t→∞

sup
x∈[γt,Γt]

P (S (t) − µλt > x)

λtF(x)
≤ 1.

3. Some lemmas

To prove the main results of this paper, we now present some lemmas, among which the first one is
due to Lemma 2.5 of Liu et al. [16].

Lemma 3.1. Let {ξi, i ≥ 1} be a sequence of nonnegative and WUOD r.v.s with the common distribution
V ∈ C and mean µ. If the relation (2.1) holds, then, for any γ > 0, it holds uniformly for all x ≥ γn
that, as n→ ∞,

P

 n∑
i=1

ξi − nµ > x

 . nV(x),

namely,

lim sup
n→∞

sup
x≥γn

P
(∑n

i=1 ξi − nµ > x
)

nV(x)
≤ 1.

In the following lemma, we extend Lemma 3.4 of Chen et al. [3] to the case in which no assumption
is made on the dependence structure of underlying r.v.s.

Lemma 3.2. Let {ξi, i ≥ 1} be a sequence of real-valued r.v.s with the generic r.v. ξ and mean 0. If
P(ξ > x) = o(1)V(x) for some V ∈ C , then, for any γ > 0, it holds uniformly for all x ≥ γn that, as
n→ ∞,

P

 n∑
i=1

ξi > x

 = o(1)nV(x),

namely,

lim
n→∞

sup
x≥γn

P
(∑n

i=1 ξi > x
)

nV(x)
= 0.

Proof. Following the ideas in the proof of Lemma 3.4 of [3], we prove the lemma. Set ξ+ = max{0, ξ}.
Clearly,

P(ξ+ > x) ∼ P(ξ > x),

which, along with P(ξ > x) = o(1)V(x), implies that, for an arbitrarily fixed ε > 0, there exists a
sufficiently large x such that

P(ξ+ > x) ≤ εV(x).
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Introduce a r.v. ξ∗ with its tail distribution as

V∗(x) := max{P(ξ+ > x), εV(x)}.

It is easy to see that
V∗(x) ∼ εV(x) and ξ+ ≤st ξ

∗,

where ξ+ ≤st ξ
∗ means that, for all increasing functions g : (−∞,∞) 7→ (−∞,∞), Eg(ξ+) ≤ Eg(ξ∗),

provided the expectations Eg(ξ+) and Eg(ξ∗) exist and are finite. See Definition 3.2.1 of [21].
Now we construct a sequence of WUOD r.v.s {ξ∗i , i ≥ 1}with the generic r.v. ξ∗ such that (2.1) holds.

In fact, see an example given by [16], which illustrates that there exists a sequence of WUOD r.v.s
satisfying (2.1), and then ensures that the construction is well-grounded. Consider that ξ∗ stochastically
decreases to ξ as ε ↓ 0; one knows that, for any γ > 0, there exists a sufficiently small ε > 0 such that

0 = Eξ ≤ Eξ∗ ≤
γ

2
,

and then, for all x ≥ γn,
x − nEξ∗ ≥

γn
2
.

Hence, by Lemma 3.1, it holds uniformly for all x ≥ γn that, as n→ ∞,

P

 n∑
i=1

ξi > x

 ≤ P

 n∑
i=1

ξ+
i > x


≤ P

 n∑
i=1

(ξ∗i − Eξ∗) > x − nEξ∗


. nV∗(x − nEξ∗)

≤ nV∗
(
x
(
1 −

Eξ∗

γ

))
,

which yields that

lim sup
n→∞

sup
x≥γn

P
(∑n

i=1 ξi > x
)

nV(x)
≤ lim sup

x→∞

V∗
(
x
(
1 − Eξ∗

γ

))
V(x)

= ε lim sup
x→∞

V
(
x
(
1 − Eξ∗

γ

))
V(x)

. (3.1)

Thus, by V ∈ C ⊂ D , the last lim sup in (3.1) is finite, and then the right-hand side of (3.1) tends to 0
as ε ↓ 0. This completes the proof of Lemma 3.2. �

By the symmetric derivation of Lemma 3.2, we put forward a lemma below which is the extended
version of Corollary 3.1 of [3].

Lemma 3.3. Let the conditions of {ξi, i ≥ 1} in Lemma 3.2 be true and P(|ξ| > x) = o(1)V(x) for some
V ∈ C ; then, for any γ > 0, it holds uniformly for all x ≥ γn that, as n→ ∞,

P


∣∣∣∣∣∣∣

n∑
i=1

ξi

∣∣∣∣∣∣∣ > x

 = o(1)nV(x).
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4. Proof of main results

Proof of Theorem 2.1. For any, but small, 0 < δ < 1, we have

P(S (t) > x) ≥ P

(1−δ)λt∑
i=1

Xi > x, N(t) ≥ (1 − δ)λt


≥ P

(1−δ)λt∑
i=1

Xi > x

 − P (N(t) < (1 − δ)λt)

:= I1(x, t) − I2(t). (4.1)

For I1(x, t), we obtain by (1.2) that, uniformly for all x ≥ γt,

I1(x, t) ≥
(1−δ)λt∑

i=1

P (Xi > x) −
∑

1≤i< j≤(1−δ)λt

P
(
Xi > x, X j > x

)
≥ (1 − δ)λtF(x) − x−1

∑
1≤i< j≤(1−δ)λt

xP(Xi > x|X j > x)P(X j > x)

= (1 − δ)λtF(x) − o(1)
λt
x

(1 + δ)2λtF(x),

which, along with the arbitrariness of 0 < δ < 1, implies that, uniformly for all x ≥ γt,

I1(x, t) & λtF(x). (4.2)

For I2(t), by Lemma 3.2 and F ∈ C ⊂ D , it holds uniformly for all x ≤ Γt that

I2(t) ≤ P

(1−δ)λt∑
i=1

θi > t


= P

(1−δ)λt∑
i=1

(
θi −

1
λ

)
> δt


= o(1)λtF (δt)

= o(1)λtF
(
δx
Γ

)
= o(1)λtF(x). (4.3)

Hence, we substitute (4.2) and (4.3) into (4.1) to prove that the relation (2.2) holds uniformly for all
x ∈ [γt,Γt]. �

Proof of Theorem 2.2. For any, but small, 0 < δ < 1, we have

P (S (t) − µλt > x) ≤ P

(1+δ)λt∑
i=1

Xi − µλt > x, N(t) ≤ (1 + δ)λt


+P (N(t) > (1 + δ)λt)
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:= I3(x, t) + I4(t). (4.4)

For I3(x, t), we take a small δ such that γ − δµλ > 0, and we use Lemma 3.1 with n = b(1 + δ)λtc to
show that, uniformly for all x ≥ γt,

I3(x, t) ≤ P

b(1+δ)λtc∑
i=1

Xi − µb(1 + δ)λtc > x + µλt − µb(1 + δ)λtc


. b(1 + δ)λtcF (x + µλt − µb(1 + δ)λtc)

≤ (1 + δ)λtF
(
x
(
1 −

δµλ

γ

))
, (4.5)

where b(1 + δ)λtc denotes the integer part of a real number (1 + δ)λt. For I4(t), by going along the same
lines of the proof of I2(t) with some slight modifications, it holds uniformly for all x ≤ Γt that

I4(t) ≤ P

(1+δ)λt∑
i=1

θi ≤ t


= P

(1+δ)λt∑
i=1

(
θi −

1
λ

)
≤ −δt


= P


∣∣∣∣∣∣∣
(1+δ)λt∑

i=1

(
θi −

1
λ

)∣∣∣∣∣∣∣ ≥ δt


= o(1)λtF(δt)
= o(1)λtF(x), (4.6)

where the second last step is due to Lemma 3.3. Then, by (4.4)–(4.6), F ∈ C ⊂ D and the arbitrariness
of 0 < δ < 1, we obtain the uniformity of the relation (2.3) for all x ∈ [γt,Γt]. �
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6. P. Embrechts, C. Klüppelberg, T. Mikosch, Modelling extremal events: for insurance and finance,
Berlin: Springer, 1997. http://dx.doi.org/10.1007/978-3-642-33483-2

7. Q. Gao, X. Liu, C. Chai, Asymptotic bounds for precise large deviations in a compound
risk model under dependence structures, J. Math. Inequal., 14 (2020), 1067–1082.
http://dx.doi.org/10.7153/jmi-2020-14-69

8. W. He, D. Cheng, Y. Wang, Asymptotic lower bounds of precise large deviations with
nonnegative and dependent random variables, Stat. Probabil. Lett., 83 (2013), 331–338.
http://dx.doi.org/10.1016/j.spl.2012.09.019

9. T. Jiang, S. Cui, R. Ming, Large deviations for the stochastic present value of
aggregate claims in the renewal risk model, Stat. Probabil. Lett., 101 (2015), 83–91.
http://dx.doi.org/10.1016/j.spl.2015.02.020

10. R. Kaas, Q. Tang, A large deviation result for aggregate claims with dependent claim occurencies,
Insur. Math. Econ., 36 (2005), 251–259. http://dx.doi.org/10.1016/j.insmatheco.2005.01.004

11. D. Konstantinides, F. Loukissas, Precise large deviations for sums of negatively dependent random
variables with common long-tailed distributions, Commun. Stat.-Theor. M., 40 (2011), 3663–3671.
http://dx.doi.org/10.1080/03610926.2011.581186
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