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1. Introduction

Nowadays, the subject of fractional calculus has gained much attention and importance between
the society of researchers. The existing differential equations in this theory are determined by
generalizing integer order derivatives to arbitrary order ones. For the sake of the effective memory of
fractional derivation operator, such classes of equations have been widely utilized to analyze and
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design many physical phenomena including fractional model of Langevin equation [1, 2], impulsive
integro-differentials [3], thermostat model [4, 5], modeling of Syphilis [6], fractional structure of
pantograph system [7], sequential fractional model [8, 9], fractional modeling based on
diseases [10-14], p-Laplacian models [15-17], mneural fractional network models [18],
fractal-fractional modeling [19-22], etc.

With the complexity of the processes and dynamic behavior of systems, researchers were forced
to enter a new field of fractional calculus, where a wide range of models can be studied in different
piecewise continuous time periods. In fact, in variable order fractional calculus, fractional variable
orders made it easy for researchers to study the behavior of systems in terms of different times. The
fundamental idea of variable order fractional calculus is that we take the number 7 from the constant-
order fractional calculus as a function 7(.). Although this difference seems simple, the variable order
operator can explain and model several physical and natural phenomena in comparison to constant
order models. In recent years, some newly-published papers deal with this topic; see e.g., [23-31].

Along with these notions, in recent decades, we see some models in which there are impulsive
boundary conditions [32—-37]. Specifically, in [38], Benchohra and Seba studied an impulsive model
of an IVP having the form

‘D'x(t) = Y(t,x), foreach, re [O,M], t # My, 9 =1,...,n,
Axli=pr, = Py(x(My)), F=1,...,n,
x(0) = xo,

in which ¥, @, are two given functions and “D7 illustrates the Caputo derivative of constant order 7.
Inspired by [38] and motivated by the above articles, we deal with the following impulsive initial
value problems (IVP) of variable order

‘Dy’x(t) = W(t,x), fort € w:=[0,M], M > 1, t# My, 9 =1,...,n, (1.1)
Axliep, = Py(x(My)), ¢ =1,...,n, (1.2)
x(0) = xo, (1.3)
where 7 : @w = [0,M] — (0, 1] is the variable order of the fractional derivative, ¥ : w X R —
R, ®3 : R - R, ¢ = 1,...,n are defined continuous functions and CD(T)(f) is the Caputo fractional

derivative (CFD) of variable order 7(¢) for function x(¢) defined by (see, for example, [39—41])

-0
00xn = [ L2 (o), (1.4)
P o 11 —7(2))
for t > p;, and the Riemann-Liouville integral (RLFI) of variable order 7(¢) for x is defined by
! t _ Q)T(f)—l
roxn = [ 22 oo, 1> pi, (1.5)
fi PENCD) :

where I'(.) represents the Gamma function defined by
L(x(1) = f o""'e™0dp,
0
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and, 0 = My < My < -+ < M, < Myyy = M, Axli—p, = xX(M5) — x(My), x(M) = limy,_,o+ x(My + h)
and x(My) = lim,_,o- x(My + h) stand for the right and left limits of x(¢) at t = My, ¢ = 1,...,n. Note
that Since variable order impulsive BVPs have complicated structure, so there exist limited studies in
this regard, and accordingly, this research completes the basic gaps in this direction.

The structure of this research is as follows: First, we define some functional space in Section 2,
and then collect some useful concepts and properties. An equivalent constant order impulsive model
is derived from the given variable order impulsive IVP in Section 3. Also, in the same section, the
existence and uniqueness theorems are proved. In the next section, UH stability is reviewed and finally,
an illustrative variable order impulsive IVP is provided as an example in Section 5 to see the correctness
of the findings. The research is completed by presenting conclusion section.

2. Auxiliary notions

In this section, we list some of the definitions and propositions that are used in the following
sections.

Assume the collection of functions: PC(w,R) = {x : @ — R,x € C(My, My,1],R), there exist
x(My), x(My) with x(My) = x(My)}, for ¢ = 1,...,n}. Then PC(w,R) is a Banach space under the
sup-norm

llxll = sup{lx(®)| : 1 € w}.

Also, we denote by PC!(w, R), the space PC'(w,R) = {x € PC(w,R), x € C'((My, My, ],R), there
exist X' (M), x'(My) with x'(M) = x'(My),9 = 1,...,n}.

It is clear that if we assume that 7(¢) is a constant function, then RLFI and CFD are reduced to the
usual Riemann-Liouville fractional integral IT and the Caputo fractional derivative CDZ, respectively.

The following some important properties of DT and IT are useful for us in this research

Proposition 2.1. ( [42]) Let t1, 15 > 0, p; > 0, n € L' (p1, p2), CD;‘J] € LY(p1,p2). Then, the unique
1
solution of the following equation
cNTi —
D .n(1) =
is
n(1) = wo + wi(t = p1) + Wt = p1)* + oo + Wiy (= p)*!

and
1;1 C'D;%U(l) =n(t) + wo + wi(t = p1) + Wat — p1)* + oo + i (= 1),

withk=[t1]+1, ws €eR,3=0,1,.., k- L

Furthermore,
cyT1 JT1 —
DI () = n(o),
and
T1 J72 T2 7T _ yntmn
IpTIan(t) = I;);Ipfn(t) = IPT n(t).

Remark 2.1. ( [43]) In the general case, note that

! ! 0+12(t
1;11()1;]3()77(0 + I;;,() TZO?](Z).
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Example 2.1. ( [43]) Let

2, t€0,1]

3, te]l,4]. n(t) =2, t€[0,4].

() =1, t€[0,4], 10) = {

Simply, we see that
IR 00l # 1500,
Proposition 2.2. ( [44]) Let T € C(w, (0, 1]) and 0 <y < mine, |7(2)|; then for n € C,(@,R), where
Cy(@,R) = {n@) € C(w,R), 'n(t) € C(w,R)},

the (RLFI) I'"1(¢) exists for any t € w.
Proposition 2.3. ( [44]) If T € C(w, (0, 11), then, I'’n(t) € C(w,R) for any n € C(w,R).
Proposition 2.4. ( [45,46]) Let T € [0, 1], we have

?+1 72+ 2
<I'(t+1) < .
<Hr+D< +2

Remark 2.2. For 7 € [0, 1], according to Proposition 2.4, we get

1 1
L(t+1) = 20V2-1)

Definition 2.1. ( [27,47]) The generalized interval I C R is either an interval or {p,} or (.

The partition of the generalized interval I is a finite set P such that if every x in I is contained in
only one of them between all the generalized intervals E in P.

Let g : I — R a function, g defines a piecewise constant function with respect to partition P of I if
it admits constant values on E for every E in P.

Theorem 2.1. ( [42]) Let A be a convex set in the Banach space E and F : A — A be a continuous
and compact function. Then, ¥ has at least a fixed point in A.

Theorem 2.2. ( [48]) The variable order impulsive IVP (1.1)—(1.3) is (UH)-stable if there exists a real
number cy > 0 such that for any € > 0, and for each z € PC'(w, R) satisfying

Dz — Pt z(D)) < €, t € @, 2.1)
there exists a solution x € PC'(w,R) of IVP (1.1)—(1.3) such that

|z(t) — x(?)| < cye, t € w.
3. Existence and uniqueness of solutions

To complete the main results, some assumptions are needed:

(S1) Let P = {[My, M,],(M;, M5], (M, M3], ...(M,, M,,1]} be a partition of the interval J (with M, =
0,M,,; = T)and let 7(t) : @ — (0, 1] be a piecewise constant function with respect to # and
" = sup,., 7(?); i.e.,
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70, lft € [MO9M1]9
71, if t € (M, My],

n

T(t) = Z Tﬁlﬁ(t) =

9=0

Thns lft € (MnaMnH]’

where 0 < 7y < 7" < 1 are constants, and

Io(r) = 1, forte My, My,1],
R0, for elsewhere,

?=0,1,..,n
Now, we will give the definition of the solution to the variable order impulsive IVP (1.1)—(1.3).

Definition 3.1. x € PC(w,R) is a solution of the variable order impulsive IVP (1.1)—(1.3) if x fulfills
CD(T)Y)x(t) = Y(t, x) for each t € w/{M,, ..., M,} and the conditions

Axl[:Mﬂ = (DI'}(X(M;;)), 0 = 1’ ceen N,

and
x(0) = xo,

are satisfied.

First, we analyze the Eq (1.1) of the variable order impulsive IVP (1.1)—(1.3).
For any t € (My, My.1], 9 = 0,1, ...,n, the CFD of the variable order 7(¢) for x(¢) € C(w,R), given
by (1.4), is the sum of the CFDs of the constant-orders 7, 7y, ..., Ty, 1.€.,

M — t _
cyT(®) _ ! (I_Q) o ’ f (I_Q) i ’
D{"x(r) = j; o (o)do + ... + LT (0)do. (3.1)

Thus, according to (3.1), the Eq (1.1) of the variable order impulsive IVP (1.1)—(1.3) can be written
for any t € (My, My.1], ¥ =0, 1,...,n in the form

M@t-o™ , Ct—-0) T )
L —F(l — TO)x (0)do + ... + fﬁ;ﬂ mx (0)do = (1, x(1)). (3.2)

So, we assume that x(t) = 0 on ¢ € [0, My]/{M,, ..., My_}. Then, the Eq (1.1) of the variable order
impulsive IVP (1.1)—(1.3) is reduced to constant order impulsive equation

‘Dyix(®) =W(t, x(0), 1 € [0, Mg 1/{M, ..., My}

Proposition 3.1. Let n : @ — R be continuous. The solution of the following impulsive IVP

CD(T)’Zx(t) =n(t), for each , t € [0, My, 11/{M,, ..., My}, ¢ =0,1,...,n, (3.3)
Axli=p, = Py(x(My)), ¥ =1,...,n, (3.4)
x(0) = xo, (3.5)
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is given by
Lt — T0—1
X0 + f An(g)d@ € [MOa Ml]a
o I'(ro)
4 M, Ty1-1 791
C (M -0 -0
—J xo+ ————n(o)do + (0)d .
() = %o E;Lgl Ty e@der | r(w ———n(e)do (3.6)

9
+ ) O (x(M)),
s=1

Proof. Let x be a solution of an equivalent impulsive IVP (3.3)—(3.5).

Proposition 2.1, we get

re (Mﬁ’ Mﬂ+l]a U= 19"-an

If + € [My,M;] and by

B (t—o)!
x(t) = xo + f T(ro) ———n(o)do.
If t € (M, M,], then Proposition 2.1 implies
B . ( )T1 1
w0 = o+ [ g
= Axli=p, +x(M7) + ﬂn(@)dg
: M, (1)
M -1 t -1
3 _ (M- 0)" (t—0)"
= L(x(M])) + xo + fo TTay n(o)do + fM T n(o)do.
If t € (M,, M5], and by Proposition 2.1, we get
T—1
= o+ [ e
! t— T—1
= Axl=y, + x(M5) + " %U(Q)dg
= L(x(My)) + L(x(M)) + +fM1M d
= 2(x(My)) + Li(x(My)) + xo 5 T'(ro) n(o)do
M (M2 _ Q)-rl—l t (Z _Q)‘rz—l
- d, - do.
fM | T(r)) n(o)de + v T n(o)de

Then, if t € (My, My, ], Proposition 2.1 implies (3.6).

Conversely, assume that x solves the Eq (3.6). If t € [My, M,], then x(0) = x,. Employing the

operator ‘D’

o> WE get,

Dy x(t) = n(?).
Ifre (Mg, My,1], 9=0,1,..,
constant, we find
Dyl x(t) = n(?).
Also, it is easy to show that

Ax|l=M,9 =

AIMS Mathematics

Oy(x(My)), 9 =1,...n

n and using Proposition 2.1 and the fact that “D!C = 0 where C is a
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Now, we present our first result, assuming that the following assumptions are satisfied:

(S2) Let 'Y : w X R X R — R be a continuous function (0 < y < min, |7(¢)|), and there exists a
constant D; > 0 such that:
(¢, x1) — (¢, x2)| < Dylx; — x5, forany x;, x, e Rand t € @.

(S3) Let 9 =1, ...,n, for x € R and ¢ € @, there exists D, > 0 such that,
|Dy(x(2))] < Do|x(1)|.

Theorem 3.1. Let the conditions (S1)—(S3) be satisfied, and

[(I’l + 1)D1MT*_7
(I =)

Then, the variable order impulsive IVP (1.1)—(1.3) possesses a solution on PC(w,R).

+ I’lDz] < 1. (3.7)

Proof. Construct the operator
S : PC(w,R) - PC(w,R),

as follows o 1
’ (Mv - )Ts_l_
Sx(t) = xo + Z f —Q‘I’(Q, x(0))dp

0<M,<t ¥ Ms-1 [(7-1)
t ([ _ Q)‘r,gfl i
+ fM ﬁ W‘P(Q, x(0))do +0<%;<t O (x(M)). (3.8)

The operator S defined in (3.8) is well defined from the continuity of function 7V and from the
properties of fractional integrals.

Let the set
Br = {x € PC(w,R), ||x|]| <R},
where
R> |x0|+‘P*((Z:%AfIT:) ,
R
and

P* = sup [¥(1, 0)].

tew

Clearly B is nonempty, closed, convex and bounded. Now, we shall show that § satisfies the
assumption of Theorem 2.1. The proof will be given in three steps:
Step 1: Claim: S (Bg) C (Bg).

For x € By, we get

ISx(®)] < |xol

M Ms_ Te—1—1
- f M =" w6, x(0)) - W0, O)ldo

oG Im T(Ee)

AIMS Mathematics Volume 8, Issue 1, 775-791.
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Ms (M — )77 " (t—o)!
e 3 [ . oue+ [ L2 v o) - Wio, O
M

oG dm T my, T(79)
! t— T9—1
D 0,00+ " 1,(x(M )
My (Tﬂ) O0<M <t
M Mg— Te-1—1 ~ M Ms'_ Te_1—1
< lwl+ Y f T oo + ¥+ Y f W g
0<M,<t ¥ Ms- (T5-1) 0<M <t ¥ M1 (T5-1)
-0 o [ -0 .
+ f T (Dilx(e)) + ¥ f S do+ Y Dalx(M))|
My (79) My () 0<M <t
(n+ DM M™! L+ DHMT
< |xol + Xl + ¥ (———=——) + nDyllx]|
’ (1-)I) (2(\5_ ) + D>
(n+1)M* (n+1)DM™™
< x| + P* + nD;, |||x]|
’ (2(x/§— 1)) e !

< R

Step 2: Claim: S is continuous.
Let’s consider (x,) as a sequence converging to x in PC(w, R). Then,

(S x) = (S )| = 0.

For t € w, we have

(S x,)(®) = (S X)(D)]

Ms (M, — Q)Ts—l—l
- o; fM Ty He o) = Tle: xeide
T9—1
- Mﬂ( F(Q)) ¥(o, x,(0)) — W, X(@ldo + D 1®@,(x,(M;)) = D (x(M;))]

O<M<t

IA

M, —om C—o
AT <t‘fﬁv/[ l“( T,1) 0 " (D1lxa(0) — x(0))do + Lﬁ W@ Y(Dy|x.(0) — x(0)])

1D, (M) = D (e(M))]

O<M, <t

(n+ DD MM
(I =)

llxn = x| + Z D (x, (M) = Dy(x(M))]

O<M <t

(n+ 1)DM*™™ ~ ~
— [l — Xl + |D(x, (M) — Dy (x(M))].
[ (I =I'(r*) ] 0<ZM:‘«
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Since @, is continuous, then
(S x,) = (SO — 0 as n— oo,

Then, S is continuous.
Step 3: Claim: S is compact.

By Step 1, we have ||S (x)|| < R for each x € Bg, which gives the boundedness of S (Bg). Now we
will show that S (Bg) is equicontinuous.

For t,,t, € w, t; < t, and x € Bg, estimate

(S X)(12) = (S x)(11)]

fo (2 =)™ = (1 = )" ¥(o, x(0))ldo

= T
s f =0y e s+ D D))
< s | (-0 = (1 - 0 0, x(0)) - W0, 0)ldo
*r(m) fo “ (=0 = (11 = )" )¥(o, O)do

f (s — 0" [¥(0, %(0)) — (0, 0)ldo + —— f (1 - 0" [¥(0, O)ldo

F( 19) F( )

£ IDAx(M))

0<M<tr—t
< rm) (62 =" = (11 =) )(DiIx(@))de
e [ (=0 =0
" - o\l v ftz _ 7ol -
e f ¢tz =@ (Dilx(@Mg + s | (2 -0) dg+o<éz_” ID2(x(M;))]
< r(m) H(CEIN 1)(D]|x<g)|>dg+r( = | (-0 - -0y o
b f -0 = tz(tz—Q)”_ldQ+ S D))
@) J, L) J, o :
(RSN 1D AR Sl S (P D L
D £ - =
e e R o et

AIMS Mathematics Volume 8, Issue 1, 775-791.
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1 L' -t P B -n)” B}
+——(D Dor(x(M
ERIAL = R O<M;_ﬁ| 2(X(M))]

- ‘r,g T9— lP* Ty Ty
L I )( ) (e )
l=y _ ¢ 1=y
s O - e 3 IO

0<M<tr—t

Assuming t; — t,, the right-hand side converges to zero. Hence |(S x)(#,) — (S x)(#;)] — 0. It implies
that S (Bg) is equicontinuous.

Thus, by Theorem (2.1) the variable order impulsive IVP (1.1)—(1.3) possesses a solution in Bg.
Since Br € PC(w, R), the claim of Theorem (3.1) is verified.

Introduce the following assumption:

(S4) For s = 1,...,n, there exists D3 > 0 such that for any x,y € R and 7 € @, |D,(x(¢)) — O,(y(?))| <
Ds|x(2) = y(0)l .
Theorem 3.2. Let (S1), (S2), (54), and
(n+ 1)D;M™
e
Then, the variable order impulsive IVP (1.1)—(1.3) possesses a solution uniquely on PC(w, R).

+ nD3] <1. (3.9)

Proof. Fort € w and x € PC(w, R), we have

(S x)(2) = (Sy)()

) fM M %I‘P(Q, X(0)) - (o, ¥(0))ido
M %I‘P(Q, x(©0)) — W(o. y(0)ldo + 0; By(x(M;) = BL(M))
< 3 [ B %wm@) ~ Y(@))do
L[ e DI @D+ S Dilx() — )
My Ty 0<M, <t
o +(11)l_)1),ﬂ)/§(7-]‘)/[1 + nD3le =yl
[(”(;i)slr](‘i:;_y + D3l =yl

Accordingly, by (3.9), the operator S has a contraction structure. Thus, S involves a fixed point
uniquely which is the unique solution of the variable order impulsive IVP (1.1)—(1.3).

AIMS Mathematics Volume 8, Issue 1, 775-791.
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4. Ulam-Hyers stability

we will discuss here the Ulam-Hyers stability for solutions of the supposed variable order impulsive
IVP (1.1)—(1.3).

Theorem 4.1. Consider the hypotheses of Theorem 3.2. Then, the variable order impulsive IVP (1.1)—
(1.3) is (UH) stable.

Proof. Assume z(¢) satisfies the inequality (2.1); then the integral inequality

(M, — o)™ (t— o)
'Z(t)_Z”O;q f Ve dende - f Ty Vexende

2 e s gy

holds.
Let x be a the unique solution of the variable order impulsive IVP (1.1)-(1.3). According to
Proposition 3.1, x is given by

M Te_1—1 4 — 7ol
x = xo+Z [ O g+ [
1 My

M, ['(75-1) ['(ty)

9

+ ) DM, 1€ (Mg, Myl #=1,..n. (4.1)
s=1
Lett € (My, My,1], 9 =1,...,n. Then,
|2(2) — x(1)|
M Te1—1
C (M _Q) !
= |z(t) — xo — —— Yo, x(0))d,
SORES P [ e e

! _ A\l
- [ EEvexendo - ) o)
My

[(7y) 0<M, <t

< fwo-ar 3 R R A
- 3 o]+ 3 | M Mo, 201 - o, oo
A; O o, o) - e (oo + b
< e% ) [ OO o) - o

AIMS Mathematics Volume 8, Issue 1, 775-791.
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! — 71
+]‘Q_QL_gnDM@»wwm@w-Z]Dmm—xw'

vy  L(T9) 0<M,<t

IA

) M . [(n + DDy MY M
2V2-1) (1 -=yI()

. M" N [(n + 1)D;M™
2(V2-1) (1 =)

+nD; Iz - x|

IA

+nDs |z = .

Then,

n+ 1)D/M" MT
fe— a1 - (LD 2 ) < e
(1 =) 2(V2-1)
Thus, we obtain
M
lz(r) — x(®)] < [lz = x[| < - €
(n+1)DyM7™
2(V2- 1)[1 - ( (—pray T ”D3)]

.= CyeE.

Consequently by Theorem 2.2, the variable order impulsive IVP (1.1)—(1.3) is (UH) stable.

5. Example

Consider the variable order impulsive I[VP

e—St

‘D x() = , tew = w U, (5.1)
5™ + 5)(1 + |x(1)))
-
x —_
Axl_y = l((—z)l)l_ (5.2)
10 + [(x(5 )l
x(0) = xo, (5.3)
where
1 1
M0:O9 Ml = = M2_M: , n= 19 w = [0’ 1]9 TD'O:[O, 5]’ w1 :[59 1]’
and 1
5, [ € @y,
)
(1) { %’ te @, 5.4
Let
e—3z
Y, x) = = , (t,x) e w xR.

£ +5)1 + [x@0))
Foreacht e wand x,y € R,

; 1
13|, x) — (¢, < ——lx—-y.
[¥(z, x) —¥(t, )l e+5|x Vl

AIMS Mathematics
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Thus, assumption (S2) is satisfied with D; = -= and y = 1.

Let
|x]

D(x) = T

, xeR
+ |x]

For x,y € [0, o0), we have

1
|Dy(x) — D(y) < §|x -yl

Then, the assumption (S4) holds with D; = %

We shall check that assumption (3.9) is fulfilled with M = 1, n = 1,y =
7 = 2. Indeed,

l)] =L 1)3 = % and

1
3 e+5°

(n+ DD M™™
[ - tnD 3] T 2, A3
(I =pI(r*) s(e+35)I()
Hence, assumption (3.9) is satisfied.

By Theorem 3.2, the variable order impulsive IVP (5.1)—(5.3) has a unique solution on PC(w, R).
According to Theorem 4.1, the variable order impulsive IVP (5.1)—(5.3) is (UH) stable.

~ (03171 < 1.

6. Conclusions

A variable order impulsive IVP was studied in this paper by terms of analytical properties. In more
precise, an equivalent constant order impulsive model is derived from the given variable order
impulsive IVP by using the properties of piecewise constant functions. In this direction, the existence
and uniqueness theorems were discussed via notions in functional analysis. In the following, UH
stability was checked. Lastly, an illustrative variable order impulsive IVP was provided as an example
in the sequel to see the correctness of the findings. Since variable order impulsive BVPs have
complicated structure, so there exist limited studies in this regard, and accordingly, we will extend our
studies on different impulsive BVPs (implicit, resonance, thermostat model, etc.) by changing
conditions (terminal, integral conditions, etc.) or taking 1 < 7(¢) < 2 in the future.
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